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Abstract: Traditional statistical, physical, and correlation models for chaotic time series prediction
have problems, such as low forecasting accuracy, computational time, and difficulty determining
the neural network’s topologies. Over a decade, various researchers have been working with these
issues; however, it remains a challenge. Therefore, this review paper presents a comprehensive
review of significant research conducted on various approaches for chaotic time series forecasting,
using machine learning techniques such as convolutional neural network (CNN), wavelet neural
network (WNN), fuzzy neural network (FNN), and long short-term memory (LSTM) in the nonlinear
systems aforementioned above. The paper also aims to provide issues of individual forecasting
approaches for better understanding and up-to-date knowledge for chaotic time series forecasting.
The comprehensive review table summarizes the works closely associated with the mentioned issues.
It includes published year, research country, forecasting approach, application, forecasting parameters,
performance measures, and collected data area in this sector. Future improvements and current
studies in this field are broadly examined. In addition, possible future scopes and limitations are
closely discussed.

Keywords: chaos; forecasting; hydrological systems; neural networks; oil and gas; power and energy;
prediction; time series

1. Introduction

The first section of this paper provides a brief description of the chaos and the prop-
erties of chaotic systems. In addition, the importance of chaotic time series forecasting in
significant areas is addressed. Finally, this section covers the previous and current literature
surveys on chaotic time series forecasting.

1.1. Chaotic Systems

The behavior of a nonlinear dynamical system that may be extremely sensitive to
small changes in initial conditions is known as chaos. This sensitivity to initial conditions
means that a slight change in the starting point can lead to different outcomes. For example,
the butterfly effect shows how a small change in one state of a deterministic nonlinear
system may result in enormous deviations in a subsequent state [1]. The other characteristic
of a chaotic system is no periodic behavior. The symmetric property of these nonlinear
dynamic systems can play a vital role in producing the systems’ chaotic behavior. Due to
this fact, various researchers have recently shown much interest in the symmetric properties
of chaotic systems. In [2], the authors have proposed a chaotic oscillator with both odd
and even symmetries. Similarly, some of the other applications of symmetric properties of
chaotic systems lie in image processing, security, and communications [3]. The symmetric
and asymmetric behavior has been observed in many natural phenomena. Due to these
characteristics, the chaotic motion is difficult to forecast. For instance, predicting the
butterfly effect for the long term is impossible [1]. This is because these systems are
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deterministic, i.e., the future behavior of these systems is entirely defined by their initial
conditions. Hence, these systems are wholly deterministic and unpredictable.

On the other hand, a chaotic time series is generated when the variable changes with
time in a chaotic system. This chaotic time series provides extensive information about the
nonlinear system and helps evaluate and analyze the chaotic system’s behavior. The phase
space reconstruction technique reveals this dynamic information hidden in the chaotic time
series and transforms the existing data into a more describable framework [4]. As a result,
it is essential to have approaches that can forecast chaotic time series and differentiate
chaotic data from stochastic data [5–7]. The traditional prediction methods for this purpose
have failed to produce satisfactory performance. Thus, many advanced techniques using
machine learning-based approaches have been proposed recently. Therefore, this paper
presents a comprehensive review of the performance of traditional and machine learning-
based methods for chaotic time series forecasting and their implementation on nonlinear
dynamical systems, such as photovoltaic systems, wind farms, communication signals and
systems, oil and gas, hydrological systems, weather, and other systems.

1.2. Importance of Chaotic Time Series Forecasting

Forecasting is an approach for creating predictions to determine the direction of future
trends using historical data and current trend analysis as inputs [8]. Forecasting is the most
significant optimization concept related to energy savings, material savings, increasing
efficiency, making appropriate and suitable accurate decisions [8,9]. On the other hand,
chaos theory is an essential part of nonlinear science, developed in the 1970s [10]. Chaos is
a long-term non-periodic behavior in a predictable system with a high sensitivity to initial
conditions. It shows the order and regularity hidden behind disorganized and complex
occurrences. This tendency permeates and promotes many subjects. As a result, chaos
research has access to a solution. In the meantime, chaos theory applications are becoming
increasingly popular. They are significantly used in diverse scientific applications such as
wind farms [11], PV systems, oil and gas [12,13], hydrological systems [14], etc. A brief
description of the need for chaotic time series forecasting in each of these applications is
explained below.

1.2.1. Chaotic Time Series Forecasting in Power and Energy

Electricity demand and market price predictions have played a significant role in the
electric power industry for over a century [15]. Moreover, due to the worldwide energy
crisis and alarmingly rising air, water, and soil pollution levels, renewable energy has be-
come increasingly popular for power generation in recent years. This popularity is because
renewable energy is a pure and limitless energy source [11]. As a result, a rising number
of nations are becoming involved, and investors are committing to developing renewable
energy plants. However, the lack of consistent energy sources due to intermittent nature
represents renewable energies’ main problem. Thus, forecasting renewable generation
is the key to integrating these intermittent energies into the electricity grid for several
reasons [9,16]. The main advantage of predicting the intermittent nature of renewable
energy resources is that the number of backup systems can be reduced, thus, reducing the
investments and need for electricity to meet the demand. Many forecasting approaches
have been proposed using ANN, fuzzy, etc. These approaches are based entirely on time
series analysis in which the chaotic time series data of renewable energy are one of the
most challenging dynamics to be forecast.

1.2.2. Chaotic Time Series Forecasting in Oil and Gas

It is well known that the intake flow of a gasoline engine directly impacts the accuracy
of the air–fuel ratio management under transient situations [12]. As a result, precise control
becomes extremely difficult because the air ratio is far from stoichiometry for various
reasons. Thus, forecasting the engine’s intake flow with greater accuracy in less time can
improve the convergence rate. Additionally, it will be able to overcome the shortcomings of
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the airflow sensor’s lag. This is because it allows an accurate forecast of the future airflow.
Similarly, it is also well known that there are abnormal fluctuations in the ventilation
air in the nonlinear coal mines’ ventilation systems [17]. These fluctuations in the air
are due to the mining depth and intensity gradually increasing and equipment aging.
The abnormalities, as mentioned earlier, can affect the entire system, resulting in various
underground accidents and lost coal mines’ ventilation system stability. Therefore, timely
air quality prediction in coal mines’ ventilation systems can help adequately manage
systems, which directly influences the safety and output of the coal mine.

1.2.3. Chaotic Time Series Forecasting in Hydrological Systems

Hydrological forecasting plays a critical role in reducing future flood impacts, also
helps produce more benefits for hydropower production, and enhances water resource
management [18]. It is worth noting that predicting the destiny of a river inflow is an
essential concern for water quality management [19].

1.2.4. Chaotic Time Series Forecasting in Other Systems

The distributed control system and information technology, which comprises supervi-
sory information technology and management information systems, are commonly used
technologies in thermal power plants [20]. The real-time data collected from power plant
equipment and personnel controls using these technologies are a chaotic time series. Fur-
ther, the instantaneous generator output power is critical to indicate the adjusting and
controlling equipment’s status. As a result, predicting the immediate generator power time
series could provide decision-making, maintenance, and incident-handling information.
Further, it positively impacts plant production, optimal operation, and problem detection
and maintenance technology.

Natural hazards, such as earthquakes, severe floods, fires, and volcanic eruptions,
and the destruction they create are worldwide issues that impose a high cost in terms of
human lives and financial damages [21]. The wireless sensor networks monitor the urban
river levels and other natural environmental conditions for predicting the floods before
they occur so that the people at risk evacuate in time.

Similarly, the nonlinear spacecraft system contains various fields with advanced
technology, and it has a significant impact on national economies, research, and technology.
Faults in the spacecraft system are challenging to detect and rectify. As a result, studying
the trend of spacecraft telemetry metrics and the variation law is essential for the early
prediction of spacecraft problems.

1.3. Previous and Current Literature Survey

Few reviews have focused on applying chaos theory in multiple applications. For in-
stance, in [14,22,23], a study on the application of the chaos concept in hydrology was
reported. The study also reveals some critical issues raised while applying the chaos
concept in hydrology. Similarly, a review of the application of chaos theory in traffic flow
patterns was reported in [24]. In both works, some of the reviewed methods reported for
the short-term forecasting are correlation dimension, Lyapunov exponent, Kolmogorov
entropy, SVM, ANN, nonlinear prediction, and dynamic neural network. These reviews
overlapped with elements of this field, though none have brought together all material
related to chaotic time series forecasting approaches using machine learning techniques for
various applications.

Considering the above research scope, the authors in this paper reviewed chaotic time
series forecasting approaches using machine learning techniques in various applications.
At first, the importance of chaotic time series forecasting is identified in multiple appli-
cations, including all the recently published methods, and addresses issues of individual
techniques. The review of these chaotic time series forecasting approaches in the past three
decades is summarized in Section 2. Section 3 gives a comprehensive review of machine-
learning-based chaotic time series forecasting approaches developed using ANN, FNN,
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WNN, and optimization algorithms. The study on forecasting various chaotic parameters
in multiple applications is detailed in Section 4. Section 5 discusses the various perfor-
mance measures used for chaotic time series forecasting approaches. Finally, Section 6
concludes the current works, highlighting the shortcomings and suggesting possible future
research perspectives.

2. Review on Chaotic Time Series Forecasting

In the past three decades, many researchers have rigorously researched forecasting of
chaos in various areas, such as wind farms, photovoltaic systems, hydrological systems,
communication systems, and oil and gas fields, using ANN. Thus, there is a scope for a
critical review of chaotic time series forecasting in various areas using machine learning
techniques. This manuscript critically reviews various works published from 1992 to 2021.
The decade-wise research contributions to chaotic time series forecasting during this period
are shown in Figure 1.
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Figure 1. Decade-wise research contributions to chaotic time series forecasting from 1992 to 2021.
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According to the literature review collected from Table 1, 43% of works have em-
ployed the ANN-based approaches in the literature for chaotic time series forecasting.
The additional techniques are based on the following: FNN 24%, optimization algorithms
15%, WNN 6%, and other approaches 4%. In the 15% of optimization-algorithm-based
techniques, the various algorithms used are GA, PSO, SSA, SA, SOM, CGO, GWO, CBAS,
etc. The objective of these techniques is to improve accuracy, computational efficiency,
and concerns due to the presence of uncertainties in various applications. Some novel
techniques reported in Table 1 focused on efficiently tackling multiple objectives. Table 1
also shows that these articles have dealt with several forecasting parameters, such as load,
power, speed, traffic flow, signals, etc. In some of these works, real-time data were also
collected from various countries, including Australia, Belgium, Canada, China, Iran, Laos,
Morocco, Thailand, and the USA, as shown in Figure 2. In the first decade, research on
chaotic time series forecasting relied on statistical data to forecast the system’s future behav-
ior. The rest of the decades used artificial intelligence and other novel models for chaotic
time series forecasting in various applications. The detailed analysis of various forecasting
approaches in different applications is explained in the following sections.

✓ Wind Farm in Kansas
✓ New England Electricity Market
✓ California Electricity Market
✓ Generator at New England Test System
✓ Skylab, the space laboratory
✓ Lake Tahoe Basin, California and Nevada
✓ National Oceanic and Atmospheric Administration
✓ National Transportation Safety Board
✓ Bonneville Power Administration, Washington, Oregon
✓ Department of Natural Resources, Missouri
✓ North American Electric Reliability Corporation, Atlanta

✓ Wind Farm in Abbotsford

✓ Grid of New South Wales
✓ St Lucia Campus PV Station
✓ Southern Oscillation Index
✓ Darwin Sea Level Pressure

✓ Dongtai Wind Farm, East China
✓ Wind Farm of Hebei Province
✓ East China Power Grid Enterprise
✓ Xi’an Power Grid Corporation
✓ Guantai Hydrological Station

✓ Danjiangkou Reservoir Basin
✓ Fixed Radio Monitoring Station, Xihua University
✓ Coal Mine Northwest Edge Router Room
✓ Coal Mine in Jining, Shandong
✓ Thermal Power Plant in Liaoning Province

✓ Zizhu Bridge, Beijing
✓ Yangtze River Upstream Flow
✓ Shanghai Composite Index
✓ Hegang Nanshan Mine
✓ Daqing Oil Field Company

✓ Mekong River, Thailand 
and Laos

✓ Chao Phraya River,
Thailand 

✓ Korea Electric Power
Corporation

✓ Port and Maritime
Organization

✓ Photovoltaic Park, Faculty of
Science and Technology,
Beni Mellal

✓ Solar Influences Data
Analysis Center

Figure 2. Locations of real-time data collected from various parts of the world.
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Table 1. Summary of works focused on chaos forecasting using machine-learning-based approaches.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[25], 1992 China IEEE Conference Complex weighted
neural network

Music formula Arrival direction – – –

[26], 1996 South Korea IEEE Conference ANN Power system Daily peak load – MAPE South Korea
electric power

corporation
[27], 1998 China IEEE Conference Embedding phase

space using RNN
Mackey-Glass model Time series – MSE –

[28], 1998 Norway Physica D:
Nonlinear Phenomena

Ordinary least
square method

Sunspot, R-R intervals
of human ECG signals

Time series PCR, PLS,
TTLS, RR

NRMSE –

[29], 1999 China IEEE Transactions on
Neural Networks

Temporal difference
GA based

reinforcement learning
neural network

Henon map,
Logistic map

External
reinforcement signal

– Prediction error –

[30], 2000 China IEEE Conference Novel noise reduction Chaotic interference Frequency – Residual error –
[31], 2001 Australia IEEE Conference Standard Gaussian

approximation
Asynchronous

DS-CDMA systems
Accuracy Improved GA – –

[32], 2001 Spain IEEE Conference ANN Hot wire anemometer Turbulent flow
temporal signals

– MSE –

[33], 2002 UK IEEE Conference Gaussian processes Henon map Time series SVM NMSE Far infrared-laser
[34], 2004 Iran Chaos, Solitons

and Fractals
RBFNN Logistic map, Henon

map, Mackey-Glass
model

Time series - MSE, NMSE –

[35], 2004 Canada IEEE Transactions on
Biomedical Engineering

ANN Silico model Onset of
state transitions

– – –

[36], 2004 China IEEE Transactions on
Signal Processing

Recurrent predictor
neural network

Sunspot number Time series Kalman filter,
ULN

RMSE, PE –

[37], 2004 China Chemical Engineering
Science

Chaotic forecasting Evaporator with
two-phase flow

Heat-transfer
coefficient

– ARE –

[38], 2004 China IEEE Conference WNN Electricity Spot market prices – MSE, APE South china
[39], 2004 China IEEE Conference KIII-chaotic

neural network
IJCNN CATS

benchmark test data
Time series N-based method MSE IJCNN’O4 CATS

benchmark set
[40], 2005 China IEEE Conference RNN Power system Price – Mean and

maximum
percentage errors

New England
electricity market,

USA 1
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[41], 2005 China IEEE Conference SVM Market price Exchange rate ANN MSE –
[42], 2005 Japan IEEE Transactions on

Circuits and Systems
Master–slave

synchronization
scheme

FitzHugh–Nagumo
model, Chua’s

oscillator

Chaotic behavior – Prediction error –

[43], 2006 Italy Hydrological Sciences RBFs Henon map, Lorenz
map, Sea-surface

temperature

Time series – CMSE Mekong river in
Thailand and

Laos, Chao
phraya river
in Thailand

[44], 2006 China IEEE Conference Sigmoid and wavelet
hybrid transfer

function

ESN Memory capacity ESN predictor NRMSE –

[45], 2006 Mexico IEEE Conference WNN Lorenz system,
Mackey–Glass model

Time series BPNN MSE –

[46], 2006 Spain Physica D:
Nonlinear Phenomena

Discrete-time
recursive update

Lorenz system On-line parameter Maybhate’s technique,
d’Anjou’s technique

NMAE –

[47], 2006 Iran IEEE Conference GA Mackey-Glass model Time series ANN NMSE –
[48], 2006 Canada IEEE Conference Time delay neural

network
Solar system Number of dark spots Weight

elimination
FFNN,

Dynamical RNN,
Hybrid clustering

NMSE Skylab, Solar
influences data
analysis center,

Belgium 2

[49], 2007 South Korea IEEE Conference Terminal sliding mode
controller

Duffing, Lorenz
systems

Tracking error Classical sliding
mode control

MSE –

[50], 2007 China IEEE Conference Self-organizing Takagi
and Sugeno-type FNN

Traffic system Traffic flow RBFNN RMSE Zizhu Bridge
in Beijing

[51], 2007 Greece IEEE Conference BPNN Diode resonator
circuits

Time series – RMSE –

[52], 2007 Iran IEEE Conference Co-evolutionary Solar system Sunspot number time
series

AR, Threshold
AR model

NMSE Solar influences
data analysis

center, Belgium 1

[53], 2007 China IEEE Conference Evolving RNN Lorenz, Logistic,
Mackey–Glass,
Real-world sun

spots series

Time series LLNF,
Bidirectional

RNN

NMSE, RMSE Solar influences
data analysis

center, Belgium 1
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[54], 2008 China IEEE Conference Distributed chaotic
fuzzy RBFNN

Distribution network Fault section BPNN – –

[55], 2008 China Expert Systems with
Applications

Optimal BPNN Signal deviation Time series Grey model,
ARMA, RBFNN

MAD, MAPE,
MSE

[56], 2008 China IEEE Conference Generalized EKF Lorenz system Time series MLP network MSE –
[57], 2008 Brazil Neurocomputing NARX neural network Chaotic laser,

Real-world video
traffic

Time series Time delay neural
network, Elman

RNN

NMSE Chaotic laser,
Variable bit rate

video traffic
time series

[58], 2008 China IEEE Conference ANN Unimodal surjective
map system

Generating sequences – PRE –

[59], 2008 Greece Engineering
Applications of

Artificial Intelligence

Nonlinear time series
analysis, BP-MLP

Chaotic diode
resonator circuits

Time series – NMSE –

[60], 2008 China IEEE Conference LS-SVM Power system Marginal price BPNN APE, MAPE California
electricity market,

USA
[61], 2008 China IEEE Conference Ensemble ANN Mackey–Glass model Turning points Single ANN – –
[62], 2008 China IEEE Conference Chaotic

adding-weight
dynamic local
predict model

Pseudo random
number generator

ISN value – Scope error,
Margin error

–

[63], 2008 China IEEE Conference Add-weighted
one-rank multi-steps

prediction

Electricity Price Mutual
information, False

neighbors
methods

Maximum
percentage error,

Average error

–

[64], 2008 China IEEE Conference Hybrid accelerating
GA

River flow model Roughness parameter Standard
binary-encoded
and real-valued
accelerating GA

ARE Yangtse river
upstream flow,

China

[65], 2008 Greece Chaos, Solitons
and Fractals

Nearest neighbor Single transistor
chaotic circuit

Time series cross – – –

[66], 2008 China IEEE Conference Subtractive clustering
based FNN modeling

Traffic system Traffic flow BPNN, FNN MAE, MAPE,
MSE, MSPdE

–
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[67], 2009 China IEEE Conference Adaptive neural
network fuzzy

inference system

Hydrological stations Average monthly flow AR method PRE Guantai
hydrological

station of zhang
river, China

[68], 2009 China IEEE Conference RBFNN Shanghai composite
index

Economic time series BPNN MAPE Shanghai
composite index,

China
[69], 2009 Iran Neural Computing

and Applications
Fuzzy descriptor
singular spectral

analysis

Mackey–Glass, Lorenz,
Darwin sea level

pressure, Disturbance
storm models

Time series MLP, LLNF,
RBFNN

NMSE Darwin sea level
pressure in

Australia, Solar
influences data
analysis center,

Belgium, US
national oceanic
and atmospheric
administration 1

[70], 2009 Iran Chaos, Solitons
and Fractals

Levenberg–
Marquardt

learning

Mackey–Glass model Time series – MSE, NMSE –

[71], 2009 China IEEE Conference Bee evolution
modifying PSO
chaotic network

Power system Load PSO RMSE Daqing oil field
company, China

[72], 2009 China IEEE Conference Adding-weighted LLE Grid Load Adding-
weighted

one-rank local

Maximum and
minimal relative

errors, ARE

Grid of New
South Wales,

Australia
[19], 2009 USA Journal of Hydrology Regression analysis,

ANN, Chaotic
nonlinear dynamic

models

Hydrological systems Temperature – R2, RMSE, MSE Lake Tahoe basin,
California and
Nevada, USA

[73], 2010 China IEEE Conference Gaussian particle
filtering

Mackey–Glass model Time series EKF, UKF Prediction error –

[74], 2010 China Renewable Energy Wavelet
decomposition
method, ITSM

Wind farm Power, Speed BPNN MAE, MSE,
MAPE

–

[75], 2010 China IEEE Conference Chaos theory, FNN Hydraulic pump Vibration signal – APE, MSE –
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[76], 2010 China IEEE Conference Dynamic recurrent
FNN

Power system Load FNN MSE North china city

[77], 2010 China IEEE Conference Parallel RBFNN Lorenz system,
Hydraulic pump

Time series RBFNN APE –

[78], 2010 China Neurocomputing Hybrid Elman–NARX
neural network

Mackey–Glass, Lorenz,
Real life

sunspot models

Time series AR model, GA,
Fuzzy

MSE, RMSE,
NMSE

Solar influences
data analysis

center, Belgium 1

[79], 2010 China IEEE Conference Nonlinear AR Chaotic system Exchange rate BPNN, SVM
model

APE FX data of USD

[16], 2010 China IEEE Conference SVM Wind farm Speed ANN RRMSE –
[80], 2011 China IEEE Conference Rough set

neural network
Wind farm Power Chaos neural

network,
Persistence

models

NMAE Wind farm in
Beijing area,

China

[81], 2011 China Expert Systems
with Applications

Chaotic wavelet
decomposition–Grey

model

Wind farm Power Direct prediction
method

MAPE, NMAE,
NRMSE

Dongtai wind
farm, East China

[82], 2011 USA IEEE Conference Probabilistic
collocation

Power system Sparse grid points Monte Carlo
method

Measurement
error

NASA

[83], 2011 China Procedia Engineering Global prediction
method based

on BPNN

Gas Emission rate First-order
weighted local

prediction method

MSE, RMSE Hegang nanshan
mine, China

[84], 2011 China IEEE Conference Chaotic RBFNN Power system Load RBFNN Absolute error –
[85], 2011 China IEEE Conference Improved duffing

oscillator-chaotic
traffic prediction

model

Coal gas Traffic flow – Peak-to-peak
error

Coal mine
northwest edge

router room,
China

[86], 2012 France IEEE Conference Anchor selection
based on polynomial

chaos expansions

Anchor Angle-of-arrival – RMSE, Median
error

–

[87], 2012 China Physics Procedia Mutative scale
chaos optimization

SVM parameters Chaotic time series Chaos
optimization

algorithm

RMSE –
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[88], 2012 China Systems Engineering
Procedia

Chaotic local
weighted linear

forecast algorithm

Electricity Daily load Weighted first
order local

method

ARE South china city

[89], 2012 China IEEE Conference Hierarchic ESN Lorenz, Sunspot,
Yellow river annual

runoff models

Time series ESN RMSE –

[90], 2012 South Korea IEEE Conference MLP DC electric arc furnace Voltage, Current
signals, Arc resistance

RBFNN Autocorrelation DC electric
arc furnace

[91], 2012 China IEEE Transactions on
Systems, Man,

Cybernetics

H-infinity state
estimation

Discrete time chaotic
systems

H-infinity state EKF Estimation error –

[92], 2012 China IEEE Conference Chaos algorithm Radio wave Amplitude Traditional
chaotic time

series prediction
method

RMSE –

[93], 2012 Italy IEEE Conference Decentralized
polynomial chaos

theory

Power system Voltage sensor
validation

Decentralized
polynomial chaos

theory

Local covariance
error

–

[94], 2013 Turkey Electric Power
Systems Research

Independent
component analysis

Power system Amplitude, Frequency
signals

Zero-crossing,
Discrete Fourier

transform,
Orthogonal filters,

Kalman filter

MSE –

[95], 2013 China IEEE Conference WNN with phase
space reconstruction

Lorenz, Henon models Time series WNN without
phase space

reconstruction

SMAPE –

[20], 2013 China IEEE Conference Global prediction
of chaos

Generator Output power – PRE Thermal power
plant in Liaoning
province, China

[12], 2013 China IEEE Conference Chaotic RBFNN Gasoline Intake flow RBFNN MSD, MAE, ARE –
[96], 2013 China Fluid Phase Equilibria Self-adaptive PSO

based BPNN
Polymers Gas solubility BPNN,

PSO-BPNN
MSE –
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[97], 2014 Taiwan IEEE Transactions
on Cybernetic

Interval type-2 fuzzy
cerebellar model

articulation controller

Henon system Time series FNN, Interval
type-2 FNN

MSE –

[98], 2014 China The Scientific
World Journal

Phase space
reconstruction-LS-

SVM

FM radio Band occupancy rate GA-LS-SVM,
Monte

Carlo-LS-SVM

NMSE, RMSE,
MAPE

Fixed radio
monitoring

station of Xihua
university, China

[99], 2014 China IEEE Conference Chaos elitism
estimation of
distribution

Chaotic system Elitism strategy Estimation of
distribution

algorithm for
large scale global

optimization

Standard
deviation

–

[100], 2014 Egypt Journal of
the Egyptian

Mathematical Society

Adaptive chaos
synchronization

technique

Hyperchaotic system System parameters – Error dynamics –

[101], 2014 Greece Simulation Modeling
Practice and Theory

ANN Chaotic dynamical
system

Embedding
dimension

– RMSE –

[102], 2014 Hong Kong Building and
Environment

ANN-chaotic PSO Air quality Particulate matter
concentration

Mulleven
Levenberg–
Marquardt

R, MSE –

[103], 2014 Mexico IEEE Conference SOM tuned
neural network

Mackey–Glass, NN5 Time series – RMSE, MAE,
SMAPE

–

[104], 2014 Japan IEEE Conference Jacobian matrix
estimation

Wind farm Speed,Power ANN, GA RMSE Japan
meteorological
agency, Aomori
area, North of
Honshu, Japan

[105], 2014 China Mathematical
Problems in
Engineering

Generalized Liu
system

Chaotic secure
communication,

implementation of
electronic circuits,

numerical simulations

Global exponential
stability

Weighted first
order local

method

RMSE –
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Table 1. Cont.

Ref., Year Country Journal/ Conference Forecasting
Approach Application Forecasting

Parameter(s)
Comparison
Techniques

Performance
Measures Data

[106], 2014 Canada IEEE Transactions on
Power Delivery

Minimum phase space
volume-EKF
equalization

Power line
communications

Blind equalization Inverse
filter-based

MPSV method

MSE –

[107], 2015 China Journal of Engineering
Science and

Technology Review

Improved GA Lorenz model Time series GA Percentage
coordinate error

–

[108], 2015 China Applied Energy Hilbert–Huang
transform and Hurst

analysis

Wind farm Power EMD model,
LS-SVM

NMAE, NRMSE Wind farm of
Hebei province,

China
[109], 2015 Iran Ocean Engineering False nearest neighbor Wind farm Wave characteristics – – Port and

maritime
organization, Iran

[110], 2015 Iran Journal of Intelligent
& Fuzzy Systems

Embedding
theorem-repetitive

fuzzy

Mackey–Glass, Lorenz,
Sunspot number

models

Time series MLP gradient,
Adaptive neuro
fuzzy inference,

AR, Fuzzy

MSE, RMSE,
NMSE

Solar influences
data analysis

center, Belgium 1

[21], 2015 Brazil Neural Computing &
Applications

MLP Flood River level Elman-RNN MAE, RMSE, R2 Urban rivers by
means of wireless
sensor networks

[111], 2016 China Journal of Parallel and
Distributed Computing

Maximum velocity
criterion, Sinusoidal

wave frequency
modulation, Chaotic
control using fuzzy

Smart grid Chaos Raw smart grid – –

[112], 2016 China Mathematical
Problems in
Engineering

Self-constructing
recurrent FNN

Logistic, Henon maps Time series Self-constructing
FNN

RMSE –

[113], 2016 China IEEE Conference Chaos RBFNN
prediction

Blast furnace Carbon-monoxide
utilization ratio

– RMSE –

[114], 2016 China Mathematical
Problems in
Engineering

Chattering-free sliding
mode control

Power system Disturbances Nonlinear
disturbance

observer based
sliding mode

control

Steady state error –
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Approach Application Forecasting
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Comparison
Techniques

Performance
Measures Data

[115], 2016 Malaysia Neural Computing
& Applications

BPNN, Chaos
search GA,

Simulated annealing

Smart grid Electrical energy
demand

ANN MAE, RMSE,
MSE, MAPE

Grid of New
South Wales,
Australian

[116], 2016 Russia IEEE Conference Guaranteed One-dimensional
chaotic system

Guaranteed state,
Parameter

LS method Measurement
errors

–

[117], 2016 Iran Journal of Intelligent
& Fuzzy Systems

Interactively recurrent
fuzzy functions

Lorenz, Noisy
Mackey–Glass, Real
lung sound signals

Time series FNN, WNN, ESN,
LS

RMSE, PRE Department of
pneumology in
Shariati hospital

collected by
Amirkabir

University’s
researchers

[118], 2016 Italy Chemical Engineering
Transactions

Parallel chaos Power system Load ANN – East China power
grid enterprise

[119], 2017 China Energy Ensemble EMD,
Full-parameters

continued fraction

Wind farm Power HEA, MLE, RBF NRMSE, NMAE Farm in
Xinjiang, China

[13], 2017 China Chaos, Solitons
and Fractals

Wavelet transform,
Multiple model fusion

Lorenz, Mackey–Glass
models

Time series Improved free
search-LS-SVM,

Direct
superposition

without
Gauss–Markov

fusion

RMSE, MAE,
SMAPE

–

[120], 2017 China Renewable and
Sustainable Energy

Reviews

Wavelet
decomposition, EMD

Electricity Electricity demand ANN, SVM – –

[121], 2017 China IEEE Conference RBFNN, Volterra filter Spacecraft system Spacecraft telemetry
parameter

– Absolute error,
RE

–

[122], 2017 China Chaos, Solitons
and Fractals

Recursive Levenberg–
Marquardt

Neural networks Chaotic time series On-line
Levenberg–
Marquardt
algorithm

MSE –
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[123], 2017 South Korea Sustainability Inverse model, Chaos
time series inverse

Building energy
management system

Electric energy
consumption

SVM MAE, CVRMSE –

[124], 2017 China Computer Methods in
Applied Mechanics

and Engineering

Fast initial
solution prediction

Sheet metal stamping Inverse isogeometric
analysis

One-step inverse
finite element

method

– –

[17], 2017 China International Journal
of Mining Science
and Technology

Coal mine ventilation
systems management

technology

Coal mine Gas concentration – MSE Coal mine in
Jining, Shandong,

China
[125], 2017 Iran IEEE Conference Takens embedding

theory
Chaotic Henon map Time series Pyragas method Estimation error –

[126], 2017 New Zealand Wireless
Communications and

Mobile Computing

Adaptive multiuser
transceiver scheme

DS-CDMA System Bit error rate Least mean
square

MMSE –

[127], 2017 India IEEE Conference LLE, HFD, SampEn Electromyography
signals

Chaos, Fractal
dimension, Entropy

Grassberger–
Procaccia
algorithm,

Approximate
entropy

– –

[128], 2018 China Neural Computing
& Applications

Chaotic BPNN Power system Load BPNN, RBFNN,
Elman,

PSO-BPNN,
RBFNN-Quantile

regression

MRPE, MAPE Electrical load
data of a city in
china network

[129], 2018 China IEEE Conference Equivalent circuit
model, EKF

Li-ion batteries State of charge – Estimation error –

[130], 2018 Morocco IEEE Conference ANN–Discrete
wavelet transform

PV system Power ANN,
ANN–Phase

space
reconstruction

MSE, MAPE,
RMSE

Photovoltaic park,
faculty of science
and technology,

Beni Mellal,
Morocco

[131], 2018 Russia IEEE Conference Deep CNN Discrete dynamic
systems

Lyapunov exponent – MAPE, MPE Russian central
bank 1
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[132], 2018 China Sensors SA Time series
interferometric

synthetic aperture
radar

Deformation – – Beijing area, china

[133], 2018 Indonesia IEEE Conference SOM extreme learning
mechanism-RBFNN

Lorenz system Multi-step ahead time
series

AR, ARIMA
models

Multiple
correlation
coefficient

–

[134], 2018 China IEEE Conference Generalized
regression neural
network of k-fold
cross validation

Sunspot Time series RBFNN Least
generalization

error, Normalized
error

Solar influences
data analysis

center, Belgium 2

[135], 2018 China IEEE Conference GA-LS-SVM Fractional order
systems

Nonlinear function LS-SVM MSE –

[136], 2019 Indonesia IEEE Conference Roberts edge detection Weather Tornadoes – – –
[18], 2019 China Journal of Hydrology Coupled

quantity–pattern
similarity

Hydrological
application

Monthly precipitation Local
approximation

prediction,
Autoregressive

models

R, RMSE,
MARE, MSE

Danjiangkou
reservoir basin,

China

[137], 2019 Mexico IEEE Conference Superimposed chaos
sequence

Quadratic base band,
Orthogonal frequency

division
multiplexing-based

cognitive radio
Channel

Frequency Pilot design
method, Wavelet

pilot design

– –

[138], 2019 USA IEEE Conference Polynomial chaos
expansion–Langevin

MCMC

Power system Inertia, Exciter gains,
Damping ratio, Droop

Metropolis–
Hastings
algorithm

– –

[139], 2019 China IEEE Conference Principal component
analysis–chaotic

immune PSO-GRNN

Cooling water Corrosion PSO-GRNN
algorithm

ARE Petrochemical
enterprises

[140], 2019 UK Electric Power
Systems Research

Harmonic robust grid
synchronization

Grid Voltage signal Second-order
generalized
integrator-

frequency locked
loop technique

Phase estimation
error

–
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[141], 2019 China Applied Soft
Computing

Fuzzy information
granules, LSTM-FNN

Zurich monthly
sunspot numbers,

Mackey–Glass model,
Daily maximum
temperatures in

Melbourne

Time series, Granules AR, Nonlinear
AR neural
network

RMSE, MAPE,
MAE

–

[142], 2019 Switzerland IEEE Conference Chaos–Rivest
shamir adleman,
Chaos–Random

number generator

Crypto system Security
vulnerabilities

– – –

[143], 2019 China IEEE Conference Correlation matrix
augmentation

Bistatic co-prime
MIMO array

Directions of
departure and arrival

ESPRIT-Root
MUSIC and

RD-Root MUSIC

RMSE –

[144], 2019 China Renewable Energy Markov chain
switching regime

Wind farm Speed, direction Neural network,
SVM

MAE, RMSE,
MAPE

Bonneville power
administration,

Washington, USA
[145], 2019 USA IEEE Conference True random

number generator
Chaotic jerk system Sampling period Pseudo random

number generator
– –

[146], 2019 USA IEEE Signal
Processing Letters

Kalman filter Synchronous
generator

Computing time EKF RMSE –

[147], 2019 China IEEE Access Chaotic
optimized-PSO

Mobile Location Chan, Taylor, PSO RMSE, MSE –

[148], 2019 China Journal of
Power Sources

Fractional-order Li-ion battery and
ultra-capacitor hybrid
power source system

Load current, power – MAE, RMSE,
MRE

–

[149], 2019 USA IEEE Transactions on
Smart Grid

Response
surface-based

Bayesian inference

Power system Inertia, Exciter gains,
damping ratio, droop

Traditional
Bayesian
inference

PE North American
electric reliability

corporation,
Atlanta, USA

[150], 2019 China Physica A: Statistical
Mechanics and
its Applications

Electric field
detector-Chaos SVM

Aircrafts Accidents SVM, Chaos SVM NMAE, NRMSE,
NMAPE

National
transportation

safety board, USA
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[151], 2020 USA IEEE Transactions on
Industrial Informatics

Multifidelity-
surrogate-based

Bayesian inference
via adaptive

importance sampling

Synchronous
generator

Inertia, Exciter gains,
Damping ratio, Droop

Importance
sampling-based,

polynomial chaos
expansion-based-

Bayesian
inference models

NRMSE Generator in New
England test
system, USA

[152], 2020 China IEEE Access Fractal
dimension-Lorenz
stenflo-Ensemble
EMD, GA-BPNN

Wind farm Speed Ensemble
EMD-GA-BPNN,

LS-Ensemble
EMD-GA-BPNN

RMSE, MAE,
MAPE

Wind farm in
Abbotsford,

Canada

[153], 2020 China IEEE Communications
Letters

Amplitude phase shift
keying based
M-Ary-DCSK

Chaos shift Keying
modulation system

SER, BER, PAPR QAM based
M-DCSK system

– –

[154], 2020 Canada IEEE Access ML-PSV Blind system Frequency MPSV technique MSE –
[155], 2020 China IET Renewable Power

Generation
Chaos theory,

Ensemble EMD
PV System Output power Chaos-GA-

BPNN, Ensemble
EMD-GA-BPNN,
NWP-GA-BPNN

MAPE, RMSE,
MAE

St Lucia campus
PV station,
Australia 1

[156], 2020 China Complexity Variational mode
decomposition-

Maximum relevance
minimum

redundancy-BPNN-
LS-SVM

Power system Load EMD, Ensemble
EMD

MAE, RMSE,
MAPE

Xi’an power grid
corporation,

China

[157], 2020 Malaysia Chaos, Solitons
and Fractals

RNN-based LSTM COVID-19 Mutation rate – RMSE NCBI GenBank 1

[158], 2020 Taiwan Energies CNN-SSA PV system Power SVM-SSA,
LSTM-Neural
network-SSA

MAPE, MRE –

[159], 2020 Belgium IEEE Conference General polynomial
chaos

Distribution systems Power Monte Carlo RMSE European test
feeder

[160], 2020 South Korea IEEE Transactions on
Instrumentation and

Measurement

UKF EEG dynamic model Optimal parameters Particle filter, EKF RMSE Intracranial EEG
data set 2
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[161], 2020 China IEEE Access Novel hybrid
Jaya–Powell

Lorenz system Relative error of the
stopping criterion,

fitness value

Jaya, Powell,
TLBO, PSO, GA,

CCO

RMSE –

[162], 2020 China Neural Processing
Letters

Deep CNN Flight Training set loss value,
Gradient value

CNN Weight gradient,
Hidden layer

errors

–

[163], 2020 USA IEEE Transactions on
Power Systems

Hybrid MCMC Power system Inertia, Exciter gains,
Damping ratio, Droop

Langevin MCMC
algorithm

NRMSE North American
electric reliability

corporation,
Atlanta, USA

[164], 2021 Germany Applied Energy Non-intrusive load
monitoring algorithm

Commercial buildings,
Industries

Power – RMSE, MAE,
MSLE, MAPE

–

[165], 2021 USA Renewable Energy Empirical dynamical
modeling

Wind farm Speed Benchmark
model

RMSE, MAE Department of
natural resources,

Missouri
[166], 2021 China IEEE Conference BFA tuned

double-reservoir ESN
Wind farm Load ESN MAE, MSE,

RMSE, MAPE
–

[167], 2021 China Journal of Ambient
Intelligence and

Humanized
Computing

Hybrid prediction Wind farm Power – Maximum value,
Minimum value,

Mean value,
standard
deviation

Wind farm of
Hebei province,

China 1

[168], 2021 China Optics Express LSTM neural network Optics Amplitude ACF, DMI, CNN Signal-to-noise
ratio

–

[169], 2021 Mexico Neural Processing
Letters

Gate recurrent
unit-Deep RNN

Lorenz, Rabinovich–
Fabrikant, Rossler

systems

Time series LSTM-Deep RNN – 2

[170], 2021 China Chaos, Solitons
and Fractals

TCN-CBAM Chen, Lorenz,
sunspot systems

Time series LSTM, Hybrid
CNN-LSTM ,

TCN

RMSE, MAE, R2 Solar influences
data analysis

center, Belgium 3

[171], 2021 China IEEE Sensors CBAS-Elman
neural network

Polyvinyl chloride
polymerization

Temperature CBAS-BPNN,
CBAS-SVM

RMSE, MAE –
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[172], 2021 Egypt IEEE Access CGO Three diode PV model Voltage, Current,
Power

IGWO, MRFO,
HBO, AOA

RMSE, IAE, APE –

[173], 2021 China Nonlinear Dynamics ESN-GWO Mackey–Glass,
Lorenz systems

Time series ESN, PSO-ESN,
GWO-ESN

RMSE –

[174], 2021 China IEEE Access YCO-PCS Microwave filters Yield YCO RMSE –
[175], 2021 Australia Energy Adaptive variational

mode decomposition-
AOA-LSTM

Wind turbine Power Polynomial
neural networks,

FFNN, LSTM

MSE, RMSE,
MAE, R2

–

[176], 2021 China IEEE Transactions on
Vehicular Technology

Adaptive RBFNN Online vehicle Velocity LSTM-Neural
network,

NARX-Neural
network, Deep
neural network

RMSE, ARMSE Dongfeng Fengon
Car

[177], 2021 India International Journal
of Applied

Mathematics and
Computer Science

FFNN Fractional-order
Chaotic Oscillators

System states RNN R2, MSE –

1 https://zenodo.org/record/3874348#.YcGhC2BBxPZ (accessed on 1 March 2022), 2 https://github.com/Dajounin/DRNN-Chaos (accessed on 1 March 2022), 3 http://sidc.oma.be/.
(accessed on 1 March 2022).

https://zenodo.org/record/3874348#.YcGhC2BBxPZ
https://github.com/Dajounin/DRNN-Chaos
http://sidc.oma.be/
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3. Neural Network-Based Forecasting Approaches

As mentioned in Section 2, various researchers have developed ANN, FNN, WNN,
and optimization-based approaches for chaotic time series forecasting. The multiple tech-
niques developed using these approaches are shown in Figure 3. A detailed explanation of
these techniques, including the objectives and performance analysis, is presented under-
neath. The future scope of the method is also highlighted.

Neural Network-Based 
Chaos Forecasting 

Approaches

Backpropagation-ANN, Chaotic Backpropagation-ANN

Chaotic-ANN, Chaotic-RBF-ANN

CNN, Deep CNN

Delay-based ANN

Elman-ANN, Elman-NARX-ANN

Ensemble ANN

LSTM, RNN-LSTM

MLP Network

NARX-ANN

RBF-ANN

RNN, Evolving RNN, Deep RNN, 
GRU-Deep RNN

Rough Set ANN

Self-Organizing Map-ANNSelf-Organizing FNN

Chaotic FNN, Chaotic RBF-FNNClustering-Based FNN

Repetitive Fuzzy Method

Adaptive FNN, Adaptive RBF-FNNDynamic Recurrent FNN Wavelet-based FNN

LSTM-FNN CMAC-FNN

GA, Improved GA, 
Temporal Difference GA

PSO, Adaptive PSO, Chaotic 
PSO, Chaotic Immune PSO, 

Bee evolutionary PSO

SSA, CBAS, CGO, GWO, 
MRFO, HBO

Simulated Annealing

SOM, AOA, TLBO, CCO, EDA

Unscented Kalman Filter

Generalized Extended Kalman Filter

Gaussian Particle Filter

Polynomial Chaos Kalman Filter 

Wavelet NN, Chaotic Wavelet NN Wavelet Transform, Discrete Wavelet Transform

Figure 3. Summary of multiple techniques developed using ANN, FNN, WNN, and optimization-
based approaches for chaotic time series forecasting.

3.1. ANN-Based Forecasting Approaches

ANN has multiple perceptrons’ or nodes at each layer. For example, the network
with two input nodes, two hidden layers with four nodes in each, and one output node is
shown in Figure 4. This network can be called FFNN when its inputs are processed forward
(refer to the red dotted line in Figure 4). The FFNN is one of the most straightforward
neural networks, and it passes information in one direction through various input nodes
until the output node [178]. This type of neural network may or may not have hidden
layers, making its functioning more understandable. Some advantages of FFNN include
storing information on the entire network, working with incomplete knowledge, offering
tolerance, and having distributed memory. However, the disadvantages of FFNN include
having hardware dependency and unexplained behavior that can leave us tormented with
results. No particular rule for deciding the network’s structure and the appropriate network
structure is achieved through experience and trial and error.

BPNN is an essential mathematical tool for improving the accuracy of predictions in
data mining and machine learning. In FFNN, the network propagates forward to obtain
the output and compares it with real value to obtain the error. However, to minimize the
error, the BPNN will propagate backward by finding the error derivative for each weight
and then subtracting this value from the weight value. The architecture of a BPNN is also
shown in Figure 4, and the direction of propagation is shown in the green dotted line.
On the other hand, RNN is more complex than FFNN and BPNN. Here, the RNN’s every
node acts as a memory cell and continues the operations computation [4]. The RNN saves
the output of processing nodes and feeds them back into the network, and hence, they do
not pass the information in one direction only (refer to the blue dotted line in Figure 4).
If the network’s prediction is incorrect, the system self-learns and continually works toward
correcting the forecast during backpropagation.

Researchers have utilized ANNs in numerous applications to predict or forecast
various chaotic systems’ behavior. For instance, in [25], the researchers developed the
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complex weighted neural network method for high-resolution adaptive bearing prediction.
It is observed that this concept is especially effective in circumstances where the hermit
matrix progressively changes over time due to adaptive tracking. Jae-Gyan Choi et al.
proposed the application of ANN in power systems for predicting the one-day-ahead
daily peak load based on chaotic time series data using absolute error as a performance
measure [26]. It is to be noted that the proposed technique can also be used for other
forecasting applications, such as predicting the special days, hourly load, temperature,
etc. In [27], the researchers have presented the RNN model for Mackey–Glass chaotic time
series. The proposed model’s experimental results are more practicable and effective in
making short-term predictions for chaotic time series than the multi-dimension embedding
phase space method.

Input Layer ∈ R2

Hidden Layer 1 ∈ R4 Hidden Layer 2 ∈ R4

Output Layer ∈ R1

Feed-Forward

Backpropagation

Recurrent

Fuzzification Layer Inference Layer

Defuzzification Layer

Figure 4. Architecture of various neural networks.

Guichao Yang et al. developed a multilayer neural network adaptive control algorithm
for disturbance compensation in nonlinear systems. The work remarks that this devel-
oped algorithm can also be used simultaneously for nonlinear systems with mismatched
uncertainties. Additionally, an extended state observer was employed to estimate the
exogenous disturbance and predict the system’s state [179]. In extension, the authors pre-
sented the integration of a full-state feedback control algorithm, adaptive neural network,
and extended state observer to handle the unknown nonlinear dynamics and external
disturbances. In addition, the output feedback control algorithm was combined with an
adaptive neural network, extended state observer, and nonlinear disturbance observer
to estimate the unknown nonlinear dynamics, unmeasured states, and external distur-
bances [180]. In both works, a double-rod hydraulic servo system was chosen to validate
the two control schemes’ high-performance control effect. The authors also introduced a
neuroadaptive learning method for disturbance rejection in constrained nonlinear systems.
Moreover, the neural network adaptive control and the extended state observer to estimate
endogenous uncertainties and external disturbances in real time and correct them feed-
forwardly were presented in [181]. Further, the filtering problems and nonlinearity of the
input were accounted for by adding an auxiliary system. Finally, the overall closed-loop
stability was precisely ensured, and the accomplished control performance was validated
by real-time nonlinear systems application results.
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Another forecasting method known as delay-based ANN for predicting the turbulent
flow temporal signals was proposed in [32]. These signals are obtained from a hot wire
anemometer at a single point inside the cylinder to detect coherent structures. In [34],
the authors presented the RBFNN model for forecasting the time series of the logistic map,
Henon map, Mackey–Glass, and Duffing’s systems. In [36], the researchers developed the
recurrent predictor neural network model for predicting the annual and monthly sunspot
time series. The experimental results of the proposed model are better than the Kalman
filter and universal learning network in terms of accuracy and RMSE. The authors of [39]
developed the KIII-chaotic neural network for forecasting the multistep time series data
on a benchmark system. In [40], the researchers presented the RNN for predicting the
electricity price of the power system. The work highlights that this approach is equally
relevant to Chinese electrical market data. In [43], the authors presented the RBFNN
model for forecasting the Henon map, Lorenz map, four real-time series discharge data,
and sea-surface temperature anomaly data collected from various rivers. The work remarks
that this presented model can also be used for geological time series. In [48], the authors
raised the time delay neural network method for predicting the future behavior of the solar
activity. In [51], the researchers demonstrated the BPNN to forecast the multistep nonlinear
time series of the diode resonator circuit. From the presented work, it is to be noted that
the approach can also be used in other chaotic time series.

Qian-Li Ma et al. presented the evolving RNN model for the Lorenz series, logistic,
Mackey–Glass, and real-world sunspots series [53]. The experimental results of the pro-
posed model showed to be better than the boosted RNN. Bao Rong Chang and Hsiu Fen
Tsai proposed an optimal BPNN model for time series of signal deviation in the stock mar-
ket [55]. The proposed method is based on SVM and AR models. The experimental results
of the proposed model showed better performance than the ARMA, RBFNN, and other
models in terms of MAD. In [57], the authors developed the NARX neural network model
for empirically predicting chaotic laser, variable bit rate, and video traffic time series of
real-world datasets. The simulation results of the developed model reliably performed
better than the Elman architectures. Further, the work highlights that this model can also
be used for electric load forecasting, financial time series, and signal processing tasks.

Yagang Zhang et al. developed an ANN model for predicting the stochastic generating
sequences in a chaotic unimodal dynamical system [58]. It is observed that the presented
strategy can also be further applicable for applications such as DNA-based groupings,
protein structure arrangement, and financial market time series. The authors of [61]
proposed an ensemble ANN model for forecasting the turning points in the Mackey–Glass
system. An expectation–maximization parameter learning algorithm for the developed
model was used for probability threshold prediction during the out-of-sample validation.
The experimental result from the system proves the viability of the proposed technique and
shows better results than the ANN model alone. In [68], the work presented the RBFNN
model to predict the Shanghai Composite index that is chaotic according to the phase
diagram analysis. The proposed technique’s experimental results are better than the BPNN.
In [78], the hybrid Elman–NARX neural network model is presented to chaotic systems,
such as Mackey–Glass, Lorenz equations, and the real-life sunspot time series, for predicting
the chaotic time series. The proposed method has performed more effectively and accurately
than the AR model, GA, and fuzzy methods. Gao Shuang et al. presented the rough set
neural network model for long-term wind power prediction [80]. The experimental results
show that the rough set method has the least NMAE compared to the other three methods,
the chaos neural network model, persistence model, and rough set neural network model.
Another forecasting method for gas emission rate prediction, known as the global method
based on the BPNN, was proposed in [83]. The proposed model showed good accuracy
and stability predictions than the first-order weighted local prediction method. In [84],
the researchers developed the chaotic RBFNN method for predicting the power systems’
short-term load. The results of the proposed method showed promising results better than
conventional RBFNN. In [12], a chaos RBFNN method was presented for forecasting the
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gasoline engine intake flow’s transient condition. The simulation results showed more
accuracy compared to conventional RBFNN.

In [101], the application of ANN in a chaotic dynamical system for forecasting embed-
ded dimension and robust location was presented. In [103], the selecting and combining
models with the SOM neural network model for long-term chaotic time series prediction
from the Mackey–Glass equation, NN5 tournament, AR model, and sine function were
presented. It is to be noted that this model can be used to assess the selected outcomes of the
modeling techniques by considering the best-predicted SMAPE. In [21], the MLP model for
enhancing the accuracy of a flood prediction through machine learning and chaos theory
was presented. The experimental results of the proposed method performed better than
the Elman-RNN method. It is to be noted that this concept is also applicable to sensors,
allowing for more individual action in severe conditions. Further, the idea can also lower
the system’s total operational costs and ensure next-generation power grids’ effective and
reliable functioning. In [182], the authors developed a hybrid machine learning technique
for forecasting the time series of NN5 using the nearest trajectory model, one-year-cycle
model, and neural network. In [128], the self-adaptive chaotic BPNN algorithm was pro-
posed based on Chebyshev’s chaotic map for predicting the electrical power system’s
load. The presented algorithm results showed better global optimization performance than
conventional BPNN, RBFNN, and Elman networks. The work highlights that the chaotic
neural network regression using the probability density forecast method can predict the
electricity demand. In [131], the deep CNN model was proposed for forecasting Lyapunov
exponents from observed time series in discrete dynamical systems. In [157], the authors
presented the RNN-based LSTM model to predict the mutation rate in a human body
affected by COVID-19. The proposed approach can be extended further by inserting and
deleting mutation rates in the model.

The authors of [162] presented the Deep CNN model using meteorological data to
forecast flight delays. The results of Deep CNN showed to be better than the CNN,
which is proven in terms of weight gradient error and hidden layer error. The authors
of [168] presented the LSTM neural network model to forecast the delay time in a chaotic
optical system and compared the model with the delayed mutual information method
and autocorrelation function method. It is worth noting that the proposed model can also
enhance the security and maturity of optical chaos secure communications. In [183],
the authors presented a LSTM-based forecasting model by integrating ensemble and
reinforcement learning techniques. Further, an adaptive gradient algorithm was used to
train the network and validated on the Lorenz, Duffing, and Rössler systems. The authors
of [184] developed a FFNN-based prediction model to estimate the change in future state
values of a Rössler system. In [169], the authors presented a gate recurrent unit-based Deep
RNN model to forecast time series of three chaotic systems, (i) Lorenz, (ii) Rabinovich–
Fabrikant, and (iii) Rössler, which showed better performance than the LSTM-based Deep
RNN model. This model can also be used for real-time applications to predict the hyper-
turbulent frameworks to control the turbulence or synchronize the framework model.

3.2. Fuzzy with ANN-Based Forecasting Approaches

FNN is a hybrid network developed using ANN’s learning ability and fuzzy logic’s
noise handling capability. The architecture of the FNN is also shown in Figure 4. The figure
shows that the network has four layers: the input layer, fuzzification layer, inference layer,
and defuzzification layer (refer to the yellow dotted lines in Figure 4). FNN uses two
approaches, namely (i) Mamdani and (ii) Takagi and Sugeno. Fuzzy logic is represented
using the neural network’s structure and trained using either a BP or an optimization
algorithm. The FNN is implemented in the following three ways:

• Real inputs with fuzzy weights;
• Fuzzy inputs with real weights;
• Fuzzy inputs and fuzzy weights.
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In [50], the authors developed the self-organizing Takagi and Sugeno-type FNN model
for predicting the short-term traffic flow. The experimental results of the developed model
showed to be feasible and more effective than RBFNN. In [54], the researchers developed
the distributed chaotic fuzzy RBFNN method applied to fault section estimation in the
distribution network. The simulation results of the developed strategy achieved better
efficiency, learning ability, fault-tolerance, and low convergence rates than the BPNN model.
On the other hand, in [66], the work presented a subtractive clustering-based FNN for
forecasting the traffic flow and used the GA for deciding the clustering radius. Ding
Guan-bin and Ding Jia-Feng introduced an adaptive neural network-based fuzzy inference
system for predicting the monthly average flow in a hydrological station, which showed
better results than the AR model [67]. The authors of [69] developed the fuzzy descriptor
model integrated with singular spectrum analysis for predicting the various time series,
including Mackey–Glass, Lorenz, Darwin sea level pressure, and the disturbance storm
time index. The presented model results showed to be better than the MLP and RBFNN
models. Another forecasting method known as the FNN model based on chaos theory
for predicting the hydraulic pumps’ vibration signal was proposed in [75]. It is to be
noted that this model can also be used to improve prediction accuracy by readjusting the
minimal embedding dimension optimally. The dynamic recurrent FNN model used to
predict the power systems’ short-term load was developed in [76]. It was proved that the
developed model’s convergence rate and forecasting accuracy are enhanced compared to
the conventional FNN model. In [97], the researchers presented the interval type-2 fuzzy
cerebellar model articulation controller for forecasting the Henon system of chaotic time
series and the chaos synchronization of the Duffing–Holmes system. The proposed model
of simulation results showed to be better than the FNN and interval type-2 FNN.

In [104], the researchers proposed the saliency back-emf-based wavelet FNN model
for a torque observer, using a new maximum torque per ampere control for forecasting the
speed of a sensorless interior permanent magnet synchronous motor. In [110], the authors
presented the embedding theorem-repetitive fuzzy method for predicting the time series
data of Mackey–Glass, Lorenz, and sunspot numbers. The proposed model’s experimental
results provided better forecasting than the simple fuzzy, adaptive neuro-fuzzy inference
and other models in terms of error indices. Qinghai Li and Rui-Chang Lin presented
the self-constructing recurrent FNN model for forecasting the logistic and Henon time
series [112]. The proposed model had a worthier performance in convergence rate and
forecasting accuracy than the self-constructing FNN. The authors of [117] presented the
interactively recurrent fuzzy functions model for predicting the time series data of Lorenz,
Mackey–Glass, and real-time lung sound signal modeling. The benchmark and real-time
models’ results showed to be better than the recurrent networks, such as fuzzy WNN,
self-evolving FNN, ESN, and LS. Luo Chao and Wang Haiyue presented the application of

• Generalized zonary time-variant fuzzy information granule;
• LSTM mechanism with FNN model.

For Zurich monthly sunspot numbers, Mackey–Glass time series, and daily maximum
temperatures in Melbourne were used for predicting the granules [141]. The results of
the proposed methods showed better performance than the AR and nonlinear AR neural
network models. In [176], the researchers presented the adaptive RBFNN model for fore-
casting the online vehicle velocity, showing better prediction accuracy and computational
efficiency than the LSTM, NARX, and deep neural network models.

3.3. Optimization Algorithms with ANN-Based Forecasting Approaches

The authors of [29] developed the temporal difference GA-based reinforcement learn-
ing neural network model to predict and control two chaotic systems, i.e., the Henon map
and the logistic map. The advantage of the proposed concept is that it can apply directly to
control chaotic physical systems in real-world models. Mohammad Farzad et al. proposed
the GA for forecasting the Mackey–Glass chaotic time series, and the model showed better
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performance than the ANN and polynomials methods [47]. The proposed model may also
be used to forecast any other chaotic systems. In [71], a modified bee evolution using a
PSO-based chaotic neural network model was presented to predict the load in the power
system. The proposed model’s simulation results showed better outcomes than the PSO
algorithm used to develop the power system’s proper planning and has good prospects.
In [96], a hybrid approach using the chaotic self-adaptive PSO algorithm and BPNN was
presented to forecast the polymers’ gas solubility. The proposed model is reliable, accurate,
and practicable for analyzing and designing polymer processing technology, compared to
PSO-tuned BPNN models. It is to be noted that the proposed approach can also be further
extended to tackle actual difficulties. The chaotic PSO tuned ANN model was presented
in [102] to forecast air quality by predicting the particulate concentration. It is to be noted
that this model can also be used to prove the meteorological condition of wind speed, which
has a significant effect at urban intersections for specific matter concentrations. In [107],
the researchers developed the improved GA for forecasting the synchronous parameters of
chaotic time series to achieve higher accuracy and efficiency than GA alone.

The authors of [115] proposed the modified BPNN based on chaotically optimized GA
and simulated annealing algorithms to forecast electrical energy demand in a smart grid. It
is to be noted that this concept can also be relevant to lowering the system’s total operational
costs and ensuring the effective and reliable functioning of next-generation power grids.
Akhmad Faqih et al. developed the extreme learning mechanism using RBFNN and SOM
models to predict the multistep ahead time series of Lorenz’s chaotic system [133]. It is
to be noted that this proposed model can also combine with several behaviors to provide
the best behavior. In [135], the researcher presented the GA and LS-based SVM method to
control fractional-order systems, which achieved better effectiveness and feasibility than
the conventional LS-based SVM. The authors of [139] proposed the principal component
analysis using the chaotic immune PSO tuned GRNN for forecasting the corrosion of
circulating cooling water in a petrochemical enterprise. The approach achieved better
forecasting accuracy and convergence speed than the traditional PSO-tuned GRNN model.
The advantage of the proposed model is that it can also be employed to forecast other
nonlinear systems. In [147], the authors proposed the chaotic PSO algorithm for predicting
the mobile location and achieved better location accuracy and faster convergence rate
than such algorithms as those of Chan, Taylor, and PSO. Ji Jin et al. developed the fractal
dimension-based EMD method and GA tuned BPNN model for predicting the wind speed
in wind farms by considering the atmospheric motions’ fractal feature [152]. The proposed
models showed better performance than LSTM, GA tuned BPNN, and ensemble EMD-
GA-BPNN. It is to be observed that this model can also require further study to optimize
the computational time. It is also necessary to analyze the model on various time scales
to decide the proposed models’ suitability to wind speed series on any timescale. Happy
Aprillia et al. proposed the SSA tuned CNN for predicting the short-term power of PV
systems [158]. The presented algorithm’s results showed better accuracy than the SSA
tuned SVM and LSTM methods. Further, the work highlights that this proposed model can
also address uncertainty, particularly for wet weather, heavy overcast weather, peak time,
and forecasting on typhoon days. Shuzhi Gao et al. developed the soft sensor model using
the CBAS algorithm and Elman neural networks to forecast the conversion rate of vinyl
chloride monomer [171]. The developed model’s performance can be extended by utilizing
the deep neural network approaches.

3.4. Wavelet NN-Based Forecasting Approaches

The merits of wavelet and neural networks are hybridized to form a new WNN to
achieve better forecasting ability. WNNs have been used with great success in a wide range
of applications. In some applications, it was proven that if the combination of a neural
network and wavelet is used, the proposed model’s efficiency is increased. The WNN
architecture also follows the same fashion as the network shown in Figure 4. However,
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in the hidden layer, wavelet basis functions are used as activation functions instead of the
conventional function of the FFNN.

Antonis K. Alexandridis et al. proposed machine learning algorithms, namely wavelet
network and genetic programming, for forecasting the average temperature precisely when
it comes to weather derivative pricing, compared to SVM and RBF [185]. Wei Wu et al.
developed a WNN model for electricity-based chaotic time series data to predict the spot
market prices [38]. In [45], the researchers proposed the WNN model and compared it with
the BPNN model for single-step forecasting of Lorenz and Mackey–Glass chaotic time series.
It is to be noted that this approach can be extended further to be used for real-world chaotic
data. In [74,81], the authors proposed the forecasting models for wind farms. The wavelet
decomposition method and ITSM in [74] showed an improved accuracy compared to ANN
in predicting wind speed and power. Similarly, the developed hybrid algorithm using
wavelet transform, chaotic theory, and grey model in [81] showed better prediction than
the direct prediction method. The models in [74,81] can be further optimized and applied
in various countries’ wind farms, such as the Dongtai wind farm in China. Bo Zhou and
Aiguo Shi presented the phase space reconstruction-based WNN method to predict Henon
and Lorenz’s chaotic time series [95]. The significant benefit of this proposed method
over a WNN is the improvement in SMAPE. It is to be noted that this concept can also
help optimize the process parameters and the execution time during the simulation. Tian
Zhongda et al. presented the wavelet transform and multiple model fusion for forecasting
the Lorenz and Mackey–Glass time series and achieved more effective performance in
terms of SMAPE [120]. The models can be applied to real-world chaotic systems, such
as geomagnetic series, network traffic series, etc. In [130], the ANN-discrete wavelet
transform method was presented for forecasting the photovoltaic system’s power based on
chaos theory. The significant benefit of this method over the ANN and ANN-phase space
reconstruction is the improvement in the Theil index.

3.5. Other Approaches

The authors of [56] developed the generalized EKF for forecasting the Lorenz time
series with various Bernoulli distribution probabilities, which achieved an acceptable
prediction precision and good robustness. Xue-dong Wu et al. proposed the GPF and
compared it with UKF and EKF to forecast the Mackey–Glass time series [73]. In [106],
the researchers proposed the EKF-based MPSV method to estimate the transmitted signal
in power line communications and confirmed the better efficiency than the inverse filter-
based MPSV method. However, the real-time validation of the proposed approach is the
research gap. In [129], the authors developed the equivalent model using EKF to predict
the state of charge in power Li-ion batteries. Yijun Xu et al. proposed the polynomial chaos-
based Kalman filter to predict the nonlinear system dynamics [146]. In [160], the authors
presented the UKF for forecasting the parameters of the gray-box model for dynamic EEG
system modeling and achieved the lowest RMSE compared to the particle filter and EKF.

4. Forecasting of Chaotic Time Series in Various Applications

As mentioned in Table 1, various parameters have been forecast in multiple ap-
plications using the machine learning-based approaches detailed in Section 3. The list
of these forecasting parameters categorized into the different applications is given in
Figure 5. The detailed description of these forecasting parameters using various approaches
in various fields is explained underneath.

4.1. Power and Energy

This section describes power and energy forecasting techniques, using various chaotic
time series approaches applied in wind farms, solar, photovoltaic systems, etc.
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✓ Load, Voltage, Power
✓ Disturbances
✓ Sparse grid points
✓ Electricity price
✓ Noise frequency
✓ State of charge
✓ Voltage sensor validation
✓ Amplitude, Frequency signals
✓ Energy Consumption
✓ Inertia, Exciter gains
✓ Damping ratio, Droop

✓ Monthly precipitation
✓ Residual time series
✓ Vibration signal
✓ Monthly flow
✓ Temperature

✓ Power
✓ Voltage
✓ Current
✓ Time series data
✓ Number of sun spots

✓ Angle of arrival
✓ Band occupancy rate
✓ Radio wave propagation
✓ Baseband signals
✓ Signal deviation time series data
✓ Chaos in power line communications

✓ Power
✓ Speed
✓ Load
✓ Direction
✓ Wave characteristics

✓ Intake flow
✓ Gas emission rate
✓ Gas concentration
✓ Coal gas network traffic flow

✓ Security vulnerabilities of cryptosystem
✓ Corrosion, Fault section
✓ Online vehicle velocity
✓ COVID-19 mutation rate
✓ Mobile location
✓ River level
✓ Tornadoes, Air quality

Figure 5. List of forecasting parameters categorized into the different applications.

4.1.1. Wind Farms

Many applications of wind power and speed forecasting approaches have been devel-
oped based on chaotic characteristics or chaotic time series and applied on various wind
farms. For instance, the statistical type of forecasting approaches for predicting wind power,
speed, and load for short-term and long-term wind power, speed, and load prediction in
Beijing in China are as follows:

• ITSM with wavelet decomposition method [74];
• SVM [16];
• Rough set neural network [80];
• BFA tuned double-reservoir ESN [166].

The approaches, as mentioned earlier, showed good short-term and long-term per-
formance, but the computational complexity is high to complete the task. Similarly, many
other works have been attempted to predict weather conditions for wind farms whose
operations are more complex.

Various researchers have proposed hybrid prediction methods to enhance accuracy.
These approaches were made by integrating the following:

• Wavelet transforms with chaotic time series and grey model [81];
• Hilbert–Huang transforms with Hurst analysis [108];
• Hybrid neuro evolutionary [175].

The hybrid approaches mentioned above with multistep chaotic characteristics were
validated for short-term forecasting of wind power at the Dongtai wind farm and Hebei
province in the east of China. The work highlights that EMD-based combined forecast-
ing methods can improve short-term forecasting accuracy based on their characteristics.
The surrogate data technique and spectral analysis methods are applied to forecast wind
wave height, period, and direction for three-hourly chaotic time series from three stations
in the Caspian’s southern, central, and northern parts of the sea [109]. The hybrid approach
developed using ensemble EMD-sample entropy and the full parameters continued frac-
tion model were developed for predicting the wind power of farm location at Xinjiang,
China [119]. Moreover, the Markov chain switching regime model developed in [144]
used hourly, short-term, and long-term chaotic time series data for predicting wind speed
and direction of the farm located at Bonneville Power Administration control area in the
Northwest USA. It is to be noted that these proposed approaches can also be used for the
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proper planning and scheduling of wind power. The self-adaptive and artificial intelligence
type forecasting techniques for predicting the wind speed are as follows:

• Fractal dimension-Lorenz stenflo-Ensemble EMD;
• GA tuned BPNN model;
• Empirical dynamical model [152,165].

For short-term prediction of wind speed considers the atmospheric motion and fractal
feature at Abbotsford in Canada, and Kansas and Missouri in the USA. It is to be noted
that better results can be generated using exogenous variables in the ANN approach.

4.1.2. Solar and Photovoltaic Systems

The recurrent predictor neural network model presented in [36] is based on an ex-
tended algorithm of self-adaptive BP through a time learning algorithm for predicting the
annual sunspot time series in Skylab. Similarly, the time-delay neural network model [48]
and the multi-layered neural network-based co-evolutionary algorithm [52] are used for
predicting the annual sunspot time series of the space laboratory launched by the USA in
1973 and the sunspot index data center in Belgium, respectively. The ANN-based discrete
transform using chaos theory [130], ensemble EMD based on optimized chaotic phase
space reconstruction [155], SSA tuned CNN [158], and CGO [172] are used for predicting
the power, voltage, and current of PV system in Beni Mellal, Morocco, St Lucia campus
PV station, Australia. The k-fold cross-validation with GRNN reported in [134] is used
for predicting the accuracy of sunspot under different embedding dimensions for phase
space reconstruction of chaotic time series according to the Takens theorem in the Solar
Influences Data Analysis Center, Belgium.

4.1.3. Other Power Systems

Under certain circumstances, chaos in an electrical power system can show abnormal
oscillations, threatening the electrical grid’s reliability and stability. Because of the nonlin-
earities of electricity networks, chaos theory is a high priority. Hence, the application of
chaos theory and several forecasting approaches to improve the accuracy and reliability of
load forecasting. The proposed forecasting approaches for predicting the electrical daily
peak load of the power systems, such as South Korea Electric Power Corporation, Daqing
oilfield company in China, New South Wales in Australia, and North China city, are as
follows:

• ANN [26];
• Bee evolution modifying PSO tuned chaotic neural network [71];
• Adding-weighted LLE [72];
• Dynamic recurrent FNN [76];
• Chaotic RBFNN [84];
• Chaotic local weighted linear forecast algorithm based on angle cosine [88].

The self-adaptive chaotic BPNN and parallel chaos algorithm reported in [128],
and [118], respectively, are used for forecasting the short-term electrical power load in
the China network. The limitations of the proposed approaches are eliminated with the
application of hybridized chaotic RBFNN-quantile regression model for forecasting the
weather, seasons, wind power, and electricity price. The hybrid forecasting approaches
developed for predicting the dynamic characteristics of electricity are the wavelet decompo-
sition methodology [120], variational mode decomposition-maximum relevance minimum
redundancy based BPNN-LS-SVM [156], and short- and medium-term load in the Xi’an
power grid corporation, China.

Short-term electricity price forecasting has become crucial in the power markets, as it
allows for the foundation for market participants’ profit maximization. The proposed
methods for forecasting the short-term electricity spot market prices and the marginal price
at the New England and California electricity markets in the USA are as follows:



Symmetry 2022, 14, 955 30 of 43

• Nonlinear auto-correlated chaotic model-based WNN [38];
• RNN [40];
• LS-SVM algorithm [60];
• Add-weighted one-rank multi-steps prediction model [63].

The generation companies can decide on scheduling generators and provide high-
quality power services to customers. Thus, the validation algorithm presented in [93]
is based on the voltage sensor applied to a DC zonal shipboard electric power system,
using decentralized polynomial chaos theory for the sensor validation decentralized state
prediction. In addition, it is to be reported that the presented conventional algorithms were
improved using artificial intelligence techniques. The independent component analysis
method reported in [94] for predicting the amplitude and frequency of highly chaotic
distorted power system signals is presented based on duffing oscillator solutions. The pro-
posed approach can be used for the real-time control and measurement of the fundamental
frequency of a power system while focusing mainly on chaotic disturbances. The maxi-
mum velocity criterion method, sinusoidal wave frequency modulation, and chaotic control
algorithm are for forecasting the chaos and suppressing the predicted chaos to increase
the security for cyber–physical power systems [112]. The modified BPNN, chaos-search
GA, and SA algorithms are applied to predict a smart grid’s short-term electrical energy
demand in New South Wales, Australian grid [115]. The proposed approach can also lower
the system’s total operational costs and ensure the next-generation power grids’ effective
and reliable functioning. The polynomial chaos expansion-based Langevin Markov chain
Monte Carlo and multi fidelity-surrogate-based Bayesian inference via adaptive importance
sampling predict decentralized dynamic parameters, such as inertia, exciter gains, damping
ratio, and the droop of the synchronous generator in New England, USA [138,151].

4.2. Hydrological Systems

The RBFNN model is developed to estimate the Mekong River’s nonlinear hydrologi-
cal time series in Thailand and Laos, the Chao Phraya River in Thailand, and sea-surface
temperature anomaly data [43]. In addition, the presented approach can also be applied
to other geological time series. In [67], an adaptive fuzzy inference-based neural network
model is developed to predict the medium- and long-term hydrological residual time
series. The data are collected from the Guantai hydrological station, Zhang River, China.
An empirical, statistical, and chaotic nonlinear dynamic model in [19] was applied to
forecast the stream water temperature from the available solar radiation and air temper-
ature in the Lake Tahoe basin, California, Nevada, USA. The chaotic FNN for predicting
the hydraulic pump’s vibration signal was presented in [75]. It is to be reported that the
proposed approach can be extended further to improve prediction accuracy by readjusting
the minimal embedding dimension optimally. The coupled quantity–pattern similarity
model reported in [18] predicts the monthly precipitation of hydrological systems in the
Danjiangkou reservoir basin, China. The proposed approach can also be applied to time
series with various lead time scales.

4.3. Communication Signals and Systems

The complex weighted neural network algorithm in [25] solves the principal com-
ponent analysis problem and high-resolution adaptive bearing prediction. The proposed
approach is especially effective in circumstances where the hermit matrix progressively
changes over time due to adaptive tracking. The BPNN tuned SVM grey model in [55] is
used for forecasting the signal deviation time series. The anchor selection method is based
on polynomial chaos expansions [86] for angle-of-arrival prediction-based positioning sys-
tems. The chaos algorithm in [92] is proposed for forecasting the radio wave propagation
in the ionosphere. The proposed algorithm can also forecast a set of radio transmission
signals at a fading amplitude time series location. The phase space reconstruction-LS-SVM
in [98] is developed to predict FM radio’s band occupancy rate in German Rohde, Schwarz
company, and fixed radio monitoring station of Xihua University, USA. The proposed ap-
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proach can be extended further to improve multistep time series prediction. The minimum
phase-space volume-EKF equalization method presented in [106] is for forecasting the
chaos in power line communications. The LLE, Higuchi’s fractal dimension, and sample
entropy techniques are used for predicting the fractals, chaos, and parametric entropy
features of surface electromyography signals during dynamic contraction of biceps muscles
under a varying load [127]. The proposed process can also be helpful in physiotherapy
and athletic biomechanics for testing muscular fitness. A deterministic chaotic sequences
method is developed to forecast quadrature baseband signals and orthogonal frequency
division multiplexing-based cognitive radio channel [137]. The proposed approach can also
be applicable to bit error rate performance, which is projected to improve if an appropriate
power management method is used.

4.4. Oil and Gas

The global prediction method uses a BPNN model for forecasting the gas emission rate
in the Hegang Nanshan mine located in China [83]. The proposed model showed better
step, accuracy, and stability predictions. The improved Duffing oscillator chaotic traffic
prediction model in [85] was developed for coal gas’ traffic flow prediction for a coal mine.
The proposed approach can also increase signal detection accuracy. The chaos RBFNN
method in [12] predicts the intake airflow of the gasoline engine. The coal mine ventilation
systems’ management technology reported in [17] can predict the gas concentration in
Jining, Shandong, China. As a result, the system can provide reliable assurance for mine
safety production.

4.5. Other Systems

The multistep time series prediction in diode resonator circuits is made by integrating
the nonlinear signal prediction method with a BPNN [51]. The proposed approach can be
extended further to be used in other chaotic time series. The integration of nonlinear time
series analysis and backpropagation MLP for multistep nonlinear time series forecasting
of chaotic diode resonator circuits was reported in [59]. The distributed chaotic fuzzy
RBFNN is exploited for distributed network fault section prediction [54]. The global
prediction of chaos method forecasts the chaotic instantaneous generator output power
in Liaoning province in China [20]. The chaotic adding-weight dynamic local predict
model predicts the pseudo-random number generator of the initial sequence number in
the transmission control protocol stack [62]. The chaos-based Rivest Shamir Adleman
algorithm and chaos-based random number generator forecast the security vulnerabilities
of the cryptosystem [142].

5. Performance Measures

This section discusses the various performance measures used for chaotic time series
forecasting approaches. According to the literature review summary in Table 1, it can be
concluded that there are many approaches for chaotic time series forecasting. However, it is
challenging to choose one proposed method that performs better based on the performance
measures. Table 1 also shows that the researchers have evaluated the performance of
the forecasting approach using various statistical errors. The different classifications of
statistical performance measures used for chaotic time series forecasting are mean, relative,
percentage, prediction, and coefficients. The classification and its subcategories are shown
in Figure 6. The formula for computing these performance measures is demonstrated in
Figure 7. In Figure 7, n denotes the number of samples, and Ya,i and Yp,i are the actual and
predicted outputs by the chaotic time series forecasting model. Further, Ȳa, and Ȳp are the
averages of Ya,i and Yp,i.
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Figure 6. Classification of various performance measures used for chaotic time series forecasting.
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(Ya,i − Ȳa)(Yp,i − Ȳp)
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Figure 7. Formula for computing the various performance measures.

As shown in Figures 6 and 7, most of the performance measures used for chaotic time
series forecasting are mean errors. Further, the review summary in Table 1 shows that MSE
and its variants are the most widely used performance measures for chaotic time series
forecasting. The MSE and its variants measure the error between Ya and Yp, and the closest
value to zero indicates a better estimation of the forecasting approach [186,187]. After mean
errors, the percentage errors are the second most used performance measure for chaotic
time series forecasting. The percentage errors measure the percentage error between Ya
and Yp. The closer values of percentage error to zero also indicate a better estimation of
the forecasting approach. On the other hand, the coefficient of determination R2 is most
widely used to indicate the forecasting approach’s predictive ability in fitting the actual
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data Ya [188,189]. Thus, the values of R2 range from zero to one, and the value equal to 1.0
indicates a perfect fit. The summary in Table 1 also shows that most of the researchers used
a combination of different performance measures for evaluating the forecasting approach.
The combinations are MAE, MAPE, and RMSE; MSE, MAPE, and RMSE; MAE and RMSE;
MSE and RMSE; R2 and MSE; R and MSE, etc.

6. Conclusions

This article reviewed various approaches for chaotic time series forecasting based
on machine learning in multiple areas, such as wind farms, PV systems, hydrological
systems, communication signals and systems, oil and gas, and other systems. At the
beginning of this paper, the chaotic system/time series and the importance of chaos
forecasting were introduced. Next, the various machine learning-based chaotic time series
forecasting approaches were presented. These approaches use WNN, FNN, CNN, LSTM,
and Markov chain models. Then, a review of the prediction of various parameters in
multiple applications using machine learning-based techniques is presented. This review
concludes that traditional prediction methods can hardly obtain satisfactory results. Hence,
many chaotic time series prediction methods were developed using machine learning-based
approaches, which enhanced their efficiency and accuracy.

6.1. Findings

This review summarizes the findings of various approaches developed for multiple
applications as follows:

• The wavelet decomposition method predicted wind speed and power accurately and
effectively using improved time series, chaotic time series, and grey models [74,81].
The false nearest neighbor analysis method forecast the chaotic behavior of the wind–
wave characteristics, including wave period and height [109].

• Hilbert–Huang transform and Hurst analysis is a proper choice to forecast the multi-
scale chaotic characteristics of wind power [108]. In contrast, ensemble EMD and full
parameters continued fraction is appropriate for predicting wind power’s nonlinear
chaotic time series [119].

• The empirical dynamic model presented in [165] forecast the wind speed for various
height levels. At the same time, the fractal dimensional-based self-adaptive model for
wind speed predicted atmospheric motion and fractal features [152].

• The approaches such as the ordinary least square method [28], recurrent predictor
neural network [36], hybrid Elman–NARX neural network [78], and embedding
theorem-repetitive fuzzy [21] forecast the sunspot number (chaotic time series) effec-
tively. In all these cases, the sunspot data were collected from the world data center
for Belgium’s sunspot index.

• The combination of chaos theory and techniques, such as ensemble EMD and CNN-
SSA, effectively forecast the PV system’s output power under certain conditions, such
as rainy, heavy cloudy, lightly cloudy, and sunny conditions [155,158]. The data were
collected from the St Lucia campus PV station, Australia, in all these cases.

• The integration of the BPNN with GA, SA algorithms [115], parallel chaos [118],
wavelet decomposition-based methods [120,157] was successfully used to forecast the
deregulated power system’s short-term electrical energy demand. These methods
help in proper economic power dispatching with an enhanced demand response that
assists in efficient spot price-fixing in the deregulated power market.

• The regression analysis models using ANN and chaotic nonlinear dynamic [73] and
coupled quantity-pattern similarity [18] were validated to predict the stream water
temperature and monthly precipitation.

• The minimum phase space-based EKF method was used to forecast the blind equal-
ization in power line communication systems to overcome channel noise [106].
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• The response surface-based Bayesian inference [149] and PCE-based hybrid MCMC [163]
approaches were used to predict the generator’s dynamic parameters, such as inertia,
exciter gains, damping ratio, and droop.

• The independent component analysis method in [94] adequately estimated the ampli-
tude and frequency of power systems’ highly distorted signals to avoid the ferroreso-
nance effect.

• The Markov chain switching regime model enhanced the precision accuracy and is
helpful for wind power forecasting during scheduling and planning [144].

6.2. Future Directions

This comprehensive review helped open up new scopes in the field of chaotic time
series forecasting approaches in various applications and is highlighted underneath.

• Chaotic time series analysis and SVM can estimate short-term wind speeds while con-
sidering weather conditions and more complex scenarios of wind farm operations [16].

• To the dispersed power resource system, the wind power generation unit can be
connected to the grid of this system through high-quality forecasting of the parameters
using the Jacobian matrix estimate method and weather data optimal points using
deterministic chaos [104].

• EMD-based forecasting approaches can increase short-term wind power prediction
accuracy based on their behavior characteristics. Furthermore, the relationship be-
tween different scale subsequences and numerical weather forecasting can improve
the accuracy of this short-term wind power forecasting [108].

• The hybrid neuro evolutionary approach, i.e., adaptive variational mode decomposition-
AOA-LSTM proposed for wind farms, has employed multiple outlier identification
methods with optimization and decomposition procedures to improve forecasting
outcomes [175]. This method can also be adaptable to other geographies.

• The independent component analysis method can be extended for real-time monitor-
ing and controlling the power system’s fundamental frequency with an appropriate
time delay between observed data frames [94].

• The precision accuracy of the response surface-based Bayesian inference method
proposed for the power systems to predict the dynamic parameters has to be improved
when there is a substantial outrageous deviation in the boundaries [149].

• The coupled quantity pattern similarity model proposed for the prediction of monthly
precipitation can also be applied to the time series with different lead time scales [18].

• The hybrid algorithms proposed using CNN and wavelet transforms for predicting
the chaotic time series of Chen, Lorenz, Mackey–Glass, and sunspot numbers can
also be used for real-time series, such as geomagnetic, network traffic, and weather
systems [13,170].

• The forecasting accuracy of an online vehicle velocity prediction approach proposed
using adaptive RBFNN can be enhanced using additional data, such as driving time,
climate, gas, and brake pedals [176].
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Auto correlation function
ANN Artificial neural networks
AOA Arithmetic optimization algorithm
APE Absolute percentage error
APSK Amplitude phase shift keying
AR Autoregressive
ARE Average relative error
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
ARMSE Average root mean square error
BFA Bacterial foraging algorithm
BP Backpropagation
BPNN Backpropagation neural network
CBAM Convolutional block attention module
CBAS Chaos beetle antennae search algorithm
CCO Cluster chaotic optimization
CGO Chaos game optimization
CMSE Cumulative mean square error
CVRMSE Coefficient of variance of the root mean square error
DCSK Differential chaos shift keying
DMI Delayed mutual information
EKF Extended Kalman filter
EMD Empirical mode decomposition
ESN Echo state network
FFNN Feed-forward neural network
GA Genetic algorithm
GPF Gaussian particle filtering
GRNN Generalized regression neural network
GWO Grey wolf optimization
HBO Honey bee optimization
HEA Hybrid evolutionary adaptive
HFD Higuchi’s fractal dimension
IGWO Improved grey wolf optimizer
ITSM Improved time series method
LLE Largest Lyapunov exponent
LLNF Locally linear neuro-fuzzy
LS Least square
MAD Mean absolute deviation
MAE Mean absolute error
MAPE Mean absolute percentage error
MARE Mean absolute relative error
MCMC Monte Carlo Markov chain
MLE Machine learning ensembles
MLP Multilayer perceptron
MMSE Minimum mean square error
MPSV Minimum phase space volume
MRE Mean relative error
MRFO Manta ray foraging optimization
MRPE Maximal relative percentage error
MSD Mean squared deviation
MSE Mean squared error
MSLE Mean squared logarithmic error
MSPdE Mean squared prediction error
NARX Nonlinear autoregressive exogenous model
NMAE Normalized mean absolute error
NMAPE Normalized mean absolute percentage error
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NMSE Normalized mean square error
NRMSE Normalized root mean square error
NWP Numerical weather prediction
PCR Principal component regression
PCS Polynomial chaos surrogates
PdE Prediction error
PE Percentage error
PID Proportional–integral–derivative
PLS Partial least square
PRE Percentage relative error
PSO Particle swarm optimization
PV Photovoltaic
QAM Quadrature amplitude modulation
R Coefficient of correlation
R2 Coefficient of determination
RBF Radial basis function
RBFNN Radial basis function neural network
RE Relative error
RMSE Root mean squared error
RNN Recurrent neural network
RR Ridge regression
RRMSE Relative root mean squared error
SA Simulated annealing
SMAPE Symmetric mean absolute percentage error
SOM Self-organizing map
SSA Salp swarm algorithm
SVM Support vector machine
TCN Temporal convolutional network
TLBO Teaching–learning-based optimization
TTLS Truncated total least squares
UKF Unscented Kalman filter
ULN Universal learning network
YCO Yield-constrained optimization
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