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Abstract: The detection and prevention of workers’ body straining postures and other stressing
conditions within the work environment, supports establishing occupational safety and promoting
well being and sustainability at work. Developed methods towards this aim typically rely on
combining highly ergonomic workplaces and expensive monitoring mechanisms including wearable
devices. In this work, we demonstrate how the input from low-cost sensors, specifically, passive
camera sensors installed in a real manufacturing workplace, and smartwatches used by the workers
can provide useful feedback on the workers’ conditions and can yield key indicators for the prevention
of work-related musculo-skeletal disorders (WMSD) and physical fatigue. To this end, we study the
ability to assess the risk for physical strain of workers online during work activities based on the
classification of ergonomically sub-optimal working postures using visual information, the correlation
and fusion of these estimations with synchronous worker heart rate data, as well as the prediction of
near-future heart rate using deep learning-based techniques. Moreover, a new multi-modal dataset
of video and heart rate data captured in a real manufacturing workplace during car door assembly
activities is introduced. The experimental results show the efficiency of the proposed approach that
exceeds 70% of classification rate based on the F1 score measure using a set of over 300 annotated
video clips of real line workers during work activities. In addition a time lagging correlation between
the estimated ergonomic risks for physical strain and high heart rate was assessed using a larger
dataset of synchronous visual and heart rate data sequences. The statistical analysis revealed that
imposing increased strain to body parts will results in an increase to the heart rate after 100–120 s.
This finding is used to improve the short term forecasting of worker’s cardiovascular activity for the
next 10 to 30 s by fusing the heart rate data with the estimated ergonomic risks for physical strain
and ultimately to train better predictive models for worker fatigue.

Keywords: computer vision; sensor fusion; low cost sensors; heart rate; WMSD; fatigue; ergonomic
risk; physical strain; working postures; predictive models; occupational health

1. Introduction

The assessment and prevention of work-related musculo-skeletal disorders (WMSD)
and physical fatigue are considered common and critical issues related to occupational
safety and well-being in work environments. Especially in the manufacturing industry,
labour-intensive assembly works attribute repetitive tasks, often in sustained, sub-optimal
working postures [1], also noted as inappropriate or awkward postures, that lead to
physical strain, according to several studies on physical ergonomics [2,3], and may also
cause abnormal heart rate. Those indicators are known as risk factors for WMSD and
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fatigue [3,4]. The case study in this paper addresses the car manufacturing industry and
specifically line workers that often work in shifts on a workstation of the assembly line,
where the conveyor belt slowly moves at a constant speed. Each worker executes a specific
set of car assembly activities (e.g., welding, assembling) that constitute a task cycle for a
workstation, lasting for 4 to 5 min and is continuously repeated during the shift.

The current study is part of the sustAGE system (http://www.sustage.eu, accessed on
10 January 2022), which is developed to provide a person-centered smart solution to support
the employment, safety, and health of ageing workers in occupational contexts. One of
the novelties of sustAGE is the adoption and integration of the Micro-Moments (MiMos)
concept [5,6]. MiMos are used to digitise interactions with the physical environment,
repeated patterns, or events occurring in workers’ daily living routines and they link with
recommended actions targeted directly at the workers themselves or at their supervisors.
By issuing recommendations through MiMos, the system capitalizes on the early detection
and avoidance of risky and stressful conditions that affect the performance of individual
workers or worker groups. Accordingly, recommendations reach the users at the right
moment and place, and proposed actions match the users’ preferences and current needs.

For being able to issue relevant recommendations and prevent risky situations in an
industrial environment, it is important to early identify such events and their underlying
conditions. In this direction, we aim to re-actively detect events causing physical strain
and fatigue and recommend preventive actions. We rely on visual information acquired by
low-cost cameras placed along the production line that support the unobtrusive automatic
assessment of awkward ergonomically sub-optimal body postures, as shown in Figure 1,
and on heart rate data acquired by smartwatches for monitoring workers’ cardiovascular
activity. The respective modules that process the two data modalities provide the sustAGE
system with information on the detected events and trigger personalised recommendations
to the workers aiming to enhance occupational safety in a preventive manner.

1 

 

 

– – – –

– –

Figure 1. The proposed vision-based method focuses on the classification of four (4) types (sketches)
of ergonomic working postures during assembly activities in videos. The selected types are part
of a larger set of working body postures that are widely-used for the assessment of physical er-
gonomics (i.e., by the MURI risk analysis approach [7,8]). Each type is associated with three varia-
tions/deviations of the body configurations of increasing physical discomfort and ergonomic risk for
physical strain imposed to specific body joints (image courtesy of Stellantis—Centro Ricerche FIAT
(CRF)/SPW Research & Innovation department).

http://www.sustage.eu
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It is important to highlight the need for unobtrusive monitoring mechanisms that
allow workers to fully operate in their work environment, without any physical discomfort
and distraction from their work duties. It is also necessary to keep the cost of the monitoring
infrastructure low, in order to be able to scale up to hundreds of employees that work in a
shift in a medium sized factory. Wall or tripod mounted cameras and smartwatches allow
the proposed methodology, as part of the sustAGE system to collect valuable data about
the workers’ body posture during the execution of assembly tasks. The fusion of this data
with heart rate measurements from the smartwatches, as shown in this work, is a promising
solution for the early detection of fatigue that can be caused by the prolonged execution of
a task with an ergonomically sub-optimal posture that imposes increased stress to specific
body parts, such as the waist, the legs, or arms.

The main contributions of this work can be summarized in the following:

• An unobtrusive and low cost solution for the detection of physical strain and fatigue
during work activities, which is based on the smart fusion of vision-based extracted
information (working postures) and non-visual (heart rate) input, regardless of the
activity performed. A vision-based approach for the classification of ergonomically
sub-optimal working postures that cause increased physical strain is proposed. It
relies on the combination of Graph-based Convolutional Networks and the soft-DTW
method for pairwise temporal alignment of 3D skeletal data sequences. The proposed
approach can achieve real-time/online runtime performance using continuous streams
of data acquired by a single camera.

• A predictive model for the early detection of high heart rate incidents, which exploits
vision-based extracted information related to the worker physical strain to improve
heart rate prediction accuracy.

• A new multi-modal dataset is introduced that comprises synchronized visual informa-
tion of color and depth image sequences and worker heart rate (HR) data acquired
using smartwatches during car assembly activities in an actual manufacturing environ-
ment. Annotation data is available for the sequences of assembly actions performed by
real line workers and the assessment of posture-based physical ergonomics according
to the MURI risk analysis method [7,8].

The combination of the Spatial Temporal Graph-based Neural Network (ST-GCN)
model [9] with the soft-Dynamic Time Warping method [10] for the classification of er-
gonomically sub-optimal working postures during work activities is one of the innovations
of the proposed method. ST-GCN has been used in the past for classifying whole video
sequences into different categories of human actions using 2D or 3D skeletal data as input.
However the existing methods learn an embedding-based representation for the input
sequence, and consequently directly classify this information towards an action class. Our
proposed method extracts rich information of the observed skeleton-based human motion
and actions in 3D space and employs a ST-GCN model to generate sequences of embed-
dings that allows for the fine-grained representation of the spatio-temporal relationships
of body parts throughout the input skeletal sequence. The generated sequence of embed-
dings is consequently fed to the soft-DTW component, which has the ability to perform
non-linear temporal matching of the embeddings to the respective example sequences of
known types of working postures. This allows us to assess the temporal evolution and
variations between the representations of two comparing sequences of working postures,
being also invariant to the duration and the speed of execution sequence. This option better
fits to the requirements of the task of classifying body straining working postures.

The proposed vision-based approach performs in real-time given a segmented input
video of human actions as input. Moreover, online runtime performance in untrimmed
streaming (continuous) data is also feasible as part of a joint temporal localization and
classification framework. Such an approach could refer to the typical sliding window
design or an elaborate deep neural network model and thus ensures high computational
efficiency and online recognition of the type of posture deviations as soon as it happens.
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Another advantage of the proposed methodology refers to the processing of multi-
modal information that is realized as sequences of physiological measurements acquired
from wearable heart-rate sensors and of temporal information regarding the worker physi-
cal strain based on vision-based, automatic classification of ergonomic working postures
during work activities. The two data modalities are used as input to an LSTM module with
the aim to predict the heart rate of the worker for one or more consecutive periods. This
combination of inputs improves the predictive performance, compared to merely using the
heart rate (HR) measurements.

This study further contributes to the release of new multi-modal dataset of HR, visual
data and working body postures-related measurements to assess the ergonomic risk for
physical strain and fatigue in automotive manufacturing occupational contexts. It further
provides a deep-learning based classification scheme for vision-based postural risk anal-
ysis and an analysis on the association of physical strain and HR activity, exploiting the
detection of ergonomically sub-optimal postures to improve short- and mid-term heart
rate prediction.

In Section 2 that follows, we provide an overview of the related work and datasets. We
survey recent methods for the visual estimation of body poses and recognition of human
actions in videos, methods for assessing the ergonomic risks, and works that focus on
heart rate monitoring. Section 3 provides details on the proposed methodology, while in
Section 4 we report the data acquisition and annotation methodology we followed and the
obtained results on the prediction of worker heart rate and body strain and fatigue related
incidents. In Section 5 the main findings of this work and summarizes our next steps are
discussed. This study is an extension of our previous work presented in [11].

2. Related Work

Human motions extend from the simplest movement of a limb to complex joint
movement of a group of limbs and body, possibly interacting with other entities, i.e., objects,
in order to act and accomplish goal-oriented tasks of varying significance and impact. Such
motions and postures, especially when they are repetitive and sustained, they can cause
an increase in physical stress and lead to injuries and fatigue [12]. The detection of body
straining motions or postures can be performed using invasive motion capture systems that
require expensive, special body-worn equipment or unobtrusively using visual information
from cameras that monitor humans during the execution of daily activities and tasks.
The analysis of this information is usually handled as a spatio-temporal mining task on
2D or 3D skeletal body representations into consecutive video frames. Deep Long Short-
Term Memory (LSTM) networks [13,14] have been widely applied for the analysis of such
data with the main objective to identify user activities [15,16], and they have proven very
successful due to their ability to capture sequential features and long-term dependencies
in the input image sequences. Convolutional and simple LSTMs have also been used
for detecting awkward and stressing postures from raw sensor (wearables) input [17],
also relying on the ability of LSTM to capture motion-related long-term dependencies in
videos. LSTM models have also recently been used to tackle the problem of car-driver
identity recognition [18] using a non-invasive biosensor system that comprises multiple
devices placed on the car driver’s hand and the car steering. The method proposes an deep
learning architecture that comprises blocks that use the Dynamic Time Warping method
for non-linear temporal alignment among the input physiological signals of the driver’s
heart pulse rate and blocks of LSTMs for learning physiological features and finally for
estimating the car drive profile class.

When it comes to ergonomic risk analysis, the detection of working postures has
to be associated with a potential risk for injury or fatigue, and thus new models and
assessment scores have been devised in order to take as input the video or sensor data
and provide a risk score as output [19,20]. Recurrent neural networks and LSTM have
been widely employed in this case too, this time taking as input carefully devised skeletal
features, or sensor patterns that have been extracted from the sensor (or camera) input.
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What is still missing from the literature, as explained in the subsections that follow, is
the association of physical ergonomics analysis with the accumulated worker fatigue that
results in high fatigue incidents, expressed with high heart rates, during the execution of
tasks. A good OSH practice in industrial environments is to early detect such hazards and
alert workers and their supervisors to preemptively take corrective actions, as explained in
the following sections.

In this section, we provide a brief overview of works on visual learning and classi-
fication of human actions, specifically of state-of-art methods that rely on skeletal-based
representation of the human motion in videos. Moreover, we discuss recent methods pro-
posed to tackle the tasks of automatic vision-based risk analysis of physical ergonomics and
the analysis of ergonomics and fatigue based on cardiovascular activity data. Finally, we
briefly discuss widely-used and other recently introduced video or multi-modal datasets
related to the tasks of action recognition and posture-based ergonomic risk assessment.

2.1. Skeleton-Based Action Recognition

Recently, a significant amount of research has been dedicated to visual understanding
of human actions using deep neural network models [21]. In this work, we focus on
skeleton-based classification of human actions [22,23] that exploit fine representations of
the spatio-temporal configurations of the human body joints as computed by efficient
2D/3D body pose estimation methods [24,25].

Early approaches for skeleton-based action recognition mainly used hand-crafted
features to capture the skeletal-based human motion dynamics, such as covariance matrix
of the joints’ trajectories [26], lie groups [27], decision trees [28] and more. Thus, the spatio-
temporal relationships of the human body joints are modelled using effective attention
mechanisms [29] and Graph Neural Network-based (GNN) methods [22,30,31], Convolu-
tional Neural Networks (CNN) [32], Recurrent (RNN) [33] or Long-Short Term Memory
(LSTM) [14,34] Neural Networks and various versatile and powerful Transformer-style
architectures [35,36] that have been recently proposed extending the popular Vision Trans-
former (ViT) model [37,38]. In the recent work by Plizzari et al. [39], a novel spatio-temporal
transformer network model is introduced using spatial and temporal self-attention modules
for modelling both the intra-frame interactions between different body parts, and their
correlations across time efficiently using the 2D human body joints coordinates.

Motivated by these new powerful methods for fine-grained human behavior monitor-
ing and by emerging applications in Human-Robot Interaction and Collaboration [40–44],
researchers in computer vision and robotics [45] have recently joined their efforts to tackle
the challenging problem of fine-grained recognition of assembly activities in videos. In this
context, the fine-grained recognition problem refers to joint temporal segmentation (action
detection) [46] and classification [35] of a sequence of assembly actions that comprise a
complex and possibly long assembly activity. A series of methods have been proposed
that are able to model both the temporal and spatial structure of assembly procedures
in a fine-grained manner in realistic scenarios [47,48] of furniture construction tasks [49],
cooking activities [50], toy block building tasks [51] and simple human-robot collaborative
assembly tasks [40]. Finally, a recent method [52] focuses on 3D skeletal data to assess
sub-skeleton features with trajectory similarity measures and a k-nearest-neighbor-based
classifier for the sign language and human action classification problems. Three different
speed invariant distance measures are tested for trajectory similarity: the continuous and
discrete Frechet distances and the Dynamic Time Warping (DTW). Despite the fact that
no deep learning model is used in this method, the mining techniques developed enable
the extraction of efficient sub-skeleton, interpretable representations of human actions
showing the information capacity, and the discriminative power of skeletal-based human
motion data.
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2.2. Vision-Based Ergonomic Risk Analysis

Body postures analysis and action recognition in the context of industrial environ-
ments is mostly related to the detection of hazardous or body stressing postures, which in
the short or long term are related to ergonomic risks for WMSDs. In the paragraphs that
follow, we summarize previous work related to the task of vision-based postural ergonomic
risk assessment, mainly in the context of work tasks. Parsa et al. [53] introduce a novel
approach based on Temporal Convolutional Network (TCN) models for action segmen-
tation in RGB-D videos and subsequently for predicting the REBA ergonomic risk score
(Rapid Entire Body Assessment [54]) during object manipulation actions. Nguyen et al. [55]
propose a method to extract the working human postures using depth images and to assess
the ergonomic safety. Then, in case the ergonomic guidelines based on the EAWS metric
are violated, a robotic system re-actively adjusts the height of a workpiece to enable the
worker to adapt to an ergonomically safe pose during the working task. The 2D [56] or
3D skeletal body features [57] are extracted using one or two RGB video captured from
different viewpoints in order to recognize awkward postures of workers in the context
of construction hazard prevention. Shafti et al. [58] focus on a real-time human-robot
interaction scenario and extract the 3D skeletal poses of the worker to analyse the safe
range of arm motions during welding actions following the RULA posture monitoring
method. Mehrizi et al. [59] propose a deep learning approach for markerless 3D pose
estimation optimized in the context of object lifting tasks using RGB images from two dif-
ferent viewpoints. Plantard et al. [60] also evaluate the potential WMSDs in a real car
manufacturing environment using vision-based extracted 3D skeletal poses of workers
to evaluate the RULA ergonomic risk score (Rapid Upper Limb Assessment [61]), while
the work proposed by Kim et al. [62] focuses on overloading body joints assessment and
user intention recognition to improve worker ergonomics and productivity in a real-time
adaptable workstation scenario in manufacturing.

Recently, Parsa et al. [63] proposed a novel approach that is based on Spatio-Temporal
Graph Convolutional Networks (ST-GCNs) combined with LSTMs in order to segment
and recognize object manipulation actions (lifting, moving boxes etc.) in videos using
3D skeletal features. Finally, the REBA score is estimated for each recognized action.
An extension of their work [64] regards a multitask learning paradigm proposed to simul-
taneously detect actions using an Encoder-Decoder Temporal Convolutional Network and
directly predict the REBA score in videos. Finally, another recently proposed method by
Konstantinidis et al. [65] introduces a novel multi-stream deep network that acquires 3D
skeletal data sequences to compute the REBA score regardless of the activities performed
in a video. Each stream is responsible for predicting a partial score that corresponds to
a predefined set of body parts prior to their aggregation for the computation of the total
REBA score.

2.3. Ergonomics and Cardiovascular Activity

Cardiovascular activity is proposed as a key indicator of workload [66,67]. The rela-
tionship between cardiovascular activity and ergonomics has been a subject of research
for several years [68]. Despite the fact that the majority of existing works focuses on
the role of Heart Rate Variability (HRV), the monitoring of Heart Rate (HR) that pro-
vides an indirect means to estimate metabolic workload and energy expenditure in work
environments [69,70], has also been explored in previous works. The association between
HR and ergonomics has been explored in [71] to determine maximum allowed payload
lifting. The effects of following instructive ergonomics guidelines during cleaning tasks
has been investigated in [72] showing that when ergonomic guidelines are followed, lower
cardiovascular load is observed in comparison to non-ergonomics sessions. Similarly,
heart rate is linked with cognitive ergonomics [73] with a statistically significant increase
observed in tasks with high cognitive demands [74].
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2.4. Datasets

With the advancement of motion capture systems, and the increased interest for crowd
sourcing of the video annotation process, the available video and ground truth data have
expanded in terms of quantity and acquisition context, i.e., outside the lab environment.
A summary of early datasets is provided in [75,76]. However, these datasets are mainly
characterised by limited number of image sequences and types of activities that serve
specific applications. Among the state of the art benchmarks is the Max Planck Institute
for Informatics (MPII) Human Pose Dataset [75] that includes rich annotations, and the
joint-annotated Human Motion Database (J-HMDB) [77]. Other recent state-of-the-art
datasets for 3D action recognition comprise: the large-scale action recognition NTU RGB+D
dataset (120 action classes and 114.480 samples in total) [78], the Kinetics dataset [79], the re-
cently proposed BABEL large scale dataset with language labels describing the actions
being performed in mocap sequences and frame-level annotations for fine-grained action
analysis [80] and the FineGym dataset providing an insightful hierarchical representation of
gymnastic activities for fine-grained action understanding and performance evaluation in
sports [81]. Among the few existing datasets related to action recognition or posture-based
ergonomic risk assessment in assembly videos, the UW-IOM dataset [53] features a limited
number of object manipulation actions involving awkward poses and repetitions, and pro-
vides frame-level annotations for scores according to the REBA ergonomic risk index, while
the existing TUM Kitchen dataset [82] is also annotated with respect to the REBA scores in
the same work. The IKEA furniture-assembly demonstration dataset [40] for human action
segmentation and fine-grained recognition provides multifaceted annotation data for a
realistic scenario of chair assembly actions in videos captured from different viewpoints.

3. Methodology

The main parts of the proposed methodology are described in this section. We rely
on synchronous visual and physiological data of workers for the real-time estimation of
physical strain and fatigue during work activities in an actual manufacturing environment.
It is known that the frequency and the severity of various types of ergonomically sub-
optimal postures, also noted as awkward posture deviations, during work activities impose
increased physical strain and in the long-term WMSD [3]. Therefore, the detection of these
occurrences and the estimation of the ergonomic risks is one of the main objectives of the
proposed methodology. With this aim, we firstly focus on the vision-based detection and
estimation of the skeleton-based human poses in 3D space using colour image sequences
acquired by low-cost camera sensors. The visual information is used to feed state-of-the-art
deep-learning based methods that estimate the 3D poses per image in real-time, unobtru-
sively. The estimated 3D skeletal sequence that represents the observed human motion is
subsequently used to feed an enhanced deep-learning based classification approach for
estimating the types of sub-optimal working postures performed by the worker and the
ergonomic risks for physical strain. The target set of working postures rely on the MURI
ergonomic risk analysis approach as shown in Figure 1. A novel aspect of the proposed
classification method relies on the combination of a Spatio-Temporal Graph-based Convolu-
tional Network model (ST-GCN) [9] for learning effective spatio-temporal representations
of the input 3D skeletal sequences into a new embedding space with the soft Dynamic
Time Warping (soft-DTW) method [10] as a classification measure estimated based on the
differentiable pairwise temporal alignment between these representations. The pipeline of
this approach is presented in Figure 2.

In addition, we examine whether the occurrences of sub-optimal working postures and
the estimated ergonomic risk scores can be used as source of information to improve the
analysis and the short- and mid-term prediction of the cardiovascular activity of workers,
which can be used as an indicator for their fatigue state. To this end, we rely on real-time
worker heart rate measurements during assembly activities acquired using smartwatches
to feed a Long Short-Term Memory (LSTM) neural network model [14] that has been
particularly effective in sequence-to-sequence learning and in time-series forecasting [83].
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Figure 2. The outline of the proposed approach for vision-based classification of human actions and
working postures based on a Spatio-temporal Graph Convolutional Networks [9] and the temporal
alignment [10] between two videos of work activities (image of the ST-GCN encoder model was
originally presented in [9]).

Finally, we set out to examine the relationship of the detected sub-optimal working
postures and the worker cardiovascular activity during work activities in assembly lines,
in real-world and demanding industrial environments.

3.1. Detecting Worker Physical Strain

We are interested in four types of ergonomic working postures according to the MURI
risk analysis method [7,8] that is commonly used in manufacturing for the evaluation of
physical ergonomics of workers, as shown in Figure 1. Each posture type is considered
as a time-varying event; thus comprises a sequence of body configurations of a minimum
duration. An efficient skeleton-based representation of the human body is extracted per
video frame in order to encode the 3D full body configurations during work activities,
as shown in Figure 3. The MURI analysis method provides a two-level labelling scheme,
where each posture type is associated with three postural variations of increasing level
of ergonomic risk for physical body strain/discomfort. Some examples of ergonomically
sub-optimal working postures and the classification results are shown in Figure 4.

With the aim to capture the full-body motion of a worker during work activities, we
rely on RGB image sequences acquired by conventional, low-cost cameras to estimate rich
3D skeleton-based representation of the human poses using state-of-the-art methods for
marker-less 2D and 3D human pose estimation. This feature exempts the requirement of
inconvenient and expensive body-worn sensors in the real working environment. The 3D
skeletal sequence is then used to train a spatio-temporal Graph Convolutional Network
model (ST-GCN) [9] for learning to encode the input representations of the target working
postures into a new shared embedding/feature space. Finally, the pairwise temporal
alignment cost between the embeddings of an unlabelled 3D skeletal sequence with the
embeddings of a 3D skeletal sequence of known class type is computed using the soft
Dynamic Time Warping approach (softDTW) [10]. The pairwise cost is used as a similarity
measure for the classification of the unlabelled sequence among the target types of working
postures. The outline of the proposed approach is shown in Figure 2.

In the following, the main steps of the proposed approach, additional information
on the deep learning techniques utilized and the types of the target ergonomic working
postures are reported.

3.1.1. Human Pose Estimation

Given a RGB video V of length T of a single line worker that performs a single
or multiple actions, we use two existing state-of-the-art, deep learning-based methods
to estimate the 2D and the 3D skeleton-based body pose per frame/image in real-time.
Specifically, we employ the popular OpenPose method [25] to estimate the 2D human body
in each frame It in V.
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Figure 3. The skeletal body model that was originally presented in [78] to introduce and compile the
NTU RGB+D large-scale dataset for 3D human action recognition. The hierarchical skeletal model
comprises the following labelled body joints: (1) base of spine, (2) middle of spine, (3) neck, (4) head,
(5) left shoulder, (6) left elbow, (7) left wrist, (8) left hand, (9) right shoulder, (10) right elbow, (11) right
wrist, (12) right hand, (13) left hip, (14) left knee, (15) left ankle, (16) left foot, (17) right hip, (18) right
knee, (19) right ankle, (20) right foot, (21) spine, (22) tip of left hand, (23) left thumb, (24) tip of right
hand, (25) right thumb. The 3D user-centric coordinate reference frame (blue axes) is estimated based
on the 3D torso frame using the skeletal joints that are included in the shaded blue rectangle area and
aligned with the base of spine joint (1).

Figure 4. Snapshots of car door assembly activities captured in a real manufacturing environment and
experimental results of the estimated 3D human poses (overlaid as colour coded skeletal body model)
and the classification of working postures that are associated with the ergonomic risk for increased
physical strain (text overlaid). We apply markerless (unobtrusive) vision-based pose estimation to
recover the 2D skeletal body poses of a worker using the Openpose [25] method and subsequently
lift this information in 3D space using the MocapNet2 [24] model. The sequence of 3D body poses
is further analysed using a combination of Spatial Temporal Graph-based Convolutional Network
model [9] and soft Dynamic Time Warping [10] to classify into a set of ergonomically sub-optimal
working postures.

Openpose [25] is the first open-source real-time approach for multi-person 2D pose
detection in images. The core feature of this method refers to an explicit nonparametric
representation of the associations among the estimated body keypoints, called Part Affinity
Fields (PAFs), which encodes both position and orientation of the candidate human limbs.
A Convolutional Neural Network model is used to learn how to estimate the observed
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2D body poses that features two branches; the first one predicts a set of 2D confidence
maps that indicate the locations of body parts, while the second branch defines a set
of 2D vector field of PAFs. In essence, the output of this approach comprises a set of
2D image coordinates (x, y), that corresponds to the locations of K = 25 skeletal body
joints in the image plane according to the BODY25 pose output format. The coordinate
vectors of all joints are concatenated to form a single feature vector per frame, noted as
P2D(t) = {j2D(1, t), . . . , j2D(K, t)}, where j2D(i, t) = (x(i), y(i)), i = [1 . . . K] the 2D image
coordinates of each joint i for frame t.

Since we are interested in exploiting skeleton-based human poses to model and analyse
human activities and time-varying postures that involve subtle body configurations and
motion patterns, an important step to consider is to lift the estimated 2D information in
3D space. This step will enable the accurate and fine-grained estimation of static body
configurations and will allow to disambiguate the spatio-temporal relationships among
body parts according to a 3D skeletal body model. Then, the extraction of discriminative
spatio-temporal skeletal features will drive the effective classification of the observed sub-
optimal working postures. With this aim, the estimated 2D skeletal body pose P2D(t) is
used as input to the MocapNet2 [24] method that is able to predict in real-time the 3D
human body pose for the It image frame. The MocapNet2 method encodes the input 2D
skeleton (joints) hierarchy into two Normalized Signed Rotation Matrices (NSRMs), one for
the upper body and one for the lower body. An NSRM is a translation and scale invariant
representation of the 2D human pose that encodes joints in relation to each other by
storing their Euclidean distances in the 2D image plane. The two NSRM representations are
provided as input to an orientation classifier that comprises an ensemble of Self-normalizing
neural network models (SNNs) [84] that uses 8 densely connected hidden layers in order
to predict among the front, back, left, right body orientation classes. In the following,
another ensemble of SNNs that comprises six hidden layers and is specifically trained for
the estimated body orientation is used to estimate the 3D body pose.

It is important to note that the body hierarchy is split into the upper and the lower
body parts that are estimated independently. This important design feature allows to tackle
cases of extreme body occlusions, that frequently occur especially in real-world scenarios
that feature semi- or unconstrained environments. For example, even when the whole
lower body is occluded, the method can still efficiently estimate the pose of the upper
body parts. Moreover, an Inverse Kinematics mechanism is used for the refinement of the
regressed 3D skeletal body pose.

We use the pre-trained model of the the MocapNet2 architecture that encodes its
estimated 3D human pose for frame It in V directly to a Biovision Hierarchy (BVH) character
animation file format [85] using 498 body motion fields. These correspond to the degrees of
freedom of the depicted human skeletal model (armature) and accommodate the estimated
3D coordinates and angles of the body, the human face, hands and feet. Only 87 of the
degrees of freedom of the human skeletal body model are estimated by the method, leaving
the rest to their default values in the BVH output file. The output 3D human pose for each
frame It of the input video V is noted as PBVH(t).

3.1.2. Spatio-Temporal Modelling of the Human Motion

We further process the rich information for the 3D human body pose PBVH(t) estimated
by the MocapNet2 method for each frame It by selecting the 3D degrees of freedom that
correspond to 25 main skeletal body joints. These target joints rely on the skeletal body
model/configuration used in [78], as shown in the Figure 3. Our aim is to retrieve the
3D information of these skeletal body joints from the PBVH(t) and transform them to 3D
user-centric, rotation/view-invariant 3D coordinates using the concept of the "Torso PCA
frame” (TPCAF) introduced in [86,87]. This method considers the human torso as a rigid
body, that is a good candidate to define a torso frame, as a robust 3D user-centric coordinate
reference system for the skeletal body joints. The torso frame, essentially refers to the
orthonormal basis of a 3D plane computed using Principal Component Analysis (PCA) on
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a 7-by-3 torso matrix consisting of the coordinates of the most proximate joints to the torso
from the PBVH(t), as shown in (blue shaded rectangular) Figure 3. Therefore, the three main
principal components define the 3D coordinate reference system, while the origin of its axes
is conventionally attached to the base spine joint. We finally calculate the 3D coordinates
of each body joint with respect to the estimated user-centric coordinate reference system
to obtain a robust, rotation-invariant 3D skeletal body representation of the human pose
observed in the input frame It. The outcome of this approach is a 75D feature vector
P3D(t) = {j3D(1, t), . . . , j3D(K, t)} that includes the 3D coordinates j3D(i, t) = [x

′
i , y
′
i, z
′
i] for

all joints i = [1 . . . K], where K = 25, of the estimated human pose for frame It. We note as
P3D the skeletal sequence of size [75× T] represented by the 3D coordinates of each human
joint P3D(t) for frame It in V, where t = 1 . . . T.

We use this information as input to a Spatio-temporal Graph Convolutional Network
model (ST-GCNs) [9], as shown in Figure 2 for learning to analyse the spatio-temporal
dynamics of body configurations and to extract discriminative representations of the human
motion and actions performed throughout the video V.

The ST-GCN is a neural network model that is constructed as a undirected spatial
temporal graph G = (V, E) based on a skeleton sequence with K joints and T frames.
The node set V = {u(t, k)} for t = [1 . . . T], where k = [1 . . . K] corresponds to all the body
joints in P3D. In this graph model, the edge set ES comprises of intra-body connections
between joints in the same frame t are realized as a subset of graph edges according to the
connectivity of the skeletal hierarchy, shown in Figure 3. The second subset of edges EF refer
to the inter-frame connections of each body joint u(t, k) to the same type of joint u(t + 1, k)
in consecutive frames. Each graph node u(t, k) acquires the feature vector j3D(k) that is the
of 3D joint coordinate vector and a confidence value Ci(t) ∈ [0, 1] that is also provided by
the MocapNet2 method and indicates the visibility of the i-th joint in frame t. Essentially,
in this model the spatial body configuration, i.e., the locations and the dependencies of the
human skeletal joints, is represented as a spatial graph-based CNN for each video frame.

The main strength and novelty of this model is the extension of the standard formula-
tion of 2D convolutions to cases where the input features map resides on a spatial graph
(directly connected nodes act as neighbouring image pixels), essentially a static graph-based
CNN formulation. The concept of neighbourhood is then extended to the temporal domain
to also include temporally connected joints for modelling the spatial temporal dynamics
within an input skeleton sequence. Various partition strategies and scoring schemes to
define sets of neighbouring nodes are assessed in [9]. The best modelling capacity and
classification performance is achieved by the the spatial configuration partitioning, where
for each set of neighbouring nodes they are labelled according to their distances to the
skeleton gravity centre compared with that of the root node of the set. The ST-GCN model
comprises a set of 9 layers of spatial-temporal graph convolution operators that are applied
to the input skeletal sequence gradually in order to generate higher-level feature maps of
the graph according to the hierarchical representation of the human body. These layers also
feature the ResNet mechanism for sharing weights and can be grouped in sets of three with
respect to their output channels: 64, 128 and 256 channels, respectively. A global pooling
layer is also used on output of the last layer that provides a 256 dimension feature vector
for each sequence, which is an encoded feature vector, in other words an embedding of the
input sequence to a new embedding space. Then, a SoftMax classifier is used to transform
the embedding values of the network to probabilities towards the target classes.

We train a ST-GCN model using a modified SoftMax layer attached to the global
pooling layer towards the new set of target classes of interest, in order to optimize for the
network weights. The optimized model will essentially be used as an embedding function
fθ(·) for the proposed classification approach (Figure 2) to encode an input skeletal sequence
P3D to a sequence fθ(P3D) of 256-dimensional embedding vectors. We follow the training
protocol and parameter settings described in [9]. The set of target classes will be defined in
the following section.
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3.1.3. Classification of Ergonomic Working Postures

We are interested in classifying a set of working postures in 3D skeletal sequences. The
target classes of working postures are derived from the MURI risk analysis method [7,8]
that directly links the observed body configurations to the ergonomic risk for increased
physical strain imposed to specific body joints and parts during work activities. According
to the World Class Manufacturing strategy (WCM) [88], the MURI risk analysis is a generic
and widely-used tool for efficiency evaluation and risk analysis of physical ergonomics
in workstations in different production contexts [2] and especially in the automotive
industry. Overall, nine types (sketches) of time-varying working postures are assessed
by the MURI analysis method. In our study, we opted for four of these types that are
illustrated in Figure 1. These types of working postures were qualified as they affect
different main joints and large parts of the human body for which the physical strain is
more critical to assess during work activities, in terms of ergonomics and occupational
safety. Moreover, the respective body configurations and specific skeletal features can also
be efficiently captured visually and analysed across time, i.e., compared to the rotation
angle of the worker’s wrists, based on the camera positioning setting that is available in
the actual workplace of our use case, that is reported in Section 4.1. The selected types refer
to: (a) rotation angle of the waist, (b) flexion, stretching angle of the knees, (c) flexion angle
of the waist, (d) height of working arms. Each type is further analysed into three postural
variants that are associated with increasing level of ergonomic risk for physical strain/stress
imposed to specific body parts/joints. These variants refer to the low (‘Level 3’), medium
(‘Level 2’) and high (‘Level 1’) risk level, that are quantified according to specific criteria
linked to the pose-based angles and positions of the body parts. The low risk variants of the
postures correspond to a neutral body pose of low or no ergonomic risk for physical strain.
An important note is that each working posture is realized as time-varying event; thus,
a sequence of body configurations with a duration of at least 4 s. Some of the sub-optimal
working postures classified by the proposed method are also shown in Figure 4.

Based on this analysis, a set of 9 (nine) target classes of working postures is defined
that comprise the high-risk (‘Level 1’) and the medium-risk (‘Level 2’) variants for each of
the four main types of working postures and a single class of low-risk for all four types,
considered as an optimal or neutral working body posture. Specifically, we note the set
of target classes C = {C1, . . . , CL}, L = 9, that correspond to the labels: flexion-waist-L1
and -L2, rotation-waist-L1 and -L2, flexion-stretch-knee-L1 and -L2, height-arm-L1 and -L2
and neutral-L3. We train the ST-GCN model using a training set of labelled 3D skeletal
sequences {P3D} against the set of the nine target classes C to learn the embedding function
fθ , as described in Section 3.1.2.

Rather than using the outcome of the SoftMax layer of the trained ST-GCN model
to directly classify an input skeletal sequence, noted as X3D, we formulate a classification
scheme that relies on pairwise comparisons between the sequence of embeddings of X3D
towards a support set of sequences comprising one or more labelled skeletal sequences
{Y3D(i)} that are considered as representative training examples for each of the target
classes {Ci}. The estimated measure scores can be used to assign the unlabelled sequence
to the most similar class using a simple 1-nearest-neighbour (1-NN) classification scheme,
which can easily be extended to generic K-NN. This would allow to tackle the problem
of high intra-class variability of the different types of time-varying working postures
and will enable the fine-grained representation of their temporal evolution. Additional
problems that we need take into account regards the speed of execution of the postural
events, the varying sampling conditions, the fact that the working postures of interest
are not synchronized temporally within the captured videos/skeletal sequences and their
duration may vary significantly, while other postural events that might be performed before
or after the target working postures are also captured as part of the captured sequence,
especially during work activities captured in a real-world scenario. We argue that this
design approach better fits to the requirements of the task of classifying body straining
working postures.
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With this aim, we define a classification measure based on the temporal alignment
between skeletal sequences for measuring their discrepancies that also seems an promising
approach to effectively encode the above invariances. Specifically, we use the soft Dynamic
Time Warping method (softDTW) [10], an extension of the the classical Dynamic Time
Warping (DTW) approach [89], to estimate the non-linear temporal alignment cost between
two skeletal sequences as our classification measure, as shown in the outline of the proposed
approach in Figure 2. A brief description of both approaches is provided in the following.

Given two multivariate data sequences of varying length X = (x1, . . . xl) ∈ Rn×l

and Y = (y1, . . . , ym) ∈ Rn×m, the classical Dynamic Time Warping (DTW) approach [89]
uses as input a cost matrix D(X, Y) = [d(xi, yi)]ij ∈ Rl×m, where d(x, y) is the Euclidean
distance between any pair of timestamped p-dimensional feature vectors xi and yj. We
also define Π, the set of all continuous and monotonic paths that realizes any temporal
alignment between X and Y, connecting the upper-left to the lower-right of the matrix D.
Finally, let π ∈ Π be one of all those alignments. The inner product 〈π, D(X, Y)〉 yields
the alignment score associated with π. DTW uses dynamic programming to estimate the
minimum-cost temporal alignment between X and Y sequences, that is their discrepancy.
On the basis of the above notation, this is: DTW(X, Y) = minπ∈ΠD(X, Y).

Soft-DTW [10] builds upon the original DTW measure and considers a generalized
soft minimum operator applied to the distribution of all costs spanned by all possible
alignments between two data sequences of variable size. It also provides a differentiable
loss function that can be computed with quadratic time/space complexity. Given the
following generalized minimum operator, subject to a smoothing parameter γ ≥ 0,

min γ(π1, . . . , πk) =

{
mini≤k πi, γ = 0,
−γ log ∑k

i=1 eπi/γ γ > 0,
(1)

the soft-DTW score is defined as:

sdtwγ(X, Y) = minγ{〈π, D(X, Y)〉, π ∈ Π}. (2)

The original DTW score is obtained by setting γ = 0.
In order to further formulate the proposed classification scheme, we select a video

VY,i of length M annotated for each of the target classes Ci of working postures, that
captures representative examples of postural performance towards this class. Each of these
sequences will be compare with an input, unlabelled video VX of length N in terms of
pairwise temporal alignment. We estimate the 3D skeletal sequences P3D(X), P3D(Yi) that
are subsequently transformed to sequences of embeddings using the ST-GCN encoder,
noted as fθ(P3D(X)), fθ(P3D(Yi)), respectively. The pairwise Euclidean distance-based cost
matrix D(i, j) = |fθ(P3D(X))− fθ(P3D(Yi))|2, where D ∈ RNxM is computed and used as
input to the softDTW approach in order to estimate the soft-minimum alignment cost
sdtwγ(P3D(X), P3D(Yi)) between P3D(X), P3D(Yi). We set γ = 0.1 for our experiments.
Finally, we normalize the alignment cost using the |LX,Yi | length of the alignment path L in
order to set the measure invariant to variable lengths of the input sequences:

sdtwγ,norm(P3D(X), P3D(Yi)) =
sdtwγ(P3D(X), P3D(Yi))

|LX,Yi |
. (3)

In the following, the distance-based measure scores between X and Yi for each target
class Ci is computed in order to estimate the probabilities p(VX, Ci) using the SoftMax
function. Finally, the unlabelled input video VX is assigned to the class

Ci = arg max
Ci∈C

[1− p(VX , Ci)]. (4)

Figure 2 illustrates the outline of the proposed approach. At the inference stage,
the proposed approach is able to perform real-time classification of ergonomic working
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postures using a coarsely segmented 3D skeletal data sequence of duration up to 30 s with a
sampling rate of 25–30 fps, as input. Online performance of the method (real-time with low
latency upon the occurrence of a temporal events) is also feasible for processing untrimmed
streaming (continuous) visual data, if our approach is combined with a typical sliding
window design [90] or a deep learning-based technique for online, joint action detection
(temporal localization and classification) [91,92].

3.2. Worker Heart Rate Forecasting

As also mentioned above, the present work is part of a broader complex system that
monitors assembly workers in order to estimate their physiological state and trigger per-
sonalised recommendations that will help to enhance their occupational safety. In such
real-world applications it is useful to make predictions about the evolution of the em-
ployee’s heart rate, in order to proactively foresee adverse, high-risk events, and be able to
take timely corrective actions. It is therefore critical to examine whether the detection of
ergonomically sub-optimal postures can be used as information-rich inputs that improve
short- and mid-term heart rate predictions.

This can be formulated as a regression problem for forecasting heart rate (dependent
variable) using Recurrent Neural Networks (RNNs) by considering that future heart rate
values are affected by the current heart rate and physical strain due to visually detected er-
gonomically sub-optimal postures performed by the worker (independent variables). RNNs
are frequently used in the literature to address regression problems with input/output
looping [93]. However, most RNNs suffer from the problem of vanishing/exploding
gradients, which hampers learning of long data sequences and makes them impractical for
applications assuming real-time operation without human supervision. The Long Short-
Term Memory (LSTM) neural networks [13,14] have showed significant less sensitivity
on the vanishing/exploding gradients problem, because of their internal mechanism for
balancing between updating and forgetting. Accordingly LSTMs have been particularly
effective in learning long-term dependencies and dealing with pattern recognition problems
in timeseries where the order of input is a key factor for signal evolution.

As there several variations of the LSTM that fit to different types of problems, the cur-
rent work has considered the use of three different LSTM variants to identify the one that
suits more to the heart rate prediction task. In particular we have examined a single layer
classic LSTM, stacks of classic LSTM, and bidirectional LSTM. The first approach assumes
the simplest architecture, which was unable to adequately cope with HR regression. On the
other side the third, bidirectional approach, has introduced unreasonable complexity into
the network which demands much more computational resources for training, without ac-
tually exploiting the power of bidirectionality since HR prediction is in fact a unidirectional
problem. The second stacked LSTM approach has provided a balanced, powerful enough
approach to implement HR prediction based on historical data. The stacked LSTM can
effectively exploit the two different types of input data considered in the present study,
namely (i) past heart rate and (ii) past physical strain indicators estimated based on the
detection of ergonomically sub-optimal working postures, to implement models that fore-
cast the worker’s heart rate several seconds ahead. Accordingly, we consider two different
LSTM architectures, one that uses only past heart rate data, and another that uses both past
heart rate and past physical strain indicators. If future heart rate and the current postural
performance are correlated, then it is expected that the second network will have better
performance in forecasting the upcoming heart rate of users at work.

3.3. Associating Worker Heart Rate with Physical Strain

In order to examine the association between the physical strain and the heart rate that
is an indicator of fatigue, it is necessary to monitor workers’ activities on the assembly
production line for a long period. This monitoring will provide two separate synchronized
data streams for each worker, as a pair of time series, for (a) estimated types (risk-level
scores) of the sub-optimal working postures performed by the worker during assembly
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activities and (b) the worker heart rate, and consequently the correlation between the
two time-series will denote an association between the two. We obtain the required pairs of
time-series for the postural performance and the heart rate data of two different workers
over 8 long periods of assembly activities, as described in detail in Section 4.1.

The next step is to examine the correlation between the different types of working
postures and the resulting heart rate. This correlation can be measured directly between
any two time series using any correlation coefficient such as the Pearson product-moment
correlation coefficient (PPMCC) or Spearman’s rank correlation coefficient [94], in order to
examine whether an ergonomically sub-optimal working posture has a direct effect (i.e.,
increase) on the heart rate and a normal and non-straining body posture helps in reducing
heart rate back to its normal values. However, since we need to measure the correlation
between time series, any cross-correlation metric that takes into account the lag that may
exist between the two time series (i.e., body strain and heart rate) is more appropriate.
In addition to this, we must also consider the fact that the body strain time series in the
assembly line is non-stationary [95], since there is a periodicity in the tasks performed in the
line, and consequently in the expected strain in the different body parts. The time-lagged
cross correlation between any body-strain time series and the heart rate time series can be
measured using any correlation coefficient, such as PPMCC. Consequently it will reveal
whether a continuous, sustained period of physical strain results in an increased level of
worker heart rate and the opposite.

4. Data Acquisition and Experimental Evaluation

In this section we describe the requirements, the acquisition and annotation process
of a new dataset for detecting physical strain of line workers during assembly activities.
The dataset comprises synchronized videos and sequences of worker physiological (heart
rate) data acquired during work activities in a realistic manufacturing environment. In the
following, the experimental evaluation of the proposed methodology using the new dataset
is analysed in three parts. Firstly, the quantitative analysis of the proposed vision-based
approach for detecting physical strain of workers in videos is presented in comparison
with two baseline classification techniques. In addition, we assess the performance of
the proposed LSTM-based approach for forecasting worker heart rate data during work
activities. Finally, we investigate the correlation of workers’ cardiovascular activity with
the ergonomically sub-optimal postures detected during work activities and their role in
predicting the increased ergonomic risk for physical strain imposed on the worker’s body.

4.1. Data Acquisition

To facilitate the implementation and the evaluation of the proposed methodology, we
collected synchronous visual and physiological data for 2 workers during car-door assembly
activities for a simulated production line in a realistic manufacturing workplace, that is
available at the CRF-SPW Research & Innovation department of the Stellantis group in
Melfi, Italy. Overall, data were captured at four random days in a single month, during the
morning or the afternoon work shift for different workstations of the production line. The
data comprise in total 8 work sessions, each with 5 consecutive task cycles, performed by
an individual worker that was assigned to a specific workstation for the session. Each task
cycle comprises a workstation-dependent sequence of up to 30 assembly actions and has
a duration of approximately 4 min, while each work session has a duration of between
17–23 min.

The data collected, formed a new multimodal dataset with 40 task cycle executions of
time-synchronized visual (RGB and depth) data and physiological data. A subset of 12 task
cycles was selected and annotated by experienced professionals in manufacturing and
ergonomics with respect to the MURI-based ergonomic working postures [7,8] (Figure 1).
Additional information on the available annotations is provided in the following.

We follow a low cost, unobtrusive (non-invasive) sensing approach for the acquisition
of visual data and cardiovascular activity of workers that allows them to perform ordinary



Technologies 2022, 10, 42 16 of 30

assembly activities in the real working environment without the need for the installation of
special expensive equipment and wearable suits/reflectors (i.e., a motion capture (mocap)
system or medical devices). Thus, the proposed solution is potentially applicable across the
whole production line.

4.1.1. Visual Data and Annotations

We have acquired visual sensory data of the workers using a set of four low-cost stereo
cameras (StereoLabsTM ZED sensors) installed in the real manufacturing workplace. Each
stationary camera is placed at a height of 1.8 m and captures time-synchronized visual data
that comprise a stereo RGB image sequence and a depth image sequence of 1080p resolution
at 30 frames per second. A pair of cameras is place at each side of and along the production
line to simultaneously capture the human assembly activities from 4 different viewpoints,
thus to monitoring both the inner-door and outer-door working areas of the workstations.
Moreover, the sequences of visual data acquired by the cameras are time-synchronized
using a common reference clock. Specifically, visual data for each of the 40 task cycles was
captured from a single viewpoint located at the one side or from two viewpoints located at
both sides of the observed workstation, therefore monitoring the activities from both the
inner and the outer side working areas.

Annotation data for the selected 12 task cycles include the following information,
as also shown in the example annotation table in Figure 5: (a) the temporal boundaries
(start and end timestamps) and the semantic label for each assembly action (one action per
row) performed by the worker during the task cycle, (b) the instances of the target types of
ergonomic working postures of interest (noted in columns) for each assembly action (row),
and (c) the overall ergonomic risk score for the task cycle execution estimated according to
the MURI risk analysis method [7,96], as shown in Figure 1 and described in Section 3.1.
Annotations toward the three risk levels for each type of working posture correspond to
high, medium, low risk as semantic labels, to red, yellow and green as color-coded labels,
and to integers 1, 2, 3 as numerical scores, respectively, that correspond to the labels shown
in Figure 1. As a reminder, we note that each working posture is realized as time-varying
event, represented as a sequence of body poses of minimum duration 4 s.

1 

 

 

Figure 5. A sample of annotation data for the posture-based ergonomic risk analysis (MURI analysis
method [8,96]) of car-door assembly actions performed during a task cycle execution. Annotations
were provided by experts in automotive manufacturing and ergonomics based on video observations.
For each assembly action (rows), the ergonomic risk level for physical strain is noted towards each
working posture type (columns) (image courtesy of Stellantis—Centro Ricerche FIAT (CRF)/SPW
Research & Innovation department).
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The set of 12 annotated task cycles comprise 310 assembly actions, each of average
duration of 13 s, while the annotated instances for each type of working postures are
reported in Table 1. Those instances were used for training the proposed vision-based
classification approach using the combination of ST-GCN (https://github.com/yysijie/st-
gcn, accessed on 10 January 2022)) and softDTW (https://github.com/mblondel/soft-dtw,
accessed on 10 January 2022) methods. Finally, we apply the proposed classification
approach to infer the occurrences of working postures for each worker in the videos of the
assembly actions from the 28 unlabelled task cycles. The occurrences of working postures
for all the 40 task cycles are synchronized with the acquired heart rate data for assessing
the correlation between the two and to help in the prediction of near-future worker heart
rate data, as described in Sections 4.3 and 4.4.

Table 1. The annotated instances of four types of ergonomically sub-optimal working postures,
as shown in Figure 1, performed by 2 line workers during 12 task cycle executions of car door
assembly activities. The videos of the assembly activities were analysed and annotated by experts
in automotive manufacturing and ergonomics, as part of the multi-modal dataset of visual and
heart-rate data of the workers presented in our study.

Posture Type Flexion Angle of Waist Rotation Angle of Waist Height of Working Arm Flexion/Stretch Angle of Knees

Risk level 1 2 3 1 2 3 1 2 3 1 2 3
Total 9 31 266 0 52 254 18 36 247 5 7 298

4.1.2. Cardiovascular Activity Data

At the same time, each assembly worker was wearing a Garmin Vivoactive 3 smart-
watch that provides measurements on their cardiovascular activity. In particular, a Heart
Rate and Heart Rate Variability measurement can be obtained every second using the
smartwatch. However, the Heart Rate Variability data are very unstable and sensitive to
smartwatch misplacement resulting into long sequences of null values. Therefore, they are
omitted from the present study which focuses on exploiting the much more stable heart
rate data. The two data streams are synchronized to facilitate contrasting and fuzzing the
two modalities as described bellow. The heart rate data sequences captured are synchro-
nized with the visual data for all the 8 work sessions, that is the 40 task cycle executions
that were recorded in the real workplace.

4.2. Worker Posture Classification

We use the set of 12 annotated task cycles for the quantitative analysis of vision-based
classification of ergonomic working postures. We temporally segment each assembly action
of each task cycle using the annotation data in order to create a set {V} of 305 short videos
for training and testing the proposed approach. Then, our goal is to classify each video
against the set of target classes of ergonomic postures defined in Section 3.1. To measure
the classification performance of the classification task, we employ the metrics of Precision,
Recall and F1 score. Those metrics are commonly used in the fields of statistics, data
science and information retrieval to evaluate the performance of classification models,
by comparing the estimation obtained by such a model with annotation (ground truth) data.
All metrics provide values in the range [0, 1]. The F1 score metric is the harmonic mean of
Precision and Recall, where 1 indicates perfect precision and recall. We generate additional
training samples using data from other video datasets that demonstrate similar human
motion patterns in order to augment the training process of our approach. These regard a
set of 600 skeletal sequences that were manually selected, segmented and annotated from
videos of the TUM Kitchen Activity (https://ias.in.tum.de/dokuwiki/software/kitchen-
activity-data, accessed on 10 January 2022), the Berkeley MHAD [97], and the NTU-RGB+D
datasets [78].

Two additional classification approaches, namely rule-based and SVMs-based classifi-
cation, were also developed to assess the performance of the 3D skeletal features extracted

https://github.com/yysijie/st-gcn
https://github.com/yysijie/st-gcn
https://github.com/mblondel/soft-dtw
https://ias.in.tum.de/dokuwiki/software/kitchen-activity-data
https://ias.in.tum.de/dokuwiki/software/kitchen-activity-data
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from videos and to compare with the proposed method for detecting the physical strain
during assembly activities. More details are reported in the following paragraphs. We use
the following notations for the types of working postures to ease the description and the
evaluation of those methods. We define the types of ergonomic working postures, shown in
Figure 1, as [PA, PB, PC, PD], that correspond to (a) the flexion of the waist, (b) the rotation
angle of the waist, (c) the height of the working arms and (d) the flexion/stretching angle
of the knees, respectively. The 3 postural variations of each posture type PX are labelled
based on the set LX = [LX,1, LX,2, LX,3], that correspond to the associated high, medium,
and low ergonomic risk level for physical discomfort and strain.

4.2.1. Rule-Based Classification

A heuristic rule-based classification method [98] is developed to identify the postural
variations LX for each type of postures PX in a 3D skeletal sequence S. The feature vector
in S comprises the 3D body joints coordinates estimated per frame for a video of assembly
activities, as described in Sections 3.1.1 and 3.1.2. To this end, we design a classification
rule for each PX , which is noted as RX and consists of 3 branches. The conditions of each
rule rely on a single pose-based attribute that is the feature value fX as indicated by the
specifications of PX , as shown in Figure 1; e.g., the S is classified as L1 of posture type PA,
if the forward inclination of the skeletal body representation is more that 30 degrees, etc.

Then, for each PX , the input sequence S is encoded to a 1D sequence of fX values with
the aim to apply the RX and classify each value against the set of labels LX = LX1, LX2, LX3.
Finally, all sub-sequences of contiguous LX labels, where each has a duration of at least
4 s, are extracted and sorted according to the label priority LX1, LX2, LX3, that is high,
medium, low risk, respectively. The S is assigned the label of the first sub-sequence in this
list. In essence, given a data sequence, if at least one sub-sequence is detected and classified
as LX1, along with one or more sub-sequences labelled as LX2 or LX3, the sequence is
labelled as LX1, indicating postural performance of high ergonomic risk for physical strain.
The same applies for the priority between the LX2 and LX3 labels, that indicate working
postures of medium and low ergonomic risk for physical strain, respectively.

4.2.2. Multi-Class SVM-Based Classification

We also formulate a supervised learning approach for the classification of working
postures based on multi-class Support Vector Machine (SVM) models [99,100]. In this case,
we treat the 4 top-level types of ergonomic working postures [PA, PB, PC, PD], shown in
Figure 1, in a different manner. We opt to train a multi-class SVM-based model MX for
each posture type PX . The SVM models are trained independently to discriminate between
the mutually-exclusive risk labels LX of each PX . We use the 3D skeletal sequences of the
annotated videos of assembly actions, as described in Section 3.1, to build a vocabulary of
B codebooks using the popular Bag-of-Features [101]. We use B = 200 for the number of
codebooks. Essentially, a new compact representation Hi ∈ R1xB is generated that encodes
each input the 3D skeleton-based sequence Vskel,i. In the following, we form the set of
training samples TX = [Hi, LX ] for the model MX . A one-versus-rest training scheme was
selected to train each model by using a linear Support Vector Classification (SVC) kernel
model [99], a hinge loss function, the L2 measure as a penalty parameter and a 4-fold cross
validation training setting for the set of training pairs TX . Furthermore, we use a balanced
class weighting scheme to adjust the weights inversely proportional to class frequencies in
the input data and overcome the potential unbalanced frequencies of occurrences among
the three LX target classes in the training data.

4.2.3. Quantitative Evaluation

The performance of the postural classification approaches is evaluated using the set of
305 videos of assembly actions that are temporally segmented from the 12 annotated task
cycles, as mentioned in Section 4.1.1.
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An overview of the performance for each classification approach is provided in Table 2.
The average scores of the evaluated Precision, Recall and F1-score metrics are reported
based on the classification results of each method for all types of ergonomic working
postures. A comparison between the methods is also presented in Figure 6 based on the
mean F1-scores achieved for each type of ergonomic working postures. Finally, Table 3
provides an analytic report of the F1-score values achieved by each classifier towards the LX
classes for all the types PX of ergonomic sub-optimal working postures that are considered
in our study.

Table 2. Experimental results obtained for the detection of physical strain during assembly activities
using the videos of the 12 annotated task cycle executions. The mean value of each classification
metric is computed for every type of ergonomic working postures.

Classification Method Precision Recall F1-Score

Rule-based classifier 0.527 0.583 0.516

multi-class SVMs 0.603 0.860 0.680

ST-GCNs [9] + softDTW [10] (proposed) 0.653 0.822 0.710

Table 3. Experimental results on the detection of physical strain in videos of car door assembly
activities performed by line workers in a real car manufacturing environment. F1-scores obtained by
three classification approaches is presented for each of the four types of ergonomic working postures
(see Figure 1 that are associated with physical strain, according to the MURI risk analysis method [7].

Types of
Working Postures

Flexion Angle of
the Waist

Rotation Angle of
the Waist

Height of the
Working Arm

Flexion/Stretching
Angle of the Knee

Mean F1-ScoreErgonomic Risk
Level/Methods L1/L2/L3 L1/L2/L3 L1/L2/L3 L1/L2/L3

Rule-based classifier 0.34/0.56/0.77 -/0.24/0.70 0.30/0.60/0.70 0.28/0.42/0.75 0.516

multi-class SVMs 0.72/0.70/0.87 -/0.50/0.77 0.70/0.68/0.82 0.50/0.30/0.90 0.680

ST-GCN + softDTW 0.74/0.80/0.90 -/0.63/0.90 0.80/0.61/0.89 0.25/0.38/0.87 0.710

Figure 6. The average F1-score scores of each classification method are calculated and presented
separately for each type of the ergonomic working postures (Figure 1).

The efficiency of the proposed deep-learning based classifier is evident based on
the experimental evaluation conducted using the subset of annotated visual data and its
superior performance compared with the two baseline methods.

Overall, the proposed framework can achieve real-time or on-line performance based
on continuous streams of visual data acquired by a single camera in a real industrial setting.
All methods of the proposed pipeline (data acquisition, 2D and 3D human pose estimation
and posture classification) can be processed using a mid- to high-end PC equipped with a
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CUDA-enabled GPU (in our case NVidia GeFORCE 1080ti or better; Compute Capability
6.1 or higher).

As we have already noted, each type of working posture is realized as a time-varying
event that has a duration of at least 4 s. The proposed classification method can be combined
with any action localization/detection approach for the online processing of continuous
streams of visual data for the estimation of sub-optimal working postures. Therefore, in a
real industrial setting the proposed approach is able to provide an online performance
with a latency of some seconds upon the completion of any observed postural event
based on continuous streams of visual data. Finally, we note that a first prototype of the
proposed framework has already been tested in an unattended operation mode in a real
car manufacturing environment with real line workers (Stellantis—Centro Ricerche FIAT
(CRF)/SPW Research & Innovation department in Melfi, Italy) in the context of the sustAGE
project for a period of 3 weeks (approximately 5 h per day). Specifically, the respective
software module was able to classify the observed ergonomic working postures based on a
continuous stream of visual data acquired from a single camera during work activities and
to achieve online runtime performance (with a latency of 5–10 s) and satisfactory results.
Collective results obtained from the analysis of worker’s postural performance after the
end of a task cycle per workstation were reported (approximately after 4–5 min).

4.3. Worker Heart Rate Forecasting

The recommendation system we are implementing assumes reliable predictions of
workers’ heart rate, which are used as a prevention mechanism for adverse, high-risk
events. As mentioned above, we are interested to develop a module that predicts future
heart rate of assembly workers, by using recent past measurements of heart rate and posture
deviation observations. This data is used to train an LSTM neural network that aims to
implement forecasting.

To prepare the dataset for LSTM training, we exploit the data collected following the
procedure summarized above. The formatting of input/output pairs is implemented as
follows. At any given moment, a 25 s length window of past data is used to create the
input sequence used as an input vector. This data may include heart rate and posture
deviations, depending on the LSTM configuration used. In the first case it results into an
input vector of 25 (heart rate) values, while in the second it results into an input vector of
50 (heart rate + posture deviation) values. The posture deviation values referred to as total
score which is the summary of annotated value at a specific time-frame. The corresponding
value targeted by the output of the LSTM is a scalar produced by taking the measured
heart rate either 10, or 20, or 30 s ahead the current time (the same applies for all LSTM
configurations). The window of input data and the targeted value are moved in a step by
step manner, one second each time, to produce the whole sequence of shifted pairs to create
the input/output dataset. Following the above, we got 1256 input/output pairs which are
used to train the LSTMs and assess their performance. In particular, 80% of the data are
used for training and the remaining 20% are used for performance validation. In order to
configure the parameters of the LSTM we use a validation dataset that includes the 25% of
the training data.

To implement the heart rate forecasting module, we use bidirectional LSTMs of four
stacked layers, each one consisting of 10 memory cells with hyperbolic tangent activation
function. Additionally, a dropout layer of 0.1 is used between all connected layers to
prevent over-fitting on training data and at the end of the network a dense layer is added
that is deeply connected with its preceding layer which means the neurons of the layer are
connected to every neuron of its preceding layer. The LSTM was trained for 10,000 epochs
with Adam optimizer with learning rate 0.001 to optimize 3.891 trainable parameters
targeting the minimization of the absolute error between the targeted and the predicted
heart rate values. The above are the same for all input/output combinations examined.

The results of training the LSTMs on heart rate forecasting using either only past heart
rate data (HR only), or both past heart rate and posture deviation data (HR + PD) are
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summarized in Table 4. The table reports the mean absolute error values for the training
and the validation dataset, both averaged over the last 10 training epochs for a group of
five training sessions on each dataset. According to these results, feeding the forecasting
module with posture deviation data improves the LSTM training in all three cases, having
a more beneficial effect on short term forecasting. The assessment of the forecasting module
on the validation dataset provides information about its ability to generalize. Clearly
both the HR-only and the HR + PD solutions achieve medium quality results with the
HR-only solution being slightly better. We believe this is due to the small size of the datasets
examined. It is expected that by increasing the available data, the forecasting error on the
validation dataset will move closer to the forecasting error on the training dataset, which in
our case seems to be in favour of the HR + PD solution.

Table 4. The results of LSTM training on heart rate forecasting for the next 10, 20, or 30 s.

Input
Prediction 10 s Prediction 20 s Prediction 30 s

Training Validation Training Validation Training Validation

HR only 2.02 4.86 2.32 7.93 3.86 7.38

HR + PD 1.02 5.03 1.93 8.34 1.96 6.22

4.4. Integration Aspects

Since we compared the time series for two workers it is important to check their
profiles first. As shown in Figure 7 the two workers have some differences in the frequency
distribution of their HR values in all datasets. In general worker B has a higher HR than
worker A. What is also interesting is that worker A, in general, stresses less than worker B,
at least by avoiding either stressing a specific body part too much or multiple body parts at
the same time, as shown in Figure 8 that depicts the distribution of the total stress score for
the two workers in all files.

Figure 7. Workers’ heart rate values distribution.



Technologies 2022, 10, 42 22 of 30

Figure 8. Workers’ total body stress values distribution.

When we examine the correlation between the different body straining working
postures and the resulting heart rate we see that there is no clear pattern between any of
the postures (and the cumulative body stress) at any time and the heart rate, as shown in
Table 5 that summarizes the correlation in all the 8 work sessions of the proposed dataset.
This can be easily explained, since taking a specific occurrence of any working posture does
not instantly triggers heart rate to increase, thus it is more important to examine if there is
a time lagged correlation between HR and strenuous postures and identify this lag.

Table 5. Pearson correlation between the different body stressing postures and the corresponding
heart rate.

Flexion Angle
of the Waist

Rotation Angle
of the Waist

Height of the
Working Arm

Flexion and
Stretching Angle

of the Knee
Stress Score

Worker 1

0.11 0.21 0.01 0.11 0.23

−0.18 −0.06 −0.44 0.08 −0.34

−0.29 −0.14 0.17 −0.04 −0.17

0.01 0.01 0.02 0.00 0.02

Worker 2

−0.17 −0.34 −0.15 0.10 −0.29

−0.05 −0.10 0.01 −0.03 −0.07

−0.03 −0.01 0.11 0.06 0.03

−0.08 −0.07 −0.03 0.03 −0.08

In order to examine the occurrence of time-lagging correlation, we consider the heart
rate time series of each work session as is and we gradually shift the respective body
posture time series by a certain amount of seconds each time. Then we measure the Pearson
correlation between the HR and the shifted body stress time series and produce a plot
which is similar to the one depicted in Figure 9.

The blue line depicts the correlation between HR and the total (summed) stress level
in all body parts if we shift the body posture earlier in time (negative offset) or later in time
(positive offset). The black dashed vertical line maps the correlation at zero offset, which
as shown in the previous table is usually close to 0. The red dashed vertical line depicts
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the maximum correlation found between the two time series and identifies, in this case,
a negative offset. This means that there is a maximum time lagged correlation of 0.278
between the total body strain score and heart rate, which occurs with a delay of 106 s. This
means that the worker is undergoing a sub-optimal working posture imposing increased
strain to body parts and almost 1.5 min later this results in an increase to the HR. Similarly,
avoiding sub-optimal working postures for a while results in a gradual decrease in heart
rate back to its normal levels.

As shown in Figure 9 the pattern repeats in almost all work session analysed for both
workers, which suggest that there is a time lagged correlation between HR and physical
strain during assembly activities. The statistical significance of the reported correlation
values has a p-value that is always smaller than 0.01, which indicates that the correlation
does not occur randomly. What is even more interesting is the repeating pattern in most
time lagged correlation plots. This repeating pattern matches the repeating nature of
the tasks performed by the workers, which results in repeatedly making the same body
stressing postures and consequently have an effect on their heart rate.

Figure 9. The time lagged correlation plots for Worker A. The dotted red line denotes the lag that
gives the maximum Pearson correlation for the two series. A negative offset denotes that the heart
rate time series follows the body stress one.

In order to further analyse the effect of this pattern on the correlation between HR and
sub-optimal body postures, we provide an additional visualization that splits each time
series to subsets of equal length (windows) and then computes the time lagged correlation
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for each window separately. Since each dataset contains work cycles of 4 min duration, we
split the dataset in windows that have a size of 240 s and apply time lagged correlation,
using Pearson correlation again. The result is as shown Figure 10. The plot shows that
continuous sub-optimal postures during the work cycle add a burden to the worker and
result in an increase to the heart rate especially with a delay of approximately 2 min. The
p-value for this correlation is higher but still less than 0.05 in all cases.

1 
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Figure 10. Windowed time lagged cross correlation of the body stressing working postures in each
work cycle and the respective heart rate. The plots show a periodicity in the high correlation values
during the cycles (rows).

5. Discussion and Conclusions

This paper studies methods of detecting the physical strain imposed by ergonomically
sub-optimal body postures performed by line workers and examines their relationship to
the worker cardiovascular activity during work activities in a real-world and demanding
industrial environment. A key characteristic of the present work regards the use of low-cost
technology for the acquisition of synchronous visual and cardiovascular data sequences
of workers, based on stationary camera sensors and wearable sensors (smartwatches),
respectively. The visual information stored in videos or acquired as untrimmed stream-



Technologies 2022, 10, 42 25 of 30

ing data would enable the unobtrusive and real-time detection and tracking of worker’s
3D skeleton-based body configuration, using state-of-the-art vision-based deep learning
methods. Therefore, no significant changes in the workplace or the use of markers on
the worker’s body is required, which would impede their movement and would reduce
their physical comfort and productivity. According to the results presented above, the pro-
posed vision-based classification approach acquires a coarsely segmented 3D skeletal data
sequence and is able to efficiently assess the ergonomic suitability of worker’s postural
performance and the risk for physical strain during work activities. With this aim, the ob-
served worker’s postures are analysed according to a set of ergonomic working postures,
of known ergonomic risk scores, suggested by the well established MURI analysis tool that
is widely used for the analysis of physical ergonomics in different occupational contexts.
It performs in real-time using a coarsely segmented 3D skeletal data sequence as input,
of length up to 30 s and acquisition rate at 30 fps. Moreover it is able to perform in an
online setting, as part of a detection and classification scheme using untrimmed streaming
data as input.

In addition, we examine the correlation of workers’ cardiovascular activity with the
occurrences of ergonomically sub-optimal postures detected during work activities, that
indicate the risk for physical strain imposed to worker’s body. Although the connection
between the two sources of information is not visually obvious, the current work shows
that there is a latent correlation or relationship between the two sources of information.
According to the assessment presented above, an estimation of increased risk for physical
strain of a worker in a specific amount of time seem to affect the evolution of heart rate.
This assumption is supported by the fact that by using the estimated risk for physical strain
based the detected working postures as input to a heart rate prediction module the accuracy
of predictions improves. Interestingly, further investigation has revealed a time lagged
correlation between HR and physical strain for more than a minute.

Overall, the present work presents an early analysis of a dataset that combines the
visual analysis of sub-optimal working postures and heart rate of line workers that perform
repetitive tasks. More experiments would be required to further validate its findings.
However, the initial results suggest a correlation between ergonomically sub-optimal
postural performance by the worker and an increase in heart rate. In addition, the results
show that the analysis of worker postures can help in the prediction of future heart rate
values, and preemptively notify workers and their supervisors in the workplace about
near-future high heart rate incidents.

Moreover, an additional goal for future work refers to the development of an novel
end-to-end deep neural network model for multi-modal representation learning and clas-
sification of human actions and sub-optimal working postures. Such a model will rely
on the fusion of visual and HR data and exploit our findings on the correlation of work-
ing postures and worker HR measurements. Finally, we plan to acquire new data and
annotations for more work sessions in the real-world manufacturing environment and
augment our multi-modal dataset for the detection of physical strain and fatigue during
assembly activities.
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