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Abstract: This paper proposes a fractional-order chaotic system using a tri-stable locally active
memristor. The characteristics of the memristor, dynamic mechanism of oscillation, and behaviors
of the proposed system were analyzed, and then a visually meaningful image encryption scheme
was designed based on the chaotic system, DNA encoding, and integer wavelet transform (IWT).
Firstly, the mathematical model of the memristor was designed, which was nonvolatile, locally active,
and tri-stable. Secondly, the stability, dynamic mechanism of oscillation, bifurcation behaviors, and
complexity of the fractional-order memristive chaotic system were investigated and the conditions of
stability were obtained. Thirdly, the largest Lyapunov exponent, bifurcation diagram, and complexity
of the novel system were calculated and the coexisting bifurcation, coexisting attractors, spectral
entropy, and so on are shown. Finally, a visually meaningful image encryption scheme based on the
proposed system was designed, and its security was assessed by statistical analysis and different
attacks. Numerical simulation demonstrated the effectiveness of the theoretical analysis and high
security of the proposed image encryption scheme.

Keywords: mechanism of oscillation; dynamic behavior; fractional-order; visually meaningful cipher
image; locally-active memristor

1. Introduction

Prof. Chua predicted that there should be four fundamental elements of the theory of
completeness in nature, namely resistance, capacitance, inductance, and memristance [1].
As a possible component, initial research on memristors was slow and very few researchers
were interested because there was no physical device to support memristance. With
the development of technology, HP Labs first reported a physical device of a nano-size
memristor in 2008, which was of groundbreaking significance [2]. From then on, research
on memristors has attracted a huge amount of attention in industry and academia. Their
natural nonlinear and non-volatile characteristics give memristors great potential for data
storage and computation [3,4], artificial neural networks [5–7], nonlinear circuits [8–10],
secure communication [11], image encryption [12–14], and other fields.

Chua proposed that local activity is the origin of complexity in 2005 [15]. The first
locally active memristor was designed and called the Chua corsage memristor [16]. In order
to analyze the characteristics of the memristor, some new methods such as DC V-I Plot,
Power-Off Plot (POP), and Dynamic Route Map (DRM) were proposed. These methods
can analyze the locally active and non-volatile characteristics of the memristor. Research
showed that the memristor has negative differential memristance or memductance in some
regions, called locally active memristors [17]. According to the conservation of energy, a
memristive system can produce and maintain continuous self-excited oscillation in the
locally active regions of the memristor, resulting in rich dynamic behaviors.
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Recently, research on locally active memristors and their applications are going
through a blowout period. In 2013, a NbO2 Mott locally active memristor was first realized
by Williams et al. [18]. Later, in 2021, the Williams team used a resistor, capacitor, and NbO2
Mott locally active memristor to build a neuron chaotic system and analyzed the dynamic
behaviors of the neuron system. Their research indicated that the physical locally active
memristor could greatly improve the efficiency and accuracy of the computation when
it was applied in a Hopfield neural network [19]. In 2016, Mannan et al. demonstrated a
nonautonomous system based on the Chua corsage memristor and analyzed the edge of
chaos and the Hopf bifurcation of the system. The results showed that the system would
oscillate near locally active operating points located on the memristor’s DC V-I curve [16].
In 2017, Mannan et al. further studied the Chua corsage memristor and found that the
memristor has two asymptotically stable equilibrium points and two distinct coexisting
pinched hysteresis loops [20]. In 2018, Mannan et al. designed 4-lobe Chua corsage memris-
tor and a 6-lobe Chua corsage memristor and analyzed their characteristics [21,22]. In 2020,
Mannan et al. reviewed the nonlinear dynamic attributes, switching kinetics, bifurcation
analysis, and physical realization of a family of Chua corsage memristors and analyzed
the nonautonomous system based on the Chua corsage memristors, finding unique stable
limit cycles from a supercritical Hopf bifurcation along with static attractors [23]. We find
that all systems based on locally active memristors only produce periodic oscillations and
no chaotic oscillations. In 2020, Dong et al. designed a bistable nonvolatile locally active
memristor and added an inductor to the periodic oscillating circuit of the memristor. The
coexisting chaotic attractors and various complex dynamic phenomena were reported
in [24]. Tan et al. designed a simple locally active memristor and established HR neurons
on the memristor. Complicated firing behaviors and coexisting position symmetry for
different attractors were found in [25]. All of these studies showed that the locally active
memristor has extensive application prospects and potential in chaotic oscillations.

As we all know, almost all systems are fractional-order systems in nature, and the
integer-order system is a special case of fractional-order systems. Fractional calculus has the
same historical memory function as a memristor; therefore, all memristive systems can be
extended to fractional order. However, research on fractional-order chaotic systems based
on locally active memristors is still in its infancy. Xie et al. proposed a fractional-order
chaotic system based on a designed locally active memristor model, and dynamics analysis
indicated that the system not only had diverse nonlinear dynamics, such as infinitely many
discrete equilibrium points, multistability, and anti-monotonicity, but it also produced two
new phenomena [26]. Ding et al. designed a fractional-order Hopfield neural network
system based on a coupled locally active memristor, and the simulation results displayed
that the fractional-order system not only had rich dynamic phenomena but also had some
special transient transition process [27]. Yang et al. devised a fractional-order simplest
chaotic system based on a bi-stable locally active memristor. Rich coexisting phenomena
were found and some transient transition behaviors were analyzed [28]. It can be found that
fractional-order systems based on locally-active memristors can generate richer dynamic
behaviors and some new phenomena that have not been found in other chaotic systems.

Nowadays, digital images are ubiquitous, and yet the security of their transmission
and storage causes anxiety. Research shows that there is higher security for image en-
cryption in a chaotic system, which has better security than other methods because of
the initial value sensitivity as well as the pseudo-random and aperiodic characteristics of
chaotic systems. In recent years, many image encryption schemes based on chaotic systems
have been proposed; however, these ciphertext images are noise-like or texture-like and
easily distinguished from normal visually meaningful images. These visually meaningless
noise-like images can only protect the security of image data but they fail to protect the
security of image visual data. In pursuit of dual security of image data and visual data, the
noise-like or texture-like ciphertext image should be converted into a visually meaningful
image after the plain image is encrypted by existing encryption algorithms.
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In order to achieve visual security, Bao et al. first proposed an image encryption
scheme to encrypt plain images into visually meaningful ciphertext images [29]. This
scheme added an embedding process on the basis of the existing image encryption al-
gorithm. When the visually meaningful cipher image emerged in an insecure channel,
it was difficult to catch the attention of attackers; therefore, the carrier image and the
original image were more secure. Chai et al. proposed a novel visually secure image
encryption scheme based on compressive sensing. Simulation results and performance
analyses both demonstrated high sensitivity to the plain image and availability to known-
and chosen-plaintext attacks [30]. Wang et al. proposed a visually meaningful scheme by
employing the parallel compressive sensing method and embedding technique. Simulation
analysis demonstrated that the cipher image exhibited excellent security and the recon-
structed image had higher quality [31]. Ping et al. designed a visually meaningful image
encryption scheme using the compressive sensing and partial block pairing substitution
technique. Experimental results demonstrated that the scheme had higher quality and
higher security [32]. It can be observed that the style of image decomposition is discrete
wavelet transform (DWT); however, the DWT is irreversible, and the quality of the final
reconstructed image will be poor during decryption. To solve this problem, the integer
wavelet transform (IWT) is used to decompose and reconstruct the carrier image, which
is fully reversible. Owing to the fact that IWT and inverse IWT are completely reversible,
the obtained image is exactly the same as the original carrier image after the carrier image
undergoes IWT and inverse IWT transformation. Based on this, we used this method to
complete the embedding and extracting processes of the secret image.

Based on the above discussions, this study proposed a new continuous nonlinear
tri-bistable locally active memristor model, and we studied its nonlinear characteristics.
Then, we analyzed the features of the locally active memristor, including time-domain
waveforms, three coexisting pinched hysteresis loops, Power-Off Plot, and DC V-I Curve.
Next, we designed a fractional-order simple circuit system using our memristor, a linear
passive inductor, and a linear passive capacitor in series. We observed that the system could
produce oscillation under some conditions and had abundant dynamic behaviors. Finally,
we used the fractional-order memristive chaotic system to design an image encryption
scheme and analyzed its security. The contributions of this paper are listed as follows: (1) A
tri-stable locally active memristor was designed and analyzed. (2) A fractional-order chaotic
system was built based on the proposed memristor, and we discovered its rich coexisting
dynamic behaviors. In order to apply the chaotic system, we analyzed the complexity
when some parameters were changed. (3) A visually secure image encryption scheme was
proposed based on the fractional-order memristive chaotic system and integer wavelet
transform (IWT) embedding. The analysis results pointed out that our algorithm not had
only higher security, but it also enabled dual protection of data security and visual security.

The remainder of this paper is organized as follows. The tri-stable locally-active
memristor model is built in Section 2. Section 3 shows the dynamic characteristics of
the designed memristor. The new fractional-order chaotic system based on the tri-stable
locally-active memristor is presented, and the dynamic behavior of the chaotic system is
analyzed in Section 4. Section 5 designs a visually meaningful image encryption scheme to
use the chaotic system. Finally, Section 6 is the conclusion.

2. New Locally Active Memristor

Based on Chua’s definition and classification of memristors, this paper designed a new
tri-stable locally-active memristor model, which can be described by the voltage–current
relationship and the state equation as follows:

dx
dt

= k1(ax + bx|x|+ cx3 + dxv2 + ev) (1)

i = k2(x2 − m)v (2)
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where v and i are the input and output of the memristor, respectively. x is the state variable
of the memristor. k1, k2, e, and m are parameters.

According to Equations (1) and (2), when the parameters are set as k1 = 1, k2 = 1,
a = −4.7, b = 10, c = −4.7, d = 0.1, m = 10, and e = 10, the color POP of Equation (1)
with arrow heads is shown in Figure 1. It can be observed that there are five intersections
with dx/dt = 0, namely E1, E2, E3, E4, and E5. By adjusting the dynamic route of the
five points, we can judge that the equilibrium points E1, E3, and E5 are asymptotically
stable, whereas the equilibrium points E2 and E4 are unstable. The green lines represent the
negative slope ranges, while the blue lines represent the positive slope ranges. The arrow
above the x = 0 axis faces right, and the curve arrow below the x = 0 axis faces left.
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Figure 1. POP of Equation (1).

2.1. Pinched Hysteresis Loops

When the memristor is driven by a periodic signal source with amplitude A and
frequency ω, the v − i curves of the memristor are pinched hysteresis loops passing
through the origin. While the parameters of the memristor and the periodic signal source
take different values, and the initial values of Equation (1) also take different values, the
memristor will exhibit a variety of characteristics. The parameters of Equations (1) and (2)
are set as k1 = 1, k2 = 1, a = −4.7, b = 10, c = −4.7, d = 0.1, m = 10, and e = 10.

Let A = 4,ω = 10rad/s, and the parameter d is changed. When d ∈ [−0.048, 0.17] ,
the dynamic trajectory displays three coexisting pinched hysteresis loops, as shown in
Figure 2b, and the corresponding time-domain waveforms are shown in Figure 2a.
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Figure 2. The dynamic trajectory of the memristor when d = 0.1: (a) time-domain waveforms;
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It can be observed from Figure 2 that if the initial value x(0) > 0.12, the pinched
hysteresis loop is the red curve of Figure 2b; if the initial value −0.744 ≤ x(0) ≤ 0.12, the
pinched hysteresis loop is the blue curve of Figure 2b; if the initial value x(0) <− 0.744, the
pinched hysteresis loop is the green curve of Figure 2b. The red and green curves are sym-
metrical hysteresis loops about the origin. When d > 0.17, the dynamic trajectories display
double coexisting pinched hysteresis loops, as shown in Figure 3b, and the corresponding
time-domain waveforms are shown in Figure 3a. It can be observed from Figure 3 that if
the initial value x(0) > − 0.32, the pinched hysteresis loop is the red curve of Figure 3b; if
the initial value x(0) <− 0.32, the pinched hysteresis loop is the green curve of Figure 3b.
The red and blue curves are symmetrical hysteresis loops about the origin, and they have
two pinched points. When d <− 0.048, the dynamic trajectory displays only one pinched
hysteresis loop, as shown in Figure 4b, and the corresponding time-domain waveforms are
shown in Figure 4a. It can be observed that the dynamic trajectories have three stable states
at the beginning, and as time goes on, the final curves are independent of the initial values
and eventually converge to the same curve.
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Figure 3. The dynamic trajectory of the memristor when d = 0.15: (a) time-domain waveforms;
(b) double coexisting pinched hysteresis loops.
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Figure 4. The dynamic trajectory of the memristor when d =− 0.05: (a) time-domain waveforms;
(b) double coexisting pinched hysteresis loops.

Let the amplitude A = 4 V, ω = 10 rad/s, and the parameter e is changed. When
e ∈ [−1, 0.958], the dynamic trajectory displays three coexisting pinched hysteresis loops,
as shown in Figure 5b, and the corresponding time-domain waveforms are shown in
Figure 5a. It can be observed from Figure 5 that if the initial value x(0) > 0.077, the pinched
hysteresis loop is the red curve of Figure 5b; if the initial value −0.745 ≤ x(0) ≤ 0.077,
the pinched hysteresis loop is the blue curve of Figure 5b; if the initial value x(0) < −0.745,
the pinched hysteresis loop is the green curve of Figure 5b. The red and green curves are
symmetrical hysteresis loops about the origin. When e > 0.958 and −3.6 ≤ e < −1,
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the dynamic trajectories display double coexisting pinched hysteresis loops, as shown in
Figure 5d, and the corresponding time-domain waveforms are shown in Figure 5c. It can
be observed that if the initial value x(0) > 0.6, the pinched hysteresis loop is the red curve
of Figure 5b; if the initial value x(0) ≤ 0.6, the pinched hysteresis loop is the green curve
of Figure 5b. The red and blue curves are symmetrical hysteresis loops about the origin,
and they have two pinched points. When e > −3.6, the dynamic trajectory displays only
one pinched hysteresis loop, as shown in Figure 5f, and the corresponding time-domain
waveforms are shown in Figure 5e. It can be observed that the pinched hysteresis loop has
three pinched points and is symmetric about the origin.
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Figure 5. The dynamic trajectory of the memristor: (a) time-domain waveforms when e = 0.5;
(b) double coexisting pinched hysteresis loops when e = 0.5; (c) when e = 1.5; (d) when e = 1.5;
(e) when e =− 3.9; (f) when e =− 3.9.

Let the amplitude e = 0.5, d = 0.1, ω = 10 rad/s, and the parameter A is changed.
When A ≤ 5.7, the dynamic trajectory displays three coexisting pinched hysteresis loops,
as shown in Figure 6b, and the corresponding time-domain waveforms are shown in
Figure 6a. It can be seen that if the initial value x(0) > 0.61, the pinched hysteresis loop is
the red curve of Figure 6b; if the initial value −0.12 ≤ x(0) ≤ 0.61, the pinched hysteresis
loop is the blue curve of Figure 6b; if the initial value x(0) < −0.12, the pinched hysteresis
loop is the green curve of Figure 6b. The red and green curves are symmetrical hysteresis
loops about the origin. When A > 5.7, the dynamic trajectories display double coexisting
pinched hysteresis loops, as shown in Figure 6d, and the corresponding time-domain
waveforms are shown in Figure 6c. It can be observed that if the initial value x(0) > 0.3,
the pinched hysteresis loop is the red curve of Figure 6d; if the initial value x(0) ≤ 0.3,
the pinched hysteresis loop is the green curve of Figure 6d. The red and blue curves are
symmetrical hysteresis loops about the origin and they have two pinched points.
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Figure 6. The dynamic trajectory of the memristor: (a) time-domain waveforms when A = 5;
(b) double coexisting pinched hysteresis loops when A = 5; (c) when A = 6; (d) when A = 6.

Let the amplitude e = 0.5, d = 0.1, A = 4 V, and the parameterω is changed. When
ω ≤ 5, the dynamic trajectory displays double coexisting pinched hysteresis loops, as
shown in Figure 7b, and the corresponding time-domain waveforms are shown in Figure 7a.
It can be observed that if the initial value x(0) ≥ −0.66, the pinched hysteresis loop is
the red curve of Figure 7b; if the initial value x(0) < −0.66, the pinched hysteresis loop
is the blue curve of Figure 7b. The red and green curves are symmetrical hysteresis loops
about the origin. Whenω > 5, the dynamic trajectories display three coexisting pinched
hysteresis loops, as shown in Figure 7d, and the corresponding time-domain waveforms
are shown in Figure 7c. It can be observed that if the initial value x(0) > 0.1, the pinched
hysteresis loop is the red curve of Figure 7d; if the initial value −0.72 ≤ x(0) ≤ 0.1, the
pinched hysteresis loop is the blue curve of Figure 7d; if the initial value x(0) < −0.72,
the pinched hysteresis loop is the green curve of Figure 7d. The red and blue curves are
symmetrical hysteresis loops about the origin. It can be seen from the above analysis that the
memristor presented different stable states with changes in parameters and input signals.
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Figure 7. The dynamic trajectory of the memristor: (a) time-domain waveforms whenω = 3 rad/s;
(b) double coexisting pinched hysteresis loops whenω = 3 rad/s; (c) whenω = 7 rad/s; (d) when
ω = 7 rad/s.

2.2. Local Activity

The DC V-I plot reflects Ohm’s law for the memristor, which describes the DC char-
acteristics of the memristor and can analyze the intrinsic locally active features of the
memristor. Let x = X, dx/dt|x=X = 0 in Equation (1), we can obtain the relationship
between voltage V and state variable X:

aX + bX|X|+ cX3 + dXV2 + eV = 0 (3)

Then, setting a = −4.7, b = 10, c = −4.7, d = 0.1, and e = 0.5. Based on Equation (3),
we can obtain a function between the state variable X and the DC voltage V:

V1 =
−5 +

√
25 + 4X(47X− 100X|X|+ 47X3)

2X
(4)
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V2 =
−5 −

√
25 + 4X(47X− 100X|X|+ 47X3)

2X
(5)

Substituting Equations (4) and (5) into Equation (2), the DC current I can be calculated,
respectively:

I1 = (X2 −m)V1 (6)

I2 = (X2 −m)V2 (7)

Let m = 10, based on Equations (4) and (6), when −2 < X < 2, we drew points
(X,V1), (X,I1), and (V1, I1) in the X − V1 , X−I1 and V1 − I1 planes, respectively, and
obtained the DC V1 − I1 plots shown in Figure 8a–c. Based on Equations (5) and (7),
we drew points (V2, I2) in the V2 − I2 plane and obtained the DC V2 − I2 plot shown in
Figure 8d in the same way. It was observed that the slopes of all of the curves had negative
values; therefore, we determined that the memristor was a locally active memristor.
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Figure 8. The DC plots of the memristor. (a) X−V1 ; (b) X−I1 ; (c) V1 − I1 ; (d) V2 − I2 .

Comparison with the existing memristor model is shown in Table 1. It was found that
the model proposed in this paper had more parameters and equilibrium points. In order to
verify the correctness of the analysis, we designed a circuit on the proposed memristor, as
shown in Figure 9. When we placed a sinusoidal excitation at both ends of the memristor,
pinched hysteresis loops were observed, as shown in Figure 10. It could be concluded that
the analysis was correct by comparison.

Table 1. Comparison with the memristor model.

Memristor
Models

Number of
Parameters

Number of
Equilibrium Points

Ref. [17] 1 3

Ref. [25] 1 3

Ref. [33] 2 infinite

Ref. [34] 1 5

Ours 7 5
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Figure 9. The circuit diagram of the proposed memristor.
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where a, b, c, e, and f are the parameters of the designed system, L represents the induct-
ance of an inductor, C represents the capacitance of the capacitor, q represents the order 
of the system, x  is the internal state variable of the memristor, y  is the current value 
through the inductor L, and z is the voltage value of the capacitor C. 

3.1. Fractional Calculus 
Definition 1 [35]. The Caputo fractional derivation definition of fractional-order 𝛼 is: 𝐷 𝑓(𝑡) = 1𝛤(𝑚 − 𝛼) (𝑡 − 𝜏) 𝑓( )(𝜏)𝑑𝜏,     𝑚 − 1 < 𝛼 < 𝑚 (9)

where Γ(∙)  is the Gamma function, and α ∈ R, m ∈ Z  . When 0 < α < 1 , D =
( ) ( )( ) dτ, 0 < α < 1. 
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Figure 10. The pinched hysteresis loops of the memristor. (a)ω = 10; (b)ω = 14.

3. Fractional-Order Memristive Chaotic System

A fractional-order capacitor, fractional-order inductance, and our proposed fractional-
order memristor were connected in series to construct a third-order fractional-order circuit,
as shown in Figure 11. The new 3D fractional-order memristive system may generate
chaotic oscillation because it contained a locally active memristor.
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According to Kirchhoff’s laws, we could obtain the fractional-order differential equa-
tions as follows: 

dqx
dtq = k

(
ax + bx|x|+ cx3 +exy2 + fy

)
dqy
dtq = − (x2− m)y+z

L
dqz
dtq =

y
C

(8)

where a, b, c, e, and f are the parameters of the designed system, L represents the induc-
tance of an inductor, C represents the capacitance of the capacitor, q represents the order of
the system, x is the internal state variable of the memristor, y is the current value through
the inductor L, and z is the voltage value of the capacitor C.

3.1. Fractional Calculus

Definition 1 ([35]). The Caputo fractional derivation definition of fractional-order α is:

Dα
t f (t) =

1
Γ(m− α)

∫ t

0
(t− τ)m−α−1 f (m)(τ)dτ, m− 1 < α < m (9)

where Γ(·) is the Gamma function, and α ∈ R, m ∈ Z+. When 0 < α < 1, Dα
t =

1
Γ(1−α)

∫ t
0

f′(τ)
(t−τ)α dτ, 0 < α < 1.

In this paper, we used the Adomian Decomposition Method (ADM) to solve the
proposed fractional-order differential equations.

3.2. The Stability of the System

Let the right side of Equation (8) be equal to zero:
dqx
dtq = 0
dqy
dtq = 0
dqz
dtq = 0

(10)

and the equilibrium points
(
xe, ye, ze

)
of Equation (8) can be obtained as e1(−1.4268, 0, 0),

e2(−0.7009, 0, 0), e3(0, 0, 0), e4(0.7009, 0, 0), and e5(1.4268, 0, 0). The Jacobian matrix of
system (8) at

(
xe, ye, ze

)
=
(
x*, 0, 0

)
is:

JE =

f(x∗) 0 0
0 m−x∗2

L − 1
L

0 1
C 0

 (11)

where f
(
x*) = k

(
a + b

∣∣x*
∣∣+ bx*2

|x*| + 3cx*2
)

. The corresponding characteristic equation is:

[λ− f(x∗)]
[
λ2 − m− x∗2

L
λ+

1
LC

]
= 0 (12)

Based on Equation (12), we could calculate its three eigenvalues as follows:

λ1 = f(x∗) (13)

λ2,3 =
(m − x∗2)/L±

√
((m − x∗2)/L)2 − 4/LC

2
(14)

In order to analyze the stability of the system (8), we discuss the characteristic roots
at the equilibrium points, respectively, and we obtained the conditions of stability of
the system.
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Obviously, when L > 0, C > 0, then L/C > 0. When the equilibrium point was set
as (x*,0,0), then λ1 = f(x*), and λ2,3 = m±

√
m2 − 4L/C/2L. If f(x*) < 0, m < 0, then

all of the characteristic roots had negative real parts, namely Re(λ 1) < 0, Re(λ 2,3) < 0.
Clearly, the system (8) was asymptotically stable at the equilibrium point. If f(x*) > 0 or
m > 0, then at least one of the eigenvalues had a positive real part, namely Re(λ 1) > 0 or
Re(λ 2,3) > 0. Clearly, the system (8) was unstable and chaotic oscillation may occur.

3.3. Mechanism of Chaotic Oscillation

We set the parameters as a = −4.7, b = 10, c = −4.7, k = 20,000, m = 160,
e = 10, f = 10, L = 1e − 7, C = 1e − 7, and q = 0.9, and we set the initial value as
(x, y, z) = (12.5,−2, 0.1). The phase diagram of chaotic oscillation of system (8) is shown
in Figure 9d. In order to explore the mechanism of chaotic oscillation of system (8), we took
several values of discretized voltage V = V1, V2, · · · , Vk, and plotted dynamic routes in the
dx/dt vs.x phase plane. Part of the routes of the dynamic switching process for values of
discretized voltage V are shown in Figure 12a, where the step length was 1us. In Figure 12a,
different colors indicate different dynamic routes obtained by the different voltages. The
red points and short blue lines indicate the dynamic evolution when the state variable x
was changed. In order to observe the results more clearly, we enlarged the local area in
the black box of Figure 12a, as shown in Figure 12b. The corresponding phase diagram
is shown in Figure 12c. When we set the initial values as (x, y, z) = (12.5,−0.53, 0.3) and
(x, y, z) = (−12.5,−0.53, 0.3), double coexisting routes of the dynamic switching process
could be observed in Figure 12d. The phase diagram corresponding to Figure 12d is shown
in Figure 12e. When we took smaller step lengths and more points, a smooth dynamic
trajectory and chaotic attractor were generated, which possessed a double layout and four
scrolls, as shown in Figure 12f.
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Figure 12. Mechanism analysis of chaotic oscillation: (a) the dynamic process with 1 us step length;
(b) an enlarged view of the dynamic process in the black box; (c) the part of the phase diagram
corresponding to (a); (d) the coexisting dynamic process with 1us step length; (e) the part of the
coexisting phase diagram corresponding to (d); (f) co-existing attractors.
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3.4. Dynamic Behaviors

In order to clearly show the dynamic behaviors of the system (8) when some relevant
parameters were changed in a certain range, a phase diagram, bifurcation diagram, and
the largest Lyapunov exponents [36] should first be drawn. In this paper, we used the QR
algorithm to calculate the Lyapunov exponents.

3.4.1. Dynamic Depending on C

There were nine parameters in the system (8); therefore, we could only select some
different types of parameters to study the impact on the dynamic behaviors of the sys-
tem. Firstly, we set initial values as

(
x0, y0, z0

)
= (12.5,−0.5, 0.3) and

(
x0, y0, z0

)
=

(−12.5,−0.5, 0.3), and some parameters as a = −4.7, b = 10, c = −4.7, k = 20,000, m = 160,
e = 10, f = 10, L = 1e− 7, and q = 0.9. When the parameter C was changed, the resulting
bifurcation diagram and the largest Lyapunov exponent are shown in Figure 13.
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punov exponent.

It can be seen that the system (8) was in a periodic state when C < 13 nF, while it
was in a chaotic state when C > 13 nF. The LLE diagram on the right and the bifurcation
diagram on the left strictly corresponded. They were symmetrical and separated when
the parameter C was changed from 1 to 243 nF. To further illustrate the status of the
system, we selected different values of the parameter C and the same initial conditions,
and we obtained the coexisting attractors of the system in Figure 11. In Figure 11, the
three-dimensional coexisting attractors and their projection in the x− y, x− z, and y− z
coordinate axes can be clearly observed. Figure 14a,b shows the phase diagrams of different
periodic states. Figure 14c,d shows the phase diagrams of the chaotic state, which possessed
a double layout and four scrolls, but their oscillation amplitudes and frequencies were
different. As the parameter C was increased, the system (8) shifted from periodic to chaotic.
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3.4.2. Dynamic Depending on L

Setting the initial values as
(
x0, y0, z0

)
= (12.5,−0.5, 0.3) and

(
x0, y0, z0

)
=

(−12.5,−0.5, 0.3), some parameters were confirmed as a = −4.7, b = 10, c = −4.7,
k = 20,000, m = 160, e = 10, f = 10, C = 1e− 7, and q = 0.9. When the parameter L
was changed, the resulting bifurcation diagram and the largest Lyapunov exponent are
shown in Figure 15.
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It can be seen that the system (8) was in a chaotic state when L < 1.590 uH, while it
was in three cycle state when L < 8.678 uH and in a two cycle state when L ≥ 8.678 uH.
The LLE diagram on the right and the bifurcation diagram on the left strictly corresponded.
To further illustrate the status of the system, we selected several values of the parameter
C and the same initial conditions, and we obtained the coexisting attractors of the system
in Figure 16. In Figure 16, three-dimensional coexisting attractors and their projection in
the x − y, x − z, and y− z coordinate axes can be clearly seen. Figure 16a,b shows the
phase diagrams of the chaotic state. When the parameter L was increased, the oscillation
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amplitude of system (8) increased. Figure 16c,d shows the phase diagrams of different
cycle states, but the numbers of periods were different. As the parameter L was increased,
the system (8) shifted from chaotic to periodic, which was the opposite result of changes in
the parameter C.
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3.4.3. Dynamic Depending on k

Setting the initial values as
(
x0, y0, z0

)
= (12.5,−0.5, 0.3) and

(
x0, y0, z0

)
=

(−12.5,−0.5, 0.3), some parameters were confirmed as a = −4.7, b = 10, c = −4.7,
m = 160, e = 10, f = 10, L = 1e− 7, C = 1e− 7, and q = 0.9. When the parameter k
was change, the resulting bifurcation diagram and the largest Lyapunov exponent are
shown in Figure 17.
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diagrams of cycle states. When the parameter k was increased, the oscillation amplitude
and number of cycles of the system (8) increased. Figure 18d shows the phase diagrams of
the chaotic state. As the parameter k was increased, the system (8) shifted from periodic
to chaotic.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 30 
 

 

diagrams of cycle states. When the parameter k was increased, the oscillation amplitude 
and number of cycles of the system (8) increased. Figure 18d shows the phase diagrams 
of the chaotic state. As the parameter k was increased, the system (8) shifted from peri-
odic to chaotic. 

  
(a) (b) 

Figure 17. Dynamic behavior depending on k: (a) coexisting bifurcation diagram; (b) largest Lya-
punov exponent. 

  
(a) (b) 

  
(c) (d) 

Figure 18. Coexisting attractors: (a) k = 100; (b) k = 1000; (c) k = 2000; (d) k = 6000. 

3.4.4. Dynamic Depending on m 
Setting the initial values as (x , y , z ) = (12.5, −0.5,0.3)  and (x , y , z ) =(−12.5, −0.5, 0.3) , some parameters were confirmed as a = −4.7, b = 10, c = −4.7, k =20,000, e = 10, f = 10, L = 1e − 7, C = 1e − 7, and q = 0.9 . When the parameters m  was 

changed, the resulting bifurcation diagram and the largest Lyapunov exponent are shown 
in Figure 19. 

It can be seen that the system (8) was in a periodic state when m < 38, while it was in 
a chaotic state when m ≥ 38. The LLE diagram on the right and the bifurcation diagram on 
the left strictly corresponded. To further illustrate the status of the system, we selected 
several values of the parameter m and the same initial conditions, and we obtained the 
coexisting attractors of the system in Figure 20. In Figure 20, the three-dimensional coex-
isting attractors and their projection in the 𝑥 − 𝑦, 𝑥 − 𝑧, and 𝑦 − 𝑧 coordinate axes can 
be clearly observed. Figure 20a–c shows the phase diagrams of different periodic states. 
Figure 20d shows the phase diagram of the chaotic state. As the parameter m was in-
creased, the system (8) shifted from periodic to chaotic. 

Figure 18. Coexisting attractors: (a) k = 100; (b) k = 1000; (c) k = 2000; (d) k = 6000.

3.4.4. Dynamic Depending on m

Setting the initial values as
(
x0, y0, z0

)
= (12.5,−0.5, 0.3) and

(
x0, y0, z0

)
=

(−12.5,−0.5, 0.3), some parameters were confirmed as a = −4.7, b = 10, c = −4.7,
k = 20, 000, e = 10, f = 10, L = 1e − 7, C = 1e − 7, and q = 0.9. When the parame-
ters m was changed, the resulting bifurcation diagram and the largest Lyapunov exponent
are shown in Figure 19.
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It can be seen that the system (8) was in a periodic state when m < 38, while it
was in a chaotic state when m ≥ 38. The LLE diagram on the right and the bifurcation
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diagram on the left strictly corresponded. To further illustrate the status of the system, we
selected several values of the parameter m and the same initial conditions, and we obtained
the coexisting attractors of the system in Figure 20. In Figure 20, the three-dimensional
coexisting attractors and their projection in the x− y, x− z, and y− z coordinate axes can
be clearly observed. Figure 20a–c shows the phase diagrams of different periodic states.
Figure 20d shows the phase diagram of the chaotic state. As the parameter m was increased,
the system (8) shifted from periodic to chaotic.
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3.4.5. Dynamic Depending on q

Setting the initial values as
(
x0, y0, z0

)
= (12.5,−0.5, 0.3) and

(
x0, y0, z0

)
=

(−12.5,−0.5, 0.3), some parameters were confirmed as a = −4.7, b = 10, c = −4.7,
k = 20,000, m = 160, e = 10, f = 10, C = 1e− 7, and L = 1e− 7. When the parame-
ter q was changed, the resulting coexisting bifurcation diagram is shown in Figure 21a. It
can be seen that no matter how q changed, the system (8) was always in a chaotic state.
Although the state of the system had not changed, the frequency of system oscillation
underwent significant changes from the time-domain diagram in Figure 21b–d. When q
was increased, the frequency of the system rapidly decreased.
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3.5. Complexity Analysis

Complexity analysis is an important aspect of chaotic dynamics research, which
includes two aspects: behavioral complexity and structural complexity. The complexity of a
chaotic system is a measurement of the degree of a chaotic sequence approaching a random
sequence. The closer the sequence is to a random sequence, the higher the complexity,
and the higher the corresponding security. In this paper, we mainly studied the structural
complexity of the system (8), which consisted of spectral entropy (SE) and C0 complexity.

Spectral entropy is a measure of disorder applied to the power spectrum of periods of
time series data [36]. The principle of C0 complexity is as follows: Calculate the amplitude
spectrum of the signal and its mean value, and keep the amplitude spectrum components
unchanged if their amplitude values are no less than the mean value while replacing all
the other components with zero. Calculate the inverse FFT of the new spectra and obtain a
new signal. The ratio of the area of the original signal to the area of the new signal and its
mean value over the area between the original signal and its mean value is defined as the
C0 complexity of the original system [37].

The chaos diagrams of the system (8) based on the C0 algorithm and the spectral
entropy algorithm are shown in Figure 22. From the diagrams, it can be seen that the
boundaries were more obvious between high complexity regions and low complexity
regions. Comparing the C0 algorithm and the spectral entropy algorithm, the C0 algorithm
performed better.
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4. Visually Meaningful Image Encryption and Decryption Scheme

In this section, the visually meaningful image encryption and decryption scheme is
described. First, the fractional-order memristive chaotic sequences were generated. Second,
image encryption based on DNA coding is described in detail, and the flow chart of the
proposed scheme is shown as Figure 23a. Third, the embedding process of the encrypted
images by IWT is described, and the flow chart of the proposed scheme is shown as
Figure 23b. Finally, the simulation results and performance analysis are presented.
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4.1. Chaotic Sequence Generation

The fractional-order memristive chaotic system could stably and continuously generate
chaotic sequences, which had strong pseudo-random and statistical characteristics, thus
providing a solid foundation for their application. The detailed process is as follows.

Step 1: In order to increase security, we selected the region with the highest
complexity, as shown in Figure 22, and removed the initial N0 iteration data. Then,
four different sets of initial values were used in Equation (8), generating four sets of
chaotic sequences: x1, y1, z1; x2, y2, z2; x3, y3, z3; and x4, y4, z4. Next, we chose s1(i, j) ={

xj(i), i = 1, 2, · · · , mn, j = 1, 2, 3, 4
}

, and s2(i, j) = {yj(i), i = 1, 2, · · · , mn, j = 1, 2, 3, 4}
as two four-dimensional sequences.

Step 2: The two new sequences s1 and s2 were used to generate two special sequences
s′1(i, j) ∈ [0, 255], j = 1, 2, 3, 4 and s′2(i, j) ∈ [0, 255], j = 1, 2, 3, 4, respectively. Their
transformation process is as follows:

s′1(i, j) = mod
{

floor
(
abs
(
xj(i)

)
− floor

(
abs
(
xj(i)

)))
× 106, 256

}
,

i = 1, 2, · · · , mn, j = 1, 2, 3, 4

s′2(i, j) = mod
{

floor
(

abs
(

yj(i)
)
− floor

(
abs
(

yj(i)
)))
× 106, 256

}
i = 1, 2, · · · , mn, j = 1, 2, 3, 4
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where mod{·} denotes the modulo operation, floor(·) denotes the flooring operation, and
abs(·) denotes the absolute value operation. Then, we merged s′1 and s′2 as vector ss :

ss(i) =
[
s′1(i, 1), s′2(i, 1), s′1(i, 2), s′2(i, 2), s′1(i, 3), s′2(i, 3), s′1(i, 4), s′2(i, 4)

]
Step 3: Then, ss was composed for a sequence of k, and every element of k was

translated into a binary number of 8 bits. The sequence of k can be represented as:

k = [ss(1), ss(3), · · · , ss(2), ss(4), · · · , ss(mn)]

4.2. Image Encryption

The methods of DNA encoding [38] and bit confusion are used to encrypt images,
thereby resulting in changes in pixel values and pixel positions. Based on DNA encoding
rules, the combination of two binary bits stands for a nucleotide, e.g., A-00, C-01, G-10, and
T-11. There are eight combinations that are frequently used in all combinations, as shown
in Table 2. If one wants to encode an image using the DNA rule, all pixels of the image
need to be converted into 8-bit binary sequences, and then encoded using DNA rules. For
instance, the 135-pixel value is defined as a 10000111 binary array and it can be encoded
as 01111000 by utilizing rule 8 in Table 2. It can be seen that the DNA encoding rules can
change the pixel values of the image and have an effect on encryption. The specific scheme
can be divided into five steps:

Table 2. DNA coding rule.

Rule 1 2 3 4 5 6 7 8

00 A C C A G T T G

01 C T A G A G C T

10 G A T C T C G A

11 T G G T C A A C

Step 1: Transform the plaintext image P to binary matrix Pbm with the size of m× 8n.
The pixel values of the image P are confused by bits, and the pixel positions are also
simultaneously changed to reduce the correlation between adjacent pixels. The special
process of the scheme is as follows: First, transform the two-dimension binary matrix Pbm
into the one-dimension binary sequence sbin. Second, arrange the binary sequence of k in
special order, and acquire a new sequence knew. Third, use the sequence knew to scramble
the one-dimension sequence sbin, and obtain binary sequence s′bin = sbin(knew).

Step 2: First, encode the binary sequence s′bin as DNA sequence sDNA using the final
DNA encoding rule (Table 2). Second, transform sequence s′2 into a binary sequence s′2bin,
then encode binary sequence s′2bin as DNA sequence s2DNA using the first DNA encoding
rule. Third, conduct the DNA XNOR operation (Table 3) on DNA sequences sDNA and
s2DNA, and obtain a new DNA sequence s′DNA.

s′DNA(i) = s2DNA(i)� sDNA(i), i ∈ [1, 4mn]

where
⊙

denotes the DNA XNOR operation.
Step 3: Extract the odd terms of sequence knew, and obtaining a new sequence kodd

new =
[knew(1), knew(3), · · · , knew(8mn− 1)]. Then, transform sequence s′DNA into the sequence
s′′DNA on the value of kodd

new: if 0 < kodd
new/255 < 0.5, the corresponding s′DNA(i) is performed

in reverse operation, otherwise it remains unchanged.
Step 4: The fourth DNA encoding rule is used to decode the DNA sequence s′′DNA to

obtain the binary sequence s′′bin.
Step 5: The binary sequence s′′bin is converted to the corresponding cipher image

Pcipher.
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Table 3. DNA XNOR.

� A G C T

A T C G A

G C T A G

C G A T C

T A G C T

According to the five steps above, we summarize them into the following Algorithm 1.

Algorithm 1: The image encryption process.

(1) Convert P into a binary matrix Pbm
(2) Convert Pbm into a binary sequence sbin
(3) Arrange the k sequence order, and acquire a new sequence knew
(4) for i = 1:mn × 8 do

Sbin(i) = sbin(knew(i))
End for
(5) Encode the sequence Sbin as a DNA sequence sDNA using the eighth DNA encoding rule
(6) Transform the sequence s′2 into a binary sequence s′2bin
(7) Encode the sequence s′2bin as a DNA sequence s2DNA using the first DNA encoding rule
(8) for i = 1:mn × 4 do

s′DNA(i) = s2DNA(i)
⊙

sDNA(i)
End for
(9) Extract the odd term of k sequence as a new sequence kodd

new
(10) Transform the sequence s′DNA into the sequence s′′DNA on the value of kodd

new
(11) Decode the sequence s′′DNA to a binary sequence s′′bin using the fourth DNA encoding rule
(12) Convert binary sequence s′′bin into decimal matrix Pcipher

In order to elaborate on this encryption process, an illustrative example for a 5 × 5
pixel sample of the Barbara image is presented in Figure 24 on Algorithm 1.
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4.3. Cipher Image Embedding Process

In order to obtain a visually meaningful cipher image, we embedded the cipher image
Pcipher into the carrier image Pcarrier using the IWT and Least Significant Bit (LSB) methods.
LSB replacement is a well-known steganographic scheme, in which the LSBs of the carrier
image are replaced by cipher image data bits to obtain the stego image. The method has
the advantages of sufficient payload, good visual and statistical imperceptibility, and ease
of implementation. The specific steps of the embedding process are as follows:

Step 1: Decompose the carrier image Pcarrier to obtain the wavelet coefficient matrices
LL, LH, HL, and HH by IWT, and then transform them into one-dimensional sequences,
labeled as sLL, sLH, sHL, and sHH, respectively.

Step 2: Transform sLL, sLH, sHL, and sHH as 8-bit binary sequences sbinLL =
{lli, i = 1, 2, · · · , mn}, sbinLH = {lhi, i = 1, 2, · · · , mn}, sbinHL = {hli, i = 1, 2, · · · , mn},
and sbinHH = {hhi, i = 1, 2, · · · , mn}, respectively.

Step 3: Convert the secret image Pcipher into a one-dimensional sequence sPcipher =

{yi, i = 1, 2, · · · , mn}, and then transform the sequence sPcipher into 8-bit binary sequence
sbinPcipher

.
Step 4: Replace the lowest 2 bits of sbinLL, sbinLH, sbinHL, and sbinHH with the bits of

sbinPcipher
as follows:

lli1lli2 = yi1yi8, lhi1lhi2 = yi2yi7,

hli1hli2 = yi3yi6, hhi1hhi2 = yi3yi4.

Step 5: Obtain four new binary sequences s′binLL, s′binLH, s′binHL, and s′binHH, which
contain the secret image. Transform the binary sequences s′binLL, s′binLH, s′binHL, and s′binHH
into decimal sequences s′LL, s′LH, s′HL, and s′HH, respectively, and then arrange the sequences
s′LL, s′LH, s′HL, and s′HH into two-dimensional forms. Finally, use inverse IWT to convert
them into a visually meaningful cipher image.

According to the five steps above, we summarize them into the following Algorithm 2.

Algorithm 2: The cipher embedding process.

(1) Decompose the carrier image Pcarrier by IWT, and then transform it into the sequences sLL, sLH,
sHL, and sHH
(2) Transform sLL, sLH, sHL, and sHH as 8-bit binary sequences sbinLL, sbinLH, sbinHL, and sbinHH
(3) Convert the secret image Pcipher into 8-bit binary sequence sbinPcipher

(4) Replace the lowest 2 bits of sbinLL, sbinLH, sbinHL, and sbinHH with the bits of sbinPcipher

(5) s′binLL= [sbinLL(:,1:6), sbinPcipher
(:,1:2)]

(6) s′binLH= [sbinLH(:,1:6), sbinPcipher
(:,3:4)]

(7) s′binHL = [sbinHL(:,1:6), sbinPcipher
(:,5:6)]

(8) s′binHH = [sbinHH(:,1:6), sbinPcipher
(:,7:8)]

(9) Transform the sequences s′binLL, s′binLH, s′binHL, and s′binHH into decimal sequences s′LL, s′LH,
s′HL, and s′HH
(10) Use inverse IWT to convert s′LL, s′LH, s′HL, and s′HH into a visually meaningful cipher image

In order to elaborate on this embedding process, an illustrative example is presented
for a 3 × 3 pixel sample of the cipher image and a 6 × 6 pixel sample of the carrier image
in Figure 25 on Algorithm 2.
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4.4. Image Decryption Scheme

The image decryption and image encryption processes are opposite. First, extract the
secret image from the visually secure cipher image, and then recover the plain image from
the secret image. The flow chart of the image decryption scheme is shown in Figure 26.
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Figure 26. Flow chart of the decryption scheme.

4.5. Extracting the Cipher Image

Step 1: Decompose the visually meaningful cipher image by IWT, and obtain four
modified wavelet coefficient matrices: MLL, MLH, MHL, and MHH.

Step 2: Transform the four modified wavelet coefficient matrices MLL, MLH, MHL,
and MHH into one-dimensional sequences sMLL, sMLH, sMHL, and sMHH, and then decom-
pose them into 8-bit binary sequences sbinMLL, sbinMLH, sbinMHL, and sbinMHH.

Step 3: Extract the final 2 bits of every pixel as follows:

yi1yi8 = lli1lli2, yi2yi7 = lhi1lhi2,

yi3yi6 = hli1hli2, yi3yi4 = hhi1hhi2.

Step 4: Compose the bit values and transform them into decimals, and then arrange
them in two-dimensions to obtain the secret image.
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5. Numerical Simulation and Analysis

The simulation test results and performance analysis of the proposed visually mean-
ingful image encryption algorithm are described in this section. Some classic metrics such
as histograms, correlation coefficients, secret key sensitivity, NPCR, UACI, noise attacks,
and cropping attacks were measured. The size of the plain image was 256× 256, and the
size of the carrier image was 512× 512.

5.1. Simulated Results

The visual security performance of our encryption scheme was tested, the results are
displayed in Figure 27. The first row shows four plain images, and the second row shows
the visually secret cipher images corresponding to the four plain images of the first row.
The third row shows the carrier images. It can be seen that the carrier images look like the
normal images, and therefore they are visually safe and would not motivate an attacker.
The fourth row shows the corresponding cipher images extracted from the carrier images.
The final row shows the corresponding decryption images.
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It can be seen from Figure 27 that the decryption images were almost the same as the
plain images, which indicated that the quality of the reconstructed images was pretty good.
Peak Signal-to-Noise Ratio (PSNR) and Mean Structure Similarity (MSSIM) [39] are often
used to evaluate the performance of proposed schemes, which are defined as

PSNR = 10log
2552

1
n2 ∑n

i=1 ∑n
j=1[R(i, j)− P(i, j)]2

(15)
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where R and P refer to the reconstructed image and the plain image, respectively. L is the
gross of the selected image subblocks, µi

I and σi
I are the mean value and variance of the i-th

subblock selected in image I, respectively.
The MSSIM value quantitatively describes the similarity of two images in terms of

brightness, contrast, and structure. The experimental results are listed in Table 4, where the
symbol “p-r” represents the value between the plain image and the reconstructed image,
and “c-v” represents the value between the carrier image and the visually meaningful
cipher image. The numerical results indicated that the similarities among the plain images
and the reconstructed images were very high. Additionally, the mean values of PSNRc-v
and MSSIMc-v were 43.8008 dB and 0.9956, respectively. In short, the above numerical
values implied that the proposed scheme could provide good visual security and data
security.

Table 4. The values of PSNR and MSSIM.

Plain Image Carrier Image PSNRp-r MSSIMp-r PSNRc-v MSSIMc-v

Barbara Peppers 37.9526 0.9523 43.9256 0.9962

Cameraman Pirate 38.8541 0.9567 43.2873 0.9952

Circuit Living room 39.6512 0.9612 43.9638 0.9937

House Walk bridge 39.0246 0.9528 43.4846 0.9990

Average 38.8706 0.95575 43.6653 0.9960

5.2. Performance Analyses

In order to analyze the security and robustness of the proposed scheme, some quantita-
tive indexes were defined, calculated, and then compared with existing visually meaningful
image encryption schemes.

5.2.1. Key Security Analysis

Key sensitivity is an important parameter to evaluate the security of an image en-
cryption algorithm. In this subsection, the plain image is labeled as P, and the carrier
image is labeled as Pcarrier. In the simulation, the key parameters were fixed as a = −4.7,
b = 10, c = −4.7, k = 20, 000, m = 160, e = 10, f = 10, C = 1e− 7, L = 1e− 7, and q = 0.9.
When we added 10−16 to one of the parameters and the others were constant, the cipher
image was incorrectly decrypted, as shown in Figure 28d. It can be seen that the decrypted
image was completely different from the plain image. When we used the correct key to
decrypt the cipher, it was almost the same as the plain image. In addition, we can observe
that the embedded images with the correct key were almost the same as those with the
modified keys, and their similar histograms are shown in Figure 28g,h. Obviously, our
encryption algorithm was extremely sensitive to keys, yet modifying the keys had little
effect on the carrier image. When the modified keys were used in the decryption process,
the recovered images were in noisy-like form, and the change in their pixel values was
more than 99% between the wrongly decrypted image and the plain image. These results
plainly evidenced that the proposed encryption method had high sensitivity to secret keys
in the decryption process.
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Figure 28. Key sensitivity test: (a) plain image; (b) cipher image; (c) decrypted image; (d) erroneously
decrypted image; (e) Pcipher with the correct key; (f) Pcipher with the modified keys; (g) the histogram
of (e); (h) the histogram of (f).

5.2.2. Histogram Analysis

The histogram of an image reflects the frequency of image pixel values. Traditional
image encryption algorithms can generate a secret image with a uniform histogram to
resist statistical attack. When we used our algorithm to generate a visually meaningful
cipher image, the histogram of the encrypted image was uniform, as shown in Figure 29b,d,
and the histogram of the embedded image was similar to that of the carrier image, as
shown in Figure 29e–l. The histograms of the plain images (Barbara and cameraman)
and their cipher images are shown in Figure 29a–d. The histograms of the carrier images
(third row) and four cipher images (fourth row) in Figure 27 are shown in the second and
third row of Figure 29. It can be seen that the histograms of the encrypted images were
completely different from those of the plain images, and the histograms of the embedded
images and the carrier images were nearly similar, which showed that the attacker would
be unable to obtain relevant information by analyzing the histograms of the encrypted
images and the embedded images. These results implied that the pixel value distributions
of the carrier images were effectively preserved by the embedding method, and the pixel
value distributions of the plain images were effectively hidden by the encryption method.

5.2.3. Correlation Analysis

As we all know, there is strong correlation between adjacent pixels in a natural image.
In order to quantitatively measure the correlation, we randomly selected three sets of pixel
pairs (xi, yi) from the plain image, carrier image, and cipher image, where i is from 0 to
3000, and then calculated in the horizontal, vertical, and diagonal directions according to:

rxy =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1(xi − x)2 ×∑N
i=1(yi − y)2

(17)

where xi and yi are the values of two adjacent pixels in the image, x = 1
N ∑N

i=1 xi and
y = 1

N ∑N
i=1 yi are the mean values, respectively.

Here, the plain image “Barbara” and the carrier image “peppers” were employed to
evaluate the correlation coefficients between two adjacent pixels in the horizontal, vertical,
and diagonal directions. The plain image ‘Barbara’ (first row and first column in Figure 27),
carrier image ‘peppers’ (second row and first column in Figure 27), and the cipher image
‘peppers’ (second row and fifth column in Figure 27) were calculated using Equation (15),
and the corresponding correlation coefficients in the horizontal direction are plotted in
Figure 30. From these results one can see that the correlation distributions of the plain
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image and encrypted image were completely different, and the correlation distribution
of the visually meaningful cipher image was very similar to that of the carrier image but
was quite different from those of the plain image and encrypted image. All of these results
indicated that it was difficult to distinguish between the visually meaningful cipher image
and the carrier image through correlation analysis, and the visual security of our proposed
scheme was achieved. Moreover, an attacker could not seek out the connection between
the cipher image and plain image through correlation analysis.

Symmetry 2023, 15, x FOR PEER REVIEW 25 of 31 
 

 

completely different from those of the plain images, and the histograms of the embedded 
images and the carrier images were nearly similar, which showed that the attacker would 
be unable to obtain relevant information by analyzing the histograms of the encrypted 
images and the embedded images. These results implied that the pixel value distributions 
of the carrier images were effectively preserved by the embedding method, and the pixel 
value distributions of the plain images were effectively hidden by the encryption method. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 29. Histograms: (a) Barbara; (b) encrypted (a); (c) cameraman; (d) encrypted (c); (e–h) car-
rier images (third row of Figure 27); (i–l) embedded images (fourth row of Figure 27). 

5.2.3. Correlation Analysis 
As we all know, there is strong correlation between adjacent pixels in a natural image. 

In order to quantitatively measure the correlation, we randomly selected three sets of pixel 
pairs (x , y ) from the plain image, carrier image, and cipher image, where i is from 0 to 
3000, and then calculated in the horizontal, vertical, and diagonal directions according to: r = ∑ (x − x)(y − y)∑ (x − x) × ∑ (y − y)  (17)

where x   and y   are the values of two adjacent pixels in the image, x = ∑ x   and y = ∑ y  are the mean values, respectively. 
Here, the plain image ‘‘Barbara” and the carrier image ‘‘peppers” were employed to 

evaluate the correlation coefficients between two adjacent pixels in the horizontal, vertical, 
and diagonal directions. The plain image ‘Barbara’ (first row and first column in Figure 
27), carrier image ‘peppers’ (second row and first column in Figure 27), and the cipher 
image ‘peppers’ (second row and fifth column in Figure 27) were calculated using Equa-
tion (15), and the corresponding correlation coefficients in the horizontal direction are 
plotted in Figure 30. From these results one can see that the correlation distributions of 

Figure 29. Histograms: (a) Barbara; (b) encrypted (a); (c) cameraman; (d) encrypted (c); (e–h) carrier
images (third row of Figure 27); (i–l) embedded images (fourth row of Figure 27).

Symmetry 2023, 15, x FOR PEER REVIEW 26 of 31 
 

 

    
(a) (b) (c) (d) 

Figure 30. The correlation distributions of two adjacent pixels in the horizontal direction: (a) plain 
image ‘Barbara’ (first row and first column in Figure 27); (b) encrypted image ‘Barbara’ (c) carrier 
image ‘peppers’; (d) visually meaningful cipher image ‘peppers’ (second row and fifth column in 
Figure 27). 

5.3. Various Attacks 
In this subsection, the abilities of the proposed scheme to resist noise attack, cropping 

attack, differential attack, and chosen-plaintext attack are evaluated. 

5.3.1. Noise Attack 
When the cipher image is transferred in real image communication, noise will inevi-

tably be added to the cipher image. In order to test the ability of our scheme to defend 
against noise attack, salt-and-pepper noise (SPN) was added to the cipher image. The re-
sulting images are shown in Figure 31. It can be seen that SPN had different impacts on 
different noise densities, and the recovered images are shown in Figure 31a–e. The PSNR 
values were 25.13, 23.52, 19.41, 18.71, and 17.78 dB, respectively. In a word, the proposed 
encryption scheme had a strong capability for resisting SPN. 

     
(a) (b) (c) (d) (e) 

Figure 31. The resistance capability to different SPN densities: (a) d = 0.04; (b) d = 0.08; (c) d = 0.12; 
(d) d= 0.16; (e) d = 0.2. 

5.3.2. Cropping Attack 
When the image is transferred over the internet, data loss of the visually meaningful 

cipher image can greatly affect the recovered image. Cropping attack is a factor that causes 
data loss. We randomly cut a few regions in these images and recovered the plain images 
using our decryption algorithm. The visually meaningful cipher images with three man-
ners of data loss are depicted in Figure 32a–c, and the extracted cipher images and the 
recovered images are shown in Figure 32d–i. It can be seen that our scheme had higher 
robustness. The results implied that the proposed scheme could resist large-scale cropping 
attack to a certain extent. 

   

Figure 30. The correlation distributions of two adjacent pixels in the horizontal direction: (a) plain
image ‘Barbara’ (first row and first column in Figure 27); (b) encrypted image ‘Barbara’ (c) carrier
image ‘peppers’; (d) visually meaningful cipher image ‘peppers’ (second row and fifth column in
Figure 27).



Symmetry 2023, 15, 1398 27 of 31

5.3. Various Attacks

In this subsection, the abilities of the proposed scheme to resist noise attack, cropping
attack, differential attack, and chosen-plaintext attack are evaluated.

5.3.1. Noise Attack

When the cipher image is transferred in real image communication, noise will in-
evitably be added to the cipher image. In order to test the ability of our scheme to defend
against noise attack, salt-and-pepper noise (SPN) was added to the cipher image. The
resulting images are shown in Figure 31. It can be seen that SPN had different impacts on
different noise densities, and the recovered images are shown in Figure 31a–e. The PSNR
values were 25.13, 23.52, 19.41, 18.71, and 17.78 dB, respectively. In a word, the proposed
encryption scheme had a strong capability for resisting SPN.
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5.3.2. Cropping Attack

When the image is transferred over the internet, data loss of the visually meaningful
cipher image can greatly affect the recovered image. Cropping attack is a factor that causes
data loss. We randomly cut a few regions in these images and recovered the plain images
using our decryption algorithm. The visually meaningful cipher images with three manners
of data loss are depicted in Figure 32a–c, and the extracted cipher images and the recovered
images are shown in Figure 32d–i. It can be seen that our scheme had higher robustness.
The results implied that the proposed scheme could resist large-scale cropping attack to a
certain extent.
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5.3.3. Differential Attack

Hackers often use differential attacks to attack some target images. By changing a
pixel value in the plain image and analyzing the difference between two cipher images,
attackers attempt to seek out the relationship between the plain image and the cipher
image and then reconstruct the original image without secret keys. In the proposed scheme,
we first assumed the cipher images were obtained from the carrier images. Then we
tested the ability of the encryption algorithm to defend against differential attack. First,
suppose P1 and P2 are two plain images with one bit difference. Second, encrypt P1 and P2
using the same chaotic sequence. Third, obtain the corresponding secret images S1 and S2.
Finally, calculate the NPCR (Number of Pixels Change Rate) and UACI (Unified Average
Changing Intensity) values of S1 and S2. NPCR and UACI are usually applied to check the
performance of the system against differential attack, and they are calculated as follows:

NPCR =
1

W×H

W

∑
i=1

H

∑
j=1

D(i, j)× 100% (18)

UACI =
1

W×H

W

∑
i=1

H

∑
j=1

|C1(i, j)−C2(i, j)|
255

× 100% (19)

where C1(i, j) and C2(i, j) are cipher images, both of which are W×H in size. If C1(i, j) =
C2(i, j), then D(i, j) = 0, otherwise D(i, j) = 1. The results are shown in Table 5.

Table 5. The NPCR and UACI values of the plain images changed by one bit.

Item Barbara Cameraman Circuit House Average Ref. [40]

NPCR (%) 99.63 99.57 99.69 99.48 99.592 99.59

UACI (%) 33.69 33.58 33.62 33.63 33.63 33.5

Table 5 shows the results for four different plain images. One can observe that when
the plain image changed by one bit, the NPCR value of the corresponding cipher image
was about 99.592% and the UACI value was 33.65%. Comparing the results reported in [40]
with our results, it could be seen that the values of NPCR and UACI were higher. This
meant that the cipher image remained almost unchanged and the proposed encryption
algorithm had a strong resistance capability against differential attack.

5.3.4. Chosen-Plain Attack

Chosen-plain attack can break a variety of image encryption schemes. An encryption
scheme should have the ability to resist such an attack. For an entirely black image, as
shown in Figure 33a, its secret image was obtained, as shown in Figure 33b. It can be seen
that there was no obvious difference between the secret image and the secret images of
other plain images. The visually meaningful cipher image obtained through the embedding
process is shown in Figure 33e, and its appearance was similar to that of the carrier image,
as shown in Figure 33d. Finally, the noise-like cipher image in Figure 33e was extracted, as
shown in Figure 33c. Therefore, it would be difficult for the attacker to obtain any useful
information through this method, which implied that the encryption scheme could better
resist the chosen-plain attack.



Symmetry 2023, 15, 1398 29 of 31

Symmetry 2023, 15, x FOR PEER REVIEW 28 of 30 
 

 

that there was no obvious difference between the secret image and the secret images of 
other plain images. The visually meaningful cipher image obtained through the embed-
ding process is shown in Figure 33e, and its appearance was similar to that of the carrier 
image, as shown in Figure 33d. Finally, the noise-like cipher image in Figure 33e was ex-
tracted, as shown in Figure 33c. Therefore, it would be difficult for the attacker to obtain 
any useful information through this method, which implied that the encryption scheme 
could better resist the chosen-plain attack. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 33. Chosen-plain attack scheme: (a) all-zero image; (b) all-zero image encrypted; (c) extracted 
cipher image from the visually meaning cipher image; (d) carrier image; (e) visually meaningful 
cipher image. 

5.4. Comparison with Existing Schemes 
An excellent scheme should have good comprehensive performance. In this section, 

we compare our scheme with existing image encryption schemes in terms of safety and 
time efficiency. For this purpose, we list some data to highlight the advantages of our 
algorithm in Tables 6 and 7, which mainly include the following two aspects: various at-
tacks and execution efficiency. 

In Table 6, we compare some of the latest encryption schemes with our scheme in 
terms of robustness. It can be seen that our scheme had stronger resistance to attacks un-
der the same conditions. In Table 7, we compare another scheme with our scheme in terms 
of running time. Obviously, our scheme had a shorter running time and higher efficiency. 
In a word, our scheme was robust and efficient. 

Table 6. Comparison of the capability to resist SPN and cropping attacks. 

Noise Type Attack Intensity 
PSNR    

Ref. [14] Ref. [31] Ref. [41] Ours 

SPN 
0.0001 
0.0003 
0.0005 

33.44 
33.26 
33.02 

31.56 
30.22 
30.02 

28.18 
28.18 
28.17 

28.01 
27.77 
27.58 

Cropping  32 × 32 48 × 48 
24.92 
20.13 

27.21 
23.96 

30.18 
29.01 

30.35 
30.10 

Table 7. Running time (Unit: s). 

Algorithm Encryption Embedding Extraction Reconstruction 
Ref. [41] 0.1262 0.1995 0.0833 0.4374 

ours 0.1352 0.1024 0.0811 0.1578 
  

Figure 33. Chosen-plain attack scheme: (a) all-zero image; (b) all-zero image encrypted; (c) extracted
cipher image from the visually meaning cipher image; (d) carrier image; (e) visually meaningful
cipher image.

5.4. Comparison with Existing Schemes

An excellent scheme should have good comprehensive performance. In this section,
we compare our scheme with existing image encryption schemes in terms of safety and
time efficiency. For this purpose, we list some data to highlight the advantages of our
algorithm in Tables 6 and 7, which mainly include the following two aspects: various
attacks and execution efficiency.

Table 6. Comparison of the capability to resist SPN and cropping attacks.

Noise Type Attack
Intensity

PSNR

Ref. [14] Ref. [31] Ref. [41] Ours

SPN
0.0001 33.44 31.56 28.18 28.01
0.0003 33.26 30.22 28.18 27.77
0.0005 33.02 30.02 28.17 27.58

Cropping
32× 32 24.92 27.21 30.18 30.35

48× 48 20.13 23.96 29.01 30.10

Table 7. Running time (Unit: s).

Algorithm Encryption Embedding Extraction Reconstruction

Ref. [41] 0.1262 0.1995 0.0833 0.4374

ours 0.1352 0.1024 0.0811 0.1578

In Table 6, we compare some of the latest encryption schemes with our scheme in
terms of robustness. It can be seen that our scheme had stronger resistance to attacks under
the same conditions. In Table 7, we compare another scheme with our scheme in terms of
running time. Obviously, our scheme had a shorter running time and higher efficiency. In a
word, our scheme was robust and efficient.

6. Conclusions

In this paper, a tri-bistable locally active memristor model was proposed, and its
nonlinear characteristics were studied, including time-domain waveforms, three coexisting
pinched hysteresis loops, Power-Off Plot, and DC V-I Curve. Then, a fractional-order
chaotic system was built based on the proposed memristor. Research results showed
that the system could generate abundant chaotic dynamic behaviors, including coexisting
attractors with four scrolls, two channels, and complexity. Finally, a visually secure image
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encryption scheme was proposed, which consisted of two parts: the pre-encryption process
based on DNA coding, and the embedding process based on IWT. In the pre-encryption
process, bit scrambling, bit transformation, and DNA coding were used and a secret image
was obtained, which protected the data security of the plain image. In the embedding
process, the carrier image was decomposed by IWT, the secret image was embedded into
the carrier image by bits, and finally a visually meaningful cipher image was obtained,
which protected the visual security of the plain image. The simulation experiment and
attack analysis showed that the proposed visually secure image encryption scheme could
resist statistical analysis attack, chosen-plain attack, and differential attack.
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