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Abstract: Climate and land-use change significantly impact hydrological processes and water re-
sources management. However, studies of runoff simulation accuracy and attribution analysis in
large-scale basins based on multi-source data and different scenario projections are limited. This
study employed the Soil and Water Assessment Tool (SWAT) model in conjunction with spatial inter-
polation techniques to evaluate the accuracy of Climate Forecast System Reanalysis (CFSR), China
Meteorological Assimilation Driven Dataset (CMADS), and observation (OBS) in runoff simulations,
and configured various scenarios using the Patch-generating Land-use Simulation (PLUS) model to
analyze effects of climate and land-use changes on runoff in the Jing River Basin from 1999 to 2018.
Results demonstrated the superior performance of the CMADS+SWAT model compared to than
CFSR+SWAT model, as the latter underestimated peak runoff. Changes in precipitation had a stronger
impact on runoff than temperature, with increased flow from farmland and strong interception effects
from forestland. Integrated climate and land-use changes led to an average annual runoff reduction
of 1.24 m3/s (I2), primarily attributed to climate change (1.12 m3/s, I3), with a small contribution
from land-use change (0.12 m3/s, I4). CMADS exhibited robust applicability under diverse scenarios,
effectively enhancing runoff simulation accuracy. The findings provide invaluable guidance for water
resources management in semi-arid regions.

Keywords: data precision; SWAT; scenario simulation; attribution analysis; runoff response

1. Introduction

Climate and land-use changes have varying impacts on the hydrological cycle pro-
cesses in watersheds, particularly leading to the significant spatiotemporal changes in
runoff [1–3]. Climate change has a relatively long impact on runoff, primarily through di-
rect effects of precipitation and indirect effects of temperature and evaporation [4,5], while
land-use change has a relatively short impact, mainly affecting runoff through alterations
in hydrological elements such as surface vegetation retention, infiltration, evaporation,
and puddle filling [3,6]. With the effects of integrated climate and land-use change on
runoff, runoff can either increase or decrease simultaneously, or display opposite trends
with one factor increasing while the other decreases [7]. Runoff is a crucial foundation
for the sustainable and healthy development of human society and ecosystems. However,
quantifying the effects of climate and land-use changes on runoff in a scientific manner
remains a challenging task for current research [8–11]. Commonly used quantification
methods include empirical approaches [12], statistical methods [13], and hydrological
modeling methods [14]. However, due to the complex interactions between climate and
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land-use changes and their impacts on runoff variability and subsurface conditions, incon-
sistent results are obtained from different quantification methods [15]. Therefore, accurately
simulating runoff processes in watersheds is of great significance in assessing the effects of
climate and land-use changes and developing effective precautionary measures.

Meteorological data are crucial for accurately simulating hydrological processes and
serve as an important indicator of climate change [16,17]. Precise hydrological simulation
relies on reliable meteorological conditions [18,19]. Meteorological data are primarily ob-
tained from gauged stations. However, there are challenges in obtaining meteorological
data in areas with complex terrain due to scarcity and uneven spatial distribution of sta-
tions, limited time scales, and difficulties in data acquisition [20], which greatly restrict
the accuracy requirement on hydrological modeling [21]. The use of reanalysis meteoro-
logical products is a reliable approach to address this issue and provide data support for
hydrological analysis in data-scarce basins [22,23]. Compared to other reanalysis datasets,
Climate Forecast System Reanalysis (CFSR) and China Meteorological Assimilation Driving
Datasets (CMADS) have higher spatial resolution and are more easily accessible [24–26].
Additionally, both datasets are officially recommended weather data for the Soil and Water
Assessment Tool (SWAT) hydrological model, ensuring their reliability. However, the
accuracy of different precipitation products varies due to differences in data sources and
interpolation algorithms in different regions [25,27]. Therefore, it is necessary to assess the
applicability of CFSR and CMADS reanalysis meteorological products before conducting
actual hydrological modeling.

The Jing River, the largest tributary of the Wei River, is located in the central part
of the Loess Plateau, a semi-arid region in northwest China. The basin is influenced
by the topography and geomorphology of the Loess hilly-gully region and the Loess
highland-gully region, making it challenging to monitor hydro-meteorological data [28].
The basin faces severe soil erosion issues [29] and is frequently threatened by natural
disasters such as landslides and debris flows [30,31]. Although the Chinese government
has implemented large-scale afforestation and grassland restoration projects since 1999,
leading to the recovery of vegetation cover and the control of soil erosion, the overall
situation remains challenging [14,32,33]. Furthermore, under the influence of global climate
warming, the ecological conditions and water resource characteristics in the basin have also
undergone certain changes [34]. Therefore, accurately understanding the impact of climate
and land-use change on hydrological processes is of great significance for maintaining the
sustainable development and utilization of water resources.

Based on this premise, this study utilized the CFSR and CMADS datasets to drive the
SWAT model, employing multiple scenario simulations to investigate the spatiotemporal
dynamics of the impacts of climate and land-use changes on the characteristics of runoff in
the Jing River Basin from 1999 to 2018. The objectives of this study were to: (i) evaluate
annual average spatial distribution and intra-annual distribution of precipitation, maxi-
mum/minimum temperature among CFSR, CMADS, and OBS at various stations in the
Jing River Basin utilizing spatial interpolation techniques; (ii) examine the suitability of
CFSR, CMADS, and OBS datasets in hydrological simulations by employing the SWAT
models aiming to achieve a more accurate depiction of the basin’s meteorological condi-
tions; and (iii) simulate the impact of land-use and climate change on runoff in the Jing
River Basin through multiple scenario designs. The findings of this study can serve as a
crucial foundation for water resources management and land-use planning in the context
of climate change and human activities.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The Jing River Basin is situated in the central region of the Loess Plateau within
China, spanning coordinates 34◦46′–37◦19′ N and 106◦20′–108◦42′ E, encompassing an
expansive basin area of 45,421 km2. Geographically, it is characterized by the presence of
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loess hills to the north, a loess plateau in the central region, mountainous terrain and dense
forests to the southwest, and expansive river plains to the southeast (Figure 1). The basin
experiences a typical temperate continental climate, with an average annual temperature
of 8 ◦C and annual precipitation ranging from 400 to 600 mm. In terms of landforms,
the basin predominantly consists of loess high plateau gully areas and hilly-gully areas,
encompassing approximately 81% of the total area. These regions are significantly impacted
by soil erosion, rendering them as primary sediment source areas for the Wei River. The
Jing River Basin boasts an extensive water system, with its primary stream originating in
Jing Yuan County, Ningxia Province. It traverses through Gansu Province before merging
with the Wei River in Galling County, Shaanxi Province. Spanning a length of 483 km, the
Jing River serves as a first-class tributary of the Wei River and a second-class tributary
of the Yellow River. The control hydrographic station within the basin is Zhangjiashan
Station, which oversees more than 95% of the basin’s total area, covering a catchment area
of 43,216 km2.

Water 2023, 15, x FOR PEER REVIEW 3 of 22 
 

 

The Jing River Basin is situated in the central region of the Loess Plateau within 
China, spanning coordinates 34°46′–37°19′ N and 106°20′–108°42′ E, encompassing an ex-
pansive basin area of 45,421 km2. Geographically, it is characterized by the presence of 
loess hills to the north, a loess plateau in the central region, mountainous terrain and dense 
forests to the southwest, and expansive river plains to the southeast (Figure 1). The basin 
experiences a typical temperate continental climate, with an average annual temperature 
of 8 °C and annual precipitation ranging from 400 to 600 mm. In terms of landforms, the 
basin predominantly consists of loess high plateau gully areas and hilly-gully areas, en-
compassing approximately 81% of the total area. These regions are significantly impacted 
by soil erosion, rendering them as primary sediment source areas for the Wei River. The 
Jing River Basin boasts an extensive water system, with its primary stream originating in 
Jing Yuan County, Ningxia Province. It traverses through Gansu Province before merging 
with the Wei River in Galling County, Shaanxi Province. Spanning a length of 483 km, the 
Jing River serves as a first-class tributary of the Wei River and a second-class tributary of 
the Yellow River. The control hydrographic station within the basin is Zhangjiashan Sta-
tion, which oversees more than 95% of the basin’s total area, covering a catchment area of 
43,216 km2. 

 
Figure 1. Location of Jing River Basin and distribution of meteorological and hydrological stations. 

2.1.2. Data and Technical Framework 
The following datasets were utilized for the present investigation: 
(i) The digital elevation model (DEM) was acquired from the geospatial data cloud 

(http://www.gscloud.cn) with a spatial resolution of 30 m (accessed on 15 June 2022). The 
DEM of the Jing River Basin was obtained through preprocessing procedures such as pro-
jection conversion, cropping, and stitching in ArcGIS. 

(ii) Soil data were obtained from the Chinese soil dataset V1.1 of the Harmonized 
World Soil Database (HWSD) (http://www.resdc.cn) with a spatial resolution of 1 km (ac-
cessed on 18 August 2022). The soil classification system employed primarily adhered to 
FAO-90 standards. 

(iii) Land-use data were derived from Landsat TM/ETM remote sensing images as 
the primary source of information. These data were obtained from the Resource and En-
vironment Science and Data Center of the Chinese Academy of Sciences (http://www.ge-
odata.cn) and possessed a spatial resolution of 30 m (accessed on 11 October 2022). 

(iv) The meteorological data incorporated the CFSR, CMADS, and OBS (Table 1). The 
CFSR and CMADS data, utilizing state-of-the-art data assimilation techniques to integrate 
traditional meteorological observatory and satellite radiation data, in conjunction with at-
mosphere–ocean–land–sea ice models, encompassed a wide array of data spanning mul-
tiple temporal scales. 

  

Figure 1. Location of Jing River Basin and distribution of meteorological and hydrological stations.

2.1.2. Data and Technical Framework

The following datasets were utilized for the present investigation:
(i) The digital elevation model (DEM) was acquired from the geospatial data cloud

(http://www.gscloud.cn) with a spatial resolution of 30 m (accessed on 15 June 2022).
The DEM of the Jing River Basin was obtained through preprocessing procedures such as
projection conversion, cropping, and stitching in ArcGIS.

(ii) Soil data were obtained from the Chinese soil dataset V1.1 of the Harmonized
World Soil Database (HWSD) (http://www.resdc.cn) with a spatial resolution of 1 km
(accessed on 18 August 2022). The soil classification system employed primarily adhered
to FAO-90 standards.

(iii) Land-use data were derived from Landsat TM/ETM remote sensing images as
the primary source of information. These data were obtained from the Resource and
Environment Science and Data Center of the Chinese Academy of Sciences (http://www.
geodata.cn) and possessed a spatial resolution of 30 m (accessed on 11 October 2022).

(iv) The meteorological data incorporated the CFSR, CMADS, and OBS (Table 1). The
CFSR and CMADS data, utilizing state-of-the-art data assimilation techniques to integrate
traditional meteorological observatory and satellite radiation data, in conjunction with
atmosphere–ocean–land–sea ice models, encompassed a wide array of data spanning
multiple temporal scales.

http://www.gscloud.cn
http://www.resdc.cn
http://www.geodata.cn
http://www.geodata.cn
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Table 1. Information on three types of meteorological datasets that drive the SWAT model.

Data Type CFSR CMADS OBS

Elements (i). Daily maximum/minimum temperature; (ii). Daily accumulative precipitation; (iii). Daily
accumulative solar radiation; (iv). Daily average wind speed; (v). Daily average relative humidity.

Data spatial range of
this study

34.19◦~37.63◦ N,
105.94◦~109.02◦ E

34.66◦~37.33◦ N,
106.33◦~108.66◦ E

34.46◦~37.19◦ N,
106.20◦~108.42◦ E

Data time range of
this study

1 January 1999~31 December 2013
(daily)

1 January 1999~31 December
2018 (daily)

1 January 1999~31 December
2013 (daily)

Resolution ratio of
this study 0.313◦ 0.333◦ –

No. of stations
applied by SWAT
model

132 41 5

Download URL https://swat.tamu.edu/data/cfsr
(accessed on 15 March 2022)

http://www.cmads.org
(accessed on 7 March 2022)

https://data.cma.cn (accessed
on 12 January 2022)

(v) The hydrological observations from the Jing River Basin Hydrological Station were
obtained from the Institute of Soil and Water Conservation, Northwest A&F University.
This study collected monthly runoff observations from 1999 to 2018 at Zhangjiashan Station.

Based on the above datasets, the general structure of the technical framework for this
study is illustrated in Figure 2.
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2.2. Spatial Interpolation Method

Spatial interpolation serves as a vital approach for acquiring meteorological element
data across continuous spatial domains, utilizing known station data [35]. The ANUSPLIN
interpolation software, grounded in the thin-slab spline interpolation theory, demonstrates
exceptional capacity for accurately representing climate data surfaces. It is particularly well
suited for the spatial interpolation of time-series meteorological data [36]. The theoretical
formulation of the model is expressed as follows:

Zi = f (xi) + bTyi + ei (i = 1, 2, · · · , N) (1)

where Zi is the dependent variable at a specific spatial location, such as precipitation or
temperature; xi is the vector of spline independent variables; f is the latent smooth function
on xi that requires estimation; yi is the independent covariate; bT is the coefficient; ei is the

https://swat.tamu.edu/data/cfsr
http://www.cmads.org
https://data.cma.cn
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stochastic error associated with the independent variable; and N is the total number of
observation points.

The reanalysis data for precipitation and maximum/minimum temperature were spa-
tially interpolated to the exact station locations using the ANUSPLIN software. The reliability
of the reanalysis data was initially assessed by utilizing statistical measures including the
correlation coefficient (R), relative error (RE), root mean square error (RMSE), and standard
deviation ratio (STD). For detailed assessment criteria, please refer to Section 2.4.2 “Model
Calibration and Evaluation”.

2.3. PLUS Model

The Patch-generating Land-use Simulation Model (PLUS) is an advanced model em-
ployed for simulating future land-use changes. This model combines the Land Expansion
Strategy Analysis module (LEAS) with a multiclass stochastic patch-seed-based meta-
cellular automata model known as CARS [37]. In this particular investigation (Figure 3), a
comprehensive set of 16 raster drivers, including DEM, GDP, average annual temperature,
average annual precipitation, and soil type, were utilized to characterize the alterations
in the biological environment of the watershed. Subsequently, within the LEAS module,
land-use expansion data were input, accompanied by the specification of various parame-
ters (e.g., number of decision trees: 20, sampling rate: 0.02, number of training features: 16).
The output from this module yielded the development probability for each land-use class.
Furthermore, within the CARS module, specific parameters were input and meticulously
adjusted. Notably, the attenuation threshold was set at 0.8, the diffusion coefficient was
established as 0.3, and the probability of random seed was fixed at 0.0005. These settings
facilitated the generation of a land-use map for the year 2030.
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2.4. SWAT Model
2.4.1. Model Setup

The spatial data projection was designated as WGS_1984_UTM_Zone_48N. During
the extraction of the DEM river network, the inclusion of linear rivers from the second-
transfer land-use database was employed to ensure the precision of the resulting river
network. To derive an appropriate number of sub-basins and hydrological response units
(HRUs), the minimum catchment area of rivers was established at 7500 ha through iterative
refinement. Additionally, according to HWSD soil classification, soils were classified into
21 distinct groups (Figure 4a). Similarly, using the existing land-use classification, land-use
was classified into 6 types (Figure 4b). Thresholds were imposed on land-use, soil type,
and slope, with values set at 5%, 5%, and 10%, respectively. As a result, a total of 36 sub-
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basins (Figure 4c) and 740 HRUs were generated. The meteorological elements required as
inputs to the SWAT model, encompassing precipitation, maximum/minimum temperature,
relative humidity, solar radiation, and wind speed, were all obtained at a daily scale. The
selected time period to drive the SWAT model spanned from 1999 to 2013 (Table 1), which
was consistent across all three datasets.
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Figure 4. (a) Soil classification (ATc: cumulic anthrosols; ATf: fimic anthrosols; CHh: haplic cher-
nozems; CHk, CHk1: calcic chernozems; CHl: luvic chernozems; CMc, CMc1: calcaric cambisols;
CMd: dystric cambisols; CMe, CMe1: eutric cambisols; CMg, CMg1: gleyic cambisols; FLc, FLc1:
calcaric fluvisols; GLk: calcic gleysols; GRh: haplic greyzems; GYh: haplic gypsisols; LVh: haplic
luvisols; LVk: calcic luvisols; RGc: calcaric regosols), (b) land-use classification (AGRL: agriculture
land; BARR: barren; FRST: forest; PAST: grassland; URBN: urban; WATR: water), (c) sub-basin
delineation in the Jing River Basin.

2.4.2. Model Calibration and Evaluation

The SUFI-2 algorithm, incorporated within the SWAT-CUP software, was employed
to optimize the parameters of the hydrological model driven by various modes [38]. A
warm-up period from 1999 to 2000 was established to mitigate the influence of the initial
simulation state. The calibration period spanned from 2001 to 2007, followed by a validation
period from 2008 to 2013. Building upon the SWAT file and the prior sensitivity analysis, a
total of 22 parameters associated with runoff were selected [11]. The final values of these
model parameters were determined by iteratively simulating the model and adjusting the
parameters after every 1000 iterations, based on recommended values and their initial
limits (Table 2).

The determinacy coefficient (R2), Nash–Sutcliffe efficiency coefficient (NSE), ratio
of the root mean square error to the standard deviation of measured data (RSR), and
percentage bias (PBIAS) were chosen as performance assessment metrics to evaluate the
accuracy of runoff simulations [39] and gauge the suitability of the three datasets within
the SWAT model (Table 3).

2.5. Setting Climate and Land-Use Change Scenarios

Based on the suitability assessment of reanalysis data, we chose the CMADS
(1999–2018) dataset to drive the SWAT model due to its superior performance. After
validating the model’s simulation accuracy, we established three scenarios to analyze
the response of Zhangjiashan Station runoff to watershed land-use and climate change
(Table 4).
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Table 2. Final values of different data-driven SWAT model parameters.

Parameter Range
Final Value

CFSR+SWAT CMADS+SWAT OBS+SWAT

TRNSRCH.bsn 0–1 0.590 0.283 0.460
TIMP.bsn 0–1 0.855 0.598 0.782
SMFMX.bsn 0–20 10.005 7.814 17.493
SURLAG.bsn 0.05–24 16.876 12.463 15.552
SMFMN.bsn 0–20 11.940 18.300 19.084
GWQMN.gw 0–5000 2033.749 242.643 1127.715
GW_DELAY.gw 0–500 211.570 43.784 484.343
RCHRG_DP.gw 0–1 0.352 0.379 0.370
ALPHA_BF.gw 0–1 0.969 0.733 0.346
GW_REVAP.gw 0.02–0.2 0.036 0.148 0.105
LAT_TTIME.hru 0–180 7.313 28.178 30.277
EPCO.hru 0–1 0.777 0.815 1.000
SLSOIL.hru 0–150 1.435 3.649 0.148
OV_N.hru 0.01–30 37.824 6.814 4.892
ESCO.hru 0–1 0.206 0.175 0.063
CN2.mgt 35–98 93.783 77.171 81.117
CH_K2.rte 0.01–500 16.728 26.281 25.839
CH_N2.rte 0.01–0.3 0.024 0.065 0.029
ALPHA_BNK.rte 0–1 0.072 1.192 0.573
SOL_AWC().sol 0–1 0.577 0.666 0.662
SOL_K().sol 0–2000 735.605 741.229 902.798
TLAPS.sub 0–10 7.468 3.547 2.235

Table 3. Accuracy evaluation indicators in this study.

Index Name Formula Value Range Optimal Value

Correlation
Coefficient, R R =

n
∑

i=1
(xi−x)(yi−y)√

n
∑

i=1
(xi−x)2 n

∑
i=1

(yi−y)2
[−1, 1] 1

Relative Error, RE RE = 1
n

n
∑

i=1

|xi−yi |
yi

[0, +∞] 0

Root Mean Square
Error, RMSE RMSE =

√
1
n

n
∑

i=1
(xi − yi)

2 [-∞, +∞] 0

Standard deviation
ratio, STD STD =

√
1
n

1
∑

i=1
(xi−x)2

√
1
n

1
∑
n
(yi−y)2

[0, 1] 1

Nash-Sutcliffe
efficiency, NSE NSE = 1−

n
∑

i=1
(Qoi−Qsi )

2

n
∑

i=1
(Qoi−Qo)

2
[0, 1] 1

Coefficient of
determination, R2 R2 =

[
n
∑

i=1
(Qoi−Qo)(Qsi−Qs)

]2

n
∑

i=1
(Qoi−Qo)

2 n
∑

i=1
(Qsi−Qs)

2
[0, 1] 1
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Table 3. Cont.

Index Name Formula Value Range Optimal Value

Ratio of the root mean
square error to the

standard deviation of
observed data, RSR

RSR = 1−

√
n
∑

i=1
(Qoi−Qsi )

2

√
n
∑

i=1
(Qoi−Qo)

2

[0, 1] 0

Percent bias, PBIS PBIAS =

[
n
∑

i=1
(Qoi−Qsi )

]
0.01×

n
∑

i=1
Qoi

[0, 1] 0

Note: xi and yi denote the simulated and observed values at the actual meteorological site, respectively; x and
y denote the mean simulated and mean observed values at the actual meteorological station, respectively; Qoi

and Qsi denote the observed and simulated values of runoff, respectively; Qo and Qs denote the mean values of
observed and simulated runoff, respectively; n is the number of statistical samples.

Table 4. Scenarios for modeling and analysis.

Climate change
Scenario C00 Cp/t1 Cp/t2 Cp/t3 Cp/t4
Precipitation 0 −20% −10% +10% +20%
Temperature 0 −2 ◦C −1 ◦C +1 ◦C +2 ◦C

Land-use change
(km2)

Scenario L0 L1 L2 L3 L4
AGRL 20,164.2 44,438.4 — — 17,800.3
FRST 4160.9 — 44,438.4 — 5189.2
PAST 20,111.8 — — 44,438.4 20,925.4
WATR 203.5 203.5 203.5 203.5 181.4
URBN 779.1 779.1 779.1 779.1 1297.4
BARR 1.5 — — — 27.2

Integrated
change

Scenario Land-use data Meteorological data
I1 2000 1999–2010
I2 2015 2011–2018
I3 2000 2011–2018
I4 2015 1999–2010

(i) Climate change scenarios: Based on the IPCC Sixth Assessment Report and the po-
tential range of future climate changes in the watershed [40,41], we established benchmark
intervals of 10% for precipitation and 1 ◦C for temperature. This formed the basis for con-
figuring eight climate change scenarios: precipitation scenarios Cp1–Cp4 and temperature
scenarios Ct1–Ct4, aimed at analyzing the impact of climate change on runoff.

(ii) Land-use change scenarios: Using the land-use status from the year 2000 [14] as a
baseline, we employed the PLUS model to forecast the watershed’s land-use changes under
a natural development scenario for 2030 (L4). Additionally, we established extreme scenarios
(L1–L3) pertaining to specific land-use types to delve deeper into the influence of individual
land-use changes on runoff volume, while mitigating the impact of other variables.

(iii) Integrated change scenarios: The climate change process in the Jing River Basin
has been relatively gradual, and watershed conservation measures like afforestation and
farmland conversion were not in place before the 21st century. Thus, scenarios were
designated for the periods 1999–2010 and 2011–2018 (I1–I4). Using I1 as the reference
period, the comparison of I3 with I1 can be employed to analyze the influence of climate
change on runoff. Similarly, the comparison of I4 with I1 can be utilized to assess the impact
of land-use change on runoff. Furthermore, the analysis of the impact of both changes on
runoff can be conducted by comparing I2 with I1.
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3. Results
3.1. Comparison and Evaluation of CMADS and CFSR Data
3.1.1. Spatial Distribution of Multi-Year Average Precipitation and Temperature

Utilizing the ANUSPLIN interpolation software, we obtained the spatial distribution
of the reanalysis data for the Jing River Basin encompassing the multi-year average pre-
cipitation and maximum/minimum temperature from CMADS, CFSR, and OBS sources,
spanning the period of 1999–2013 (Figure 5). The lower part of the basin, particularly the
southeastern region encompassing Liquan County, experienced elevated temperatures and
abundant precipitation owing to the influence of a temperate continental monsoon climate.
Regarding precipitation, the CMADS dataset exhibited an underestimation in total annual
average precipitation, whereas the CFSR dataset tended to overestimate it in comparison
to OBS. Concerning the area of maximum precipitation, CMADS closely aligns with OBS,
while CFSR exhibited a slight northwest displacement. Nonetheless, when precipitation
was not considered, both CMADS and CFSR exhibited spatial distributions similar to OBS,
characterized by a decreasing trend from southeast to northwest. This implied higher
precipitation in the mountainous and river plain areas to the south, and lower precipitation
in the loess plateau and hilly regions to the north.

Regarding maximum/minimum temperature, all three meteorological datasets exhib-
ited a gradual rise from the north to the south, spanning from the loess hilly regions to the
river plain areas. This indicated that the spatial distribution of temperature was primarily
influenced by factors such as latitude and altitude. Maximum temperatures ranged from
26 ◦C to 42 ◦C, while minimum temperatures ranged from −25 ◦C to −7 ◦C. When consid-
ering both the values and distribution areas of maximum/minimum temperature, CMADS
demonstrated a closer resemblance to OBS than CFSR, albeit with a slight northwestward
displacement of maximum/minimum temperatures. In conclusion, CMADS outperformed
CFSR in terms of accuracy and spatial distribution representation for multi-year average
precipitation and temperature.

3.1.2. Intra-Annual Distribution of Precipitation and Temperature

The observed variation pattern of average intra-annual distribution for precipitation
and maximum/minimum temperature are evident in Figure 6. It demonstrated a distinct
cycle of increasing and then decreasing trends, specifically indicating higher precipitation
and temperatures during summer and autumn (June to November), and lower precipi-
tation and temperatures during spring and winter (December to May). Furthermore, it
is noteworthy that CMADS consistently exhibited lower levels of precipitation and max-
imum/minimum temperature compared to OBS across all months. Conversely, CFSR
generally displayed higher maximum/minimum temperatures than OBS throughout the
year, with CFSR consistently overestimating when the average monthly precipitation was
below 80 mm. This aligns with the spatial distribution depicted in Figure 5, and the
underlying reasons will be examined in the forthcoming discussion section.

Upon examining the statistical indicators derived from the five stations within the
basin, it became apparent that both reanalysis data sources exhibited a high correlation
with the observed data, exceeding an R of 0.97. Evaluating the RE and RSE, the disparity be-
tween CMADS and CFSR in terms of the maximum temperature impact was not significant.
However, for precipitation and minimum temperature, CMADS displayed smaller values
that were in closer proximity to OBS. Analyzing the STD, it was evident that CMADS
achieved superior values of 0.98, 1.03, and 0.97 for precipitation, maximum temperature,
and minimum temperature, respectively. In contrast, CFSR yielded values of 0.84, 1.11,
and 1.19, respectively, further deviating from the optimal value of 1. Consequently, despite
CMADS exhibiting slight underestimation in monthly average precipitation and maxi-
mum/minimum temperature compared to OBS, the statistical outcomes of each indicator
ascertained that CMADS demonstrated greater concurrence with OBS when compared
to CFSR.
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3.2. Effects of Runoff Simulation in SWAT Models Driven by Different Datasets

The aforementioned three datasets served as input for the hydrological model, and
the SWAT model was independently employed to generate monthly simulation results
of runoff for the Zhangjiashan hydrological station (Figure 7). The NSE values for the
CFSR, CMADS, and OBS+SWAT models during the rate regular/validation periods were
0.66/0.70, 0.82/0.84, and 0.80/0.79, respectively. Similarly, the R2 values were 0.66/0.74,
0.84/0.85, and 0.81/0.78; the RSR values were 0.53/0.50, 0.42/0.41, and 0.43/0.46; the
PBIAS values were 11.2/9.7, 2.6/0.9, and 5.9/3.2, in the same order. These results were
evaluated according to the criteria established by Moriasi et al. [39]. It can be concluded
that the CMADS and OBS+SWAT models exhibited excellent performance for both the
calibration period and validation period at the Zhangjiashan Station when compared to the
CFSR model. However, the CFSR+SWAT model demonstrated relatively poor simulation
during the calibration period, while achieving a relatively better performance during the
validation period.
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Figure 7. Comparison of monthly runoff simulation results from different meteorological data-driven
SWAT models.

The peak runoff values predominantly occurred during the months of July to Septem-
ber, aligning with the intra-annual precipitation distribution in the basin. This pattern was
particularly evident in the simulation results for the peak runoff in 2001 and 2003. A com-
parison between CFSR and OBS data on the multi-station monthly average precipitation in
July to September within the basin revealed that the CFSR data overestimated the observed
precipitation by approximately 11.3 mm (+10.9%) in 2001 while underestimating it by
about 79.8 mm (−32.7%) in 2003. It was discovered that the underestimated precipitation
in 2003 coincided with a rare meteorological event known as the “West China Autumn
Rain,” which affected the middle and lower reaches of the Yellow River from late August to
mid-October, resulting in several flood peaks in the Jing River Basin, including the highest
recorded flood level at the Zhangjiashan hydrological station. Furthermore, the year 2010
experienced abundant precipitation during July to September, leading to a significant flood
event. Conversely, the intensity of precipitation was relatively weaker in 2003, where the
CFSR data underestimated the observed precipitation by approximately 41.3 mm (−19.3%)
during that month.
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Due to the conspicuous occurrence of overestimation of low precipitation and under-
estimation of high precipitation by the CFSR dataset, the multi-year average precipitation
for July–September was lower than the observed precipitation (Figure 6). Consequently,
the simulated baseflow tended to be overestimated, while the peak runoff was typically
underestimated. This phenomenon was particularly pronounced in the time span between
2005 and 2010, resulting in poor runoff simulation outcomes for the CFSR+SWAT model.
Conversely, the runoff simulation results for the CMADS+SWAT and OBS+SWAT models
exhibited higher quality and demonstrated similarities during the same period. In conclu-
sion, the CMADS+SWAT model proved to be more adept at fitting the observed runoff and
enhancing the precision of runoff simulations.

3.3. Impacts of Climate and Land-Use Change on Runoff
3.3.1. Climate Change Scenarios

The meteorological data obtained from CMADS covering the period of 1999–2018,
along with the land-use data from 2000, were employed as the foundational period to derive
simulation results for various climate change scenarios (Figure 8a,b). The interannual
patterns of runoff under different climate scenarios exhibited consistency, with the highest
runoff occurring in 2003 (Cp4 = 104.1 m3/s) and the lowest in 2009 (Cp1 = 8.5 m3/s). When
comparing temperature and precipitation scenarios, the differences in runoff were more
pronounced under the precipitation scenario. The overall simulation results revealed
distinct interannual variations and followed a specific pattern: Cp4 > Cp3 > Cp0 > Cp2 > CP1
(Figure 8a), Ct1 > Ct2 > C00 > Ct3 > Ct4 (Figure 8b). Maintaining a constant temperature, a
10% and 20% increase in precipitation led to a corresponding average annual runoff increase
of 23.22% and 50.62%, respectively. On average, for every 10% increase in precipitation,
runoff increased by 25.31%. Conversely, a decrease in precipitation resulted in a decrease
in average annual runoff (Table 5). These findings demonstrated a direct proportional
relationship between average annual runoff and changes in precipitation, emphasizing the
direct impact of precipitation on basin flow production. Keeping precipitation constant, a
decrease of 1 ◦C and 2 ◦C in temperature led to an average annual runoff increase of 2.27%
and 4.83%, respectively. Conversely, an increase in temperature resulted in a decrease in
average annual runoff. On average, for every 1 ◦C increase in temperature, runoff decreased
by 0.64%. This revealed an inverse proportional relationship between average annual runoff
and changes in temperature, highlighting the indirect influence of temperature on runoff
through increased evaporation.
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Table 5. Simulation results of runoff under different scenarios (m3/s).

Type Scenario Mean Annual Runoff Runoff Change Rate

Precipitation
change

Cp4 33.29 50.62%
Cp3 27.24 23.22%
C00 22.10 —
Cp2 17.77 −19.59%
Cp1 14.03 −36.50%

Temperature
change

Ct4 21.82 −1.27%
Ct3 22.03 −0.34%
C00 22.10 —
Ct2 22.60 2.27%
Ct1 23.17 4.83%

Land-use
change

L0 22.10 —
L1 24.04 8.78%
L2 19.46 −11.95%
L3 20.71 −6.29%
L4 21.92 −0.81%

Integrated
change

Scenario
Mean annual Effects of Effects of

Precipitation Temperature Runoff Land-use climate

I1 488.51 mm 9.76 ◦C 22.89 — —
I2 447.68 mm 10.08 ◦C 21.65 −0.12 −1.12
I3 — — 21.77 — −1.12
I4 — — 22.77 −0.12 —

3.3.2. Land-Use Change Scenarios

Comparing the actual 2015 land-use data of the Jing River Basin with simulated land-
use data from the PLUS model yielded a Kappa value of 0.935 and an overall accuracy
of 0.966, indicating a high level of confidence in the simulation results [37]. Thus, using
the 2015 actual land-use as a foundation, the PLUS model was employed to simulate
the 2030 land-use pattern under the scenario of natural development in the Jing River
Basin (Figure 9a). Additionally, a Sankey diagram was constructed (Figure 9b) using the
land-use transfer matrix spanning from 2000 to 2030 to visually depict the transitions
between different land-use types during various time intervals. The findings indicated that,
between 2005 and 2015, there was a heightened frequency of conversions between land-use
categories. During this period, arable land experienced a substantial reduction, with 66.3%
of the area transitioning to grassland, 19.8% to construction land, and 13.4% to forest land.
Notably, the watershed area decreased by 11.8 km2, primarily attributable to a 3.6 km2

transfer out of arable land. Conversely, the area of forest land, grassland, and construction
land witnessed an increase, with construction land experiencing the most significant growth
at 35.8%. This expansion is likely linked to the rapid socioeconomic development and
urban transformation. From 2015 to 2030, various degrees of area transfers occurred among
the categories. Arable land continued to decline by 1076.8 km2, while other land categories
exhibited varying degrees of expansion. Forest land experienced the most substantial
increase, spanning 1028.3 km2, followed by construction land with a growth of 66.5%.
During both time periods, there were transfers of land from other categories to construction
land, amounting to 474.1, 8.6, 30.1, 5.5, and 0.1 km2, respectively. Moreover, water areas
underwent conversions to other land types, with respective areas of 7.1, 3.9, 4.1, 5.5,
and 1.4 km2.
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Notably, the interannual runoff trends under different land-use scenarios exhibited a
consistent pattern. The highest runoff value occurred in 2003, denoted as L1 = 67.32 m3/s,
while the lowest runoff value was observed in 2009, denoted as L2 = 8.17 m3/s. In compari-
son to diverse climate scenarios, the variation in runoff under different land-use conditions
demonstrated a moderate level. The overall pattern of interannual variation in the simula-
tion results followed the sequence: L1 > L0 > L4 > L3 > L2 (Figure 8c). The outcomes of the
extreme land-use type scenario indicated an 8.78% increase in runoff for L1, while L2 and
L3 experienced decreases of 11.95% and 6.29%, respectively. It was evident that farmland
exerted a flow-increasing effect, whereas grassland and woodland had an intercepting
effect on watershed runoff, with woodland exhibiting a stronger interception intensity. This
highlighted the significant influence of vegetation cover on hydrology. Regarding L4, the
simulation results projected a decrease in Zhangjiashan’s runoff volume from 22.10 m3/s
to 21.92 m3/s by 2030 under natural development, reflecting a decline of 0.81%. This
reduction was attributed to the decrease in arable land area and the increase in forest and
grassland areas in 2030.

3.3.3. Integrated Climate and Land-Use Change Scenarios

The monthly runoff simulation results under the integrated climate and land-use
change scenario are depicted in Figure 10. It was evident from the results that the simulated
peak flood season at Zhangjiashan hydrological station deviated from the observed values
in certain years. Specifically, the simulated values were lower than the observed values
in 2003, 2004, 2010, and 2018, while they were higher than the observed values in 2006,
2008, 2014, and 2017. The simulation accuracy was deemed satisfactory as indicated by
R2 > 0.8, NSE > 0.76, RSR < 0.45, and PBIAS < 10%, meeting the criteria for good per-
formance established by Moriasi et al. [39]. These findings demonstrated the favorable
applicability of the CMADS+SWAT model in the Jing River Basin.
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The results of the integrated scenario analysis (Table 5) reveal the average annual
runoff values for scenarios I1, I2, I3, and I4 to be 22.89 m3/s, 21.65 m3/s, 21.77 m3/s, and
22.77 m3/s, respectively. Comparing scenario I2 with I1, it was evident that the combined
influence of land-use and climate change led to a decrease in the average annual runoff by
1.24 m3/s. In scenario I3, the average annual temperature rose by 0.32 ◦C (+3.3%), while
the average annual precipitation experienced a decrease of 40.83 mm (−8.4%), with a more
pronounced reduction observed. Scenario I4, when compared to scenario I1, demonstrated
a decrease in the area of cultivated land, an increase in the area of construction land, and
an increase in the area of grassland and forest land. Comparing scenarios I3 and I4 with
scenario I1, it became apparent that climate change contributed to a reduction of 1.12 m3/s
in the annual average runoff, while land-use change accounted for a decrease of 0.12 m3/s
in the annual average runoff.

4. Discussion
4.1. Comparison and Evaluation of CMADS and CFSR Data in Runoff Modeling

The inclusion of meteorological data as input is of paramount importance in hydro-
logical model simulations, as errors in such data can significantly impact the accuracy
of hydrological output [42]. Both CMADS and CFSR exhibited temperature values that
closely aligned with observations, with CMADS demonstrating particularly favorable per-
formance, as indicated by average RMSE values ranging from 1.25 ◦C to 2.97 ◦C. In terms
of precipitation, the average RMSE values for CMADS and CFSR were 5.53 and 8.16 mm,
respectively, showcasing higher uncertainties. The annual average spatial distribution of
precipitation and maximum/minimum temperature exhibited similarity across all three
meteorological datasets (Figure 5). However, in terms of the annual average temperature
and total precipitation, CMADS displayed slight underestimation, while CFSR showed
slight overestimation. These observations aligned with the average intra-annual distri-
bution outcomes (Figure 6). The underestimation of precipitation in CMADS stemmed
from the utilization of the CMORPH satellite precipitation product as the background
field, which led to the neglect of precipitation below 4 mm due to surface reflectivity con-
straints [43,44]. Conversely, the overestimation of precipitation in CFSR could be attributed
to the absence of correction for observations obtained from meteorological stations within
the study area. The interplay of topography, climate prognostic models, and systematic
errors contributed to the overestimation of day-by-day rainfall and an increased number
of rainfall days in CFSR [22]. Additionally, all three meteorological datasets exhibited
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substantial precipitation fluctuations, with a pronounced uneven distribution through-
out the year. Notably, summer and autumn witnessed the highest precipitation levels,
accounting for approximately 70% to 80% of the total, while spring experienced relatively
lower precipitation, accounting for approximately 20%, and winter received almost no
precipitation. This pattern was primarily attributable to the location of the Jing River Basin,
which lay on the periphery of the summer monsoon zone and was highly susceptible to the
interaction between the Iranian high pressure, western Pacific subtropical high pressure,
and the cold trough beneath the southeast of Siberia [45].

Reanalysis meteorological products derived from CFSR and CMADS were valuable
sources of data for hydrological analysis, particularly for watersheds lacking direct mea-
surements. Consequently, there was a growing interest in assessing the accuracy and ap-
plicability of these data. Previous studies had evaluated meteorological products through
comparisons with rainfall gauges, rainfall records, and their performance in hydrological
modeling [23,46,47]. In our study, we employed the AUSPLIN interpolation method to
compare the spatial distribution of the two reanalyzed precipitation products and val-
idated their suitability at the point level using measurements from five meteorological
stations. However, due to the absence of observed meteorological data in the eastern part
of the basin, directly evaluating the quality of precipitation products for the entire basin
remained challenging. To address this, we employed the SWAT hydrological model ap-
proach while maintaining constant settings. By comparing the differences in hydrological
simulations, specifically the performance of the runoff process observed at Zhangjiashan
Station, we were able to infer the quality of the precipitation data products. Our findings
indicated significant disparities in the runoff simulations driven by CFSR, CMADS, and
OBS+SWAT. CMADS exhibited the highest performance, with NSE reaching as high as
0.82/0.84 for the calibration/validation periods. On the other hand, CFSR performed less
favorably, with NSE values of only 0.66/0.73. Based on the evaluation criteria developed by
Moriasi et al. [39], the CMADS, OBS+SWAT model yielded very good results during both
the calibration and validation periods at Zhangjiashan Station, while the CFSR+SWAT
model produced good results. This led us to conclude that the carefully calibrated SWAT
model was well suited for the Loess Plateau region in northwest China [14,48]. Analysis
of monthly runoff simulation maps revealed that the maximum runoff values generated
by the three models typically occurred between July and September, aligning with the
intra-annual distribution of precipitation in the watershed. With CMADS, the runoff simu-
lations were more accurate during years with higher rainfall, while slight underestimation
was observed during years with lower rainfall (Figure 7). This discrepancy could be at-
tributed to the fact that the monthly average precipitation of CMADS during the study
period was significantly lower than the monthly average rainfall of OBS and CFSR. As for
CFSR, its tendency to overestimate low precipitation and underestimate high precipitation
led to overestimated baseflow and underestimated peak runoff, resulting in suboptimal
simulation outcomes. These findings aligned with previous studies, such as the research
conducted by Tan et al. [25], which indicated that CFSR precipitation tended to overesti-
mate SWAT simulated flows in Asian, African, and mountainous basins [25]. Additionally,
Ning discovered that CMADS underestimated precipitation in the southern basin of East
China [43], while Wang found runoff underestimation in the CMADS-driven SWAT model
for the West River basin, particularly concerning peak flood flow [23].

The outcomes of the comprehensive comparison and evaluation of CMADS and CFSR
data for runoff simulations revealed that CMADS exhibited superior accuracy in multi-year
average precipitation and temperature compared to CFSR. Additionally, CMADS demon-
strated a more precise depiction of spatial distribution, establishing it as a dependable
dataset in the absence of observed data. Moreover, the calibrated SWAT model proved to be
well suited for the Loess Plateau region in China, and the CMADS+SWAT model enhanced
the fitting of observed runoff, thereby improving the accuracy of runoff simulation.
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4.2. Assessing Impacts of Climate and Land-Use Changes on Runoff Simulation

To conduct a more detailed analysis of whether the effects of climate and land-use
changes on runoff varied across sub-basins, we examined the average annual water yield
at the sub-basin level using the natural break point grading method (Figure 11). Regions
with high average annual water yield were primarily situated in the western valley and
southeastern mountainous area, particularly in sub-basins 10, 26, 30, and 32. Conversely,
areas with lower water yield were mainly found in the loess hills and ravines in the upper
reaches of the Malian River in the northwest, predominantly in sub-basins 1 and 2. Overall,
the spatial distribution pattern closely mirrored that of precipitation (Figure 5), with higher
precipitation corresponding to higher water yield. This indicated that precipitation served
as the primary source of runoff in the Jing River. The average annual water yield under
scenarios of precipitation/temperature change, land-use change, and integrated change
ranged from 38 to 210/54 to 166, 41 to 147, and 55 to 144 mm, respectively. These findings
suggest that the range of water yield change resulting from climate change was greater
than that caused by land-use change. Specifically, in the scenario simulation of climate
change, water yield increased with rising precipitation and decreased with increasing
temperature. This correlation was significant and aligned with the runoff trend (Figure 8).
The response of runoff to changes in precipitation was more sensitive than to changes in
temperature. This was attributed to the fact that runoff in the watershed, situated within
the temperate continental climate of the Loess Plateau, was predominantly replenished
by precipitation, which directly impacted runoff. Temperature, on the other hand, exerted
an indirect influence on runoff [49]. Regarding simulated land-use change scenarios, the
average annual water yield for the L1, L2, L3, and L4 scenarios ranged from 56 to 147, 41
to 122, 44 to 127, and 55 to 138 mm, respectively, with the maximum value occurring in
sub-basin 32 concurrently. Compared to the base period’s water yield (54 to 140 mm),
L1 generally exhibited an increase, while L2 and L3 generally showed a decrease. The
change pattern was similar (Figure 8), indicating that vegetation cover influenced the
hydrological process, with cultivated land contributing to increased flow, while grassland
and woodland intercepted runoff within the watershed. Woodland exhibited a stronger
interception capacity. In the integrated change scenario simulation, the water yield of I1
and I4, and of I2 and I3 displayed similar patterns at the sub-basin level, respectively. The
distribution and changes in water yield under integrated change resembled those under
climate change alone. Compared to I1, the average annual runoff of I2 decreased by a total
of 1.24 m3/s, with climate change accounting for 90.3% and land-use change accounting
for 9.7% of the reduction. This indicates that changes in water production and runoff
were primarily driven by climate change and were less influenced by land-use, consistent
with previous research [50]. However, the impact of land-use on runoff should not be
disregarded. The increase in woodland and grassland area had a mitigating effect on runoff,
as both woodland and grassland possessed the ability to intercept and retain water [13,34].
Notably, a large-scale project focused on converting farmland back to forest and grass was
implemented in the Loess Plateau region since 1999 [14].

The findings regarding the integrated impact of climate and land-use changes on
runoff revealed the necessity of implementing proactive flood control measures in the Loess
Plateau region of the basin. This includes implementing real-time monitoring and early
warning systems for heavy precipitation in sub-basins 10, 26, 30, and 32, as well as adopting
suitable precautionary measures in the future. Furthermore, special attention should be
given to the encroachment of cultivated land on forest and grassland areas. Implementing
measures such as the conversion of cultivated land back to forest and grassland is a crucial
strategy for effective flood control. Additionally, it is imperative to undertake rational
land-use planning and optimize the layout of land utilization to mitigate the hydrological
consequences, particularly the adverse impacts, resulting from climate change within
the basin.
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4.3. Limitations of This Study

This study possesses certain limitations, encompassing the following two aspects:
(i) CMADS and CFSR reanalysis data were chosen as the input data for the hydro-

logical model, but their uncertainty exerted a significant influence on the results of the
runoff simulation [51,52]. Additionally, the land cover and soil parameters in the SWAT
model adhere to the USGS standards, which differ considerably from the Chinese classi-
fication system. Hence, experimental measurement of certain crucial parameters is rec-
ommended [53,54]. Furthermore, due to limited information availability within the study
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area, solely the Zhangjiashan hydrological station, the sole outlet control station, could be
utilized to evaluate the accuracy of CMADS at that specific location, resulting in substantial
uncertainty. Based on this, this study employed parameters with high sensitivity for tuning
in order to diminish uncertainties and enhance efficiency. The hydrological station’s control
area was fully considered, and parameter conversions were implemented by referencing
relevant studies’ methodologies to minimize model uncertainties to the greatest extent
possible. However, the assessment of model uncertainty was lacking, thus necessitating
the inclusion of uncertainty analysis as the subsequent phase of this study [55,56].

(ii) The impacts of climate and land-use change on runoff in the Jing River Basin were
evaluated by the validated CMADS+SWAT model. However, despite considering four
climate scenarios and four land-use scenarios individually through a comparative analysis,
the interconnectedness between climate and land-use changes was overlooked. Climate
change not only influenced the growth conditions of crops and natural vegetation, but also
triggered responses in the growth of these entities, resulting in a complex and variable
interactive relationship between the two [1,57]. To address the intricate physical mecha-
nisms linking climate and land-use, it becomes crucial to develop a robust quantitative
model that can uncover the interdependencies between these two factors. Consequently, in
future investigations, the inclusion of the CMIP6 model for climate and land-use change
analysis will be essential in order to further elucidate the intricate interactions between
these aspects.

5. Conclusions

A comparative analysis of precipitation, maximum/minimum temperature between
reanalyzed data (CFSR, CMADS) and observation data (OBS), and their spatial distribution
both annually and intra-annually was conducted to simulate, validate, and analyze the
impacts of climate and land-use change on runoff in the Jing River Basin using the SWAT
model. The primary findings are as follows:

(i) CMADS underestimates annual average temperature and total precipitation,
whereas CFSR tends to overestimate these variables. However, CMADS exhibits greater
accuracy than CFSR in the spatial distribution of annual average precipitation and maxi-
mum/minimum temperature, displaying better concordance with OBS. In terms of statisti-
cal indicators, CMADS demonstrates lower relative error and root mean square error than
CFSR, with the standard deviation ratio being closer to 1. Consequently, CMADS can be
considered a more dependable source of reanalyzed data.

(ii) The CMADS+SWAT and OBS+SWAT models demonstrate exceptional performance
in simulating runoff, with R2 values exceeding 0.80 and NSE values surpassing 0.79.
Conversely, the simulation outcomes of the CFSR+SWAT model are relatively unsatisfactory,
displaying a noticeable underestimation in the peak runoff, primarily attributed to the
overestimation of weak precipitation and underestimation of intense precipitation in CFSR.
In summary, the CMADS+SWAT model exhibits commendable applicability and reliability
in the Jing River Basin, maintaining the accuracy of runoff simulation.

(iii) Basin runoff exhibits a positive correlation with precipitation and a negative corre-
lation with temperature. The impact of precipitation on runoff is more pronounced than
that of temperature, highlighting the necessity for early warning and prevention measures
against heavy rainstorms to mitigate flood risks. Farmland contributes to increased flow,
while grassland and forest land play a role in intercepting runoff within the basin. Notably,
forest land exhibits stronger interception intensity. Adjusting land-use types and spatial
arrangements can effectively prevent flooding incidents. The integrated change results in a
decrease of 1.24 m3/s (I2) in average annual runoff, with climate change accounting for a
reduction of 1.12 m3/s (I3) and land-use change contributing to a decrease of 0.12 m3/s (I4).
The impact of climate change is more significant than that of land0use change, but the role
of land-use planning cannot be ignored. Effective land-use planning plays a vital role in
addressing the hydrological impact of climate change, particularly its adverse effects.
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