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Abstract: Object recognition in depth images is challenging and persistent task in machine vision,
robotics, and automation of sustainability. Object recognition tasks are a challenging part of various
multimedia technologies for video surveillance, human–computer interaction, robotic navigation,
drone targeting, tourist guidance, and medical diagnostics. However, the symmetry that exists in
real-world objects plays a significant role in perception and recognition of objects in both humans
and machines. With advances in depth sensor technology, numerous researchers have recently
proposed RGB-D object recognition techniques. In this paper, we introduce a sustainable object
recognition framework that is consistent despite any change in the environment, and can recognize
and analyze RGB-D objects in complex indoor scenarios. Firstly, after acquiring a depth image, the
point cloud and the depth maps are extracted to obtain the planes. Then, the plane fitting model and
the proposed modified maximum likelihood estimation sampling consensus (MMLESAC) are applied
as a segmentation process. Then, depth kernel descriptors (DKDES) over segmented objects are
computed for single and multiple object scenarios separately. These DKDES are subsequently carried
forward to isometric mapping (IsoMap) for feature space reduction. Finally, the reduced feature
vector is forwarded to a kernel sliding perceptron (KSP) for the recognition of objects. Three datasets
are used to evaluate four different experiments by employing a cross-validation scheme to validate the
proposed model. The experimental results over RGB-D object, RGB-D scene, and NYUDv1 datasets
demonstrate overall accuracies of 92.2%, 88.5%, and 90.5% respectively. These results outperform
existing state-of-the-art methods and verify the suitability of the method.

Keywords: kernel sliding perceptron; modified maximum likelihood estimation sampling consensus;
multi-object recognition; sustainable object recognition

1. Introduction

Human beings are capable of perceiving and recognizing multiple objects in complex scenarios
via biological vision. Designing machines that are sufficiently intelligent to recognize and classify
objects in complicated scenes has been a decades-long, intense area of research. However, recognition
and classification are now significantly more precise and accurate due to the emergence of intelligent
visualization by machines and robotics [1,2]. Object recognition is divided into two classes: 2D images
and 3D point-clouds. By projecting the scene onto a plane, 2D images are generated by recording the
light intensity measured at each point. In addition, 3D point-clouds map points in the scene from
3D coordinates. The only disparity between 2D and 3D is knowledge of depth, which is purely a
component of 3D data. To represent the 3D information from the real world, inexpensive devices
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(sensors) such as Microsoft Kinect have been devised and used to capture depth information correlated
with each pixel coupled with the Red-Green-Blue (RGB) image.

In addition, researchers have achieved significant developments in computer vision for sustainability
in recent decades, with distinct outcomes for object detection and recognition. Fortunately, numerous
methods perform relatively well at classifying only prominent objects in a complete scene; however
the results are not adequate when multiple objects need to be recognized in a single dynamic scenario.
In these methods, different features of objects, such as global and local features, are used to recognize
objects in the scene. These scenes are comprised of multiple evident cues, including color, light
intensities, corners, edges, point clouds, and templates, which can help recognize and analyze
objects in complex scenes. In various applications, object segmentation and recognition are now
increasingly being adopted in sustainable frameworks, such as visual tracking, medical diagnostics,
scene understanding, and environmental monitoring. However, multiple objects are often coupled
together in several scenes depicting their mutual relationships and inconsistencies across scenes,
rendering scene recognition a perplexing task in visual analysis.

To deal with limitations in object recognition, we propose a sustainable multi-object recognition
system that retains its efficiency despite any transition in the nature of the object or the scene. The system
is based on modified maximum likelihood estimation sampling consensus, depth kernel descriptors
(DKDES), and a kernel sliding perceptron (KSP). The proposed system performs pre-processing of
the images as a first step. The pre-processed images are converted to point clouds and depth maps to
extract planes for efficient segmentation using modified maximum likelihood estimation sampling
consensus (MMLESAC) in the second step. As a third step, DKDES are computed over segmented
objects. The computed DKDES are then forwarded to IsoMap for the selection and reduction of suitable
features. The reduced DKDES set is then provided to a KSP for sustainable object recognition as a final
step. Our contributions are as follows:

• Modified maximum likelihood estimation sampling consensus is proposed for the segmentation
of depth objects.

• To reduce the dimensions of feature sets, and for better accuracy and efficiency, Isometric Mapping
(IsoMap) is used.

• To recognize single and multiple objects in an image, a collective set of descriptors named depth
kernel descriptors (DKDES) is applied to three benchmark datasets.

• To the best of our knowledge, the integrated KSP multi-depth kernel descriptor for identification
of multiple objects is originally introduced here.

• To evaluate the reliability and consistency of the proposed system, a comprehensive statistical
study is performed and compared with the latest methods.

Related work is summarized in Section 2. Section 3 offers a vision of the methodology including
the proposed framework for object recognition. Experimental analysis of datasets, with an overview of
these datasets, is given in Section 4. Finally, the conclusion and future work is presented in Section 5.

2. Related Work

Various studies have progressively employed different object recognition strategies in recent
decades. Although object detection is a challenging task in sustainable visual recognition, scene
understanding, and robotics, several researchers have devoted their efforts to the field. We reviewed
literature in various fields, such as sustainable multi-object segmentation, image recognition, labeling,
and recognition of objects in RGB, in addition to depth images, to appropriately analyze and evaluate
our proposed system.

2.1. Sustainable Multi-Objects Segmentation via RGB Images

Image segmentation is aimed at clustering pixels into vital image fragments, i.e., fragments that
correspond to particular structures, artifacts, or normal fragments of objects [3]. Image segmentation
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is a mid-level processing technique used to analyze images. This technique groups the pixels to
form homogeneous regions based on pixel characteristics, such as color, texture, intensity, and other
characteristics, to classify or cluster the image into different and distinct fragments [4,5]. The key task
of the segmentation process is to specifically distinguish the object in the scene from the background.

Numerous researchers [6,7] have considered color spaces as important cues for color image
segmentation. Jurio et al. [8] compared multiple color spaces using cluster-based segmentation to
focus on similar techniques. They included four color spaces: HSV (Hue, Saturation and Value),
CMY (Cyan, Magenta and Yellow), RGB, and YUV to determine the best color representation model.
Although HSV produced good results, they achieved the highest accuracy with the CMY color
model. A. K. Sinop et al. [9] describes their graph-cut algorithm for image segmentation separating
the foreground object form the background. The technique considers the whole image with its
morphological details for efficient segmentation. P. Beunestado et al. [3] proposed an image segmentation
method that combines the statistical confidence interval with the standard Otsu technique to achieve
improved segmentation results. They enhanced the image using their proposed method using a
statistical confidence interval and then applied the Otsu algorithm, which provided good results
compared to the standard Otsu algorithm.

2.2. Sustainable Multi-Object Recognition via RGB Images

Multi-object recognition is more complicated because one image consists of several instances
with a cluttered environment and complicated backgrounds in various locations. M. Rashid et al. [10]
used a deep learning architecture based on multi-layer deep feature selection and fusion for object
recognition. Their approach yielded accurate recognition results using three steps, including two
deep learning architecture elements, i.e., for the fusion of features, a deep convolution network for
image recognition, and Inspection V3 for feature extraction. Additionally, they molded parallel
maximum covariance, and for the selection of best features, a logistic regression controlled the entropy
variance algorithm. A. Ahmed et al. [11] used multiple algorithms in a pipeline for multiple object
recognition over an RGB dataset. They extracted similar regions over an image via a k-means clustering
algorithm and achieved segmentation by merging similar regions. They considered the generalized
Hough transform (GHT) algorithm for object detection and a genetic algorithm as an object recognizer.
S. Zia et al. [12] suggested a solution for object recognition using a deep convolutional neural network
(CNN). They designed a hybrid 2D/3D CNN that used a pretrained network. Furthermore, they
trained their CNN over a small RGB-Depth dataset. They combined the features extracted from
both RGB-only and depth-only models, in their hybrid model, to produce more accurate results.
A. Ahmed et al. [13] proposed a novel method to recognize multi-objects in a scene based on object
categorization. They segmented the image by employing improved fuzzy c-mean and mean shift
segmentation techniques. Subsequently, local descriptors are extracted and multiple kernel learning is
applied for object categorization. Additionally, they incorporated intersection over union scores and
multi-class logistic regression for scene classification.

2.3. Sustainable Multi-Object Segmentation via Depth Images

Segmenting an image into several regions is known as depth segmentation. In recent decades,
depth data has been used to achieve enhanced performance. Some researchers consider color,
depth, and combinations of both color and depth information to improve segmentation results,
such as R. Xiaofeng et al. [14]. A new descriptor for object detection based on the histogram of
oriented gradients (HOG) was proposed by D. Venkatrayappa et al. [15]. It combines HOG with
an oriented response anisotropic derivative half Gaussian kernel. They ascertained the improved
efficiency over scale-invariant feature transform (SIFT), gradient location and orientation histogram
(GLOH), and DAISY descriptors. To detect objects from depth images, a 3D detector was designed by
S. Song et al. [16]. It considers complexities such as variations in texture, low illumination, cluttered or
occluded objects, and different viewpoints during the object recognition process. Moreover, to obtain
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synthetic depth maps, they collected 3D CAD models to match multiple viewpoints. In addition, when
extracting features from point clouds, they trained the exemplar support vector machine (SVM) model
while a 3D detection window was used during testing in their proposed system. W. Shi et al. [17]
introduced a multi-level cross-aware (MCA) model for the segmentation of indoor RGB-D images.
MCA used depth geometric information, 2D appearance, and fused complementary features from
RGB and depth images. They achieved remarkable results over the indoor RGB-D dataset.

2.4. Sustainable Multi-Objects Recognition via Depth Images

Multi-object recognition in depth images has numerous applications, such as image retrieval,
autonomous vehicles, surveillance, and robotic navigation. U. Asif et al. [18] presented a hierarchical
cascade forests model that uses computed probabilities at different phases of an image, based on
which unknown objects and classes are recognized. They introduced an objective function that extracts
features from the point clouds of RGB-D objects in the account of object recognition and grasp detection.
A. Ahmed et al. [19] designed a novel technique to localize and recognize multiple objects in RGB-D
indoor scenes. They used a fusion saliency map of objects and a centered darker channel for object
segmentation, multiple feature descriptors, feature matching, and Hough voting for the recognition of
multiple objects over the RGB-D dataset. L. Tang et al. [20] designed a convolution neural network
framework based on canonical correlation analysis (CCA). They fused separately processed RGB and
depth images through a CCA layer and a combining layer was introduced to the multi-view CNN.
H. Liu et al. [21] developed an extreme learning machine (ELM) structure using a multi-modal local
receptive field (MM-LRF). There, LRF is used as a feature extractor for each modality, and a shared
layer is proposed for combining the features. Final objects are recognized through the ELM classifier.
They achieved remarkable accuracy over single objects in a similar environment, but they did not
consider either complex RGB-D images with multiple objects or different environments.

3. Proposed System Methodology

In this section, we propose a novel sustainable object recognition model that recognizes and
labels multiple objects in depth images. Initially, a depth image is taken as input for point cloud
extraction for a single object. For multiple object recognition, the depth image is converted to a
depth map. After point cloud extraction or depth map conversion, plane fitting is applied using the
proposed MMLESAC for object segmentation. Then, DKDES are computed over the segmented objects.
The extracted depth descriptors are forwarded to IsoMap for feature reduction and selection. Finally,
the reduced feature set is provided to a multi-layer KSP for object recognition. Figure 1 illustrates the
overview of the proposed object recognition system using a KSP.

3.1. Image Acquisition and Preprocessing

During pre-processing, unwanted pixels that are caused due to various conditions, such as
different illumination, thus, surrounding scenarios are removed (see Figure 2). To address these
complications, filling of the holes is performed as a pre-processing step [22–26]. After filling, the image
is smoothed using ideal low pass filters (ILPFs) by applying the following transfer function of the ILPF:

H(x, y) =
{

1 if D(x, y) ≤ D0

0 if D(x, y) > D0
(1)

D(x, y) =
[
(x−M/2)2 + (y−N/2)2

] 1
2 (2)

where D(x, y) is the distance from point (x, y) to the center of their pixels’ intensity rectangles. The filter
using the ILPF removes the high intensity pixels and preserves the low intensity pixels, and has an
intensity between 0 and 1, also known as the cutoff range.
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Figure 2. Some examples from RGB-D scenes dataset: (a) RGB image; (b) depth image; (c) pre-processed
image after hole filling.

3.2. Objects Segmentation

In this section, a comprehensive description of single/multi-object segmentation is introduced.
The purpose of segmenting an image is to partition it into appropriate small regions. These small
regions or segments are more meaningful and understandable to a machine for further processing.
As with most complex images, there are usually several regions and objects in complex scenes,
thus, segmentation is a demanding yet critical process for accurate object recognition. Therefore, the
quality of segmentation directly impacts the accuracy of object recognition. To improve the quality
of segmentation, numerous researchers have adopted several different techniques for 2D and 3D
object detection and recognition, such as edge based, region growing, model fitting, hybrid, and
machine learning approaches. Model fitting, such as plane fitting [27] using MMLESAC, is proposed
to process single/multi-object segmentation. Nevertheless, whereas the random sample consensus
(RANSAC) algorithm evaluates eminence by counting the number of matches that ratify the current
hypothesis, MLESAC checks the hypothesis’ probability by representing the distribution of errors as a
mixture model.
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3.2.1. Single-Object Segmentation Using Point Cloud

After refining the segmentation of RGB-D images, 3D point clouds [28] were devised with images
for the different phases of module recognition, namely, feature extraction, feature matching, and
object recognition. Losses in machine expenses can be substantially minimized. Figure 3 displays
the RGB-D image’s cloud point visualization. The resampling of the nearest neighbor (NN) [29] is
used to sample the point cloud to maximize the system’s computational cost because the point cloud
is represented by the point pattern and its corresponding points. Resampling retains and does not
change the original attributes of visuals. The general flow of point cloud segmentation is adopted as
in [30]. Down sampling is achieved thus:

k(u) =
{

1; i f |u| < 0.5
0; otherwise

(3)
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Figure 3. Segmentation of RGB-D images. First row, for single object using point cloud extraction over
RGB-D object dataset: (a) depth image, (b) point cloud of image, (c) plane extraction, (d) segmented
object. Second row, for multi-object using depth map conversion over RGB-D scenes dataset: (e) depth
map of the image, (f) background layer extraction, (g) planes extraction, (h) segmented multiple objects.

3.2.2. Multi-Objects Segmentation Using MMLESAC

With the MMLESAC plane fitting technique, we improved depth segmentation over existing
MLESAC and RANSAC methods. MLESAC [31–34] follows RANSAC’s [35–40] basic idea which
produces hypothetical results based on consecutive marginal correspondence sets; in contrast, the other
remaining correspondences are used to check the quality of the hypothesis. Although, based on the
probabilistic approach, MLESAC evaluates via the random sampling hypothesis, it does not presume
any such complexity in the earlier matching stage which is used to provide its data. Unlike other
matching approaches, MLESAC is robust because it not only treats the same prior probability of being
a mismatch, it also recognizes the uncertain possibility.

Maximum Likelihood Estimation (MLE)

To analyze an object’s location in the image/scene, following the idea of [41,42], the pose (viewpoint)
estimation of an object is an intrinsic operation, which requires a set of features computed from that
image/scene and can be written mathematically as:

θ = iabc(t) = T−1iαβγ(t) =


x u 1
y v 1
z w 1




iα(t)
iβ(t)
iγ(t)

 (4)

where (a, b, c) are known as translational components and (α, β,γ) are Euler angles. For object O with
a set of features O = {O0, O1, O2, . . . , Om} in an image I with set of features I = {I0, I1, I2, . . . , Im},
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the likelihood of pose or viewpoint θ has a directly proportional relationship to the features I in the
image I.

L(θ | I)∝ P(I | θ) =
N∏

i=1

fi(Ii | θ) (5)

where fi(Ii | θ) is called the probability density function (PDF) that is responsible for observing and
examining the viewpoint θ of the ith feature using a rotational and translational model. To approximate
F , the fundamental matrix using MLE is applied such that:

F = max
F

 n∏
i=1

p(εi | F )

 (6)

where p(εi | F ) is a likelihood function that describes how well the ith correspondence matches, when
a fundamental matrix F is given. To quantify the correspondence match we used the P(ci) probability,
which shows the probability of being correctly matched. We determined P(ci) using the similarity
measure of the feature matcher, and each ith correspondence has different P(ci).

Modified Maximum Likelihood Estimation Sample Consensus (MMLESAC)

After determining the P(ci) of each correspondence, the error εi(F ) of the ith correspondence for
each sample is calculated. We classified the whole correspondences of each sample into two sets, i.e.,
inliers and outliers, using a predefined threshold T of error εi(F ) as follows:

inlier = i f ‖εi(F)‖ < T (7)

outlier, i f ‖εi(F)‖ ≥ T (8)

This classification outcome is used for the validity of the correspondences. Then, we achieved
the estimation of P(ci) for the ith correspondence using the inlier–outlier classification (IOC) of the
successful sample. Successful samples are those that have a better score than any previous sample.
The IOC results for the ith correspondence at the nth successful random sample are Ci

1, Ci
2, . . . , Ci

n and
the sum Si

n of all n samples us given as:

Si
n = Ci

1 + Ci
2 + . . .+ Ci

n (9)

Then, we estimated the correspondence validity using Si
n as:

P(ci) ←
Si

n
n

(10)

For initialization of the estimation, the values of P(ci) are assumed to be equal to 0.5 and a
minimal subset Sm of k correspondences is selected randomly. Then, error εi(F ) is calculated for each
correspondence and the scores of the hypotheses are determined using Equation (6). When a best
hypothesis is determined, then IOC is applied to the whole dataset according to Equation (7) and
Equation (8). Then the results are summed using Equation (9). The fraction f and upper limit uppmax

are achieved using:

f =
1
j

j∑
i=1

Ci
n (11)

uppmax = log(1− p)/ log
(
1− (1− f )k

)
(12)

The modified algorithm as defined above, is termed MMLESAC and explained here in Algorithm 1.
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Algorithm 1. Modified Maximum Likelihood Estimation Sample Consensus (MMLESAC).
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14: Classify k by using (7) and (8)  %Classify the corr. & keep the consensus% 

15: Accumulate result using (9) %Accumulate the result % 

16: I 𝑓 ←  0.15×𝑢𝑝𝑝𝑚𝑎𝑥   %Fix I 𝑓 = 0.15×𝑢𝑝𝑝𝑚𝑎𝑥% 

17: IF j ≥ I 𝑓   

18: UPDATE the 𝑃(𝑐𝑖) using (10) 

19: END IF 

20: END FOR 

21: FIND (𝑓, 𝑢𝑝𝑝𝑚𝑎𝑥)   %estimated inlier portion 𝑓 and regulate 𝑢𝑝𝑝𝑚𝑎𝑥  

22: END IF 

23: END FOR 

24: RE- PRODUCE 𝑭  %motion hypothesis 𝑭 from the consensus % 

25: RETURN segmented image with multiple regions 

3.3. Feature Extraction via DKDES over Segmented Objects 

To recognize the objects in the image, the pixel features [43–48] are computed in a small window 

around a single pixel. For instance, gradient location and orientation histogram (GLOH), a histogram 

of gradients (HOG), [49–53], and scale-invariant feature transform (SIFT) [54–57] are renowned 

techniques that compute pixel features, such as gradient magnitude and orientation. These 

techniques are based on histograms that are modeled over the distributed pixel values into bins. 

Based on these histograms, the similarity of the two areas/windows is measured. However, due to 

quantization this binning process involves errors that reduce the accuracy of object recognition. 

To avoid the need for pixel feature discretization, the kernel descriptor [58–63] is one of the best 

choices that uses a match kernel (kernel function) to measure the similarity between two 

areas/windows/patches. Match kernels [64,65] are versatile in nature because any positive definite 

function may be the distance function of the match kernel, such as a Gaussian kernel. Bo et al. [54] 

demonstrated that histogram attributes are exceptional instances of match kernels. 

3.3. Feature Extraction via DKDES over Segmented Objects

To recognize the objects in the image, the pixel features [43–48] are computed in a small window
around a single pixel. For instance, gradient location and orientation histogram (GLOH), a histogram of
gradients (HOG), [49–53], and scale-invariant feature transform (SIFT) [54–57] are renowned techniques
that compute pixel features, such as gradient magnitude and orientation. These techniques are based
on histograms that are modeled over the distributed pixel values into bins. Based on these histograms,
the similarity of the two areas/windows is measured. However, due to quantization this binning
process involves errors that reduce the accuracy of object recognition.

To avoid the need for pixel feature discretization, the kernel descriptor [58–63] is one of the
best choices that uses a match kernel (kernel function) to measure the similarity between two
areas/windows/patches. Match kernels [64,65] are versatile in nature because any positive definite
function may be the distance function of the match kernel, such as a Gaussian kernel. Bo et al. [54]
demonstrated that histogram attributes are exceptional instances of match kernels.
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3.3.1. Size Kernel Descriptor over Segmented Objects

The size KDES measures the physical dimensions of the object. The size of the particular object is
different from other objects. The size of the same object may still vary between certain ranges, however
it is valuable in recognition. For instance, the visualization of the physical size of a keyboard and a
bowl can clearly differentiate the objects.

To estimate the size of an object [66], a scale pyramid of the segmented object is created. An object
in the current frame can have p possible number of scales. Consider the size of the object to be X×Y and
α to be the scale stride. We define P(scale) in a scale pyramid such that P(scale) =

{
−

(p−1
2

)
, . . . ,

(p−1
2

)}
.

Variable size patches having dimensions αP(scale)X×αP(scale)Y are extracted and resized to a fixed size.
Then, the feature descriptor (DES) is computed for each patch. Figure 4 demonstrates the significance
of size for object recognition.
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3.3.2. Gradient Kernel Descriptor over Segmented Objects

Changes in the direction of intensity or color in an image are termed the “gradient”. These
gradients may be used to extract information from images. The following kernel of a gradient match
Kgradient is implemented to capture image variations [13,54]:

Kgradient(U, V) =
∑
}∈U

∑
}′∈V

m(H) m(H′) κo
(
ϑ(H),ϑ(H′)

)
κs(H,H′) (13)

where the Gaussian position kernel is symbolized as κs(H,H′) = exp
(
−γs‖H−H

′
‖

2
)
, with a pixel

location of H in the two-dimensional image patch (standardized to [0,1]), and kernel with respect to

orientation is represented as κo(ϑ e(H), ϑ e(H)) = exp(−γo‖ϑ(H) − ϑ(H′)‖
2
). To measure the disparity

between the viewpoints of pixels H and H′, the following standardized gradient vector is imbedded in
the kernel function κo:

ϑ(H) = [sin(ϑ(H)) cos(ϑ(H))] (14)

The L2 distance between these vectors estimates well enough the disparity in gradient viewpoints.
In some situations, it would be inappropriate to measure an L2 distance at a raw angle ϑ instead of
standardized gradient vectors ϑe. For instance, consider both 2π–0.01 and 0.01 angles of a very similar
inclination but a larger L2 width.

To conclude, the gradient match kernel Kgradient comprises three kernels: standardized linear
kernel and orientation histogram kernels are identical, where gradient magnitudes are responsible
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for the assessment of every pixel’s impact—to enumerate the viewpoints’ similarity i.e., similarity of
gradient orientation, κo is computed—whereas the intimacy of two pixels is evaluated by the position
Gaussian kernel κs. Figure 5 shows gradient KDES results over some example images of the datasets
under consideration.
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3.3.3. LBP Kernel Descriptor over Segmented Objects

Image variations are captured by the gradient match kernel, whereas it is observed that the local
binary pattern (LBP) match kernel [45] is capable of capturing local structure.

Kshape (A, B) =
∑
Z∈A

∑
Z′∈B

s̃(z)̃s(z′)kb(b(z), b(z′))kp(z, z′) (15)

where the standard deviation is denoted as s̃(z) = s(z)/
√∑

Z∈A s(z)2 + εs, s(z) nearby z, εs in a
window of 3 × 3, and b(z) is called the binary column vector to binarize the pixel value dissimilarities
around z. The significance of each LBP is measured by the standardized linear kernel s̃(z)̃s(z′), whereas
the kernel kb(b(z), b(z′)) = exp

(
−γb‖b(z) − b(z′)‖2

)
is responsible for quantifying the likeness based

on LBP. Figure 6 exhibits LBP KDES results in the form of histograms and Figure 7 explains the
mathematical procedure of LBP.
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3.3.4. Kernel Principal Copponent Aanalysis (PCA) and Shape Kernel Descriptor over
Segmented Objects

To capture objects, shape KDES is a strong descriptor for the recognition of instances and category
recognition. We take two features into account as shape KDES, namely PCA KDES and spin features.
Then, the kernel metrics of a bowl, chair, table, and monitor are examined. Later, the resultant matrix
of computed eigenvalues are plotted against each object, as shown in Figure 8. The distribution of
bowl, chair, table, and monitor values are presumed to be very different, implying that the particular
values are likely to capture the 3D shape of objects. The kernel matrix Kpca is evaluated over the point
cloud ℘. We also computed the twenty-five highest eigenvalues T , and attained

[
Λ1
℘, . . . , Λ
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where C  is compactness, A (Obj)  represents the area of the object, and A (B_box)  denotes the 

bounding box with the smallest area around the object. Considering (x,y) pixel locations in the image 

for a specific object, where 𝑖 ∈  Contour of the object, 𝑥𝑖 represents any pixel at the x co-ordinate of 

the object residing on the contour and 𝑥𝑖−1  represents its previous pixel at the x coordinate. 

Similarly, 𝑦𝑖 and 𝑦𝑖−1 are the pixels at the y co-ordinate. Thus, Equation (18) determines the contour 

point around the segmented object. Figure 9 clarifies the computation of the compactness ratio. 
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, PCA KDES comprised T dimensions, and
Kpca[§, †] = exp(−γk ‖ § − †] ‖

2
)

with γk > 0 and §, † ∈ ℘.
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To discriminate the shape of the object [67,68], the compactness of the object is estimated using
Equation (17) and Equation (18):

C =
A (Obj)

A (B_box)
(17)

A (Obj) =
∑

i∈Contour(xi + xi−1) · (yi − yi−1)

2
(18)
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where C is compactness, A(Obj) represents the area of the object, and A(B_box) denotes the bounding
box with the smallest area around the object. Considering (x,y) pixel locations in the image for a
specific object, where i ∈ Contour of the object, xi represents any pixel at the x co-ordinate of the object
residing on the contour and xi−1 represents its previous pixel at the x coordinate. Similarly, yi and
yi−1 are the pixels at the y co-ordinate. Thus, Equation (18) determines the contour point around the
segmented object. Figure 9 clarifies the computation of the compactness ratio.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 26 
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3.4. Feature Reduction using IsoMap

After feature extraction, to achieve maximum efficiency a feature reduction technique is applied.
Feature reduction is vital for the recognition of objects. IsoMap [69,70] is an effective non-linear feature
reduction technique that preserves the fundamental geometry of the data. The graph distance between
the points is computed to measure the geodesic distances amongst the pixel pairs. IsoMap follows a
similar idea to construct a matrix of similarity for a decomposition of eigenvalues. IsoMap constructs
a similarity matrix based on local information contrary to other techniques, such as Locally-linear
embedding (LLE) and log-likelihood probability (LLP). IsoMap estimates the geodesic distance by
considering the shortest path between any two points that are taken from the neighborhood graph
that is prepared using Euclidean distance. Consequently, the dimensions of the global and the local
composition of the dataset are reduced (See Algorithm 2). Figure 10 illustrates the objects after feature
reduction has been applied using IsoMap over the RGB-D object dataset.
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Algorithm 2. Feature Extraction and Reduction.
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3.5. Multi-Object Recognition

After feature extraction and reduction, the reduced feature space is then used to recognize the
objects in the scene. The KSP, a unique classifier with a multi-layer perceptron, is applied for object
recognition to enhance efficiency. After quantization, the feature vectors are passed to the KSP as
inputs. The feature vectors are then transformed by the kernel into a transitional space based on
computed feature pairs dot products as:

C(z) = argi maxsign

 M∑
j=1

βk
(
z j, z

) (19)

where M represents training examples, i is the object class in the image or scene, and each object has an
assigned weight β which is scalar. For training examples in which there is a chance of error, it will
be non-zero.

The proposed architecture of the KSP as presented in Figure 11, which reveals that it contains
input, output, and hidden layers with the perceptron. The input layer takes the feature vectors after
reduction from the IsoMap, whereas the output layer contains multiple perceptrons depending on
the number of object-classes in the training dataset. Algorithm 3 explains the process of KSP for
multi-object recognition.
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Algorithm 3. Multi-Object Recognition by Kernel Sliding Perceptron (KSP).

1: Input: Reduced features set from RGB-D images
2: Output: Yj Recognized Multi-object in a RGB-D image
3: % set Max. # of repetitions%
4: m = number of repetitions β = β1, . . . , βn
5: Initialize β j = 0 for every j
6: WHILE ((t) and k <= n)

a. t = 0;
b. for (k = 1: m)

i. if y∗j
(∑m

i=1 αlk
(
z j, zl

))
≤ 0

ii. t = t + 1;
iii. β j = β j− 1+ yj zj
iv. end

c. end
7: k = k + 1;
8: end
9: return Y
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4. Experimental Setup and Results

Testing and validation of the proposed model were performed on three benchmark datasets:
RGB-D objects, RGB-D scenes, NYU-Dv1 datasets. We executed four different sets of experiments for
significant validation. For these experiments, the k-fold cross-validation method was employed, where
k = 10. During this validation method, 9 of the 10 samples/images were used as training data and a
single sample was taken for testing. The process was repeated 10 times. Datasets with more images
were similarly distributed into subsets for the purpose of validation. Descriptions of the datasets
used follow.

4.1. Datasets Descriptions

4.1.1. The RGB-D Object Dataset

The RGB-D object dataset [71] holds 300 collective household objects categorized into fifty-one
unique types. These objects are organized into categories and instances. To record the dataset, a Kinect
3D camera was used to capture 640 × 480 RGB images, and depth images were recorded at 30 Hz.



Symmetry 2020, 12, 1928 15 of 25

The objects were captured from different angles by rotating and changing the height of the camera.
We considered 10 complex categories in the experimental evaluation: apple, bowl, banana, cap, comb,
coffee mug, cereal box, food can, jug, and scissors. Figure 12 shows the example images form the
RGB-D object dataset; these are complex images viewed from different angles from the horizon.
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4.1.2. The RGB-D Scenes Dataset

The RGB-D scenes dataset [72] comprised fourteen scenes of furniture and other household objects.
The RGB-D object dataset is also included as the subset of the RGB-D scenes dataset. The furniture
scene is subdivided into chair, coffee table, sofa, and table, whereas the objects were bowl, cap, cereal
box, coffee mug, and soda can. Figure 13 depicts a example images from the RGB-D scenes dataset.
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4.1.3. The NYU-Dv1 Dataset

The NYUDv1 dataset [73] comprises 2347 labeled and 108,617 unique unlabeled frames of seven
types with 64 different indoor scenes. These frames/scenes are grouped into the following seven classes:
bathroom, bedroom, bookstore, café, kitchen, living room, and office. These classes consist of different
objects, including bed, bookshelf, book, cabinet, ceiling, floor, picture, sofa, table, TV, wall, window,
background, and unlabeled. Examples from the NYUDv1 dataset are presented in Figure 14.Symmetry 2020, 12, x FOR PEER REVIEW 16 of 26 
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4.2. First Experiment: Recognition Accuracy

The first experiment was performed on three publicly available datasets to determine the efficiency
of the proposed model using a KSP.

4.2.1. Experimental Setup

In this experiment, the three DKDES, i.e., gradient KDES, PCA KDES, and size KDES, were applied
for single object recognition, using the RGB-D object dataset, whereas five DKDES, i.e., gradient, kernel
PCA, size, shape, and local binary pattern KDES were applied to a KSP for multiple object recognition
using the RGB-D scenes and NYU-Dv1 datasets. To measure the performance of the proposed model
over the three benchmark datasets, the experiment was repeated three times. Table 1 demonstrates a
confusion matrix over the RGB-D object dataset for single object recognition. An average recognition
accuracy of 92.16% was reported over the RGB-D object dataset where we executed three kernels and
25 iterations for the experiment. Average recognition accuracies of 88.5% and 90.5% were achieved
over the RGB-D scenes and the NYU-Dv1 datasets using three kernels and 25 iterations as depicted in
Tables 2 and 3, respectively.

Table 1. Confusion matrix for recognition accuracy over the RGB-D object dataset.

Obj. Classes bow ban app cap com fcn cmg jug cbx scs

bow 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

ban 0.00 0.96 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00

app 0.05 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cap 0.03 0.00 0.00 0.93 0.00 0.04 0.00 0.00 0.00 0.00

com 0.00 0.08 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.02

ccn 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.13 0.00

cmg 0.03 0.00 0.00 0.00 0.00 0.00 0.83 0.14 0.00 0.00

jug 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.92 0.00 0.00

cbx 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.00 0.93 0.00

scs 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95

Mean Accuracy = 92.16%

bow = bowl; ban = banana; app = apple; cap = cap; com = comb; fcn = food can; cmg = coffee mug; jug = jug;
cbx = cereal box; scs = scissors.

Table 2. Confusion matrix for recognition accuracy over the NYUDv1 dataset.

Obj. Classes bed bok cab cel flr sof tab tvn wal Win

bed 0.89 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00

bok 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00

cab 0.05 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.14 0.00

cel 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.15 0.00

flr 0.05 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.04

sof 0.00 0.00 0.00 0.00 0.00 0.81 0.12 0.00 0.07 0.00

tab 0.04 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00

tvn 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00

wal 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.87 0.06
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Table 2. Cont.

Obj. Classes bed bok cab cel flr sof tab tvn wal Win

win 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.90

Mean Accuracy = 88.5%

bed = bed; bok = book; cab = cabinet; cel = ceiling; flr = floor; sof = sofa; tab = table; tvn = television; wal = wall;
win = window.

Table 3. Confusion matrix for recognition accuracy on multiple objects over the RGB-D scenes dataset.

Obj. Classes chr ctl sof tab bow cap cbx cmg scn wal flr

chr 0.87 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ctl 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sof 0.17 0.00 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tab 0.00 0.18 0.00 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bow 0.00 0.00 0.00 0.04 0.96 0.00 0.00 0.00 0.00 0.00 0.00

cap 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.12 0.00 0.00 0.00

cbx 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.09 0.14 0.00 0.00

cmg 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.79 0.00 0.00 0.00

scn 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.26 0.65 0.00 0.00

wal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.14

flr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.80

Mean Accuracy = 90.5%

chr = chair; ctl = coffee table; sof = sofa; tab = table; bow = bowl; cap = cap; cbx = cereal box; cmg = coffee mug;
scn = soda can; wal = wall; flr = floor.

We considered five kinds of depth KDES, namely, size KDES, shape KDES, gradient KDES, LBP
KDES, and PCA KDES to recognize multiple objects from the three benchmark datasets out of which the
RGB-D object was used to recognize a single object by applying three DKDES. Figure 15 demonstrates
that accuracy increased with an increase in the number of kernels in both cases, for either single or
multi-object recognition. For single object recognition, the order of the selected depth descriptors
is shape KDES, PCA KDES, and LBP KDES, whereas for multi-object recognition, the order is size
KDES, shape KDES, gradient KDES, LBP KDES, and PCA KDES. A combination of all five DKDES
outperforms the accuracy rates of current state-of-the-art methods.
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4.2.2. Observations

Experimental results reveal that the commended KDES can recognize objects using a KSP. For single
object recognition, the highest accuracy was obtained over the RGB-D object dataset. Due to the
increased number of DKDES, average recognition accuracy for multi-object recognition is nearly equal
to single object recognition. A similar trend is observed in the performance analysis of all of the
datasets under consideration. Although some misperception occurred for similar objects, such as the
coffee mug, soda can, sofa and chair, most of the results are significant. It can also be observed that the
experimental findings change as the number of kernels and repetitions of the classifier vary. Hence,
computational time with variants of kernel and repetitions is assessed in the second experiment to
evaluate the effect of specific kernels and iterations on recognition results.

4.3. Second Experiment: Level of Kernels

The second experiment was conducted to validate variations in the kernels and iterations for the
three standard and publicly available datasets, using the KSP.

Experimental Setup

To validate our statement that increases in the number of kernels may increase recognition
efficiency, several experiments were completed. These experiments compared the performance in
terms of accuracy and computational time. Firstly, to evaluate recognition accuracy and computational
time, the experiment was conducted by considering only one kernel, and keeping iterations from
10 to 25. The above experiments were repeated for two and three kernels, respectively. Tables 4–6
demonstrate the experimental analyses of the results on RGB-D objects, RGB-D scenes, and NYUDv1
datasets, respectively.

Table 4. Computational time of the proposed system using K = 1, 2, and 3 for recognition over the
RGB-D object dataset.

Parameters Performance

Kernels Iterations Accuracy (%) Comp. Time (s)

k = 1

i = 10 85.76 1.93
i = 15 85.94 2.17
i = 20 86.47 2.82
i = 25 86.89 3.21

k = 2

i = 10 87.21 3.97
i = 15 87.96 4.56
i = 20 88.32 4.89
i = 25 89.03 5.14

k = 3

i = 10 90.55 5.78
i = 15 91.14 6.49
i = 20 91.95 6.86
i = 25 92.20 7.65

Table 5. Computational time of proposed system by using K = 1, 2, and 3 for recognition over RGB-D
Scenes dataset.

Parameters Performance

Kernels Iterations Accuracy (%) Comp. Time (s)

k = 1

i = 10 82.16 1.63
i = 15 82.94 1.97
i = 20 83.47 2.52
i = 25 84.62 2.89
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Table 5. Cont.

Parameters Performance

Kernels Iterations Accuracy (%) Comp. Time (s)

k = 2

i = 10 85.51 3.17
i = 15 86.36 3.68
i = 20 86.91 4.01
i = 25 87.65 4.59

k = 3

i = 10 88.58 4.95
i = 15 89.97 5.31
i = 20 90.50 5.81
i = 25 90.05 6.11

Table 6. Computational time of proposed system by using Kernel = 1, 2, and 3 for object recognition
over NYUDv1 dataset.

Parameters Performance

Kernels Iterations Accuracy (%) Comp. Time (s)

k = 1

i = 10 81.95 1.35
i = 15 82.74 1.99
i = 20 83.31 2.41
i = 25 83.89 2.87

k = 2

i = 10 84.82 3.13
i = 15 85.19 3.56
i = 20 85.91 4.03
i = 25 86.77 4.75

k = 3

i = 10 87.29 5.16
i = 15 87.98 5.95
i = 20 88.50 6.12
i = 25 88.12 6.84

4.3.1. The Third Experiment: Conventional Methods vs. The Proposed Method

In the third experiment, depth kernel descriptors (depth KDES) were extended to all three
benchmark datasets employing conventional approaches, namely, SVM, random forest (RF), and
artificial neural network (ANN).

4.3.1.1. Experimental Setup

Three sub-experiments were carried out under this experiment on each of the benchmark datasets.
Initially, a set of depth KDES were provided to the support vector machine (SVM) to recognize the
objects. These depth KDES were then given to a random forest (RF) and artificial neural network
(ANN) to obtain the object recognition results. Finally, the conventional approaches were compared
to the proposed model using a KSP. Figures 16–18 represent the comparison results over the RGB-D
object, RGB-D scenes, and NYU-Dv1 datasets, respectively.

4.3.1.2. Observations

SVM, RF, and ANN achieved overall recognition accuracy rates of 70.7%, 70.6%, and 83.7%,
respectively, for the RGB-D object dataset, whereas the proposed model with KSP achieved an accuracy
rate of 92.2% for the same dataset. It is evident from Figure 16 that the proposed model using the
multi-layer KSP obtained optimum output for the bowl and the banana, however, for the cap and the
coffee mug, ANN performed better than the proposed model. This indicates that ANN is more suitable
in certain situations; nevertheless, the overall recognition rate of KSP is superior to that of the ANN.
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Similarly, using the SVM, RF, ANN, and KSP, an improvement in recognition accuracies is observed
over the RGB-D scenes dataset with increases in the number of depth KDES of 78.3%, 81.0%, 88.5%,
and 90.4%, respectively. It is evident from Figure 17 that the proposed model performed well on all of
the objects, with the exception of the coffee table and cereal box, for which the ANN performed slightly
better. The RF performed better on the soda can compared to both ANN and the proposed model.
Nevertheless, the proposed model performed better on all of the other objects, i.e., the proposed model
performed significantly better overall.

4.3.2. Fourth Experiment: Comparison with the Latest Techniques

The fourth experiment performed comparisons of our method with state-of-the-art methods for
object recognition in depth images. Table 7 presents the comparison results over RGB-D object, RGB-D
scenes, and NYUDv1 datasets.

Table 7. Comparison of object recognition accuracy over RGB-D object dataset (by applying three
DKDES), RGB-D scenes, and NYUDv1 datasets (by applying five DKDES).

Method
Accuracy on Single Object % Accuracy on Multi-Object (%)

RGB-D Object RGB-D Scenes NYUDv1

Saliency map [19] 86.9 - -
AlexNet-RNN [72] 90.9 - -

3DEF-FFSM [73] - - 52.6
Fus-CNN(jet) [70] 91.3 - -

MM-ELM-LRF [71] 89.3 - -
CRF [69] - - 56.6

STEM-CaRFs [18] 92.2 81.7 -
Deep CNN [12] 91.8 - -

Full 2D Segmentation [71] - - 59.5
HMP3D [68] - 82.1 -

Proposed 92.2 90.5 88.5

A. Ahmed et al. [19] proposed a saliency map fused with centered darker channel-based RGB-D
object segmentation to recognize the objects in indoor scenarios. They extracted histogram of oriented
gradients (HOG) features after the point cloud conversion of segmented images. Finally, they used
Hough voting for the recognition of the object. H. Liu et al. [21] presented a multi-modal architecture
named MM-ELM-LRF. They extracted features for both of the modalities (RGB and depth) by applying
ELM-LRF. Then, by fusing features from these modalities, supervised feature classification was applied
on the RGB-D object dataset for decision making. K. Lai et al. [67] presented a new approach to the
labelling of 3D scenes by employing Hierarchical matching pursuit for 3D (HMP3D) to extract and
learn the features from point clouds. Their model integrates the features from RGB-D images and point
clouds, and assigns a label to each 3D point in the scene. They validated their model on the RGB-D
scenes dataset and recommended their system for both small indoor objects and furniture recognition.
N. Silberman et al. [69] discovered that the Microsoft Kinect depth sensor can support indoor scene
segmentation. They also introduced a new challenging dataset comprised of indoor scenes. The dataset
also covers depth maps and dense labels. Additionally, to determine various representations of depth
data, they used a Conditional Random Field (CRF) based model. They evaluated their model on
the newly proposed RGB-D scenes dataset. A. Eital et al. [70] proposed a robust method for RGB-D
object detection using a convolutional neural network (CNN). They combined two different processing
streams via a fusion network. They also incorporated a multi-stage training mechanism with effective
encoding and data augmentation for robust learning. They achieved 91.3% recognition accuracy over
the RGB-D object dataset.A. Hermans et al. [71] suggested a 2D–3D label transfer based on Bayesian
updates and 3D conditional random fields. They also proposed a 2D semantic segmentation approach
based on randomized decision forests. A. Caglayan et al. [72] presented a two-stage framework that
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used multi-model RGB-D images to extract discriminative feature representations for object and scene
recognition. M. Antonello et al. [73] contributed a multi-view frame fusion method and batch system
to enhance the semantic labels. This fusion method uses an incremental mode to generate single view
results. It performs semantic segmentation of single frames and semantic map reconstruction.

5. Conclusions

In this paper, we introduced a novel sustainable framework to recognize objects in complex depth
environments. Key achievements, such as the sustainable segmentation of indoor scene depth objects,
and a combination of robust extraction of DKDES and KSP for distinguishing each object, were attained
in this study. The impact and significance of the proposed model compared to previous techniques is
highlighted, with recognition accuracies of 92.2%, 88.5%, and 90.5% over RGB-D object samples, RGB-D
scenes, and NYUDv1 datasets, respectively. Moreover, results suggest that our proposed technique is
ideal for object recognition despite any change in the environment, evidenced by consistent results.
It can be adopted in numerous applications, such as medical diagnostics, video surveillance, robotic
navigation, and understanding of indoor scenes.

In the future, we plan to improve our model by considering contextual and semantic segmentation
using deep learning techniques. Similarly, dynamic scenarios will be considered with the use of a
combined classifiers technique for efficient application.
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