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Abstract: Due to the increasingly alarming consequences of climate change, pests are becoming a
growing threat to grape quality and viticulture yields. Estimating the quantity and type of treatments
to control these diseases is particularly challenging due to the unpredictability of insects’ dynamics
and intrinsic difficulties in performing pest monitoring. Conventional pest monitoring programs
consist of deploying sticky traps on vineyards, which attract key insects and allow human operators
to identify and count them manually. However, this is a time-consuming process that usually
requires in-depth taxonomic knowledge. This scenario motivated the development of EyesOnTraps,
a novel AI-powered mobile solution for pest monitoring in viticulture. The methodology behind
the development of the proposed system merges multidisciplinary research efforts by specialists
from different fields, including informatics, electronics, machine learning, computer vision, human-
centered design, agronomy and viticulture. This research work resulted in a decision support tool
that allows winegrowers and taxonomy specialists to: (i) ensure the adequacy and quality of mobile-
acquired sticky trap images; (ii) provide automated detection and counting of key insects; (iii) register
local temperature near traps; and (iv) improve and anticipate treatment recommendations for the
detected pests. By merging mobile computing and AI, we believe that broader technology acceptance
for pest management in viticulture can be achieved via solutions that work on regular sticky traps
and avoid the need for proprietary instrumented traps.

Keywords: viticulture; pests monitoring; insect traps; machine learning; artificial intelligence;
mobile devices

1. Introduction

The usage of edge artificial intelligence (AI) is reshaping the process of farming. Com-
mon pain points are being alleviated through digitalization and process automation via
AI-powered agricultural systems, such as the prevention and monitoring of pest outbreaks
in viticulture. Accurate identification and seasonal tracking of key insect dynamics are
essential to optimize current pest management programs, particularly in terms of effective-
ness, cost, and insecticide usage.

Pest monitoring in viticulture may involve different strategies, including key insect
counting in sticky traps, ambient temperature tracking, damage assessment, and risk es-
timation in vineyards. These procedures make it possible to maximize the effectiveness
of protection methods against key insects, and consequently promote the sustainable use
of pesticides, as required by international directives [1]. Conventional pest monitoring
programs have mainly consisted of deploying yellow sticky traps on vineyards that attract
key insects by color, or delta traps that attract by pheromones. The monitoring consists of
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manually identifying and counting the key species, sometimes using tweezers or magni-
fying glass. These time-consuming monitoring processes are mainly performed through
visual inspection by winegrowers, who often lack taxonomy knowledge to identify key
insects and properly determine the most appropriate protection and prevention measures.

This work aims to improve pest monitoring and prevention procedures via AI al-
gorithms that support intelligent data acquisition and provide automated detection and
counting of key insects in viticulture. We also seek to enhance supervision and assistance
procedures of taxonomy specialists by registering local temperature near traps, allowing
remote consultation of each trap history, and enabling the automatic sending of warnings
and recommendations to winegrowers. This paper arises from substantial multidisciplinary
research work, benefiting from a wide range of scientific competencies, such as informatics,
electronics, machine learning, computer vision, human-centered design, agronomy, and
viticulture. As output technology, it resulted in mobile and web applications that meet
winegrowers and taxonomy specialists’ needs on pest management procedures. Given the
evolving dynamics of insect populations, the system architecture is modular and scalable,
allowing future expansions to support the detection of new insect species.

The paper is structured as follows: Section 1 summarizes the motivation and objectives
of the work; Section 2 presents the related work found in the literature; Section 3 describes
the proposed methodology; Section 4 details the results and the respective discussion; and
finally, the conclusions and future work are drawn in Section 5.

2. Related Work

The usage of insect traps for pest management often involves relevant costs in terms
of labor, transport, and logistics. In recent years, thanks to the widespread accessibility of
information and communication technologies, innovative solutions have been developed
to face the traditional constraints of pest monitoring procedures. In particular, several solu-
tions already commercially available have allowed a transition from the traditional methods
of monitoring pests associated with intensive human work to intelligent digital methods
that integrate computer vision techniques, pest occurrence models and meteorological data
with remote sensing to monitor outbreaks.

In Table 1, we present the most relevant solutions found and respective functionalities.
Among the most transversal functionalities of these solutions, we highlight the following:
(i) image acquisition with automatic insects identification and counting [2–7]; (ii) view trap
history, review and edit pests detected automatically [2–4,6,8,9]; (iii) map georeferenced
traps [2–5,7,10]; (iv) communicate with temperature and humidity sensors [2,3,5,7,10]; and
(v) provide pest infestation alerts [2,3,7–10].

Table 1. Commercial solutions for pest monitoring and respective functionalities.

Semios [2] TrapView [3] SmartTrap [4] FieldClimate [5] SnapTrap [6] Agrio [7] TarvosView [10] RapidAIM [8] CapTrap [9]

Image acquisition and visualization ! ! ! ! ! !

Automatically identify and count insects ! ! ! ! ! !

Review and edit automated results ! ! ! ! ! !

Pest forecasting ! ! !

Requires proprietary instrumented trap ! ! ! ! ! ! ! !

Pest detection via mobile-acquired images !

Trap georeferencing ! ! ! ! ! !

Provide infestation / pest alerts ! ! ! ! ! !

Communication with temperature sensors ! ! ! !

Allow offline usage !

While a high degree of trap automation allows for continuous and remote data collec-
tion and processing, these benefits can be overshadowed by the need to establish a costly
hardware infrastructure on the field. In particular, each pest monitoring point needs to be
equipped with trap hardware components for image acquisition, data communication (e.g.,
GSM), processing power and power supply via batteries or solar panels. If the producer
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needs to create more individual pest surveillance points to increase monitoring granu-
larity, the equipment and maintenance costs will consequently increase and eventually
become financially prohibitive. It also should be noted that the use of technologies based
on instrumented traps does not fully replace the need to visit each monitoring point by
trained personnel. Routines, such as collecting and replacing traps, cleaning the trap of
debris, changing the pest attractant (e.g., pheromone), or recording the phenological state
of the surrounding crop, are still required to be performed on a regular basis [11].

From this perspective, mobile devices appear as an exciting alternative to avoid the
identified infrastructure restrictions. Smartphones are an easy-to-use and widely dissemi-
nated technological tool that simultaneously allows communication, portability, and local
processing power to execute AI algorithms on edge scenarios without GSM coverage. Only
one of the referred commercial solutions [7] allows the usage of mobile-acquired images for
pest detection, but the AI algorithms of this solution do not seem customized for sticky trap
images, also missing critical features, such as communication with temperature sensors
or processing the images locally on the device (offline usage). Furthermore, the reviewed
commercial solutions that allow hand-held image acquisition only provide fully manual
processes for image capture. Thus, the current available alternatives can be considered
prone to human error since they do not include software layers to automatically assess
key quality and adequacy requirements, such as image focus, the absence of illumination
artifacts, or the presence of the whole trap on the image.

In summary, current commercial solutions already bring exciting efficiency gains for
pest monitoring in agricultural productions. Nevertheless, generating profits in agriculture
is quite challenging, and significant increases in crop maintenance costs should be avoided
whenever possible. Given this, the exploration of new affordable solutions that leverage
widespread pest monitoring without the aforementioned financial and logistics constraints
should be considered. Specifically for the viticulture use case, there are still missing portable
and sustainable solutions fully customized for monitoring vineyards on edge scenarios. By
merging mobile computing and AI, we believe that broader technology acceptance can be
achieved for winegrowers and taxonomy specialists, particularly via solutions that work
on regular sticky traps and avoid the need for proprietary instrumented traps.

3. Methodology

The main objective of this work is to develop a novel AI-powered mobile solution
for pest management in viticulture. This system (hereinafter referred to as EyesOnTraps
system) is envisioned to work on regular sticky traps and be fully customized for monitoring
vineyards in edge scenarios, such as open-field productions. Solutions that operate in edge
scenarios are conditioned by the scenario itself (e.g., lack of GSM coverage or power supply)
and by the capabilities of end devices (e.g., limited processing power). In our use case, the
open-field grape production represents our edge scenario, while mobile devices are our end
devices.

To develop such a system, we started by performing user-centered research for re-
quirements and functionalities definition (see Section 3.1). This knowledge enabled us to
delineate the system architecture and its main components, namely: (i) Image Acquisition
Module; (ii) Insects Detection Module; (iii) Sensorization Module; (iv) Mobile Application;
(v) Online Image Annotator (ground truth generator); and (vi) Web Portal.

It should be noted that the methods behind the first two components, namely the
Image Acquisition Module (see the methods detailed Section 3.2) and the Insects Detection
Module (see the methods detailed in Section 3.3) represent prior work from our team,
presented and validated in previous publications [11,12]. Thus, these two methods do not
represent direct contributions to this work. Nevertheless, given the key importance of such
components on the proposed system, and to enhance the readability and understanding of
the present work, we included in this section a summarized description of these previously
presented methods and respective results.

Regarding the remaining system components (i.e., the Sensorization Module, the
Mobile Application, the Online Image Annotator and the Web Portal), they were developed
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and implemented according to the guidelines that emerged from the interviews performed
during the user research phase. To evaluate the overall usability of the mobile application
and users’ satisfaction, we also performed usability tests.

3.1. User Research

The development of the EyesOnTraps system followed a user-centered approach in
order to guarantee that it would effectively improve the trap management process and
cater to the needs and expectations of winegrowers and taxonomy specialists. This meant
that the first step to the digitalization of this process was gaining a deep understanding of
their current procedures.

To do so, we planned interviews for winegrowers and taxonomy specialists. Questions
were set by both human-centered design and machine learning researchers from our team.
We used this method to ensure that the script would not only meet end-users’ needs, but
also answer technical doubts that would influence the developers’ work. Together, we
designed a semi-structured interview script, with questions tailored to the winegrowers
and others aimed at the taxonomy specialists.

Of the questions set, nine were for both profiles. They were general questions about
traps and pests to acquire a global understanding of the monitoring process. Then, six ques-
tions were concerned with eliciting specific requirements for both the web portal and the
annotator for the taxonomy specialists. Finally, 10 questions were aimed at winegrowers’
practices and challenges when visiting and monitoring the traps. For the interview setup,
we invited a taxonomy specialist to be present in each individual interview. We used
this strategy so that any required translation related to their area of expertise could be
immediately ensured. This way, although we, as interviewers, were not experts in the
field, we would be able to fully understand the issues at hand, enabling to make follow-up
questions that would be relevant to the identification of the solution’s requirements.

Questions were both open- and closed ended. When starting the interview, we would
ask the winegrowers to describe us a regular visiting day. We would then build up questions
as the interviewees described their practices. In total, we conducted 1-h long interviews
with four winegrowers and two taxonomy specialistsInterviews were audio-recorded
and later transcribed and analyzed, focusing on existing practices and challenges. With
the knowledge acquired, the team identified practices that could be digitalized into the
proposed solution and designed how to combine them with the remaining modules.

Following the feedback received from the user research phase, a functional prototype
was developed, which consisted of a mobile application that includes a user interface
flow for the trap management process. This interactive prototype was tested with final
users, with the goal of evaluating the overall usability of the mobile application and users’
satisfaction with the prototype. Tests were conducted in laboratory and in real context.
Laboratory tests were conducted at home or at our offices, focused on testing the user
interfaces, and served as pre-tests for the real context tests. Usability tests with final users
were then conducted in three different locations: Quinta do Bom Retiro (Ramos Pinto),
Quinta do Seixo (Sogrape) and Quinta S. Luiz (Sogevinus).

In total, we conducted tests with nine participants: three in laboratory conditions
and six in real context conditions. Participants of the latter included: one winegrower
technician, one quality control specialist, one taxonomy expert, one agricultural technician,
one farm technician and one agronomist. All participants had previous experience using
smartphones for more than 2 years. All tests were recorded and later analyzed, and a
quantitative analysis was performed of the collected data to measure efficacy and subjective
user satisfaction. Efficacy—the ability to complete the proposed tasks—was measured
via the task completion rate, number of errors and assistance required by users. As for
assessing user satisfaction with system usability, we administered the Portuguese version
of the Post-Study System Usability Questionnaire (PSSUQ) [13].
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3.2. Image Quality & Adequacy Assessment

Hand-held image acquisition of sticky traps in the open field is quite challenging due
to the variability and heterogeneity of light exposure, as well as the adequacy of the traps
images (e.g., trap clearly visible, properly focused and in an acceptable perspective). Since
the EyesOnTraps system relies on sticky trap images exclusively acquired with mobile
devices, we considered that the precise control of image quality and adequacy should be
regarded as a crucial step. Thus, we embedded an AI-based module to support the trap
image acquisition via mobile devices, as the methods behind this module were presented
and validated in a previous work [11].

The main goal of this module is to help winegrowers during the mobile image acquisi-
tion step to effortlessly capture quality and adequate images of sticky trap in real time. In
particular, this previously reported method automatically assesses the focus and illumi-
nation of the image, while ensuring that an insect trap is present in the camera preview
via the automated detection of trap type (CT or DT) and respective segmentation. This
method is divided into two main steps: the preview analysis and the acquisition analysis,
responsible for the processing of each camera preview frame and the acquired trap image,
respectively (see Figure 1).

Figure 1. Process flow diagram for trap image quality and adequacy validation [11].

In order to automatically acquire both delta traps (DT) and chromotropic traps (CT)
images, each preview frame must meet the requirements of four different modules: (i) fo-
cus validation; (ii) trap-type classification; (iii) shadows and reflection validation; and
(iv) trap segmentation. When a set of consecutive frames passes those conditions, an image
is automatically acquired, and a perspective correction step that relies on the corners of
the detect trap segmentation mask is applied. To develop and validate these different
algorithms, we collected and manually annotated a dataset of 516 DT and CT images. The
dataset was divided into three subsets: image focus subset, reflections/shadows subset,
and trap segmentation subset. The proposed approaches achieved an accuracy of 84%
regarding focus assessment, an accuracy of 96% and 80% regarding the shadows and/or
reflections on CT and DT traps, respectively, and a Jaccard index value of 97% for the
segmentation approach [11].

3.3. Automated Insects Detection

Conventional sticky traps monitoring is performed through visual inspection by wine-
growers via the manual identification and counting of key insects for viticulture. However,
winegrowers lack taxonomy knowledge and availability for a thorough identification of
these key insects. Thus, we embedded an AI-based module on the EyesOnTraps system
to provide the automated detection of key insects. The methods behind this module were
presented and validated in a previous work [12].

The main goal of this module is to support winegrowers by automatically detecting
and counting key insects on conventional sticky traps (CT or DT) via mobile devices. In
particular, the previously developed computer vision approach is based on lightweight
deep object detection networks, suitable to be deployed and run locally on smartphones.
The methodology behind the development of this model involved the exploration of five
different object detection deep learning models, namely the following: (i) SSD ResNet50
(RetinaNet50); (ii) Faster R-CNN ResNet101; (iii) EfficientDet-D0; (iv) SSD MobileNet V2;
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and (v) CenterNet ResNet50. For benchmarking purposes, three groups of optimization
strategies were considered: model-centric, data-centric, and deployment-centric. Each
group comprised different types of optimizations, executed and assessed iteratively, as
detailed in Figure 2.

Figure 2. Methodology used to develop the insects detection computer vision model [12].

The automated detection comprised the identification and counting of three key
insects for viticulture, specifically the European Grapevine Moth, Green Leafhopper and
“Flavescence Dorée” Leafhopper. Moreover, the Tomato Moth and Morphotype C (Idaea
degeneraria) were also included, as they are usually caught in delta traps and can be confused
with the Grapevine Moth (Figure 3).

Figure 3. Illustrative examples of detected insects (in scale): (A) European Grapevine Moth; (B) Green
Leafhopper; (C) "Flavescence Dorée" Leafhopper; (D) Tomato Moth; and (E) Morphotype C [12].

Given the lack of freely available image datasets of key insects for viticulture, a
dataset of 168 images of yellow sticky and delta traps was acquired using different mobile
devices, resulting in a total of 8966 manually annotated insects by experienced taxonomy
specialists. The best model for deployment on edge devices was achieved by an SSD
ResNet50 model, with accuracies per class ranging from 82% to 99%, F1 Score from 58%
to 84% and inference speeds per trap image of 19.4 s and 62.7 s for high-end and low-
end smartphones, respectively. The confusion matrix for the final SSD Resnet50 model is
provided in Table 2, as well as some illustrative examples of predicted detection in Figure 4.

Table 2. Confusion matrix for final SSD Resnet50 model on the test set (true positives in gray) [12].

Predicted

Class Green Leafhopper Morphotype C “Flavescence Dorée” Leafhopper European Grapevine Moth Tomato Moth Only Groundtruth (FN)

Green Leafhopper 378 0 0 0 0 138

Morphotype C 0 31 0 0 0 13

“Flavescence Dorée” Leafhopper 0 0 0 0 10 16

European Grapevine Moth 0 2 0 1013 3 200

Tomato Moth 0 0 0 16 44 13G
ro

un
dt

ru
th

Only Detection (FP) 293 13 0 171 23 -
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Figure 4. Examples of detections predicted by SSD Resnet50 model on test set images of (a) delta
trap; (b) yellow sticky trap. The groundtruth annotations are marked in white, while GM predictions
are in blue, MC in beige and GL in green [12].

3.4. Ambient Temperature Monitoring

Several exploratory experiments were conducted to support the development of a sen-
sorization module (hereinafter referred to as EoT Sensor) that allows ambient temperature
monitoring near traps. We aim to develop an affordable and reliable temperature sensor
that communicates with mobile devices via Bluetooth low energy (BLE), thus allowing its
widespread deployment in vineyards.

With the envisioned sensorization module, it will become economically and logistically
viable to record the ambient temperature near each trap. Thus, our system will be able to ap-
ply phenology prediction models based on degrees day (DD) to predict main pest flights
in every monitoring point (e.g., the model developed for the European Grapevine Moth in
the Douro Demarcated Region [14]). The Douro Demarcated Region is characterized by
large valleys, irregularities and steep slopes, which results in a multiplicity of microclimates
with very different climatic characteristics. Temperature measurements can change drasti-
cally between parcels, and using weather stations readings to feed DD-based phenology
prediction models on distant parcels might not be adequate. Thus, monitoring ambient
temperature near each trap was then considered a crucial climatic parameter, while relative
humidity and barometric pressure were also considered interesting parameters, being that
these three climatic parameters were recorded by the EoT sensor.

Regarding electronics, we selected the platform Kallisto® (generation 2) [15], a com-
mercial solution that allows integration with different sensors. In this platform, we inte-
grated the environmental sensor Olimex BME280, which consists of a printed circuit board
(PCB) with an integrated Bosch BME280 sensor [16]. We also had to develop a expansion
board that would allow to gain access to the I2C pins, battery power pins and add an
real-time clock (RTC) chip to Kallisto (see Figure 5a,b). The EoT sensor uses a battery of
2000 mAh, which theoretically allows an autonomy that covers a complete viticultural
season (about 10 months) with a single charge.

Figure 5. EoT sensor: (a) PCB layout; (b) Kallisto and expansion board; (c) field installation.
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Finally, we also conducted experiments regarding the casing of the sensor. To decrease
the impact of environmental conditions in the precision and replicability of the readings
(e.g., solar radiation, wind or dust), we concluded that the best cost–benefit option was to
use a radiation shield to encapsulate the sensor [17], and a IP66 protective enclosure for the
PCB (see Figure 5c).

4. Results and Discussion
4.1. Requirements and System Architecture Definition

The applied user-centered approach firstly enabled us to define a set of requirements
that meet the needs and expectations of winegrowers and taxonomy specialists. Subse-
quently, the identified requirements served as the basis to define the architecture of the
EyesOnTraps system.

4.1.1. Requirements

As reported by winegrowers, traps are usually scattered around the vineyards, some-
times far from each others: “(...) we have a parcel with 6 acres with two traps (...) and we
have estates with 30 acres that have 3 traps”, which means that the simple fact of visiting
them can already be a time consuming task. As such, including traps georeferencing on
the system could help winegrowers plan their visits to the traps by aiding them in defining
an optimal route. In addition, reminders of the best time to visit a trap could also improve
this process.

Through the interviews, we understood that trap monitoring was a time-consuming
and inefficient task, happening during spring and summertime, where winegrowers need
to closely monitor traps on their vineyards by counting all insects stuck on the traps, usually
with the help of tweezers or even using a magnifying glass. According to winegrowers,
these traps can accumulate up to 600 insects, which is a challenge since winegrowers
count these insects manually in the field, usually under high temperatures. Sometimes, this
situation is so uncomfortable or they have so much work to do that they cannot count all the
insects during the vineyard visit, so they end up collecting the traps to count later on at their
office. Moreover, counting key insects implies that winegrowers need to have an in-depth
taxonomic expertise to correctly identify their species, which is not usually the case. Thus,
the regular involvement of taxonomy specialists in this process is crucial for the effective
and timely prevention of pests. Currently, when in doubt, winegrowers take pictures of
parts of the traps and share them with taxonomy specialists to ask them what species it
is and if it poses a risk for the vine. Considering the above mentioned, a top priority of
our system is to reduce time spent counting insects and aiding in their identification. This
should be achieved by including the automatic counting and identification of insects via
a trap picture collected by winegrowers.

Winegrowers also need to keep track of trap maintenance, namely when to change the
pheromone (delta traps) or the glue base (yellow sticky traps). This tracking is currently
performed manually, in a paper notebook with all the required information (trap location,
insects count, when the last pheromone/glue base change was made, etc). By digitalizing
the field notebook, EyesOnTraps can generate alerts warning users for the correct time to
maintain and monitor each trap.

Additionally, taxonomy specialists should be informed by winegrowers about the
phenological stage of the surrounding vines, which is usually reported according to the
Baggiolini scale [18]—a standard nomenclature of the plants’ development that classifies
their evolution in different stages (organized alphabetically, from stage A to N). Although
this is a standard nomenclature, the taxonomy specialists raised the concern that stage
selection is not very objective, with some stages being more difficult to identify than
others (e.g., stage I and J). Winegrowers in their turn mentioned that they usually carry
the Baggiolini scale on paper when visiting the vineyards, which helps them to select
the stage by consulting illustrative images of each stage. To mitigate the subjectivity of
vines classification regarding growth stage, taxonomy specialists said that having access
to different photographs of the surrounding vines would be important to ensure that the



Sustainability 2022, 14, 9729 9 of 18

actual predominant stage is selected. As such, our system should allow the selection and
image capture of the phenological status by winegrowers, and their decision could be
later validated by taxonomy experts.

Temperature information around traps is also vital information for advisers with
taxonomic expertise. These data are used to choose the best time of year to place traps in
the vines, as well as to predict when pests are most likely to attack, thus when is the best
time to apply the necessary products to prevent these attacks. By including temperature
sensors near each trap in our system, we can provide this relevant information to advisers.
In sum, Table 3 summarizes the key tasks in the winegrower’s journey and the respective
requirements (opportunities for improvement).

Table 3. Identified requirements for the EyesOnTraps system.

Tasks in the Winegrower’s Journey Requirements (Opportunities for Improvement)

Travel to the trap Traps georeferencing

Trap monitoring and maintenance Reminders to monitor the trap,
change the pheromone or change the glue base

Manual identification and counting of insects Automatic identification and counting of insects

Field notebook (on paper) Digitization of the field notebook

Identification of the phenological state Recording of phenological status (with image capture)

Track temperature near traps Recording of temperature history near traps

Application of preventive phytosanitary treatments Send warnings and recommendations to promote
the effective management of phytosanitary treatments

4.1.2. System Architecture

The system architecture of the proposed AI-powered mobile-based solution for pest
monitoring in viticulture can be divided into six main components (see Figure 6): (i) Image
Acquisition Module; (ii) Insects Detection Module; (iii) Sensorization Module; (iv) Mobile
Application; (v) Online Image Annotator (ground truth generator); and (vi) Web Portal.
It should be noted that the methods behind the Image Acquisition Module and Insects
Detection Module represent prior work from our team that was already presented and
validated in previous publications [11,12]; a summarized description of the explored
methods and respective results is provided in Section 3.

Figure 6. Architecture of the EyesOnTraps system.

4.2. Image Acquisition Module

To embed the methodology detailed in Section 3.2 for automated image quality and ad-
equacy assessment in the EyesOnTraps system, an Android library module was created and
compiled into an Android Archive (AAR) file used as a dependency for the EyesOnTraps
mobile application. In particular, the developed Android module integrates all the previ-
ously referred algorithms in the sequence depicted in Figure 1 and guides the user during
trap image acquisition by providing real-time feedback in terms of (i) focus assessment;
(ii) shadow and reflections assessment; (iii) trap type detection; and (iv) trap segmentation.
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When a set of consecutive frames passes those conditions (to ensure stability), an image
is automatically acquired (see Figure 7A–D), and the perspective correction procedure is
further applied (see Figure 7E).

Figure 7. Image Acquisition Module screenshots: (A) unfocused image; (B) focused and good
illumination; (C) trap detected; (D) automatic image capture; (E) perspective correction; and (F) man-
ual mode [11].

4.3. Insects Detection Module

The methodology detailed in Section 3.3 for the automated detection of key insects
in viticulture was also integrated in the EyesOnTraps Mobile Application via an Android
library module compiled into an AAR file. This Android module receives the images
acquired by the Image Acquisition Module, and the developed computer vision model
automatically detects and counts the five considered species of insects. This model is
suitable to run on both low-end and high-end mobile devices on the edge (offline), using
mobile-acquired images of conventional sticky traps (DT and CT), thus avoiding instru-
mented traps and complex hardware infrastructure. As output, this module provides an
image with the location of the detected insects and respective counting (see Figure 8).

Figure 8. Insects Detection Module screenshots: (a) automatic image capture; (b) perspective correc-
tion; (c) image processing; and (d) output image with insects location and respective counting.

4.4. Sensorization Module

To test the precision and replicability of the EoT sensor readings, we deployed six sen-
sors on three different farms in the Douro Demarcated Region (Quinta de S. Luiz, Quinta do
Bairro and Quinta do Seixo). All these farms already have at least one commercial weather
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station installed on the vineyards, so we started by deploying three EoT sensors near a
weather station of each farm, a scenario that allowed us to make a direct comparative
analysis and assess the precision of the EoT sensor temperature readings. Additionally, we
also installed three EoT sensors distant from weather stations. With this second scenario,
we wanted to evaluate how much the temperature changes in areas with outbreaks that
are distant from weather stations. To support a detailed results analysis, Table 4 presents
the different types of errors between the hourly measurements of the EoT sensor and the
respective weather station, for both near and distant scenarios. For each scenario, we also
provide an illustrative example of temperature readings for a period of approximately 1
month in Figure 9.

Table 4. Hourly measurements results between EoT sensors and respective weather stations.

Average Error
◦C

Mean Error
Deviation ◦C

Mean Absolute Error
◦C

Absolute Mean Error
Deviation ◦C

Near
Weather
Station

EoT Sensor 1 −0.31 1.61 1.38 0.89

EoT Sensor 2 −0.22 1.05 0.81 0.71

EoT Sensor 3 −0.53 1.20 1.03 0.80

Average −0.38 1.29 1.07 0.8

Distant
Weather
Station

EoT Sensor 4 −0.87 3.11 2.64 1.86

EoT Sensor 5 −1.56 2.5 2.26 1.89

EoT Sensor 6 −0.91 3.63 3.33 1.71

Average −1.11 3.08 2.74 1.82

Figure 9. Temperature readings for EoT sensors: (a) near a weather station (EoT Sensor 1); (b) distant
from a weather station (EoT Sensor 6). The EoT sensor data are depicted in blue, the weather station
data in orange and the absolute error between them in green.

The average absolute error for EoT sensors near weather stations was only 1.07 ◦C,
with hourly temperature readings for both equipment showing very similar behavior. Given
the clear differences between the compared equipment (e.g., price and specs), this small
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discrepancy was already expected. These results show that the precision and replicability of
EoT sensor temperature readings are suitable for pest monitoring in vineyards, particularly
to feed phenology prediction models based on DD to predict pest flights near each trap.
Regarding the scenario of EoT sensors placed distant from weather stations, the average
absolute error was 2.74 ◦C. This demarked difference of average absolute error between
near and distant scenarios reinforces the relevance of using EoT sensors in parcels distant
from weather stations to obtain more precise temperature readings.

4.5. Mobile Application

The EyesOnTraps mobile application was developed to guide winegrowers in taking
photographs of sticky traps using the image acquisition module, reading and interpreting
the results provided by the insects detection module, as well as sharing this information
with the taxonomy experts. The applications also allow users to collect temperature data
from EoT sensors via BLE. Upon entering the application (Figure 10a), winegrowers have
direct access to notifications, including reminders and alerts sent by taxonomy experts
regarding crop protection (Figure 10b). The main screen also includes a map with the
location for each trap and the option to start an acquisition.

Figure 10. Mobile application screens: (a) main screen; (b) notifications screen; (c) trap information
screen; (d) tasks available for each acquisition.

The first step in a new acquisition is taking photographs of the traps using the image
acquisition module (see Figure 7). Users can log information regarding pheronome/glue
base changes for each trap or if any insects were manually removed (Figure 10c). After
completing these steps, there is a list of tasks that can be (optionally) completed to provide
more information for the acquisition. In particular, the user can collect temperature
readings from EoT sensors via BLE, record the phenological status or include additional
comments, as depicted in Figure 10d.

To collect temperature information, users must be within the BLE range of the sensor
installed near the trap and simply select the temperature option on the application. Data
are then automatically downloaded and shown to the user (Figure 11a). Recording the
phenological state requires winegrowers to take pictures of the surrounding vines user
(Figure 11b) and then select the most appropriate status according to Baggiolini scale
(Figure 11c). As this information is sent to taxonomy experts, it is expected that including
these images will help them validate the chosen status. As soon as the winegrowers com-
plete the data acquisition procedure, the collected trap image is automatically analyzed
by the insect detection module, and the results are presented to the user (Figure 11d).
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Figure 11. Mobile application screens: (a) temperature synchronization; (b) phenological status
image acquisition; (c) phenological status selection; (d) automated insects detection.

Usability Tests

During usability tests, participants were asked to perform the following tasks using the
interactive prototype for the mobile application: (i) choose a trap and initiate an acquisition;
(ii) get data from the temperature sensor; (iii) register the phenological stage; (iv) add
comments to the acquisition; (v) check results and end acquisition; and (vi) check app
notifications. These tasks include the main flow of the application and the necessary steps
to gather the required data for a successful acquisition process and to access important
information coming from the web portal through the notifications.

Results from the usability tests indicate a good performance of the application with, on
average, less than one error or assistance per task and an average completion rate of 100%
in 5 out of 6 tasks. Table 5 presents the mean results from PSSUQ and its sub scales. PSSUQ
score starts with 1 (strongly agree) and ends with 7 (strongly disagree). The lower the
score, the better the performance and satisfaction. To make sense of the scores derived from
PSSUQ, we compared our results with the means determined by Sauro and Lewis [19]
involving 21 studies and 210 participants. Results are positive for the overall scale as
well as for each sub-scale, indicating a high perceived usability of the application by test
participants.

Table 5. Post-study system usability questionnaire (PSSUQ) results.

Scale Result Mean

Overall 1.60 2.82

System Usefulness (SYSUSE) 1.57 2.80

Information Quality (INFOQUAL) 1.56 3.02

Interface Quality (INTERQUAL) 1.74 2.49

Overall, these results mean that the acquisition process is easily completed by users,
with the application fully supporting and guiding this process. These tests also confirm that
the results from the user research phase were successfully translated into the application,
as users perceived the system as useful, including the required features to ease the trap
management process.

4.6. Online Image Annotator

To develop the insects detection module via supervised machine learning approaches,
it was necessary to train computer vision algorithms with data manually labeled by tax-
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onomy specialists. Therefore, an online image annotator was developed to generate the
ground truth data required to train the AI algorithms. It consists of a web tool platform
accessible via the internet, protected by user authentication, and each user may have two
different roles: (i) annotator: usually a taxonomy specialist that accesses the platform for
image annotation purposes; or (ii) supervisor: serves as administrator of the platform,
being able to create/delete users, attribute specific traps to annotators, import/export data,
etc. With this solution, it is easy for personnel with technical knowledge to contribute
and support the development of the EyesOnTraps system by marking key insects on trap
images and specifying the respective species (Figure 12a), as well as easily reviewing the
attributed annotations by species (Figure 12b).

Figure 12. Online image annotator: (a) insect annotation; (b) annotations review by species.

This tool is also fully integrated with the EyesOnTraps back-end, being that all images
acquired on the field via the mobile application are automatically synchronized with this
platform. We also synchronize the automated results generated on the mobile application
by the insects detection module. Thus, the human annotator has the option to load and edit
these automated results as an automated pre-annotation of the image (Figure 13). This
process accelerated and optimized the annotation process, especially in image traps with
hundreds of key insects.

Figure 13. Automated image pre-annotation: (a) preview; (b) load automated pre-annotations.

4.7. Web Portal

The Web Portal is the core platform of the EyesOnTraps solution. This is where the
information is stored, creating a history organized by agricultural years (time intervals
of each cultural cycle) and where a set of features are made available that aggregate
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information obtained by the various components of the EyesOnTraps solution. It is also
in the Web Portal that, using the API and the respective web services created for this
purpose, the communication mechanisms between the various components of the system
are implemented, allowing the transfer of data with the Mobile Application, EoT sensor
and Online Image Annotator. This promotes the integration of systems and enhances future
improvements of the embedded AI algorithms, as well as the expansion of the EyesOnTraps
solution to other pests and other crops.

The Web Portal is made available through the internet, being integrated in the
Geodouro Agricultural Management Software—SIGP [20], functioning as an indepen-
dent application module from the other modules. Still, it can be integrated with some of
the other SIGP modules, allowing to take advantage of the entire base structure already im-
plemented in this information system. The Web Portal is protected by user authentication,
and supports various types of users: winegrower, taxonomy specialist, entity administrator,
system administrator and query user. Each type of user has different permissions and set
of functionalities, according to the specifications previously defined. The implemented
features allow actors to manage the entire pest monitoring process in crops, highlighting
the following features:

Geographic representation of elements relevant to the management of open-field
grape production (Figure 14a), such as (i) geographic delimitation of grape parcels; (ii) loca-
tion of deployed sticky traps; or (iii) location of EoT sensors and weather stations. It is also
possible to interact with these elements and consult additional information, such as grape
varieties present in each parcel, history of trap images collected via the mobile application
for each sticky trap location (Figure 14b), or temperature readings for each sensor location.

Figure 14. Web portal screens: (a) the geographic representation of elements relevant to the manage-
ment of open-field grape production; and (b) trap images collected via the mobile application.

Visualization of the automated detection and counting of insects (Figure 15a), includ-
ing a graphical consultation of the evolution of pest counts over time by trap and species
(Figure 15b).

The Web Portal also enables the visualization of the phenological stage of the vine-
yard registered via the mobile application, as well as editing/correcting the information
associated with the acquisitions. It is also devised to incorporate and display the out-
puts of phenology prediction models based on DD to predict pest flights, such as the
model developed for the European Grapevine Moth [14] already integrated in the system
(Figure 16a). The temperature data that feed these models are collected via the EoT sen-
sors or commercial weather stations, being that the communication with both types of
equipment are already available on the system.

We also developed a dashboard that exhibits a set of statistics related with pest flight
predictions and automated pest counts, with the possibility of comparison with previous
years (Figure 16b). In order to support the communication between winegrowers and
taxonomy specialists, the latter can also send warnings, alerts and recommendations
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based on the available information that allows them to remotely monitor pest counts on
winegrowers’ holdings.

Figure 15. Web portal screens: (a) automated detection and counting of insects; and (b) visualization
of the evolution of pest counts over time by trap and by species.

Figure 16. Web portal screens with: (a) European Grapevine Moth flights predicted by the phenology
prediction models based on DD; and (b) statistics dashboard.

5. Conclusions and Future Work

In this paper, we present the EyesOnTraps system, a novel AI-powered mobile solution
for pest management in viticulture. This solution aims to improve pest monitoring and
prevention procedures through AI algorithms for the intelligent data acquisition and
automated detection of key insects in sticky traps. We also seek to enhance supervision and
assistance provided by advisers with taxonomic expertise to winegrowers, by registering
the local temperature near traps, allowing remote access to each trap history, and enabling
the automatic sending of warnings and recommendations to winegrowers. The system is
also prepared to incorporate different phenology prediction models based on DD to predict
pest flights near every monitoring point, such as the model developed for the European
Grapevine Moth already integrated in the system.

As output technology, this multidisciplinary research work resulted in mobile and web
applications that meet winegrowers and taxonomy specialists’ needs on pest management
procedures. Given the evolving dynamics of insect populations, the system architecture is
modular and scalable, allowing future expansions to support the detection of new insect
species. Future evolution of the system might also involve grouping the detected insects
according to their taxonomic order or even family, which would allow to flag and track
unusual (and potentially damaging) bycatches. Additionally, a wider detection of insect
species could also help support further system improvements, such as taking into account
the density of captured insects to signal traps for clearing and replacement, as certain
situations might diminish their effectiveness in attracting other relevant species.
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Regarding future work, we plan to validate the solution in real-life scenarios by
performing field trials of the solution with stakeholders. We will directly evaluate the
EyesOnTraps web and mobile applications with winegrowers and taxonomy specialists
to assess the correct functioning of currently available features. We also aim to perform
a direct comparative analysis between conventional and EyesOnTraps methods for pest
management by collecting key performance indicators. Particularly, this analysis will help
us quantify the efficiency gains regarding aspects, such as time spent on pest monitoring
tasks, performance improvements for insects detection and counting, or the optimized and
more sustainable usage of phytosanitary treatments.
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