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Abstract: Food and water security are considered the most critical issues globally due to the projected
population growth placing pressure on agricultural systems. Because agricultural activity is known to
be the largest consumer of freshwater, the unsustainable irrigation water use required by crops to grow
might lead to rapid freshwater depletion. Precision agriculture has emerged as a feasible concept
to maintain farm productivity while facing future problems such as climate change, freshwater
depletion, and environmental degradation. Agriculture is regarded as a complex system due to the
variability of soil, crops, topography, and climate, and its interconnection with water availability
and scarcity. Therefore, understanding these variables’ spatial and temporal behavior is essential in
order to support precision agriculture by implementing optimum irrigation water use. Nowadays,
numerous cost- and time-effective methods have been highlighted and implemented in order to
optimize on-farm productivity without threatening the quantity and quality of the environmental
resources. Remote sensing can provide lateral distribution information for areas of interest from the
regional scale to the farm scale, while geophysics can investigate non-invasively the sub-surface soil
(vertically and laterally), mapping large spatial and temporal domains. Likewise, agro-hydrological
modelling can overcome the insufficient on-farm physicochemical dataset which is spatially and
temporally required for precision agriculture in the context of irrigation water scheduling.

Keywords: irrigation; crop growth; precision agriculture; remote sensing; agro-geophysics; modeling

1. Introduction

Because large amounts of freshwater are required to enhance crop yield, irrigation is
crucial to ensure food security [1]. Globally, irrigated agriculture is responsible for around
70% of freshwater abstraction, 90% of water consumption, and 40% of food production [2].
However, the efficiency of irrigation water use is considered to be very low, as only 55%
of freshwater withdrawal is consumed by the crop [3]. This unsustainable freshwater
withdrawal leads to rapid surface water and groundwater depletion in many agricultural
areas [4]. The challenge is more prominent in semi-arid and arid regions that are currently
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under water stress and are relying on groundwater resources to support irrigation prac-
tices [5–7]. Furthermore, the expansion of global agriculture areas is expected to increase
to meet the increasing demand for agricultural commodities due to population growth.
Therefore, without proper irrigation water management techniques and practices, and con-
sidering the effect of climate change, freshwater preservation and future food production
will be threatened.

A good understanding of the relationship between the soil water content and the plant
is necessary, as the growth of the crop is governed by the water supply and demand in the
soil-plant-atmosphere continuum [8]. In reality, the irrigation water requirement might vary
in the field, depending on plant and soil properties and environmental status. Soil, water,
and plant properties are not considered static parameters, but they constantly change over
space and time [9]. Thus, the regular monitoring of soil water availability and crop growth
is essential to establish precision water irrigation [10]. Moreover, the implementation of
precision irrigation water would allow decision-makers and farmers to sustain limited
freshwater resources while at the same time also enhancing on-farm productivity.

Nowadays, remote sensing, geophysics, and agrohydrological modeling have been
widely applied as decision-making tools for site-specific irrigation water management.
The use of the tools mentioned above is considered part of the innovation in precision
agriculture. Dynamic processes in the soil-plant-atmosphere continuum, as well as the
plant’s physical properties such as soil moisture (SM), root water uptake (RWU), evapotran-
spiration (ET), crop chlorophyll, leaf area index (LAI) and plant water status content, could
be retrieved through remote sensing or geophysical acquisition. In turn, these data could
be used as inputs for agrohydrological modeling in order to provide an estimation of crop
water requirements for optimal yields. That advanced information would be beneficial
for the decision-making process at the farm-scale in order to achieve precision agriculture.
The present paper intends to highlight applications of remote sensing, geophysics, and
modeling to support proper irrigation water management. The overall concept is presented
in the flowchart of Figure 1.
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Figure 1. Flowchart of precision agricultural services to support proper irrigation management.

2. Irrigation and Crop Monitoring in Precision Agriculture

The adequate measurement of crop water requirements can be considered the first step
toward implementing irrigation water efficiency. Quantifying the right amount of irrigation
water supply typically involves the crop water requirement and soil water balance, where
ET is the main component [11]. ET, which is a turbulent flux of water vapor from the surface
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into the atmosphere involving soil evaporation and transpiration, can also be defined as the
amount of water required by plants [12]. ET is regarded as the most significant outgoing
water flux at the land surface, and any change of this variable will directly affect the water
availability [13]. Thus, accurate knowledge of ET is crucial for a greater understanding of
the water and energy balance, which is beneficial for numerous implementations such as
irrigation water strategies.

Irrigation water allocation cannot be set in a uniform manner, as the biomass and soil
texture might vary across the field, thus affecting the crop water requirement. Conventional
techniques like lysimeter, eddy covariance, sap flow, pan measurement, and the bowen
ratio offer an accurate ET estimate at the individual crop and field scales. However, most
of the aforementioned methods are difficult to extrapolate into a larger scale to identify on-
farm spatial variability considering the heterogeneity of the land surface and heat transfer
process. Hence, remote sensing is regarded as a suitable tool to overcome this gap due to
its ability to provide adequate spatial and temporal information.

In the cultivated area, shallow soil characteristics (e.g., soil texture and structure) at
a depth of 1–2 m might govern irrigation water distribution, the availability of nutrients,
and root growth. Soil texture is defined as the relative proportion of gravel, sand, silt, and
clay. At the same time, soil structure refers to the spatial arrangement of different solid
constituents (e.g., mineral and organic matter) and the soil void. Coarser soil like sandy soil
can be wetted by lesser irrigation, but it is easily dried up, resulting in frequent irrigation
schedules. On the contrary, fine-textured soil is more fertile, and can hold soil water longer
than coarser soil. Soil water movement and retention in the vadose zone are also influenced
by the soil structure. Poor soil structure, such as soil with low permeability, could reduce
the irrigation water infiltration and increase runoff. This characteristic might result from
the compaction process due to the heavy equipment used in agricultural activity. Because
these soil characteristics are not homogeneous within farm areas, they might affect the
irrigation water management plan. Therefore, an accurate assessment of the subsurface
soil at the field scale is required in order to support precision irrigation.

Other variables required for precision irrigation are the hydrological state and flux
in the vadose zone, such as SM and RWU. Both variables are affected by each other;
thus, understanding the spatiotemporal variability of SM and RWU would be beneficial to
support decision making regarding the optimum irrigation scheme [14–16]. SM refers to the
amount of water in the soil, and is commonly expressed as a percentage. SM is the essential
variable influencing the transfer of energy, carbon, and water in the soil-plant-atmosphere
continuum. In agricultural areas, a sufficient amount of SM is required by a crop to grow.
This variable can be quantified through numerous approaches at various scales, from the
point scale to the local and/or regional scale. The most traditional method is probably the
application of gravimetric and volumetric soil water content equations after performing
soil sampling. Another reliable technique at the point scale is the deployment of several
electromagnetic sensors, such as time domain reflectometry (TDR), amplitude domain
reflectometry (AWR), and frequent domain reflectometry (FDR) inside the soil to measure
the volumetric water content [17]. At the proximal scale, several geophysics techniques
can be employed, such as resistivity [18,19], ground-penetrating radar (GPR) [20], or
electromagnetic induction (EMI) [17]. Nowadays, remote sensing approaches have been
successfully proven to monitor surface soil moisture (SSM) at different scales. On the other
hand, RWU is defined as the process of water extraction by plant roots for transpiration. In
particular, the assessment of RWU is based on the adequate information of SM. The study
of RWU typically focuses on the determination of the area where the water is extracted by
plant roots, and the analysis of the major factor affecting RWU, such as changes of water
availability or salinity [16].

Crop monitoring is one of the activities in precision agriculture that is commonly
oriented towards retrieving key parameters such as the Leaf Area Index (LAI), chlorophyll
content (e.g., leaf and canopy), and plant water status. Based on these three parameters,
early agricultural yield can be calculated to affect farm planning and decision-making.



Water 2022, 14, 1157 4 of 26

Water and nutrient supplies that vary in space and time are considered the most important
variables influencing crop productivity [9]. Besides LAI and chlorophyll, several factors
like pest, insect, and disease monitoring should be considered, as they could have adverse
effects on crop development, such as yield reduction. The earlier these adverse factors
can be identified, the easier the problem will be to address. Therefore, by implementing
effective crop monitoring, the risk of economic loss can be potentially reduced.

Measuring leaf chlorophyll content, which is an indicator of photosynthesis and a
principal parameter of crop productivity, could assist farmers in defining leaf nitrogen
content. Among nutrients, nitrogen is regarded as the most important for crop productivity.
Therefore, farmers should make an effort to balance the nitrogen supply to the crop’s needs.
Apart from increasing farm management costs, excess nitrogen supply could result in
soil overloading, leaching or run-off and eutrophication to water bodies, causing soil and
water degradation. On the other hand, a deficiency of the nitrogen supply might reduce
the agricultural yield [21,22]. The early crop growth stage is a crucial period within the
cultivation cycle, as it affects crop yield; thus, a sufficient rate of nitrogen to be applied
across the field should be adequately determined [21].

The leaf chlorophyll concentration can be quantified through in situ measurements [23]
or using remotely sensed observations [21,24,25]. The conventional and most accurate
technique is chlorophyll extraction using organic solvent extraction and supercritical fluid
extraction [26]. As a recent development, optical sensors offer a rapid, non-destructive,
inexpensive technique to quantify leaf chlorophyll content through reflectance measure-
ment [21,27,28]. The latter method has been widely applied due to its advantages, and can
be adopted by in situ or remotely sensed observation. In addition, remote sensing provides
opportunities in precision agriculture that require the scaling-up of the individual data
from the plant level to the field level, as it could cover large monitoring areas. Through this
approach, leaf chlorophyll is multiplied with LAI to obtain the total chlorophyll concen-
tration per ground area [27,29,30]. However, the measurement of chlorophyll content by
remote sensing at a large scale can be challenging, as the canopy reflectance is affected by
structural factors that might mask the reflectance, such as canopy architecture, chlorophyll
distribution, LAI, or soil background [27,31]. Thus, the acquired leaf reflectance within the
same canopy might differ even for the same chlorophyll content [32].

Another critical index that reflects the biochemical and physiological process of vegeta-
tion, indicating plant productivity, is LAI [33,34]. This dimensionless variable is described
as the leaf area ratio per unit of ground surface area [35]. The green leaf area is highly
influenced by nitrogen, temperature, and water. Therefore, LAI measurement would be
an effective method to understand crop responses to the implemented irrigation scheme.
The leaf is also a medium in which photosynthesis takes place. Considering that the photo-
synthesis process governs crop production, LAI can be used for fertilization management,
pruning, and spraying, and to predict crop growth and yield [36–38]. Given the importance
of LAI for precision agriculture, new methods of LAI monitoring are emerging over the
years. Remotely sensed observation can overcome the limitation of ground-based measure-
ment that might be destructive and time-consuming. However, this approach still requires
validation and calibration. In general, remote sensing observation for LAI measurement
involves both satellites and unmanned aerial vehicles (UAVs).

Lastly, the quantitative measurement of the vegetation water content (VWC) is also
necessary for crop yield estimation and precision irrigation. The VWC represents the total
volume of water in the stem and canopy [39]. Basically, the canopy water content (CWC) is
the product of the leaf water content (LWC) and LAI [39]. In other words, LWC and CWC
can be defined as the water mass per leaf unit of area, and water mass of vegetation per
unit of ground area, respectively [40]. LWC also can be referred to as the equivalent water
thickness (EWT). Similarly to crop chlorophyll and LAI measurements, the remote sensing
of VWC has recently become a popular method due to its rapid monitoring, time-efficiency,
and cost-effectiveness.
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3. Remote Sensing to Support Precision Agriculture in Irrigation Management

Many areas dedicated to crop production do not have sufficient field hydrological
observations to support precision agriculture. Moreover, the field data commonly have
different record lengths, and they are spatially limited, making agricultural monitoring
more challenging. Due to the unprecedented development of earth science monitoring
technology, remote sensing can address this issue by involving spaceborne and airborne
observations. Unlike ground measurements, remote sensing has the advantages of regular
spatial and temporal resolutions. Spaceborne or satellite data typically have a variety of
spatial resolutions with consistent time acquisition, depending on the sensor. They can
be used to observe areas of interest from the regional scale to the farm scale [41]. One of
the airborne observations, UAV, offers better spatial resolution and can perform in smaller
areas. Moreover, the acquisition time depends on the user, and could not be consistent with
the satellite observation. For precision agriculture, the spatial resolution range should be
from 0.1 m to 10 m, and the temporal resolution should be at least a few days [30,42].

3.1. Evapotranspiration

In particular, the quantification of ET through remote sensing involves numerous ap-
proaches, including the surface energy balance (SEB), vegetation index–surface temperature
(VI-Ts), and water balance methods [43]. The SEB model calculates ET as a residual of the
surface energy budget equation, and considers that the amount of energy entering the earth
is equal to the amount of energy emerging from it [44]. This model is based on the principle
of energy conservation to partition net radiation at the surface into ground heat, sensible
heat, and latent heat flux, where the latter variable is referred to as the ET process [44–46].

SEB can be divided into single-source or two-source models [47]. A number of single-
source SEB algorithms were developed to calculate ET through remote sensing, including
the widely used model such as the Surface Energy Balance Algorithm for Land (SEBAL) [48],
Mapping Evapotranspiration at High Resolution using Internalized Calibration (MET-
RIC) [49], the Surface Energy Balanced System (SEBS) [45], and the Surface Temperature
Initiated Closure (STIC) [50]. Single-source SEB models are relatively easy to perform, as
they do not treat soil and vegetation as different components. However, the applications of
single-source SEB models have limitations over a diverse range of surface conditions [47].

The basic principle of the two-source models is to quantify the contributions of both
soil and vegetation components (evaporation and plant transpiration) to the total heat
flux [51]. Moreover, the two-source models have been found to be practical to be applied, as
they do not require prior calibration and additional input data from ground-based observa-
tions [44,47,52]. This is particularly useful for agricultural applications, as evaporation and
transpiration are required to design proper irrigation management. The atmosphere land
exchange inverse (ALEXI) [53], the Disaggregated Atmosphere Land Exchange Inverse
Model (DisALEXI) [54], and the two-source energy balance model (TSEB) [51] are some
representatives of the popular two-source SEB models. However, some conditions—such
as fractional vegetation cover and soil water availability—might limit the accuracy of
these models. In order to overcome this, several models based on two-source approaches
have been developed lately, including the Soil Plant Atmosphere and Remote Sensing
Evapotranspiration (SPARSE) [55], the Thermal-Based Two-Source Energy Balance for
Different Seasons (TSEB-2S) [56], and the End-Member-Based Soil and Vegetation Energy
Partitioning (ESVEP) [57]. SPARSE was designed to monitor ET in water-scarce environ-
ments, while TSEB-2S is practical to be implemented in a tree-grass ecosystem such as the
savanna [55,56]. Lastly, ESVEP has the ability to separate the response of the SM at the
upper layer to evaporation and at the deeper root zone to plant transpiration [57].

The input of SEB can be obtained from visible, near-infrared, and thermal infrared
remote sensing bands ranging from the land surface temperature to albedo and VI [45,48].
These variables are then combined with ground-based meteorological data such as the air
temperature, wind speed, and other near-surface variables to retrieve the net radiation,
ground heat, and sensible heat flux [47]. Different satellite platforms have demonstrated
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their capability to retrieve the required data for SEB input, including the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) [58–60] and Landsat [46,61,62] data. The uses
of microwave sensors were also highlighted by several studies in order to overcome the
major obstacle of visible, near-infrared, and thermal infrared remote sensing, which is a
cloud cover. For instance, Bastiansseen et al. [63] and Mostafa et al. [64] utilized passive
microwave remote sensing to retrieve SSM in order to estimate the soil evaporation in the
two-source SEB models.

The VI-Ts triangle method is based on the vegetation index and land surface tempera-
ture (LST), which can be obtained from remote sensing. The VI-Ts method plots scatterplots
of LST versus VI, forming triangular shape with a dry edge and a wet edge to estimate
evaporative fraction (EF) and ET [65]. The wet edge is defined by the linear interpolation
of pixels with minimum VI and maximum LST, while the dry edge is identified by an
opposite response [43]. The VI-Ts approach is less complex, as it does not require a surface,
meteorological, or land surface model as an ancillary dataset [58,66].

In order to obtain the best result of the VI-Ts method, the contrast variations of the
land surface temperature and vegetation index are required; therefore, this method might
not perform well in any areas characterized by a homogeneous land surface, such as desert
or a rainfed agriculture area during the dry season [47,67]. Another factor restricting
this method is atmospheric conditions, such as cloudiness, that can discontinue the LST
retrieval [68]. Because temporally continuous ET is crucial for water resource management,
previous studies have developed various techniques to address this issue. These techniques
vary from the universal triangle method that transforms the VI-T feature space from the
regional scale into the pixel scale [67], a gap-filling algorithm using a deep neural network
(DNN) [69], and the fusion of a VI-Ts model and the LST construction method [68].

Another approach is the water balance method, which is quite simple in theory. This
method estimates ET by quantifying it as a residual component using the water balance
equation. The value of the ET can be obtained by subtracting the runoff (R) and change of
water mass storage (∆S) from precipitation (P) [70]. Currently, ∆S is only available from the
Gravity Recovery and Climate Experiment (GRACE) satellite retrieval, which has coarser
spatial resolution and suffers from periodic data gaps, thus limiting its use to the basin
scale, and only with low temporal resolution [70–72]. In order to implement the water
balance method in sub-basin-scale or smaller areas, further attempts commonly focused on
improving the spatial resolution of GRACE through the downscaling process. For instance,
Wan et al. [73] highlighted the use of the land surface model to downscale GRACE data
for monthly ET monitoring in sub-basins across the United States. Yin et al. [74] explored
the potential of statistical downscaling using numerous observations over a long period
in order to apply the water balance method in the North China Plain. A brief overview
of different remote sensing-based methods and products used to support irrigation water
management is provided in Table 1.

Table 1. Brief overview of different remote sensing-based methods and products to estimate ET over
irrigated areas.

Methods Remote Sensing Platforms Applications References

Single-Sources Surface Energy Balance (SEBAL) Lansat 8 Estimation of irrigated wheat requirement in the
Ein Khosh Plain [75]

Single-Sources Surface Energy Balance (STIC) MODIS ET mapping in the conterminous US [76]

Two-Sources Surface Energy Balance (TSEB) ASTER
SPOT

Monitoring crop water consumption over the
irrigated area of Tensift Basin [77]

Two-Sources Surface Energy Balance (ETLook) AMSR-E
MODIS ET mapping over irrigated area in the Indus Basin [63]

Two-Sources Surface Energy Balance (SPARSE) MODIS Estimation of ET and water stress over several
crop types and climates [78]

VI-Ts triangle method MODIS ET estimation in the Haihe River Basin [79]

Water balance method GRACE Detection of irrigation-induced ET in the Haihe
River Basin [80]
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3.2. Soil Moisture

Commonly, the retrieval of SM through remote sensing mainly focuses on the use of
microwave sensors, as they are strongly associated with the SM content [81,82]. At a large
scale, passive microwave satellite observations such as AMSR, SMOS, and SMAP have been
widely optimized and proven for their reliability to monitor SM variabilities in the top few
centimeters (approximately 0–5 cm), i.e., referring to surface soil moisture (SSM) [83–86].
Recent studies have shown that SSM could serve as a basis to identify the spatial extent of
irrigated regions [87,88], and to quantify the amount of water used for irrigation [89–92]. In
addition to passive microwave remote sensing, active microwave satellites like Sentinel-1,
RADARSAT-2, PALSAR/ALOS-2 and TerraSAR-X have feasibility for SM mapping [93–96].
Compared to passive microwave sensors, active microwave sensors offer a high spatial
resolution. Hence, they can provide meaningful information at the farm scale. In contrast,
passive microwave sensors would be helpful for agricultural decision-making at the local or
regional scale. In terms of temporal resolution, the passive microwave has a higher revisit
frequency compared to the active microwave. Both passive and active microwaves are
sensitive to the soil-water dielectric constant that affects the emissivity and backscattering
of microwaves, allowing them to measure SSM [97,98].

One of the limitations of spaceborne remote sensing is that it cannot capture the
dynamic of SM in the deeper soil zone (root zone soil moisture (RZSM)). In cultivated areas,
the information of the RZSM is important and required in order to have a meaningful
impact for different applications, such as root water uptake (RWU) and soil hydraulic
parameters [99]. Moreover, the ability of RSZM to reflect the actual soil water availability
required by the crop is better than that of SSM [100]. In order to overcome this issue, several
studies incorporated SM retrievals derived from passive microwave remote sensing into
land surface or hydrological models through data assimilation schemes in order to predict
RZSM [100–103]. Data assimilation is considered the most promising technique due to
its ability to develop RSZM while quantifying uncertainties from observation data and
output simulation [102].

Several factors, such as vegetation cover and soil characteristics, could influence the
accuracy of SM retrieval. Sensor sensitivity tends to decrease with increasing vegetation
density. Therefore, microwave sensors have better accuracy in areas characterized by
sparse to moderate vegetation than densely vegetated areas [104]. In general, this issue
can be minimized by using a longer wavelength. Among the existing passive microwave
satellites, SMOS and SMAP have been widely used recently due to their L-band operation,
which has the capability of penetrating vegetation cover, unlike the C-band [105–107]. Even
though it is challenging, separating the effect of vegetation and soil characteristics such as
soil roughness from SM would provide better accuracy, particularly for active microwave
sensors, as these factors heavily perturb its backscattering. This is especially relevant at
the farm or field scale, where precise irrigation management for a specific condition is
necessary. In the past few years, the removal of the effect of the vegetation canopy over
different crops and phenological periods through numerous methods has shown promising
results, and is now feasible to be applied [94,108].

Alternative approaches to the assessment of SM are optical and thermal infrared
satellite observations. Optical and thermal satellites are well-suited for small-scale obser-
vations because of their higher spatial resolutions. However, the applications of optical
and thermal sensors solely for SM monitoring are still limited. The combination of both
sensors (optical–thermal), known as the temperature–vegetation triangle approach, is more
popular and widely used. The basic principle of the triangle approach is that SM is closely
associated with the land surface temperature and vegetation index; thus, variations of SM
can be estimated [109]. The visible (VIS), near- (NIR), and shortwave infrared (SWIR) bands
emitted from the optical sensor can detect various plant parameters, such as greenness,
canopy water, or photosynthetic parameters that related to plant water. In contrast, thermal
infrared (TIR) wavebands are closely associated with soil thermal properties [110]. Numer-
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ous studies have also exhibited the feasibility of combining optical and thermal sensors to
determine SM variabilities [111–114].

Lately, the utilization of UAVs has become popular as part of modern agricultural man-
agement. Like satellite-based monitoring, UAV is a timesaving, non-destructive method,
offers better spatial resolution, and supports real-time farm management. Wu et al. [115]
demonstrated that SM could be observed by mounting ground-penetrating radar on UAVs.
Another technique is the installation of optical and thermal sensors on UAVs [116,117]. Like
satellites, these sensors capture vegetation index and land surface temperature information,
which allow SM estimation. The overview of numerous remote sensing products for the
retrieval of SSM and RZSM is depicted by Table 2.

Table 2. Overview of numerous remote sensing products and sensor types for the estimation of SSM
and RZSM.

Applications Remote Sensing Products Sensor Types References

Surface Soil Moisture

SMAP_SM Microwave [84]

SMOS_SSM Microwave [85]

AMSR2_SM Microwave [118]

Sentinel-1, Sentinel-2 Microwave-Optical [119]

Sentinel-1
Landsat-8 OLI & TIRS Microwave-Optical-Thermal [93,120]

Sentinel-2
Landsat-8 OLI & TIRS Optical-Thermal [114]

MODIS_ LST
MODIS_ Surface Reflectance Optical-Thermal [111]

UAV Optical-Thermal [116,117]

Root Zone Soil Moisture

SMAP_SM
SMOS_SSM

SMOS_RZSM
MODIS_ LST

MODIS_Surface Reflectance

Microwave-Optical [100]

AMSR-E_SSM
MODIS_ET Microwave-Optical [103]

3.3. Crop Chlorophyll and LAI

Optical remote sensing in the VIS, NIR and SWIR spectra is widely used to estimate
LAI and crop chlorophyll content [24,29,34,121,122]. Different materials and objects can be
differentiated based on their spectral signature. Based on the number of spectral bands,
optical remote sensing can be classified into several imaging systems, of which multispectral
and hyperspectral sensors are the most used imaging sensors. Besides optical remote
sensing, the potential of microwave remote sensing to retrieve LAI and crop chlorophyll
was also explored by Clevers et al. [30]. Basically, multispectral and hyperspectral bands
work by recording the electromagnetic energy reflected or emitted from the earth’s surface
in three to ten bands and more than ten bands, respectively. Compared to multispectral
sensing, the utilization of the hyperspectral remote sensing has been increasing over the
years due to its ability to provide continuous spectral coverage despite requiring more
complex technical procedures [34]. However, both imageries can only provide satisfactory
spatial resolution in clear atmospheric conditions.

Commonly, the estimation of the chlorophyll content and LAI relied on the em-
pirical (statistical) spectral vegetation indices or the inversion of the radiative transfer
model [123–126]. Empirical spectral vegetation indices are the simplest and most popu-
lar method that utilizes a statistical approach to determine the correlation between the
observed object and vegetation indices or spectral reflectance [123,124]. However, the



Water 2022, 14, 1157 9 of 26

complex internal and external factors affecting spectral reflectance might vary in time and
space; thus, the relationship between the observed objects with their reflectance might be
inadequate over heterogeneous conditions [127]. On the other hand, the inversion of a
radiative model can explain the interaction of the radiation that occurred inside the canopy
using physical laws; thus, the connection between the biophysical variables and canopy
reflectance can be described [125]. The major limitation is that the radiative transfer model
requires insitu-specific information that is not always available [24].

The quantitative estimates of some ecophysiological variables (e.g., leaf chlorophyll
and LAI) are assessed using spectral reflectance in the VIS, NIR and SWIR domains. This is
because leaf spectral reflectance is assumed to be related to pigment compositions, such
as chlorophyll, carotenoids, and anthocyanins [28,128]. These spectral domains are then
utilized to develop numerous vegetation indices (VI) to estimate the plant’s biophysical
parameters, including LAI. Among the developed VI, the normalized difference vegetation
index (NDVI) is the most popular one. NDVI is also the VI which is least affected by soil
background, and it has good accuracy, meaning that this index can be considered to be a
reliable tool [31,129]. The most effective spectral reflectances used for LAI estimation are
located in the NIR and SWIR regions, particularly at the wavelength of 820 nm, 1040 nm,
1200 nm, 1250 nm, 1650 nm, 2100 nm, and 2260 nm [130].

For the leaf chlorophyll estimation, Gitelson et al. [131] reported that the band wave-
lengths of 520 nm to 550 nm and 695 nm to 705 nm are closely related to the chlorophyll
content in all of the leaf species. A similar range of absorption features has also been
mentioned by Delagido et al. [29] and Daughtry et al. [132], for whom chlorophyll con-
centrations are related to the wavelengths of 643 nm to 795 nm and 550 nm and 715 nm,
respectively. Based on these results, it can be concluded that leaf chlorophyll has strong
absorption in the VIS and NIR domains.

3.4. Vegetation Water Content

VWC quantification through remote sensing generally assesses several vegetation
physiological indicators, such as stomatal conductance, leaf water potential, canopy water
content, leaf equivalent water thickness, live fuel moisture content, and relative water
content [133]. Basically, optical and microwave remote sensing are the two common
approaches which are utilized in VWC measurement (Table 3). Besides them, the use of
thermal remote sensing was also explored by several studies.

Optical remote sensing can be considered as the conventional approach to measure
VWC. The volume of water in vegetation commonly has strong absorption features in
the NIR and SWIR spectral regions, thus allowing us to quantify VWC [130,134,135]. For
example, Ullah et al. [134] mentioned that spectral reflectances of 1397 nm and 1600 nm are
related to LWC, while Jin et al. [135] identified 75 wavelengths related to LWC, with a range
from 926 nm to 1940 nm. The use of NIR or SWIR solely is not suitable to retrieve VWC,
particularly at the leaf level (LWC); thus their combination is required [136]. Therefore,
different vegetation indices based on spectral reflectance have been utilized to assess
VWC, such as the normalized difference infrared index (NDII), the normalized difference
vegetation index (NDVI), the normalized difference water index (NDWI), and the canopy
temperature [137]. Among these indices, NDWI that employs NIR and SWIR provides a
better estimate of VWC, as reported by previous studies [138,139].

Recently, active microwave remote sensing or radar have been carried out by a number
of studies to retrieve VWC. One radar-based vegetation index to monitor crop properties,
named the radar vegetation index (RVI) was developed and applied for VWC measure-
ment [140–142]. This index represents a simple function of radar backscattered from all
polarizations, including co- and cross-polarization [142]. RVI is not only applied to assess
VWC, but also the vegetation greenness and LAI. Technically, the reduction of VWC will be
reflected by the decreasing RVI from the L-, C-, and X-bands [141]. The L-band has been
found to have better accuracy for VWC retrieval compared to the C- and X-bands due to its
better penetration [141,143].
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One of the limitations of RVI is the sensitivity of radar measurement to soil scattering
(moisture and roughness). Therefore, the revised RVIs named RVII and RVIII were proposed
by Szigarski et al. [144] to reduce the effect of soil moisture and roughness. Besides RVI
and RVII, other radar-based vegetation indices were also developed to improve their
performance in VWC measurement, e.g., the polarimetric radar vegetation index (PRVI)
that exploits the polarization degree and the cross-polarized backscattering coefficient [145],
and the dual polarimetric radar vegetation index (DpRVI) [146]. The latter index utilizes
the normalized dominant eigenvalue and the degree of polarization instead of polarization
backscatter intensities [146].

Several findings showed that thermal infrared (TIR) remote sensing can be utilized to
retrieve VWC, particularly at the leaf level. Despite its potential, the use of TIR in VWC
has not been heavily exploited due to several reasons. The relationship between VWC
and spectral features in the TIR domain is relatively weak compared to the NIR and SWIR
regions [147]. Regarding the spaceborne platform, the number of TIR satellites is still
limited to a few satellites—for instance MODIS, Landsat-8 and Sentinel-3—thus limiting its
use at a larger scale [148]. An additional issue restricting the use of TIR satellites in VWC
studies is the scaling process from the leaf to the canopy level [149].

Table 3. A number of remote sensing platforms and sensor types in crop development monitoring.

Applications Platforms Sensor Types References

Crop chlorophyll content

PROBA Optical [29,150]

UAV Optical-Thermal [24]

UAV Optical [122,151]

LAI

Sentinel-2 Optical [30]

Compact
Airborne Spectrographic

Imager
Optical [121]

UAV Optical [122,151]

VWC

Sentinel-2 Optical [152]

Lansat 5, ASTER, and
AWiFS Optical [153]

MODIS Optical [139]

Sentinel-1 Microwave [146]

SMAP Microwave [142]

4. Geophysical Acquisitions

Potential agricultural geophysical applications are widespread, varying from soil
structure characterization to SM assessment. Geophysical acquisitions are regarded as
non-invasive, non-destructive, rapid, and cost-effective methods that are frequently used
for soil investigation. Those methods would allow the user to investigate all of the sub-
surface soil without disturbing the structure and dynamic of the soil [154]. In addition, the
geophysical survey can map large spatial and temporal domains, bridging the gap between
remote sensing observations and point-based measurements. Moreover, information de-
rived from the geophysical survey could also be utilized to calibrate or validate remote
sensing measurement.

Basically, resistivity, EMI, and GPR are the most common geophysical methods em-
ployed for agricultural applications [155]. Soil properties and state variables such as poros-
ity, density, clay content, SM, and salinity are the typical parameters observed through a
geophysical survey [156]. Besides them, magnetometry, self-potential, and seismic methods
are three promising geophysical methods that can be applied for the same purpose in the
future [155]. However, the interpretation phase in geophysics poses a challenge for the
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user due to its ambiguity. Therefore, the combination of different available geophysical
methods and the integration of the final geophysical model with other parameters such as
geochemical and remote sensing in datalogs are usually applied to minimize uncertainties
and improve the final geophysical solution. Table 4 provides an overview of different
applications of geophysical methods used to assess the soil water availability and dynamic
in the vadose zone.

4.1. Soil Characteristics

Subsurface soil characterization is considered to be a prerequisite step of agricultural
management. Several soil parameters—such as soil texture and structure—that might
govern the distribution of water irrigation can be potentially monitored using geophysics-
based assessment. Some geophysical methods like resistivity and seismic assessment are
expected to have strong soil texture and structure signatures.

The feasibility of electrical resistivity (ER) to identify a tilled soil structure in the
agricultural area has been examined by several studies. ER is known to be sensitive to bulk
density, where increasing bulk density due to soil compaction corresponds to a reduction
of porosity, air and pore water volume, an increase of clay fraction, and subsequently the
decrease of the soil ER [157–160]. However, the degree of compaction cannot be directly
measured by ER [161]. As an extension of ER, electrical resistivity tomography (ERT) can
develop a high resolution of the 3D subsurface soil structure that enables a user to investi-
gate soil facies based on the seasonal soil water content period [162,163]. Other applications
of ERT for soil characterization include, but are not limited to, soil compaction [164], the
soil–rock interface [165], and soil organic matter (SOM) delineation [166–171].

The soil’s apparent electrical conductivity (ECa), measured by EMI, can indirectly indicate
several soil properties that influence agricultural productivity [172,173]. In the irrigated
landscape, EMI is becoming one of the frequently used approaches to map the subsurface due
to its high mobility. Subsurface soil characterization through EMI can be acquired faster than
other instruments, as the induction principle of EMI does not require direct contact with the
ground surface [174]. Confounding geophysical interpretation might appear as a combination
of various soil properties, which could affect ECa. Some approaches have been proposed
and established in order to overcome this issue, involving simple statistical correlations and
wavelet analysis [172]. Soil texture assessment through EMI generally focuses on the clay
content, rather than sand and silt compositions [175–178], while soil structure evaluation
typically pays more attention to reduced permeability due to soil compaction [179,180].

While ERT and EMI offer a general spatial pattern of the soil, GPR has the ability to
provide detailed information on soil stratigraphy [181]. The antenna frequencies should
be appropriately selected based on the aim of acquisition and field conditions [182]. In
the agricultural field, one of the exciting aspects of the GPR applications is soil structure
monitoring based on dielectric permittivity, as this would affect water movement within the
vadose zone [183–185]. Another application for soil characterization assessment required
in agricultural studies is compacted layer assessment [186,187]. Basically, the effectiveness
of GPR in soil assessment is related to the soil condition. For example, the implementation
of GPR in soil dominated by clay is difficult due to the strong absorption of radar waves.

Even though the use of seismic assessment in soil studies is still rare, the sensitivity of
the shallow seismic method offers better soil mechanical measurements such as compacted
layers and aggregation than other geophysical techniques [156,188]. This method analyses
the propagation velocity of the seismic wave, which is affected by material properties. Soil
compaction will result in an increase of bulk density; subsequently, the velocity of the
seismic wave will increase as well [159]. Several studies have also identified a significant
difference in seismic wave velocities representing compact and loose soil [189,190].

4.2. Soil Water Availability and Dynamic

High-resolution SM mapping in 2D and 3D models commonly employs resistiv-
ity [191–194], EMI [195–197] and GPR [196,198,199]. These geophysical techniques might
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overcome the scale gap between point-scale SM sensors, such as time-domain reflectom-
etry (TDR) sensors and remote sensing observation [17,200]. Moreover, information on
SM derived by the geophysical technique is generally used as a basis to characterize the
spatiotemporality of RWU [16].

ERT is one of the most appropriate methods to monitor the spatiotemporal resolution
of SM at the field scale by measuring the bulk soil electrical conductivity. It is widely
known that the variability of soil electrical resistivity is highly affected by the soil water
content [158,191], allowing a user to determine SM variabilities. In order to convert the
bulk soil electrical conductivity into the soil water content, the in situ calibration of ERT
acquisition at a specific horizon is required [14]. The coverage of subsurface information
given from electrical resistivity measurement depends on the space between the electrodes
inserted into the soil for the measurements [193]. The spatial distribution of SM can be
presented as 2D, 3D, or 4D tomograms [201]. ERT can also provide simultaneous data
acquired from different depths and locations in order to improve the 4D spatiotemporal
variability of SM [193]. Besides SM, the application of ERT for the assessment of RWU is
also highlighted by numerous studies in order to monitor the impact of different irrigation
schemes [202] and the extent of plant roots [14,203].

SM measurements by the EMI method are typically based on the strong relationship
between the soil water distribution and ECa [204]. Different agricultural treatments like fer-
tilizer applications might result in a complex relationship between SM and ECa [205]. EMI
was initially used for soil salinity assessment before expanding to various applications [195].
In saline soil, soluble salt is the major physicochemical property influencing the apparent soil
electrical conductivity; therefore, the interpretation is often straightforward [172]. In an area
with a low salt concentration, ECa is mostly highly affected by SM variations [196,206,207].

Another method used to estimate SM is a GPR. SM is the dominant factor affecting
the wave attenuation and velocity of GPR’s electromagnetic signal, thus influencing the
soil dielectric constant [199]. GPR has a disadvantage compared to ERT, as its performance
decreases in electrically conductive media like fine-textured soil such as clay [14]. The
GPR-derived soil dielectric constant can then be converted to volumetric SM using a
technique called Topp’s empirical relationship [208]. In the past decade, the development
of multichannel GPR measurement became promising for SM observation [200]. This could
allow the user to obtain a high-resolution measurement of the reflector depth and SM
with less effort. Nowadays, the combination of GPR and EMI in an integrated inverse
modeling scheme to obtain multi-layered media has been widely adopted, as shown by
Mogadhas et al. [204] and Barca et al. [196].

Table 4. Various geophysical methods to characterize the soil water availability and dynamic in the
vadose zone.

Geophysical Methods Applications References

ERT

Deliniation of soil facies [162,163]

SOM investigation [166]

Soil compaction assessment [164]

Monitoring SM variabilities [14,163,191–193]

RWU characterization for monitoring the impact of different irrigation schemes [202]

RWU characterization to assess the extent of root plant [14,203]

EMI

Clay layer investigation [175–177]

Soil compaction assessment [179,180]

Monitoring SM variabilities [196,197,206]

GPR

Soil structure monitoring [183–185]

Soil compaction assessment [186,187]

Monitoring SM variabilities [196,199,200,209,210]

Seismic Soil compaction assessment [189,190]
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5. Irrigation Modellings to Support Precision Agriculture

During the past decade, the domain of agricultural modeling has progressively
evolved. Instead of focusing solely on the increase in farm productivity, agricultural model-
ing has expanded its application to recent challenges such as greenhouse gas emissions,
food and water security, climate change mitigation, and carbon sequestration [211]. From
the context of precision agriculture, agricultural modeling would overcome the insufficient
on-farm dataset required in space and time to enhance farm management decisions. In
general, crop yield, soil, the availability of natural resources, and the effects of human prac-
tices are the necessary information to understand the complex behaviour of an agricultural
system [212]. Based on Jones et al. [212], the spatiotemporal scope of agricultural modeling
varies depending on the problems that are being addressed by farmers, researchers, or
decision-makers. It is widely known that the larger the scale, the more demanding the
required data [213]. A brief overview of various applications of agricultural modeling is
provided in Table 5.

Coupled Hydrologic–Crop Modelling

The rising concern for water and food security has elevated the need for coupled
hydrological and crop-growth modeling [214]. Hydrological simulation refers to the numer-
ical representation of soil water distribution in the soil-plant-atmosphere continuum. Most
hydrological models are based on the Richards equation and the convection–dispersion
equation in order to simulate water flow and solute movement in granular media [215].
Various hydrological models with different characteristics have been developed for this
purpose, including SUTRA [216] TOUGH [217], UNSAT-1 [218], UNSAT-2 [219], SAT-
URN [220], 3DFEMWATER [221], SVAT [222,223], SWAP [224,225], SWAT [226,227], and
HYDRUS [215,228,229]. Among them, HYDRUS is the most frequently used model to
simulate 1D, 2D and 3D hydrological movement in the unsaturated and saturated zones.
According to Arnold et al. [230], six essential parameters should be considered and imple-
mented in order to build a reliable hydrological model: computation efficiency, high spatial
resolution, data input availability, continuity, the ability to simulate land-management
scenarios, and the ability to provide reasonable results.

Crop growth models are mainly employed to simulate biophysical processes and
to predict crop yield, which is affected by soil, weather, crop varieties, and cultivation
practices, including irrigation and fertilizer application [231–233]. Commonly, crop growth
is simulated based on mathematical expressions that describe the flow and conversion
processes of water, nitrogen, and carbon [234]. Numerous models based on various concepts
and underlying theories have been developed and successfully utilized over the years,
such as DAISY [235,236], DSSAT [234,237], DSSAT-CERES [238,239], SUCROS [240], and
WOFOST [241,242]. In addition, the integration of hydrological and crop growth models
with other parameters, such as remote sensing data, could provide the improved, real-time
calibration of model parameters [36].

The coupling of hydrological and crop modeling under spatial and temporal variations
is essential in complex agricultural systems, despite being at an early stage of develop-
ment [214]. Without the coupling of the two models, the accuracy of the crop growth might
be decreased due to the oversimplification of the processes involved [243]. Recently, this
approach was proposed by Mc Nider et al. [244], Pauwels et al. [231], Sheila et al. [234],
Vaghefi et al. [245], Zhang et al. [243], and Zhou et al. [246]. Several challenges can surface
during the process of coupling two models, such as the model simulation and application,
methodology, and model hypothesis [243]. In order to select the appropriate methodology,
a lot of factors should be considered, such as the scale, basin characteristics, availability of
the dataset, method requirements, time constraints, and required accuracy [214].
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Table 5. Overview of different applications of hydrologic, crop, and coupled models for agricul-
tural practices.

Models Applications References
Hydrologic Crop

HYDRUS 1D - Nitrate accumulation and
leaching simulation [247]

HYDRUS 2D -
Soil and plant water simulation

under different irrigation
systems

[228]

SWAT -
The effect of climate change on

hydrology and crop yield
simulation

[226]

SWAT -
Simulation of streamflow, total

suspended nutrient, and
sediment

[227]

SWAP - Field water cycle simulation
under deficit irrigation [224]

- DSSAT
Simulation of crop yield under

practice of conservation
agriculture

[237]

- DSSAT Simulation of crop response to
fertilizer microdosing [239]

WaSSI GidDSSAT
Estimation the impact of
irrigation withdrawal on

hydrologic flow
[244]

HYDRUS 1D DSSAT Soil water dynamic, crop
growth and yield simulation [234]

JULES SUCROS Dynamic crop growth
simulation [240]

SVAT DAISY Simulation of crop production
and nitrate leaching [236]

VIC EPIC
Improvement discharge, SM

and evapotranspiration
simulation

[243]

HYDRUS 1D WOFOST Optimizing irrigation water
and predicting crop yield [246]

SWAT MODSIM Crop water productivity
simulation [245]

6. Precision Agriculture and Future Challenges concerning Proper Irrigation

Optical (Vis, NIR, SWIR), thermal, active, and passive microwave remote sensing
have been proven to be viable approaches to support precision irrigation, from the local to
the global scale. Despite providing high-resolution images, the ability of optical satellite
acquisition is constrained by atmospheric conditions and solar illumination. Microwave
remote sensing has the potential to complement the conventional remote sensing technique
in irrigation monitoring. The primary advantage of microwave remote sensing is the ability
to penetrate clouds, and that it can be acquired at any time (day and night). However, the
characterization of vegetation properties due to irrigation practices and obtaining radar
observation for a range of system configurations is still a challenging issue [141]. Even
though each sensor (optical, microwave, and thermal) has its own limitation in agricultural
monitoring, they are complementary to each other; thus, they can be integrated together
for better results. Among remote sensing technologies, UAV might also offer low-cost
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alternatives for agricultural monitoring, especially for small farms where the resolution is
large enough to observe the variabilities of the soil and plant properties.

The lack of quantitative subsurface soil spatial data is known to be a major constraint
for the development of hydrological models. This gap can be overcome by the utilization
of geophysics-based measurement. The geophysical survey offers soil characterization in
the vadose zone in a rapid, reliable, and cost-effective way. This approach offers spatially
extensive and high-resolution information that helps the user to understand complex
pictures of hydrological states and fluxes in the subsoil. The non-uniqueness of the signal
response that results in misleading interpretation and uncertainty are some challenges
that should be addressed for future studies. The high resolution of ERT acquisition is
still restricted to a shallow depth due to the requirement of electrode spacing increments,
limiting its potential for larger surveys [248]. On the other hand, despite its mobility, the
vertical resolution of soil characterization acquired by EMI is low in many studies, and
can be improved by applying new EMI instruments with multiple coil separations and
orientations [173]. Combining various geophysical techniques might reduce the ambiguity
of interpretation and improve the resolution [156].

In addition, agricultural modeling would overcome the insufficient on-farm dataset
required in space and time to enhance farm management. Water states and fluxes inside soil
and irrigation water demand can be reflected by hydrological and crop models, respectively.
The coupling of crop and hydrological models would improve the accuracy of the model,
and could help the decision-maker to predict crop yields based on the irrigation input and
scheme. The upscaling process from the field scale to the regional scale offers the better
understanding required by decision-maker to manage valuable resources and optimize
crop productivity. However, this process needs extensive information representing the
physical, chemical, and biological heterogeneities of the study areas. Moreover, the scarcity
of the ground-based datasets used for calibration could limit the accuracy of the model. The
uncertainty could come not only from the data input but also from the modeling approach
applied. Therefore, the chosen data input along with the modeling approach is a critical
step to obtain the modeling objectives. The development of a simple generic model that can
be applied at various scales and is easy to integrate with other datasets due to its flexibility
would help the user, particularly in an agricultural study [249].

7. Conclusions

This paper aims to assist farmers or decision-makers in better understanding the
potential of recent advances in agricultural studies in the optimization of irrigation water
use. The tremendous progress of remote sensing, geophysics, and modeling applications
in agricultural studies have established them as advanced techniques which complement
each other. The integration of remote sensing, geophysical surveys, and agrohydrological
modeling will probably become a standard approach in agricultural practice in the future.
Their applications to monitor variables in the soil-plant-atmosphere continuum include,
but are not limited to, the soil texture, soil structure, soil compaction, SM, RWU, ET, crop
chlorophyll, LAI, and VWC. The regular monitoring of these variables is necessary for the
improvement of irrigation water use efficiency and the projection of the end-of-season crop
yield as part of precision agriculture.

At the decision level, the delineation of the farm zone based on information retrieved
from remote sensing, geophysics, and modeling could help farmers to manage valuable
resources and optimize crop productivity by supplying the actual water requirement
needed by the soil and plant [210,250]. Future advancements are expected to improve
data processing techniques and reduce the acquisition cost; thus, the more significant
benefits of remote sensing, geophysics and modeling for agricultural applications can
be achieved. As the concept of precision agriculture is directly linked to the spatial and
temporal variabilities of soil and plant properties, understanding these parameters would
provide a solid foundation for farm development in order to achieve the ultimate goal of
optimal agricultural management.
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