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Abstract: Artificial intelligence (AI) has found widespread application across diverse domains,
including residential life and product manufacturing. Municipal solid waste incineration (MSWI)
represents a significant avenue for realizing waste-to-energy (WTE) objectives, emphasizing resource
reuse and sustainability. Theoretically, AI holds the potential to facilitate optimal control of the MSWI
process in terms of achieving minimal pollution emissions and maximal energy efficiency. However,
a noticeable shortage exists in the current research of the review literature concerning AI in the field
of WTE, particularly MSWI, hindering a focused understanding of future development directions.
Consequently, this study conducts an exhaustive survey of AI applications for optimal control,
categorizing them into four fundamental aspects: modeling, control, optimization, and maintenance.
Timeline diagrams depicting the evolution of AI technologies in the MSWI process are presented
to offer an intuitive visual representation. Each category undergoes meticulous classification and
description, elucidating the shortcomings and challenges inherent in current research. Furthermore,
the study articulates the future development trajectory of AI applications within the four fundamental
categories, underscoring the contribution it makes to the field of MSWI and WTE.

Keywords: municipal solid waste incineration; optimal control; artificial intelligence; modeling;
control; optimization; maintenance

1. Introduction

Artificial intelligence (AI) [1] has become extensively integrated across various indus-
tries, including metallurgy, petrochemicals, and energy, emerging as the primary catalyst
for intelligent manufacturing [2–4]. This transition from the third industrial revolution,
characterized by automation, is advancing into the fourth industrial revolution, commonly
referred to as Industry 4.0 [5,6]. This evolution is marked by the seamless integration
of AI technologies. In response to the imperatives of industrialization and automation,
industrial sites deploy a multitude of sensors to gather diverse process data [7]. Con-
currently, advancements in the Internet of things (IoT), cloud computing, and big data
analytics significantly augment the capacity and possibility of integrating AI into industrial
processes [8,9].

Presently, the global annual growth rate of municipal solid waste (MSW) has surged from
8% to 10% [10]. MSW incineration (MSWI) technology stands as a pivotal waste-to-energy
(WTE) method, offering an effective solution to challenges related to environmental sustain-
ability [11]. As a typical industrial process [12,13], MSWI achieves WTE through a sequence
of stages, encompassing fermentation, combustion, heat exchange, and gas cleaning [2,14]. In
the fermentation stage, numerous uncertain biological reactions take place. The combustion
stage is characterized by high-temperature chemical reactions involving solid, gas, and liquid
phases, driven by heat flow forces. The heat exchange stage facilitates the conversion of heat
energy into mechanical energy and subsequently into electric energy. The flue gas cleaning
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stage employs physical and chemical principles to eliminate toxic and harmful substances
from the flue gas. In addition to meeting its energy requirements, the MSWI process provides
various forms of energy, including electricity and heat [15]. Furthermore, it ensures a reduced
risk of environmental pollution emissions. Studies indicate that the MSWI process achieves
remarkable rates, with mass reduction reaching 70%, volume reduction at 90%, and energy
recovery reaching 19% [16,17]. Developing countries recognize the substantial economic and
environmental protection potential of this process [18,19].

After half a century of development, the MSWI control system has undergone a
transformative shift towards a large-scale, integrated, and intelligent direction. This evolu-
tion is attributed to the integration of automation technology, computer technology, and
advancements in incineration equipment and processes [3]. Currently, operational, under-
construction, and proposed MSWI plants predominantly employ grate furnace incinerators,
high-parameter boiler power generation equipment, and progressive cumulative flue gas
cleaning processes. The overarching objective is to facilitate the low-carbon transformation
of enterprises, thereby enhancing economic efficiency and competitiveness [20,21]. Never-
theless, the composition and generation of MSW are influenced by various uncertainties
and regional factors, encompassing societal, economic, and environmental aspects [22].
The utilization of large-scale operational equipment further complicates the achievement
of efficient and stable control of the MSWI process [23,24]. Therefore, the development of
intelligent optimal control for the MSWI process, with AI assistance, is currently in progress.
Figure 1 illustrates the annual number of studies related to AI applications in the MSWI
process within the Web of Science (WoS) database. The data span from 1996 to 2023, and the
keywords employed include “modeling”, “control”, “optimization”, and “maintenance”.
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Figure 1. Number of annual publications of AI application for MSWI in the WoS.

Figure 1 illustrates a notable upswing in studies concentrating on the application
of AI in MSWI in recent years. Notably, within this trend, modeling emerges as the
predominant research direction, exhibiting a consistently increasing number of studies. The
exploration of optimization has witnessed significant growth, particularly post-2021. In
contrast, research on control and maintenance has maintained a relatively stable level, with
studies on maintenance constituting a smaller proportion. Consequently, the investigation
into the intelligent optimal control of the MSWI process, propelled by AI applications, is
progressively evolving into a focal point of research.
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The existing studies reveals a notable gap in the literature, as a comprehensive review
of AI applications for intelligent optimal control of the MSWI process is currently absent.
This study aims to systematically review the existing research in MSWI that incorporates
AI techniques, intending to fill this gap. The contributions of this study are delineated
as follows: (1) The review is undertaken from four key perspectives, namely modeling,
control, optimization, and maintenance, with a specific focus on the intelligent control tasks
of the MSWI process. The detailed summary of AI applications in these four aspects is
crafted to provide valuable insights for researchers and practitioners. (2) A timeline map is
incorporated to visually depict the evolution of various AI algorithms in the MSWI process,
offering a clear representation of the AI application trends over time. (3) The review is
intricately intertwined with the practical aspects of the MSWI process, and the applied
AI algorithms are comprehensively discussed. Furthermore, the review identifies current
challenges and proposes future directions, thereby contributing to the progression of AI
applications in the field of MSWI.

The structure of this study is shown in Figure 2.

Sustainability 2024, 16, x FOR PEER REVIEW 3 of 44 
 

Figure 1 illustrates a notable upswing in studies concentrating on the application of 
AI in MSWI in recent years. Notably, within this trend, modeling emerges as the 
predominant research direction, exhibiting a consistently increasing number of studies. 
The exploration of optimization has witnessed significant growth, particularly post-2021. 
In contrast, research on control and maintenance has maintained a relatively stable level, 
with studies on maintenance constituting a smaller proportion. Consequently, the 
investigation into the intelligent optimal control of the MSWI process, propelled by AI 
applications, is progressively evolving into a focal point of research. 

The existing studies reveals a notable gap in the literature, as a comprehensive review 
of AI applications for intelligent optimal control of the MSWI process is currently absent. 
This study aims to systematically review the existing research in MSWI that incorporates 
AI techniques, intending to fill this gap. The contributions of this study are delineated as 
follows: (1) The review is undertaken from four key perspectives, namely modeling, 
control, optimization, and maintenance, with a specific focus on the intelligent control 
tasks of the MSWI process. The detailed summary of AI applications in these four aspects 
is crafted to provide valuable insights for researchers and practitioners. (2) A timeline map 
is incorporated to visually depict the evolution of various AI algorithms in the MSWI 
process, offering a clear representation of the AI application trends over time. (3) The 
review is intricately intertwined with the practical aspects of the MSWI process, and the 
applied AI algorithms are comprehensively discussed. Furthermore, the review identifies 
current challenges and proposes future directions, thereby contributing to the progression 
of AI applications in the field of MSWI. 

The structure of this study is shown in Figure 2. 

 
Figure 2. Structure of this study. 

Section 2 introduces the literature review methodology, provides a detailed 
description of the MSWI process, and offers a brief overview of AI applications for optimal 
control. Subsequently, Sections 3–6 delve into the individual fields of AI application 
research, addressing modeling, control, optimization, and maintenance of the MSWI 
process. In Section 7, the focus shifts to an in-depth discussion of the prospects and 
outlook on AI applications within the MSWI process. Finally, Section 8 encapsulates the 
key findings and conclusions of this study. 

  

Section 2 
Related Work

Section 3 
AI Application Research in 

Modelling of MSWI process

Section 4 
AI Application Research in 
Control of MSWI Process

Section 5 
AI Application Research in 

Optimization of MSWI process

Section 6 
AI Application Research in 

Maintenance of MSWI process

Section 7 
Outlook on AI Application 

for MSWI Process

Section 8 
Conclusion

Figure 2. Structure of this study.

Section 2 introduces the literature review methodology, provides a detailed description
of the MSWI process, and offers a brief overview of AI applications for optimal control.
Subsequently, Sections 3–6 delve into the individual fields of AI application research,
addressing modeling, control, optimization, and maintenance of the MSWI process. In
Section 7, the focus shifts to an in-depth discussion of the prospects and outlook on AI
applications within the MSWI process. Finally, Section 8 encapsulates the key findings and
conclusions of this study.

2. Related Work

2.1. Methodology about the Literature Review

The literature reviewed in this study was systematically collected and processed from
prominent scientific research databases, including WoS, Engineering Village, PubMed,
and China National Knowledge Internet (CNKI). The retrieval time range spans from the
establishment of each database to December 2023. Subsequently, the collected literature
underwent a meticulous filtering process to exclude unrelated works. The refined literature
was then categorized into four distinct sections based on AI applications in the MSWI
process, namely modeling, control, optimization, and maintenance. Figure 3 illustrates
the distribution of the literature across these four categories, providing an overview of the
research landscape.
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Figure 3 reveals a notable concentration of research in the areas of modeling and
control, while comparatively fewer studies focus on the optimization of the MSWI process
using AI technology. It is crucial to highlight that optimization plays a pivotal role in
achieving the sustainable development of the MSWI process. Despite the current emphasis
on modeling and control, future research endeavors should recognize and address the
significance of optimization for the overall efficacy and sustainability of MSWI operations.

2.2. Description of MSWI Process in Terms of Optimal Control

Figure 4 depicts the process flow of the grate-type MSWI process in Beijing.
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Figure 4. Process flow of an MSWI plant in Beijing. Note: Flue Gas1 denotes the flue gas at the
furnace outlet. Flue Gas2 represents the flue gas at the inlet position of the induced draft fan. Flue
Gas3 corresponds to the flue gas at the chimney outlet. Within the existing body of research, the
predominant focus has been on Flue Gas1 and Flue Gas3.
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Figure 4 provides an illustration of the MSWI process, which encompasses six distinct
stages: solid waste fermentation, solid waste combustion, heat exchange, steam electric
power, flue gas cleaning, and flue gas emission. The primary functions of each stage are
outlined as follows:

(1) Solid-waste fermentation stage: Original MSW undergoes a 3–7 day biological fermen-
tation in the MSW deposit pool to reduce water content that hinders combustion [29].
Following dehydration, the MSW achieves incineration readiness and is then trans-
ferred to the hopper before being pushed into the incinerator. This progression is
facilitated by the feeder, marking the initiation of the solid waste combustion stage.
The primary optimal control variable for this stage is the calorific value of the MSW.

(2) Solid waste combustion stage: During the solid waste combustion stage, the MSW
transforms into high-temperature flue gas and solid residues through the coupled
interaction of multiphases, including solid–gas–liquid, and multiple fields such as
heat–flow–force. This stage is intricately divided into three substages: drying, burning,
and burnout.

(a) Drying substage: The total moisture content of MSW on the dry grate, com-
prising both surface and internal moisture, profoundly influences its ignition.
Surface moisture gradually evaporates as the furnace temperature increases,
reaching complete evaporation at 100 ◦C. Concurrently, internal moisture
precipitates and absorbs mass heat energy with a further rise in furnace tem-
perature. Consequently, the total moisture content of MSW closely correlates
with the calorific value, exerting a notable impact on the combustion status
and overall working conditions of the entire process.

(b) Burning substage: From the ignition of MSW to intense luminescent heating,
culminating in the conclusion of the oxidation reaction, the process involves
robust oxidation, pyrolysis, and atomic group collision reactions. The strong
oxidation reaction signifies the comprehensive reaction of the combustible
components with oxygen. Concurrently, pyrolysis occurs under anaerobic
or near anaerobic conditions, where thermal radiation energy disrupts or
reorganizes the chemical bonds between the elements of carbon-containing
polymer compounds. This leads to the precipitation of volatiles, subsequently
oxidized. The atomic group collision reaction signifies the electronic energy
transition of the atomic group, coupled with the rotation and vibration of the
molecule, generating infrared thermal radiation, visible light, and ultraviolet
light. This complex process ultimately shapes the flame. Hence, the reactions
involved in the combustion process are intricate and variable, characterized
by strong coupling between each other and the attributes of multireaction
synchronous operation. Key manipulated variables for maintaining a stable
combustion process include air volume and grate speed.

(c) Burnout substage: Following combustion, the residual combustible compo-
nents in MSW predominantly consist of coke. Subsequently, due to the high
temperature and the presence of primary air, the oxidation reaction of coke
with O2 takes place, along with the gasification reaction of coke with CO2,
water vapor, and other substances. Inert substances, including gaseous CO,
H2O, and ash, gradually accumulate until all MSW on the grate transforms into
ash. The combustion weakens until it is completely halted [30]. Consequently,
this process is characterized by low flammability, heightened inert substances,
a relatively high oxidant content, and a low reaction zone temperature. Extend-
ing the burnout substage typically proves effective in enhancing the thermal
ignition reduction rate of MSW and improving the reduction level.

To ensure the decomposition and combustion of harmful substances in the flue gas,
the “3T+E” principle is frequently employed [31]. This principle dictates that the furnace
temperature should surpass 850 ◦C, the flue gas residence time must exceed 2 s, and the
flue gas turbulence intensity and excess air coefficient should be maintained at appropriate
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values. Key manipulated variables in this stage include the feed rate, grate speed, and air
volume. The primary controlled variables encompass furnace temperature, flue gas oxygen
content, steam flow, and combustion line.

(3) Heat exchange stage: The heat exchange stage unfolds in a series of sequential steps.
Firstly, the high-temperature flue gas undergoes initial cooling through the water wall.
Secondly, heat energy is effectively transferred to the boiler through a combination of
radiation and convection, involving key components such as the superheater, evapora-
tor, and economizer. Thirdly, within the boiler, the water undergoes a transformative
process, turning into high-pressure superheated steam that enters the steam power
generation stage. Finally, the flue gas temperature at the boiler outlet is fast reduced
to 200 ◦C. Rigorous control of the cooling rate at this stage is essential. The primary
manipulated variable is the boiler feed water volume, and the main controlled variable
is the steam flow.

(4) Flue gas cleaning stage: The flue gas cleaning stage encompasses several crucial steps.
Firstly, the selective noncatalytic reduction (SNCR) system initiates the removal of
NOx at temperatures ranging from 850 ◦C to 1100 ◦C. Secondly, the semidry deacidifi-
cation process effectively neutralizes acidic gases, including HCl, HF, SO2, and heavy
metals, through the injection of lime and water. Thirdly, activated carbon plays a
pivotal role by adsorbing DXN and heavy metals present in the flue gas. Finally, the
comprehensive purification process concludes as the particulate matter, neutralizing
reactants, and adsorbates of activated carbon in the flue gas are systematically re-
moved by the bag filter. The primary manipulated variables in this stage include the
consumption of urea, activated carbon, lime, and other materials.

(5) Flue gas emission stage: In the flue gas emission stage, the discharged flue gas ad-
heres to the national emission standards of diverse countries and is released into the
atmosphere through the chimney, facilitated by the induced draft fan. Presently, envi-
ronmental indicators of significant concern encompass pollutants such as particulate
matter, NOx, SO2, HCl, and CO.

2.3. AI in Modeling, Control, Optimization, and Maintenance of MSWI Process

Figure 5 illustrates the task function description of the MSWI process and its AI appli-
cations, covering modeling, control, optimization, and maintenance.

In this study, the application of AI concerning the task functions of the MSWI process
is classified into modeling, control, optimization, and maintenance. The structure of the
review is outlined as follows:

(1) Modeling: The AI application in the modeling of the MSWI process is subdivided into
combustion process modeling and operational indices modeling. Combustion process
modeling, elaborated in Section 3.1, focuses on data-driven modeling. Operational
indices modeling is detailed in Section 3.2, covering environmental, product, and
economic indices modeling.

(2) Control: The AI application in the control of the MSWI process is categorized into
on-site control and off-site control. The review of existing research on on-site control is
presented in Section 4.1, encompassing topics such as automatic combustion control,
fuzzy rule control, and expert rule control. Research on off-site control is discussed in
Section 4.2, covering PID parameter tuning and RBF neural network.

(3) Optimization: The AI application in the optimization of the MSWI process, focusing
on manipulated and controlled variables, is predominantly discussed in Section 5. Par-
ticle swarm optimization (PSO) is highlighted as a significant algorithm in this field.

(4) Maintenance: The AI application in the maintenance of the MSWI process is catego-
rized into three parts: recognition of flame status, qualitative detection of operational
faults, and quantitative detection of operational faults. Recognition of flame status,
utilizing random forest and deep forest classification, is introduced in Section 6.1.
Qualitative detection of operational faults is discussed in Section 6.2, covering appli-
cations such as case-based reasoning, backpropagation neural network, and random
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weight neural network. Quantitative detection of operational faults is presented in
Section 6.3, including the application of principal component analysis (PCA) and
partial least squares (PLS).
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2.4. Development of AI Applications Research in the MSWI Process

To visually illustrate the relationship among development, method, and application,
Figure 6 provides a timeline summarizing the evolution of AI algorithms and their applica-
tions in the MSWI field. The timeline includes the proposed years of the methods, the first
application in the MSWI field, and subsequent method applications. AI algorithms are cat-
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egorized into four groups: machine learning, fuzzy logic, metaheuristic methods, and deep
learning. It is important to note that only classic methods are presented in each category.

Figure 6 shows as follows:

(1) Machine learning stands out as a prominent AI method in the application of the MSWI
process. Figure 6 provides a comprehensive summary of machine-learning applica-
tions, encompassing neural network (NN), support vector machine (SVM), PCA, and
tree-based model (TM). Within this domain, NN methods represent the most popular
direction. Firstly, NN exhibits robust learning capabilities, allowing its application
in various tasks such as control, modeling, and maintenance. Secondly, the flexible
structure of NN permits adaptations based on specific operational requirements and
conditions. Despite the earlier proposals of TM and SVM methods, their applica-
tion in the MSWI process did not realize until 2017. Additionally, PCA is employed
for feature extraction in modeling and monitoring, but its practical applications are
relatively limited.

(2) Fuzzy logic (FL) is a well-established method renowned for controlling complex
process systems. Consequently, FL has found application in the MSWI process since
1989. FL emerged as one of the most popular control methods between 2003 and
2005, extending its application to maintenance and modeling in the MSWI process.
However, research on FL has gradually diminished in recent years, likely influenced
by the emergence of NN and other methods. In response to this trend, researchers
have introduced the fuzzy neural network (FNN) method by seamlessly combining
FL and NN.

(3) PSO is a form of evolutionary algorithm categorized under metaheuristic methods.
These methods demonstrate proficiency in searching for optimal parameters for
models and controllers of the MSWI process. However, the application scope of
metaheuristic methods is constrained by factors such as randomness and time cost.

(4) Deep learning (DL) was developed in 2006, rendering it relatively more novel com-
pared to other methods. The applications of the DL method in the MSWI process
were concentrated in 2021 and 2022. It is anticipated to undergo rapid development
in future studies.
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Neural network (NN): A15. (RBFNN)-Modeling-2022, [32] Tree-based model (TM): Particle swarm optimization (PSO):
A1. Control-1993, [33] A16. (T-S FNN)-Modeling-2022, [34] D1. (RF)-Modeling-2017, [35] F1. Modeling-2021, [36]

A2. Modeling-2000, [37] A17. (MNN)-Modeling-2022, [38] D2. (RF)-Maintenance-2019, [39] F2. Control-2018, [40]
A3. Modeling-2004, [41] Support vector machine (SVM): D3. (RF+GBDT)-Modeling-2020, [42] F3. Optimization-2021, [43]

A4. Maintenance-2008, [44] B1. Modeling-2017, [35] D4. (RF)-Modeling-2020, [45] Differential evolution (DE):
A5. (RBFNN)-Modeling-2011, [46] B2. Modeling-2017, [47] D5. (RF+GBDT)-Modeling-2021, [48] G1. Optimization-2005, [49]

A6. Modeling-2013, [50] B3. (LS-SVM)-Modeling-2018, [51] Fuzzy logic (FL): G2. Control-2006, [52]
A7. Maintenance-2015, [53] B4. Modeling-2022, [54] E1. Control-1989, [55] Deeping learning (DL):

A8. Modeling-2016, [56] B5. (LS-SVM)-Modeling-2023, [57] E2. Control-1991, [58] H1. (DBN)-Modeling-2020, [59]
A9. (FNN)-Modeling-2020, [60] Principal component analysis (PCA): E3. Maintenance-1994, [61] H2. (Yolov5)-Modeling-2021, [62]

A10. (MNN)-Modeling-2020, [63] C1. Maintenance-2008, [64] E4. Control-2003, [65] H4. (DFR-clfc)-Modeling-2021, [66]
A11. Modeling-2021, [67] C2. Maintenance-2011, [28] E5. Control-2004, [68] H5. (IDFR)-Modeling-2022, [13]
A12. Modeling-2021, [69] C3. Modeling-2021, [70] E6. Control-2005, [71] H7. (GAN)-Maintenance-2022, [72]

A13. (MNN)-Modeling-2021, [25] C4. Modeling-2022, [32] E7. Control-2008, [73]
A14. (RWNN)-Maintenance-2021, [74] C5. Modeling-2022, [54] E8. (ANFIS)-Modeling-2016, [56]

3. AI Application Research in Modelling of MSWI Process

As a typical process industry, the MSWI process displays strong nonlinearity and
coupling, involving numerous stages and variables. To precisely depict the AI application in
the modeling of the MSWI process, this study categorizes it into two main areas: modeling
for the combustion process and operational indices.

3.1. Modeling for Combustion Process

Typically, complex industrial processes use historical data to construct models for
controlled objects, validating intelligent control algorithms [75–78]. This subsection is
further divided into two parts, namely key controlled variables and auxiliary variables.

3.1.1. Key Controlled Variables

Key controlled variables in the combustion process encompass furnace temperature
(FT), flue gas oxygen content (FGOC), steam flow (SF), and combustion line position (CLP),
which refers to the position where the end of MSW becomes ash [79], et al.

(1) Multi-input single-output (MISO) modeling

FT is typically measured using a thermocouple, serving as a vital parameter to char-
acterize the stability of the combustion status and directly influencing pollutant emis-
sions [50,80]. The establishment of a controlled FT model is a crucial prerequisite for
achieving stable control and validating algorithms [46,81]. Existing studies on data-driven
models include multimodel intelligent combination [82], T-S fuzzy neural network [60],
and least squares-support vector regression (LS-SVR) [57]. However, these studies mostly
focused on a single operating condition within a narrow range, highlighting the need for
improvement in their adaptability.

FGOC refers to the coefficient of excess air, which can characterize the combustion
status to a certain extent [83]. Measuring points for FGOC are typically installed at the outlet
of the waste heat boiler (Flue Gas1) and the chimney (Flue Gas3). Sun et al. [70] proposed
a weighted PCA and an improved long short-term memory network (LSTM) strategy for
constructing a prediction model at the Flue Gas3 location, but further improvement is
needed in modeling accuracy.

SF determines the recovery efficiency of the waste heat boiler and the power generation
of the steam turbine [67]. Studies on predicting models for SF include: Gianto-Massi et al. [46]
adopted a radial basis function (RBF) neural network based on adaptive Kalman filter param-
eter updating. Sun et al. [32] used RBF based on the average influence value algorithm for
feature selection. Yang et al. [84] employed the LSTM algorithm, among others.

For CLP, Miyamoto et al. [85] proposed a quantitative method based on process
data and flame images. However, research on constructing the mapping model between
manipulated variables and CLP has not been reported.

Unfortunately, the aforementioned studies all employed data-driven methods to
construct MISO soft sensing or prediction models, which are not control-oriented models
for controlled objects. Consequently, it is challenging to support the research of optimal
control algorithms.
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(2) Multi-input multi-output (MIMO) modeling

As a typical MIMO system, the coupling between manipulated and controlled vari-
ables in the combustion process is significant. Leskens et al. [86] constructed an ARX model
for FGOC and SF. Furthermore, for FT, FGOC, and SF, Chen et al. [36] constructed a cascade
transfer function model based on adaptive weight PSO; Ding et al. [34] built a T-S fuzzy
neural network model; and Wang et al. [48] built a hybrid ensemble model of random
forest (RF) and gradient boosting decision tree (GBDT), whose strategy diagram is shown
in Figure 7.
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The studies mentioned above support research in optimal control; however, they
encounter challenges such as poor modeling accuracy and an unresolved issue regarding
the model’s adaptability under various operating conditions.

In summary, the combustion process exhibits nonlinear and strong coupling charac-
teristics. Building upon existing studies of other industrial processes [87,88], there is a
need for in-depth research on the MIMO-controlled object model of the MSWI process,
particularly focusing on its adaptability to complex operating conditions.

3.1.2. Auxiliary Variables

The stability of the combustion process is influenced by numerous auxiliary variables.
However, this study specifically focuses on the calorific value of MSW and the thickness of
the MSW layer.

(1) Calorific value of MSW (CVMSW)

The CVMSW is a crucial factor in the combustion process. It directly influences the
selection of manipulated strategies, including decisions on whether to add auxiliary fuel
and in what quantity. Additionally, it impacts the operation, maintenance, management,
and economic benefits of enterprises [89,90]. In addressing the challenge of direct detec-
tion difficulty, Chen [91] and Zeng et al. [92] employed the heat balance mechanism for
estimation. Kessel et al. [93] initially constructed a soft sensing model based on process
data. Subsequently, various data-driven models based on back propagation neural network
(BPNN) [56,94–97], L-M backpropagation neural network [98], RBF [56], adaptive network-
based fuzzy inference system (ANFIS) [56], FNN [69], and others have been successively
introduced. Non-neural network soft sensing models encompass SVM [35], LS-SVM [51],
and RF [35], among others. Additionally, You et al. [35] conducted a comparison of artifi-
cial neural network (ANN), ANFIS, SVM, and RF, with the results indicating that ANFIS
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exhibited the best performance, followed by RF, while ANN performed less effectively.
Recently, Xie et al. [62] introduced a real-time soft sensing model for calorific value based
on deep learning and image recognition. Unfortunately, the truth samples used to construct
a soft sensing model for the calorific value of MSW present challenges, including high
acquisition costs, sparse samples, and a limited range of operating conditions. Combining
the characteristics of modeling data is necessary to enhance generalization performance.

(2) Thickness of the MSW layer (TMSWL)

The TMSWL undergoes dynamic changes throughout the combustion process and is
closely related to the calorific value of MSW and SF. Therefore, it can also be considered as
a controlled variable. Nuclear instruments are employed for direct detection, but they pose
challenges such as high costs, complicated maintenance, and limited practicality. Given
the aforementioned challenges in obtaining truth samples, acquiring soft sensing models
mainly relies on indirect calculations using data such as air pressure, air volume, negative
pressure, and grate area, considering the perspective of physical properties [99,100]. Hence,
achieving more accurate and economical real-time detection methods needs further study.

The modeling research studies on the combustion process are summarized in Table 1.

Table 1. Summary of modeling research studies on the combustion process.

Category Object Technology Benefit Year Literature

Key controlled variables
modeling

FT

Multimodel intelligent
combination

♦ Based on the decision tree C4.5, the
algorithm can be selected for different
datasets to build an ensemble model to
improve the accuracy.

2019 [82]

T-S Fuzzy neural
network

♦ The correlation between FT and input
variables is obtained by using the internal
weight of the neural network.

2020 [60]

Least squares-support
vector regression

♦ Based on the principle of minimizing
structural risk, the generalization ability
and robustness are improved, and the
over-fitting problem is avoided.

2023 [57]

FGOC Long short-term
memory network

♦ The PSO algorithm is used to optimize
the network hyperparameters to improve
the model accuracy.

2021 [70]

SF

Radial basis function
networks

♦ The minimum resource allocation
network technology is combined with the
adaptive extended Kalman filter to
update all the parameters of the network,
so as to serve the MPC.

2011 [46]

Radial basis function
networks

♦ The mean impact value algorithm is used
to filter the features, which enhances the
robustness and accuracy while reducing
the model structure.

2022 [32]

Long short-term
memory network

♦ The dynamic update of the model based
on real-time data improves the prediction
accuracy.

2021 [84]

CLP Neural network

♦ Based on the waste quality and quantity
in different incinerator types and
different seasons, an online learning
method is proposed, which can select an
optimized neural network.

♦ The control accuracy of pollutant
emission is improved by using flame
combustion image information.

1996 [85]
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Table 1. Cont.

Category Object Technology Benefit Year Literature

FGOC and
SF System identification

♦ Multiple datasets can be used to improve
the model’s accuracy to adapt to a variety
of working conditions.

2002 [86]

FT, FGOC,
and SF System identification

♦ A cascade structure is designed by
simulating the actual industrial process.

♦ The optimization algorithm is used to
identify the parameters and improve the
accuracy of the model.

2021 [36]

FT, FGOC,
and SF

T-S Fuzzy neural
network

♦ The complementary information between
multiple tasks is used to accurately fit
multiple controlled variables at the same
time, which improves the dynamic
adaptability of the model.

2022 [34]

FT, FGOC,
and SF Decision tree algorithm

♦ The integration of RF and GBDT not only
simplifies the model dimension but also
improves the model accuracy.

2021 [48]

Auxiliary variables
modeling

CVMSW

Estimation of waste heat
balance

♦ The method is simple and easy to
calculate.

2017 [91]

Estimation of waste heat
balance

♦ The variables involved are easy to
monitor and the estimated values can be
calculated in real time.

2019 [92]

Mass balance

♦ It can be directly obtained by online
measurement of the gas components CO2,
H2O, O2, and the H2O in the surrounding
air.

2002 [93]

Back propagation neural
network, Radical basis

function neural network,
and Adaptive neural

fuzzy inference system

♦ The method is simple, easy to implement,
and low-cost.

2016 [56]

Back propagation neural
network

♦ Based on the correlation analysis, the
partial correlation coefficient is obtained,
and then the model is established.
Compared with the multiple linear
regression model, the accuracy is
improved.

2002 [94]

Back propagation neural
network

♦ The accuracy of the model is improved by
determining the network
hyperparameters upon experiments and
analysis.

2003 [95]

Back propagation neural
network

♦ For inaccurate, contradictory, and
erroneous data, the neural network
model has stronger fault tolerance than
the physical component model, and then
obtains higher accuracy results.

2010 [96]

Back propagation neural
network

♦ The genetic algorithm is used to optimize
the network parameters, thereby
improving the accuracy.

2012 [97]

L-M backpropagation
neural network

♦ Based on the element content, the
accurate prediction of the high calorific
value of waste was realized.

2010 [98]

Fuzzy neural network
♦ Based on MI and PSO, the input features

of the model are screened to reduce the
computational complexity of the model.

2021 [69]

Back propagation neural
network, support vector

machine, adaptive
neuro-fuzzy inference
system, and random

forest

♦ Based on expert experience, the calorific
value of waste is classified.

♦ The PSO algorithm is used to optimize
the model parameters, and then a model
with high accuracy is established.

2017 [35]
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Table 1. Cont.

Category Object Technology Benefit Year Literature

Least-square support
vector machine

♦ The genetic algorithm is used to optimize
the model parameters.

♦ The sensitivity analysis experiment was
carried out on the input characteristics.
The results show that the percentage of
carbon has the deepest influence on HHV
prediction.

2018 [51]

Deep learning

♦ It is proposed to establish a waste image
database to support the combination of
image recognition technology and deep
learning to achieve calorific value
prediction.

2021 [62]

TMSWL

Soft sensing model
♦ The parameters such as air pressure,

negative pressure, grate area, air volume
and temperature are used to estimate.

2022 [99]

Soft sensing model
♦ The thickness of the MSW layer is

estimated based on the MSW
composition and grate movement.

2022 [100]

3.2. Modeling for Operational Indices

3.2.1. Environmental Indices Modeling

The indices related to environmental protection encompass numerous variables,
among which particulate matter and emission concentrations of NOx, SO2, HCl, HF,
and CO2 can be detected online through the continuous emission monitoring system
(CEMS). The emission concentration of toxic heavy metals and organic pollutants, such as
dioxin (DXN) and volatile organic compounds (VOCs), is primarily determined through
offline testing conducted in the laboratory [101]. The subsection is divided into two cate-
gories: the prediction model for easily detectable indices and the soft sensing model for
difficult-to-detect indices.

(1) Prediction model for easily detectable indices

Considering the reliability of the CEMS system and the requirement for intelligent
optimal control, it is essential to construct a prediction model for easily detectable indices.

For NOx, Matsumura et al. [102] initially employed system identification to con-
struct a NOx emission model and utilized its output as a feedback signal to control the
amount of NH3 injected. Additionally, Huselstein et al. [103] used continuous-time sys-
tem identification [104] to establish a multitransfer model of NOx emissions with FGOC
and secondary air volume as inputs. They analyzed the effects of manipulated variables,
such as air volume and feed volume, on NOx emissions. Subsequently, many researchers
utilized machine-learning algorithms to build NOx emission prediction models, includ-
ing BPNN [41], RBF [25,63], and LSTM [38]. Nevertheless, practical verification of the
aforementioned models on actual MSWI plants remains to be conducted.

As one of the toxic gases produced by the MSWI process, carbon monoxide (CO) must
be strictly controlled [105]. Additionally, CO is directly related to DXN [59]. The standard
of a half-hour average is generally adopted due to the noticeable spike phenomenon in CO
emission concentration [106]. Zhang et al. [107] proposed a CO emission prediction method
based on reduced-depth features and a long short-term memory (LSTM) optimization
strategy. This method comprises three parts: a particle design for the reduced-depth feature
and LSTM optimization, a fitness function design for the reduced-depth feature and LSTM
optimization, and optimization based on PSO. The strategy diagram is shown in Figure 8.
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The results demonstrate that the machine learning-based prediction models mentioned
above can effectively predict environmental indices in specific scenarios. Unfortunately,
prediction models for particulate matter and acidic gases such as HCl and HF have not
been reported yet [108]. Most of the existing studies have utilized software, such as compu-
tational fluid dynamics, for numerical simulation [109,110], and subsequently provided
support for optimizing process design and analyzing mechanisms. Notably, studies on
carbon emissions from the MSWI process have not been reported.

(2) Soft sensing model for difficulty-to-detect indices

In consideration of environmental indices that cannot be detected online, this study
focuses solely on reviewing DXN, which contributes to the “NIMBY effect” of MSWI
plants [111]. From the perspective of the generation mechanism, DXN reactions, including
formation, decomposition, resynthesis, and adsorption, are distributed throughout the
entire process. These related physical and chemical reactions occur within a short timeframe.
There is a “memory effect” that has not been adequately explained [112]. Obtaining
complete modeling samples is challenging due to the time, labor, and economic costs
associated with on-site sampling and laboratory testing.

DXN concentration is primarily determined through laboratory tests. After collecting
samples at the site to be detected over an extended period, inspectors transport the samples
to the laboratory for testing, ultimately obtaining the DXN concentration at the sampling
time. The detection process is illustrated in Figure 9.
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Clearly, the aforementioned detection process of DXN concentration lacks real-time
capabilities, making it challenging to support the intelligent optimal control of the MSWI
process with dynamic changes in operating conditions. Therefore, establishing a soft sens-
ing model for DXN becomes a popular approach to guide the research on optimal control.

Hasberg et al. [114] established the mapping relationship between flue gas temperature,
CO, and DXN concentration. Chang et al. [115] developed a multiple linear regression
analysis model, indicating a linear mapping relationship between DXN concentration,
combustion chamber temperature, and CO concentration when FGOC was 7%. Building
upon this, a linear mapping model between DXN concentration and flue gas flow, furnace
temperature, and manipulated variables was established. Additionally, Ishikawa et al. [116]
constructed a linear model for DXN concentration with FGOC, proportion of primary air
volume, and total air volume as inputs through regression analysis of actual data. The
aforementioned models face challenges in accurately describing the nonlinear relationship
between their inputs and outputs.

Studies utilizing neural network algorithms include BPNN based on genetic pro-
gramming for parameter identification [117], and BPNN based on the genetic algorithm
to optimize parameters [37]. The studies utilizing the SVR algorithm include SVR based
on the mechanism for feature selection [47] and selective ensemble SVR based on PCA in
terms of subregion extraction and selection of latent features [54]. The studies based on
the decision tree algorithm include a hybrid ensemble based on RF and GBDT [42] and RF
based on sample transfer learning [45]. The feature learning ability of the aforementioned
classical machine-learning model needs further enhancement.

Currently, existing studies primarily concentrate on the DXN concentration model of
the G3 flue gas position, and they exhibit the following common problems: (1) Limited
performance improvement of the model due to sparse samples; (2) Insufficient studies
that integrate MSWI process and DXN mechanism characteristics; (3) Difficulty in fully
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supporting DXN emission reduction control based on the generation mechanism with the
existing models.

In summary, it is essential to conduct in-depth exploration and research on the envi-
ronmental indices for the MSWI process.

3.2.2. Product Indices Modeling

The product indices of the MSWI process are significantly different from those of indus-
trial processes such as mineral processing and petrochemical. The reason is that the MSWI
process lacks commodity attributes [118]. In this study, the product indices of the MSWI
process are determined as fly ash yield, heat reduction rate, and combustion efficiency.

(1) Fly ash yield

The production of fly ash in the MSWI process results from the combustion of MSW,
the generation of particles during desulfurization and deacidification, and the presence
of activated carbon after adsorption of DXN and heavy metals, among other contribu-
tors [119,120]. This fly ash poses a potential threat to the sustainable development of
both human societies and the ecological environment [121]. Given the limitations of air
pollution control devices (APCDs) technology and the increasingly stringent environmental
protection emission policies, coupled with the challenges in effectively controlling the yield
of fly ash, the primary focus of research in both industry and academia is predominantly on
the harmless treatment [122,123] and resource utilization [124,125], among other considera-
tions [126]. Consequently, addressing the complex issues related to modeling, prediction,
and intelligent optimal control remains a significant challenge.

(2) Heat reduction rate (HRR)

The HRR is defined as the percentage reduction in slag quality after burning compared
to its original state. This index plays a crucial role in assessing the incineration effectiveness
and the reduction rate of MSW capacity [127]. According to relevant national standards,
the upper limit for the HRR is set at 5%. Currently, measurement involves an offline
testing mode, encompassing on-site sampling, transportation, and sample delivery, as
well as weighing, drying, burning, cooling, and subsequent laboratory analysis [128].
To address the challenges of offline testing, Luo et al. [129] developed online detection
equipment. However, the harsh working environment posed difficulties in maintaining
stable operations over an extended period. Another approach by Sun et al. [130] involved
associating the appearance characteristics of slag with its heat reduction rate, although a
corresponding mapping model was not constructed. While these studies present initial
exploratory ideas for reliable online detection, further research is needed to establish a
robust and comprehensive methodology.

As of now, practical industrial applications heavily depend on expert experience to
regulate the HRR. Common strategies involve extending the combustion time on the grate
and implementing oxygen-enriched combustion [131,132].

(3) Combustion efficiency

Combustion efficiency is defined as the ratio of the heat produced during fuel com-
bustion to the low calorific value released by complete fuel combustion under adiabatic
conditions. Unfortunately, there is no existing research on this aspect. The Chinese standard
for pollutant control in hazardous waste incineration [(GB 18484-2020)] [133] defines it as
the percentage of CO2 concentration in the flue exhaust gas to the sum of CO2 and CO con-
centration. Previous studies on coal combustion and cocombustion of other fuels [134,135]
have demonstrated that combustion efficiency serves as a quantitative measure of com-
bustion status. Generally, higher combustion efficiency is deemed favorable. However, it
may conflict with CO concentration and carbon reduction, underscoring the necessity for
multi-objective optimization research.
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In summary, there are currently no relevant reports on product indices, hindering
optimal control research in the field of the MSWI process. Theoretically, optimizing control
over product indices has the potential to reduce the operating costs of MSWI plants.

3.2.3. Economic Indices Modeling

The economic viability of an MSWI plant is predominantly driven by MSW processing
fees and on-site power generation. Given the inherent environmental characteristics of the
MSWI process, its rated capacity and turbine power generation exhibit relative inflexibility.
Consequently, maintaining these parameters within optimal limits is crucial to ensure
maximum returns. Typically, the power generation of an MSWI plant ranges from 0.3 to
0.7 MWh/t [136]. Under normal operating conditions, strategies aimed at maximizing
power generation include: (1) Reducing processing capacity when the calorific value of
MSW is high; (2) Increasing processing capacity when the calorific value is moderate;
(3) Significantly enhancing MSW processing capacity when the calorific value is low. How-
ever, due to process constraints, power generation efficiency must decrease as MSW process-
ing capacity increases. Currently, both heat exchange efficiency and combustion efficiency
witness an increase. To optimize energy utilization, additional heat energy is directed
towards heating primary and secondary air, as well as other stages requiring heat energy.
Consequently, the mentioned economic indices necessitate a redefinition in research focus-
ing on optimal control for the MSWI process. Presently, there are no documented studies
on modeling and prediction in economic indices.

The modeling research studies on operational indices are summarized in Table 2.

Table 2. Summary of modeling research studies on operational indices.

Category Object Technology Benefit Year Literature

Environmental
indices

NOx

System identification ♦ It can not only compensate the delay time of the detection device,
but also the whole process.

1998 [102]

System identification ♦ A continuous-time MISO reduced-order model is constructed. 2002 [103]

Back propagation neural
network

♦ The number of hidden layer nodes is determined by dynamic
construction method.

2004 [41]

Radial basis function
neural network

♦ The complex task is decomposed into submodels to obtain a more
accurate prediction model.

2020 [63]

Radial basis function
neural network

♦ The self-organizing and competitive integration strategies are
used to construct the submodel to enhance the generalization
performance and efficiency.

2021 [25]

Long short-term
memory

♦ A cooperative decision strategy is designed to ensure the
generalization performance of modular model.

2023 [38]

CO Long short-term
memory

♦ The PSO algorithm is used to adaptively reduce depth features
and hyperparameters.

2024 [107]

DXN

Numerical modeling ♦ The flow-and temperature distribution and the residence-time
behavior are obtained.

1989 [114]

Linear regression ♦ Dummy variables are included to further provide the selective
capability of different process.

1995 [115]

Linear regression ♦ Based on the static analysis of the model, suggestions for
minimizing DXN concentration are given.

1997 [116]

Back propagation neural
network

♦ The genetic programming model is used to screen out nonlinear
models as well as identify the system parameters simultaneously
in a highly complex system based on a small set of samples.

2000 [117]
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Table 2. Cont.

Category Object Technology Benefit Year Literature

Back propagation neural
network

♦ The genetic algorithm is used to optimize the parameters to
improve the accuracy of the model.

2008 [37]

Support vector
regression

♦ The inputs of the model are determined based on the mechanism
and the correlation analysis of working conditions and
conventional pollutants.

2017 [47]

Least squares-support
vector machine

♦ The optimal selection algorithm based on branch and bound, and
the information entropy weighting algorithm based on prediction
error are used to adaptively select and weigh the candidate
submodels.

2022 [54]

Random forest and
gradient boosting

decision tree

♦ The RF is used to reduce the model dimension, and then the
GBDT algorithm is used to improve the model accuracy.

2020 [42]

Random forest ♦ The prediction errors are used to cyclically calculate the weight of
the source and target domain samples.

2020 [45]

Product index HRR

Equipment ♦ The automatic measurement is realized with less manual
intervention, and the analysis efficiency is improved.

2021 [129]

Image recognition
♦ Based on the slag image, a reference card of slag color gradient

marked with heat reduction rate is generated to guide related
operations.

2022 [130]

4. AI Application Research in Control of MSWI Process

Research indicates that the linchpin for ensuring the stable operation of the entire
MSWI process resides in the incinerator [137]. The effective control of the combustion
process, characterized by multiple variables, strong coupling, and nonlinearity, has peren-
nially posed a central challenge in both industrial application and academic research. The
ensuing review is structured around the dual perspectives of on-site and off-site control,
to demarcate the boundary more clearly between industrial application and academic
research and foster collaboration to address existing gaps [138].

4.1. Control in On-Site

In general, the automatic combustion control (ACC) system can achieve the automatic
control of the combustion process under stable calorific value conditions of MSW and
normal working circumstances [33]. However, significant manual intervention is required
during abnormal conditions, including fluctuations in composition and calorific value
due to insufficient mixed fermentation of MSW, steam flow falling below the rated value
resulting in furnace temperature decreases, steam flow surpassing the rated value causing
furnace temperature increases, and maintenance cycles of incineration equipment. Given
these challenges, the industry has undertaken research to enhance the system.

4.1.1. Research of ACC System

Schuler et al. [139] employed an infrared thermal imager to detect furnace tempera-
ture and its fluctuation information, enhancing rapid response in the fine-tuning process.
Miyamoto et al. [140] used a neural network to construct a combustion status recognition
model, utilizing its output as feedback information for the ACC system, resulting in an
effective reduction in CO concentration. Zipser et al. [141] detected temperature infor-
mation of MSW, flue gas, and flame through infrared image analysis to aid combustion
control. To address fluctuations in furnace negative pressure caused by grate turnover,
Zeng et al. [142] implemented a control scheme based on a filtering algorithm to ensure
the stability of furnace temperature. For optimal combustion, Xu et al. [143] designed a
closed-loop control strategy for steam flow to adapt to changes in MSW calorific value,
achieving prolonged stable operation. Wang et al. [144] introduced denitrification, lime
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slurry, emission factors, and other elements to the ACC system, achieving preliminary
localization improvement.

4.1.2. Research of Non-ACC System

Concerning furnace temperature, Ono et al. [55] applied fuzzy rule control to an
MSWI plant in Japan. Shen et al. [65] summarized expert experience as fuzzy control rules
and implemented them in an MSWI plant in Shenzhen. Carrasco et al. [145] developed a
combustion control system based on expert rules for an MSWI plant in Spain. However,
rule-based control systems face challenges in maintaining stable operation in the presence
of frequent fluctuations in operating conditions.

Despite the extended use of the introduced ACC system in developing countries
over many years, MSWI plants still operate at a fundamental control level. Particularly in
instances of damage to detection instruments and equipment, there is a greater reliance
on manual control modes. Clearly, this impedes the achievement of long-term stable and
optimal operation.

The research studies on control in on-site are summarized in Table 3.

Table 3. Summary of research studies on control in on-site.

Category Object Technology Benefit Year Literature

ACC system

FT

Thermography-
assisted

combustion control
system

♦ It can quickly obtain the
temperature distribution in the
furnace to reduce the response
time, thereby reducing the
fluctuation of parameters.

1994 [139]

Whole
process

Fuzzy system and
Neural network

♦ Based on process data and
flame images, a combustion
state recognition model is
established to assist ACC
system decision making.

1998 [140]

Whole
process

Infrared image
analysis

instrument

♦ On-line acquisition and analysis
of combustion images are
realized.

2006 [141]

Negative
pressure Expert experience

♦ While improving the negative
pressure monitoring of the
furnace to suppress the
fluctuation of the negative
pressure control system, the
ACC scheme of the leachate
recirculation flow control
system is designed.

2004 [142]

Whole
process Expert experience ♦ The controller performance

requirements are low. 2017 [143]

Pollutant Expert experience

♦ The pollution emission data are
added to the ACC system to
intervene in advance to reduce
emissions.

2019 [144]
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Table 3. Cont.

Category Object Technology Benefit Year Literature

Non-ACC system

Whole
process Fuzzy logic

♦ The fuzzy logic rules of
monitoring and control are
developed through expert
experience.

1989 [55]

FT Fuzzy logic
♦ The adaptability of the

incinerator to the calorific value
of MSW is improved.

2003 [65]

FT Fuzzy logic
♦ Knowledge is modularized in

the form of rules and events to
deal with different situations.

2006 [145]

4.2. Control in Off-Site

The academic community has conducted numerous studies on key controlled vari-
ables from both single-input and single-output (SISO) and multi-input and multi-output
(MIMO) perspectives.

4.2.1. SISO Control

(1) Furnace temperature (FT)

Given the challenges faced by the introduced ACC system in China, researchers have
undertaken extensive studies to address these issues. In the domain of fuzzy control,
Qian et al. [33] compensated feeder control based on fuzzy rules using the MSW water
content estimation model. Shen et al. [71] introduced a fuzzy rule controller with a self-
tuning factor, demonstrating its capability to control furnace temperature stably. Based on
Ref. [65], Chang et al. [146] designed a fuzzy rule controller with an adaptive weighted
factor, highlighting its effective control. Considering practical issues such as real-time
requirements and computational memory consumption, Wang et al. [68] proposed a hierar-
chical fuzzy rule control strategy with an optimized quantization factor and self-tuning
scaling factor. A notable feature is that the correction factor can be selected based on
the operating condition. Employing traditional PID control, Dai et al. [73] introduced
a fuzzy adaptive PID controller to enhance the system’s anti-interference ability, flexi-
bility, and adaptability. He et al. [147] proposed an RBF-based PID parameter dynamic
adjustment strategy to suppress disturbances. Additionally, Ni [148], Xiao [149], and
Wu [150] et al. introduced a human-simulated intelligent controller (HSIC), simulating
the cognitive mechanism and operational behavior of domain experts. Building on this,
Wu et al. [40] proposed a PSO-based HSIC temperature controller.

The studies above have yielded satisfactory results, but the quantity of controlled
variables in these studies is typically singular. This poses challenges in addressing the
strong coupling characteristics inherent in the MSWI process.

(2) Flue gas oxygen content (FGOC)

Sun et al. [151] introduced an RBF-based model predictive controller. After conducting
a stability analysis of the control system, its effectiveness was verified through simulation.

(3) Steam flow (SF)

Chen et al. [152] and Yang et al. [153] employed a fuzzy rule controller with grate speed
as the manipulated variable, demonstrating a significant reduction in fluctuations caused by
abnormal operating conditions. Watanabe et al. [154] adopted a feedback control strategy
with a fixed time window to achieve stability control. Furthermore, Falconi et al. [155]
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introduced a stable closed-loop control system based on a linear quadratic regulator, verifying
its effectiveness through simulation experiments.

4.2.2. MIMO Control

(1) Double input and double output

For the simultaneous control of steam flow and flue gas oxygen content, Leskens et al. [26]
introduced a linear model predictive control (LMPC) strategy, demonstrating that the errors in
both the manipulated and controlled variables were superior to those in traditional combustion
control systems. However, the LMPC strategy encounters challenges when confronted with
strong nonlinear problems. In response, Leskens et al. [156] presented a nonlinear model
predictive control (NMPC) strategy aimed at estimating optimal air and material distribution
across the rolling time domain. Additionally, they [157] introduced a PID control strategy
that integrates components of the two loops, showcasing effective enhancement in tracking
characteristics and a noteworthy improvement in the economic benefits of MSWI plants. In
a similar vein, Ding et al. [158] proposed a self-organizing fuzzy neural network controller
based on multitask learning for simultaneous control of furnace temperature and flue gas
oxygen content. Nevertheless, its applicability is constrained to a single operational condition.

(2) Triple input and triple output

For the concurrent regulation of furnace temperature, steam flow, and flue gas oxygen
content, Ding et al. [159] introduced a multiloop PID controller utilizing a quasidiagonal
recurrent neural network. This controller exhibits the capability to dynamically adjust its
parameters in response to error signals. Moreover, Wang et al. [160] presented a multiple
input multiple output control method founded on a single neuron adaptive PID. The
accuracy and efficacy of this proposed method were validated through the analysis of real
industrial data. Figure 10 illustrates the schematic representation of the control strategy.
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Nevertheless, the applicability of the aforementioned studies is constrained to specific
operational conditions, highlighting the imperative to augment their universality.

These studies underscore the divergence in research focus between industrial applica-
tions and academic research. Clearly, employing AI for on-site or closed-loop control of
the MSWI process not only addresses the issue of operating condition fluctuations arising
from manual control modes and the expertise of domain experts but also contributes to
cost reduction, enhanced energy efficiency, and reduced pollution emissions. Consequently,
AI-assisted control is poised to become the prevailing trend in future research. However,
the current AI algorithms researched face challenges in direct application due to the closure
of the DCS system and safety requirements within MSWI enterprises. Therefore, the es-
tablishment of a hardware-in-loop simulation experimental platform is deemed necessary
for testing and validating AI algorithms in industrial settings [138]. Clearly, the challenge
lies in conducting more in-depth academic research in terms of application to enhance
its universality and applicability to the actual industry, posing a complex problem that
requires further exploration.

Table 4 provides a summary of research findings concerning control in off-site.

Table 4. Summary of research studies about control in off-site.

Category Object Technology Benefit Year Literature

SISO

FT Fuzzy logic ♦ The real-time estimation of wastewater content is
realized to compensate the controller action error.

1993 [33]

FT Fuzzy logic
♦ The control rule factor optimized by the correction

algorithm improves the ability of the control system to
interference responds.

2005 [71]

FT Fuzzy logic

♦ Based on summarizing the control rules according to the
weight variation law of temperature deviation and
temperature deviation change rate, the adaptive
weighting factor of input variables is introduced to
improve the adaptive ability of the control system.

2004 [146]

FT Fuzzy logic

♦ To deal with the problem of rule explosion, a hierarchical
fuzzy controller is proposed, and the online learning and
correction of control parameters and control rules are
realized.

2004 [68]

FT Fuzzy logic ♦ The fuzzy logic is used to automatically adjust the PID
parameters, thereby improving the adaptability.

2008 [73]

FT Radial basic function,
and Event-trigger

♦ The online adjustment of PID controller parameters is
realized based on RBF.

♦ The event triggering method is used to reduce the
update frequency of the controller.

2022 [147]

FT Human-simulated
intelligent controller

♦ The control strategy is closer to the actual needs of the
plant.

2013 [148]

FT Human-simulated
intelligent controller

♦ The overshoot can be effectively suppressed for
uncertain disturbances.

2015 [149]

FT Human-simulated
intelligent controller ♦ No need for accurate theoretical model support. 2016 [150]

FT Human-simulated
intelligent controller ♦ PSO is used to tune the controller parameters. 2018 [40]

FGOC
Radial basis function,

Model predictive
control

♦ The adaptive fuzzy C-means is used to determine the
network parameters.

♦ The prediction model parameters are adjusted online by
an adaptive update strategy.

2023 [151]
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Table 4. Cont.

Category Object Technology Benefit Year Literature

SF Fuzzy logic ♦ It has the potential of about a 10% increase in the
capacity of MSW processing and electricity generation.

1995 [152]

SF Fuzzy logic ♦ The controller can be easily and simply deployed.
♦ It can effectively suppress the uncertainty disturbance.

2000 [153]

SF PI Controller ♦ A periodic control strategy is proposed for the feed
characteristics of the incinerator.

2003 [154]

SF Linear quadratic
regulator

♦ A full-state closed-loop feedback loop with inside loop is
designed.

2020 [155]

MIMO

SF, and
FGOC

Linear model
predictive control

♦ It can effectively suppress the influence of large
disturbance on the control system.

2005 [26]

SF, and
FGOC

Nonlinear model
predictive control

♦ A moving horizon estimator is used to estimate the states
and disturbances.

2005 [156]

SF, and
FGOC PID controller ♦ Add disturbance rejection loops to improve controller

performance.
2010 [157]

FT, and
FGOC

Fuzzy neural
network

♦ The controller structure is self-organized and adjusted by
calculating the similarity of neurons and multitask
learning ability.

2023 [158]

FT, SF, and
FGOC PID controller ♦ A quasidiagonal recurrent neural network is used to

adjust the control parameters automatically.
2022 [159]

FT, SF, and
FGOC

Single neuron
adaptive PID

controller

♦ A multivariable serial control structure is designed based
on the process flow.

2023 [160]

5. AI Application Research in Optimization of MSWI Process

The optimization of key controlled variables (FT, FGOC, SF, CLP, etc.) in the MSWI
process has received limited attention in the existing literature. Prevailing studies predomi-
nantly focus on the setpoints of manipulated variables associated with “air distribution”
(AD) and “material distribution” (MD) [161]. Smart optimal control of the MSWI process
necessitates the simultaneous minimization of exhaust emissions, material consumption,
and combustion efficiency while optimizing other pertinent product indices. This must be
achieved within the constraints of various equality and inequality constraints, necessitating
the utilization of intelligent optimization algorithms to address multi-objective conflicts.

Within the realm of air distribution, Xia et al. [161] applied case-based reasoning (CBR)
informed by domain expert knowledge to intelligently determine setpoints. In a similar
vein, Ding et al. [162] intelligently adjusted the secondary air volume, achieving optimal
settings. The core concept of CBR-based intelligent setting involves the reuse of expert ex-
perience, offering conformity to empirical cognition. However, it is limited in range, posing
challenges in finding true optimal setpoints. Recent efforts to optimize primary/secondary
air volume setpoints introduced a multi-objective PSO algorithm [43] and a multicondition
operational optimization with adaptive knowledge transfer algorithm [27]. The algorithm,
validated with industrial field data, demonstrated robust global optimization ability.

Concerning material distribution, Anderson et al. [49] employed a multi-objective
evolutionary algorithm to ascertain optimal setpoints for feed rate, effectively achieving
the goals of maximizing the feed rate and minimizing ash carbon content.

While these studies yield positive outcomes under single operating conditions, chal-
lenges persist, such as adaptability to multiple operating conditions, consideration of
multiple objectives, and integration of multimodal data.
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Studies addressing the optimization of controlled variables (CV) are limited.
Huang et al. [163] utilized the multi-objective competitive swarm optimization algorithm
to optimize furnace temperature and flue gas oxygen content, achieving multi-objective
conflict optimization for NOx and combustion efficiency. However, this study focused
solely on providing setpoints for key controlled variables without considering the controller,
necessitating further exploration in this research area.

Optimal research in the MSWI process presents numerous challenging problems,
including determining optimal setpoints for multiconflicting objectives, managing multiple
controlled variables, and optimizing whole process operational indices using multimodal
data-driven approaches.

The optimization research studies are summarized in Table 5.

Table 5. Summary of optimization research studies.

Object Technology Benefit Year Literature

AD

Case-based
reasoning

♦ The effectiveness of the proposed method is verified in the
simulation platform.

2020 [161]

Case-based
reasoning,

random weight
neuron network,
and radial basis

function

♦ The optimal setting of secondary air volume is realized by
integrating multiple intelligent algorithms.

2022 [162]

Multi-objective
particle swarm
optimization

♦ Based on the population state, the corresponding update
methods are designed to improve the problem of falling into
local optimum.

2023 [43]

Multi-objective
particle swarm
optimization

♦ An adaptive knowledge transfer strategy is designed to
improve optimization efficiency.

2023 [27]

MD
Multi-objective

genetic
algorithm

♦ FLIC is used to generate model training data.
♦ It has strong expansibility and portability.

2005 [49]

CV

Multi-objective
competitive

swarm
optimization

♦ A comprehensive nondominated evaluation system and
improved competitive mechanism are proposed.

♦ An adaptive scheme combined with multistrategy learning is
proposed.

2024 [163]

6. AI Application Research in Maintenance of MSWI Process

Domain experts rely on DCS monitoring of process data, industrial camera observa-
tions of furnace flames, and on-site information gathered through regular manual inspec-
tions to diagnose faults in MSWI plants. However, several persistent problems hinder this
diagnostic process:

(1) The information within the DCS system undergoes frequent changes. The alarm
function for abnormal operating conditions is solely triggered based on whether
the collected data exceed a limit value, resulting in false alarms and complicating
issue tracing.

(2) The high temperature and intense light during the combustion process, coupled with
molten material production, impede the industrial camera’s ability to capture a clear
flame picture. This poses challenges for operating engineers in making informed
decisions, potentially leading to fluctuations in operating conditions.

(3) In high-temperature and noisy environments, inspection engineers can only assess the
normality of equipment by listening, posing challenges in ensuring optimal operation.

The fault diagnosis mode conducted by domain experts faces challenges such as
suboptimality, delay, and subjectivity, making it difficult to ensure the safety, stability, and
optimal operation of the MSWI process under these circumstances.
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6.1. Recognition of Flame Status

Flame features, encompassing the combustion line position and essential physical
attributes such as area, height, and brightness, play a pivotal role in evaluating the flame
status within the combustion process [164]. These features directly influence the compre-
hension of phenomena like partial burning, local burning through, coking, ash deposition,
and corrosion occurring in the furnace [165]. Researchers have devised various approaches
for recognizing the combustion status based on the combustion line position and other
flame characteristics. Duan et al. [39] employed a combustion status recognition model
that integrates multiscale color moment features and the RF algorithm. Guo et al. [72]
introduced a strategy for combustion status recognition relying on the hybrid enhancement
of generative adversarial networks (GANs). Pan et al. [166] proposed an innovative online
recognition method using deep forest classification (DFC) based on convolutional multi-
layer feature fusion. The strategy diagram for Pan et al.’s method is illustrated in Figure 11.
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Han et al. [167] proposed a recognition model for unknown flame combustion status
using a semisupervised approach. Sun et al. [168] aimed to uncover the relationship be-
tween combustion flame images and temperature, reconstructing the temperature field
in each region of the flame using the acoustic emission temperature detection method.
Zheng et al. [169] combined the Newton iteration method and Hottel emissivity model
to establish a relationship model between multispectral flame images and temperature.
Yan [170] and He [171] et al. employed spectrometers to detect the flame and constructed
mapping models between its characteristics and the concentration of alkaline metals emit-
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ted. Zhou et al. [172] conducted three-dimensional visualization modeling of flame tem-
perature based on Monte Carlo and multi-imaging angles. Notably, most of these studies
relied on additional physical equipment and did not consider the recognition of combustion
status based on multimodal data.

In summary, there is a pressing need for further research on detecting combustion
status based on multimodal data and performing fusion verification.

6.2. Qualitative Detection of Operational Fault

Since the 1990s, researchers have delved into the application of computer and AI
technology in the fault diagnosis of the MSWI process to aid domain experts in decision
making. Ono et al. [61] developed a fuzzy expert fault reasoning system for the incineration
and boiler system, capable of conducting symptom analysis, early warning, fault alarm,
analysis, and recognition within and outside the limits of the DCS system. Subsequently,
Chen et al. [173] performed online diagnosis of abnormal exhaust emission and steam
flow using cluster analysis, neural networks, and Monte Carlo statistics. Addressing
issues like MSW partial burning, through poor slag discharge, and coking in the furnace,
Tao et al. [174] constructed a fault tree based on process analysis and historical experience.
They employed a rule reasoning expert system for detection, achieving an experimentally
validated accuracy rate of 90%. Concurrently, Tao et al. [44] employed a BPNN modeling
strategy for diagnosis. For the recognition of combustion status, Zhou et al. [53] established
a BPNN-based diagnostic model with a high accuracy rate of 99%. However, challenges
such as overfitting and high requirements for training samples were noted. Additionally,
Ding et al. [74] built a CBR model based on RWNN similarity retrieval for diagnosing
superheater and economizer leakage, ash deposition, slagging in horizontal flues, as well
as coking and poor slag discharge in the furnace. Experimental results demonstrated
satisfactory performance. However, these studies primarily focus on constructing classifier
models capable of determining whether a fault occurs, lacking quantification or localization
of the fault.

6.3. Quantitative Detection of Operational Fault

Multivariate statistical process monitoring (MSPM) technology, leveraging industrial
data for quantitative fault detection, has garnered extensive attention from both industry
and academia [175–177]. The basic strategy involves establishing a latent structure model
using normal operating condition data. Subsequently, high-dimensional variables are
projected into a low-dimensional space, and statistical indices such as squared prediction
and Hotelling’s T2 are compared to determine whether a fault occurs. Finally, fault location
is performed through data reconstruction. Zhao et al. [64] were among the pioneers in
employing PCA and rule reasoning for the quantitative detection of incinerator faults,
demonstrating a significant reduction in the false positive rate associated with faults.
Similarly, Tavares et al. [28] conducted a comparative analysis between PCA-based and
PLS-based fault diagnosis approaches. The results not only indicated superior overall
performance but also highlighted the effectiveness of various statistical indices in precisely
locating faults. It is noteworthy that the existing literature on fault quantitative detection
in MSWI processes is limited and predominantly relies on the linear PCA/PLS method.
The dynamic, nonlinear, multiscale, and multimodal characteristics inherent in the MSWI
process present novel challenges to both theoretical and applied research in MSPM.

The maintenance research studies are summarized in Table 6.
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Table 6. Summary of maintenance research studies.

Object Technology Benefit Year Literature

Recognition of flame
status

Multiscale color moment
features and random forest

♦ Certain interpretability.
♦ Combining local and global features.

2019 [39]

Generative adversarial
network

♦ Increasing the number of modeling
samples.

2022 [72]

DFC based on convolutional
multilayer feature fusion

♦ Developing an online combustion
status-recognition platform.

♦ Integrating deep fusion features with the
DFC.

2023 [166]

Qualitative detection of
operational fault

Fuzzy expert system ♦ Good visualization.
♦ Strong practicality.

1994 [61]

Cluster analysis, artificial
neural networks, and Monte

Carlo simulation

♦ Accurate state monitoring for steam
generation and NOx control.

2008 [173]

Fault tree and expert system ♦ Continued updates. 2008 [174]

Back propagation neural
network ♦ Integrating multiple neural networks. 2008 [44]

Back propagation neural
network ♦ High accuracy. 2015 [53]

Radom weight neuro
network and case-based

reasoning

♦ Reduction in the detection time
complexity.

2021 [74]

Quantitative detection
of operational fault

Principal component
analysis

♦ Earlier than human operators.
♦ Reducing the misreporting rate.

2008 [64]

Principal component
analysis and partial least

square

♦ Good performance in fault detection and
isolation.

2011 [28]

7. Outlook on AI Application for MSWI Process

The integration of AI with a specific industrial domain is referred to as industrial AI
technology. At its core, this technology aims to facilitate innovative applications such as
high-performance controllers, intelligent operational decision making, and intelligent algo-
rithm updating [3]. Its primary objective is to seamlessly adapt to the intricate and dynamic
industrial environment to accomplish diverse operational goals and tasks [178]. Achieving
sustainable development in the MSWI process necessitates a profound integration with
industrial AI technology, thereby diminishing reliance on domain experts. Urgent atten-
tion is required for research in AI technology on modeling operational indices, intelligent
control of the combustion process, collaborative optimization of the whole process, and
intelligent maintenance of the overall system.

7.1. Operational Indices Modeling

The effective operation of an integrated system facilitating intelligent optimization,
decision making, and control for complex industrial processes hinges on the ability to
conduct real-time monitoring of key operational indices [179]. Clearly, the online detec-
tion of environmental, product, and economic indices plays a pivotal role in ensuring the
safe, stable, and optimal operation of the MSWI process. The modeling and prediction of
various industrial processes [180] can be accomplished by constructing intelligent models
based on easily collectible multimodal data, such as process variables and flame videos.
The distinctive characteristics of the MSWI process, including its multiprocess, multistage
nature, complexity, and unclear mechanisms, result in different time scales, variations, and
uncertainties in modeling samples. It is imperative to analyze the delay characteristics
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between process variables and operational indices based on the mechanisms of thermal
power transmission and chemical substance conversion, as well as the correlation between
multitemporal and spatial scale samples and operational indices. The process variables
within the MSWI process are numerous and intricately coupled. The correlation between
operational indices and various process stages varies, with an unclear underlying mecha-
nism. Utilizing numerical simulation becomes imperative to elucidate these mechanisms,
drawing upon the expertise of domain professionals and extracting knowledge embed-
ded in data to minimize model input. In addressing high-dimensional sparse modeling
samples, techniques like virtual sample generation are employed to expand sample num-
bers, mitigating issues related to imbalanced sample distribution and unknown expected
distribution. A study on AI algorithms with strong interpretability is essential for mod-
eling and predicting operational indices. The actual MSWI process exhibits numerous
interference factors and frequent fluctuations in operating conditions, necessitating an
operational index model capable of adaptive adjustments to dynamic process changes
for accurate predictions. Employing methods based on mathematical models [181,182],
multivariate statistics [183,184], and AI [185,186] aids in predicting drift time, drift degree,
and drift position under new operating conditions specific to MSWI operational indices.
Incorporating adaptive update algorithms, continuous learning mechanisms, knowledge
transfer, and incremental learning strategies becomes important to enhance the robustness
and generalization performance of online modeling.

In recent years, researchers have conducted numerous studies on modeling opera-
tional indices in complex industrial processes, such as blast furnace ironmaking, fused
magnesium, and petrochemical processes. Addressing the challenge of sparse labeled
samples for modeling, various methods have been proposed, including virtual sample gen-
eration [187,188], semisupervised [189], weakly supervised [190], and unsupervised [191].
These strategies offer robust support for investigating the sample completion mechanism
in the modeling of the MSWI process. To enhance multisource information representation
and model interpretability, diverse methods have been introduced, including multifeature
information fusion [192], multimodal deep learning [193], visual data depth modeling [194],
Bayesian data-driven T-S fuzzy [195], and deep forest regression [66,196]. These serve as
the theoretical foundation for exploring intelligent reduction in multisource features and
constructing interpretable models in the MSWI process. Confronting the challenge of
online dynamic prediction, studies on broad learning systems [197,198], concept drift learn-
ing [199], and dynamic self-organization model [200] indirectly demonstrate the promising
feasibility of developing intelligent prediction systems for operational indices.

7.2. Intelligent Control of Combustion Process

The combustion process in MSWI faces notable challenges in achieving precise con-
trol compared to power generation processes utilizing coal and gas as input materials,
primarily due to numerous interference factors and frequent fluctuations in operating con-
ditions [101,159]. Despite the abundance of process data, their distribution is unbalanced.
Additionally, the integration of unstructured data, such as images and videos, with process
data is hindered by time delays and information asymmetry, presenting challenges in
fusion. Furthermore, obtaining, quantifying, and utilizing knowledge related to the inciner-
ation mechanism poses difficulties. The MSWI process exhibits significant nonstationary
characteristics, including frequent transitions between steady-state conditions and transi-
tion conditions, as well as substantial sensor drift in high-temperature and high-pressure
environments, among other factors. These factors underscore the importance of effective op-
erating condition perception and fault diagnosis for each process stage as crucial guarantees
to ensure the stable operation of the controller. Additionally, the development of models
for operating condition perception and fault diagnosis encounters challenges such as a lack
of samples, unknown types, difficulty in explanation, uncertain changes/occurrences, and
unidentified potential faults. Given the regional and seasonal variations in MSW compo-
sition and calorific value, coupled with the diverse experiences of operators and varying
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levels of operation and maintenance, the MSWI process exhibits a multitude of operating
conditions. Traditional PID controllers prove inadequate in adapting to these different
situations. Effective perception of operating conditions necessitates the adoption of diverse
intelligent control algorithms tailored to different operating conditions. Research indicates
that intermittent operation in the MSWI process results in severe pollution, a significant
increase in operating costs, and challenges in processing capacity [201]. Consequently,
a controller operating under dynamic disturbance must possess the capability for fault
tolerance, robustness, and adaptability.

The rapid advancement of AI technology has spurred numerous studies on intelli-
gent control in various industrial processes. For instance, studies have explored adaptive
sliding mode control [202], fuzzy neural control [203], and reinforcement-learning-based
tracking control [204] for wastewater treatment processes. Event-triggered control [205],
adaptive tracking control [206], and model predictive control [207] have been investigated
for continuous stirred-tank reactor systems. Similarly, model-free adaptive predictive
control [208], model predictive control [209], and fuzzy control [210] have been applied
to blast furnace ironmaking process. These studies not only establish a theoretical foun-
dation but also provide technical support for the controlled object model and basic loop
intelligent controller in the MSWI process. Furthermore, research on data-driven operating
condition monitoring in coal-fired power generation processes [211] and self-organizing
control in wastewater treatment process [202] and blast furnace ironmaking process [212]
contributes to the exploration of intelligent condition perception, fault diagnosis, and the
self-organizing mechanism of intelligent controllers under dynamic conditions.

7.3. Collaborative Optimization of Whole Process

In the field of collaborative optimization of industrial processes, a category of chal-
lenges arises, involving mixed, multi-objective, multiconstraint, and multiscale dynamic
conflict optimization problems [213,214]. The intelligent optimal decision making in human–
machine collaboration encompasses tasks such as feed selection, operation and mainte-
nance, and on-site decisions. The collaborative optimization of the whole process assumes
that each process stage’s control system in the MSWI process acts as an independent agent,
and setpoints are collaboratively determined with the aim of optimizing multiple con-
flicting and multiscale operational indices. The selection and configuration of process
parameters, as well as the optimal operation of the whole process, primarily depend on
domain experts in the actual industrial setting. Nevertheless, the qualitative expression
of operational status and decision making information encounters challenges related to
inaccuracy, uncertainty, fuzziness, and even nonuniqueness. Optimal operation stands as
the core of intelligent control [215,216], involving the resolution of real operational statuses
or process planning problems through optimization. Addressing the actual needs of an
MSWI plant, achieving the optimal solution for multiconflict objectives holds great signifi-
cance in realizing smart optimal control [49]. The environmental, product, and economic
indices in MSWI processes exhibit characteristics of multiconflict, multiconstraint, dynamic
time-varying, and multispatial scales, given the limitations of processes and technologies.
Consequently, the optimization problem in the MSWI process can be conceptualized as a
multi-objective function extremum problem under multiconstraint conditions, represent-
ing a notably challenging issue. The diverse sources and complex components of MSW,
coupled with the variability and fluctuations in operating conditions, further intensify the
complexity of real-time optimal operation. In the context of intelligent optimization in
the process industry, Chai et al. [217,218] highlighted that human–machine collaboration
and interactive learning between domain experts and intelligent optimal decision-making
systems are pivotal directions for future development. The MSWI process aspires to achieve
minimal energy and material consumption, zero emission of pollutants, and environmental
greening. This necessitates the capabilities of perception, cognition, decision making, and
execution possessed by domain experts. In nature, achieving intelligent decision making
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in complex industrial processes relies on the enhanced interactive evolution of domain
experts and industrial AI technology.

Collaborative optimization decision making, integrating new AI technology, emerges
as a feasible approach to achieve intelligent operation and reduce reliance on domain
experts in industrial processes [219]. Numerous studies in this domain have yielded out-
standing cases that serve as valuable references. Noteworthy achievements in collaborative
optimization include distributed optimization subject to inseparable coupled constraints in
the ethylene process [220], multi-objective optimization under the dynamic environment of
the iron removal process [221], carbon emission optimization under different time scales
in the sintering process [222], blast furnace charge surface optimization with feedback
compensation [223], and intelligent optimization of the ironmaking process supported by a
mixed model [224,225]. These accomplishments provide valuable guidance and support
for the collaborative optimization of the entire process in the MSWI process. In the field
of intelligent optimization decision making, studies on the intelligent decision making of
the entire process operation in mineral processing [226], scheduling optimization of the
ethylene cracking furnace system [227], multifurnace optimal scheduling of silicon single
crystal and fused magnesium production processes [228,229], and others have been success-
fully conducted. These achievements underscore that research on multi-objective real-time
optimization algorithms and human–machine collaborative enhanced interactive evolution
for intelligent decision making in the MSWI process has a solid theoretical foundation and
practical feasibility.

7.4. Intelligent Maintenance of Whole Process

The enhanced automation of the MSWI process brings about a considerable increase
in both complexity and uncertainty, subsequently raising the possibility and severity
of faults [101]. Failure to detect and address faults promptly may result in substantial
losses. However, manual monitoring faces challenges, particularly in identifying minor
faults that are difficult to detect. Hence, intelligent maintenance for the MSWI process
becomes imperative.

In practice, the MSWI process undergoes transitions between diverse operating con-
ditions based on factors such as waste components, feeding amounts, combustion tem-
perature, and changes in setpoint values, aligning with the requirements of production
indicators and safety standards. Consequently, addressing the quantification and evalua-
tion of MSWI process operating conditions is a prominent challenge. Distinct operating
conditions exert varying influences on system stability, efficiency, and pollutant emissions.
Given the extended duration, multistage structure, and multifaceted nature of the MSWI
process, the requirements at each operational stage lack consistency. The characteristics
of process data undergo rapid and frequent changes with the shifting operational stages,
posing tracking difficulties. Furthermore, the protracted operation cycle of the MSWI
process results in extended device runtimes, impacting the current condition due to the
influence of previous operational conditions. Therefore, swift and accurate recognition of
multistage operational conditions stands as a key aspect of MSWI process monitoring, ne-
cessitating consideration of time continuity. In comparison to normal conditions, abnormal
occurrences are less frequent and may be singular. Consequently, there exists a substantial
difference in the number of process data instances between normal and abnormal operating
conditions, giving rise to a class imbalance problem [230,231]. Constructing an accurate
and robust fault diagnosis model based on class imbalance data proves challenging, leading
to considerable instances of false positives and false negatives.

Process monitoring and fault diagnosis, driven by AI technologies, have found
widespread application in complex industrial processes, including petrochemicals, metal-
lurgy, and energy. Notably, to address condition-switching challenges in multimode process
monitoring, various techniques have been proposed. Examples include the hybrid cluster
variational autoencoder designed for blast furnace ironmaking [232], similarity-preserving
dictionary learning applied to the roasting process [233], and dynamic locality-preserving
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PCA tailored for power generation processes [234]. These approaches aim to solve diverse
condition-switching problems encountered in process monitoring. Existing research on
complex industrial processes demonstrates the feasibility of multimode MSWI process
monitoring. To address class imbalance problems in fault diagnosis of mechanical equip-
ment, widely practiced techniques include virtual sample generation (VSG) and transfer
learning. Illustrative instances encompass the features selection oversampling technique for
bearing fault diagnosis [235], SMOTEBoost for rotor-bearing systems [236], and adversarial
transfer learning applied to planetary gearboxes [237]. These approaches provide valuable
references and support for tackling class imbalance challenges in MSWI fault diagnosis.

8. Conclusions

In conclusion, significant research has been conducted on the application of AI tech-
nology to the MSWI process. This study systematically reviews AI research of modeling,
control, optimization, and maintenance, addressing the foundational challenges associated
with optimal control. AI technology plays an essential role in fostering the ongoing de-
velopment of the MSWI process. However, there is a discernible widening gap between
academic research and industrial application. To effectively bridge this gap, future research
should pay attention to the following aspects: (1) establish a dynamic, robust, and inter-
pretable MSWI process model with AI for both controlled variables and operational indices;
(2) construct a steady-state AI-based loop controller tailored for diverse operational con-
ditions, along with its self-organizing mechanism under strong dynamic interference;
(3) address issues such as the integration of on-site data and off-site knowledge with AI and
the implementation of a dynamic multiscale multi-objective optimization algorithm; (4)
develop fast and accurate drift monitoring of complex operating conditions, and fault de-
tection technology based on few and zero samples in terms of multimodal data. Therefore,
this study addresses the lack of a review on AI application in the field of WTE, especially
MSWI, which provides clarity for future research. It is believed that AI will play a more
significant role in the optimal control of the MSWI process.
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Abbreviations

Abbreviations Meanings
AI Artificial intelligence
IoT Internet of things
MSW Municipal solid waste
MSWI Municipal solid waste incineration
WTE Waste-to-energy
WoS Web of Science
CNKI China National Knowledge Internet
SNCR Selective noncatalytic reduction
PSO Particle swarm optimization
PCA Principal component analysis
PLS Partial least squares
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NN Neural network
RBFNN Radial basis function neural network
MNN Modular neural network
LS-SVM Least square-support vector machine
DBN Deep belief network
DFR-clfc Deep forest regression based on cross-layer full connection
IDFR Improved deep forest regression
SVM Support vector machine
TM Tree-based model
FL Fuzzy logic
FNN Fuzzy neural network
DL Deep learning
FT Furnace temperature
FGOC Flue gas oxygen content
SF Steam flow
CLP Combustion line position
MISO Multi-input single-output
LS-SVR Least squares-support vector regression
LSTM Long short-term memory network
RBF Radial basis function
MIMO Multi-input multi-output
RF Random forest
GBDT Gradient boost decision tree
CVMSW Calorific value of municipal solid waste
ANFIS Adaptive network based fuzzy inference system
ANN Artificial neural network
TMSWL Thickness of the municipal solid waste layer
CEMS Continuous emission monitoring system
DXN Dioxin
VOCs Volatile organic compounds
CO Carbon monoxide
BPNN Back propagation neural network
SVR Support vector regression
APCDs Air pollution control devices
HRR HRR
ACC Automatic combustion control
SISO Single-input and single-output
HSIC Human simulated intelligent controller
LMPC Linear model predictive control
NMPC Nonlinear model predictive control
PID Proportional integral differential
DCS Distributed control system
AD Air distribution
MD Material distribution
CBR Case-based reasoning
CV Controlled variables
GANs Generative adversarial networks
DFC Deep forest classification
CBR Case-based reasoning
RWNN Random weight neural network
MSPM Multivariate statistical process monitoring
VSG Virtual sample generation
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