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Abstract: Modern cities require a tighter integration with Information and Communication Technolo-
gies (ICT) for bringing new services to the citizens. The Smart City is the revolutionary paradigm
aiming at integrating the ICT with the citizen life; among several urban services, transports are one
of the most important in modern cities, introducing several challenges to the Smart City paradigm.
In order to satisfy the stringent requirements of new vehicular applications and services, Edge
Computing (EC) is one of the most promising technologies when integrated into the Vehicular Net-
works (VNs). EC-enabled VNs can facilitate new latency-critical and data-intensive applications and
services. However, ground-based EC platforms (i.e., Road Side Units—RSUs, 5G Base Stations—5G
BS) can only serve a reduced number of Vehicular Users (VUs), due to short coverage ranges and
resource shortage. In the recent past, several new aerial platforms with integrated EC facilities have
been deployed for achieving global connectivity. Such air-based EC platforms can complement the
ground-based EC facilities for creating a futuristic VN able to deploy several new applications and
services. The goal of this work is to explore the possibility of creating a novel joint air-ground EC
platform within a VN architecture for helping VUs with new intelligent applications and services.
By exploiting most modern technologies, with particular attention towards network softwarization,
vehicular edge computing, and machine learning, we propose here three possible layered air-ground
EC-enabled VN scenarios. For each of the discussed scenarios, a list of the possible challenges is
considered, as well possible solutions allowing to overcome all or some of the considered challenges.
A proper comparison is also done, through the use of tables, where all the proposed scenarios, and
the proposed solutions, are discussed.

Keywords: smart cities; vehicular networks; edge computing; machine learning; network softwarization;
aerial platforms

1. Introduction

If the city is rapidly moving toward a Smart City, the traditional transportation sys-
tems are rapidly converging into an Intelligent Transportation System (ITS) mainly through
the integration of innovative technologies, e.g., Internet of Things (IoT), and wireless
technologies (e.g., 5G) [1]. With new connected vehicles, having different communication
and computing technologies, Vehicular Networks (VNs) are radically moving toward the
Internet of Vehicles (IoVs) paradigm, where new applications and services are growing.
With the integration of modernized technologies such as IoT and various new commu-
nication modes, including Vehicle-to-Vehicle (V2V), Vehicle-to-Road Side Units (V2R),
Vehicle-to-Infrastructure of Cellular Networks (V2I), Vehicle-to-Sensors(V2S), and Vehicle-
to-Person (V2P), IoV can expand the traditional Vehicular Ad hoc Networks (VANETs)
capability by adding several new services and applications. IoV is able to support various
functions, including intelligent traffic management, traffic safety enhancements, dynamic
information services, intelligent vehicle control for improving the overall road experience
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of users [2–5]. However, vehicle onboard computation capacity is falling short when new
latency-critical and data-intensive applications are considered; hence, new challenges are
arising in VNs. The Cloud computing facilities are able to reduce the computation burden
of new services; therefore, Vehicular Users (VUs) can transmit the portion/complete task
to the cloud servers having enormous computation and communication power. In gen-
eral, the cloud facilities are located far from the users, in the core network, and introduce
some drawbacks, e.g., huge transmission costs, backhaul link congestions, data security
threats due to long-distance communications. Such issues can be addressed by integrating
the Edge Computing (EC) facilities into VNs, bringing cloud computing resources in the
proximity of end-users [6,7].

In the case of VNs, EC facilities can be integrated through the deployment of several
EC servers alongside the road network co-located with Roadside Units (RSUs). Such an
approach is known as Vehicular Edge Computing (VEC) and has achieved lots of success
by enabling new latency-critical services into VNs [8]. However, the limited capacity and
coverage of EC servers/RSUs is the main bottleneck while exploiting VEC advantages.
VEC-based VN can also be complemented by adding additional EC servers located on the
terrestrial cellular base stations (i.e., 5G-gNB). Such ground-based multi EC platforms can
compliment VUs by providing additional services and reducing the overall burden of the
VEC servers.

However, in recent times, Terrestrial Networks (TNs) are becoming more and more
used, with many new users requesting services with specific demands. Limited coverage
into rural and remote areas, unreliable service during natural disasters like tsunamis and
earthquakes, new security challenges, poor link budget with additional interferences are
some of the main challenges that need to be considered while utilizing TN-based EC
platforms into VNs. In addition, VUs are not the only user group requesting services
from the TN-based EC platforms. With the presence of different users, the dynamically
changing resources of EC servers with vehicular mobility adds additional challenges while
integrating the TN-based EC services into VNs. With this limitation, integrating TN-based
EC platforms into VN alone can not be a sufficient solution for the new futuristic vehicular
services and applications, which will have more stringent requirements in terms of latency
and computation resources.

Encouraged by the new technological developments and the additional interest shown
by several tech giants (i.e., Facebook, Google, etc.), the Non-Terrestrial Networks (NTN),
including space and air networks are growing these days mainly for providing global con-
nectivity [9]. Several new platforms such as new satellite constellations, unmanned aerial
vehicles (UAVs) swarms, small fueled aircraft, balloons have been deployed at different
heights from the ground users to achieve the global connectivity challenge [10]. Better con-
nectivity, scalability, reliability are some of the advantages of NTN based communication
platforms. With the addition of modern communication technologies, such as multi-beam
antennas, the NTN platforms can also provide EC-based services with an onboard comput-
ing server [11–13]. Such NTN-based EC platforms can complement the VNs for solving
several problems, including RSUs’ limited capacity and coverage. However, the higher
transmission delay, introduced by space networking platforms (i.e., satellite constellations),
is a major challenge while considering NTN platforms for serving latency-critical VNs.
Compared with space networks, new aerial platforms such as Low Altitude and High
Altitude Platforms (LAPs and HAPs) have a considerable advantage with reduced trans-
mission distances, low deployment time and costs, and reduced communication channel
losses. Therefore LAPs and HAPs can be excellent solutions for complimenting the VN for
providing new innovative and intelligent services to the end-users.

Every connected vehicle in a VN is equipped with several sensors, able to generate
tones of data (i.e., big data) in real-time. These data can be analyzed and exploited for
improving the quality of VNs services and applications [14]. Recently machine learning
(ML) techniques are used for solving challenging problems over wireless networks [15,16].
With new hardware technologies and the availability of a large amount of data through
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IoT devices, ML research is grown fast. Several new ML tools and techniques have been
developed and utilized for solving real-world problems on a daily basis. The use of new
innovative ML-based solutions for analyzing the vehicular data for improving the vehicular
environment can be beneficial [17]. However, proper infrastructures with communication
and computing resources are required, for embedding the ML-based solutions into VNs,
failure of which can introduce higher process costs (i.e., cost induced by ML model training,
inference, etc). With limited resources and dynamic movements in VNs, it is challenging to
implement ML techniques. The EC resources can be exploited for integrating the ML-based
solution techniques into VNs.

Traditional ML approaches such as centralized ML require VUs to transmit their data
to the centralized, more powerful servers [18]. However, such an approach can introduce
higher costs in terms of communication latencies and energy requirements. With resource
limitations and critical service requirements performing centralized ML over VN can be
challenging. On the other hand, new learning approaches such as Federated Learning
(FL), VUs are able to perform the training operations by themselves [19]. In each FL round,
VUs perform the training operations to learn local ML model parameters, to be then sent
towards the centralized server. After receiving all VUs parameters from its coverage area,
the server is able to perform an averaging operation for creating a global model to be
broadcast back to the VUs. Thus, the VUs can reduce the data communication cost by
performing local training operations and also exploit the presence of other VUs, by learning
experiences/data through the averaging. For these reasons, recently, FL-based solutions are
preferred for VN application when solving challenging problems [19–21]. For benefiting
from the collaborative learning into FL, a server platform with better coverage characteris-
tics and channel conditions is required. NTN platforms, such as HAPs, can assist VN in
implementing an efficient FL process with their better coverage characteristics, moderate
transmission distances, and better channel conditions. FL and other ML techniques will be
described in more detail in Section 3.

Therefore, there is clear scope for integrating NTN layers, especially air network-based
EC platforms, with ground-based EC resources, into VNs. Such an approach can solve
the limited capacity and coverage problem of conventional ground-based EC platforms
and can provide more intelligent services and applications with stringent requirements.
Therefore, we aim to provide a novel multiple EC platforms-enabled VN architecture by
integrating ground and aerial network-based EC resources. Different enabling technologies,
corresponding challenges, and opportunities are discussed in detail. We further analyze
several vehicular scenarios and the benefits of using the proposed VN architecture for
solving the challenges associated with them. In the following, we list the main contributions
of this work:

• In Section 2, a review of the technological background is given by resuming the most
important technical reports, projects, and papers addressing scenarios similar to the
one we consider.

• In Section 3, we first describe the main enabling technologies that can be crucial for
shaping the next generation VNs. In particular, we focus on ML, VEC, and network
softwarization technologies, their characteristics, corresponding benefits, and chal-
lenges while used in vehicular environments.

• In Section 4, for efficient utilization of the previously introduced key technologies
over the vehicular environment, we provide a joint air-ground network-based VN
architecture (for better clarity, in the following the term air-ground refers to the
architecture while T-NTN to the terrestrial and non-terrestrial network issues and
deployment). We highlight the important characteristics of individual layers of the
proposed architecture, including capacity, coverage, and applications. With multiple
EC platforms, the proposed architecture can be useful for implementing various
intelligent vehicular services and applications that can ease the vehicular experience.

• In Section 5, we further describe three main VN scenarios including the implemen-
tation of an efficient ML platform for VN services and applications, enabling the
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computation offloading based EC services in VN, and a network function place-
ment for the network slicing-based vehicular services. Important challenges, and the
solution methodologies that can be used while considering the proposed network
architecture over these important vehicular scenarios, are analyzed.

• In Section 6, we summarize the important characteristics, challenges, and proposed
solutions for the scenarios discussed in the previous section.

• In Section 7, we conclude our work by highlighting the proposed solutions and
possible future research directions that can be followed.

2. Scenario Background

The Smart City vision can be achieved through a proper integration of several key
technologies (e.g., ML, EC). In [22], the authors have surveyed different EC technologies
that can be useful for realizing the Smart City vision. Various Smart City scenarios and
corresponding challenges are reported. Furthermore, in [23], the influence of big data and
ML technologies in Smart City developments is presented. Developing a proper ITS is a
key to creating sustainable Smart City environments. Different technologies are merging
with the goal of forming sustainable, safe, and intelligent VNs for serving VUs. In [24],
the authors surveyed several ML-based solutions employed in VNs communication and
networking parts. Differently, the importance of a network softwerization technology in the
VN and corresponding challenges is surveyed in [25]. In [26], the authors have proposed a
software-defined collaborative EC platform for the vehicular scenario. They have mainly
focused on ground-based EC technologies, including mobile edge computing (MEC), fog
computing, cloudlet, etc. However, limited capacity and coverage issues of ground-based
EC platforms limit the performance of traditional VNs.

Recently, the importance of NTN platforms in wireless communication is highlighted
in different projects and research works. Several ongoing projects including EdgeSAT [27],
SATis5 [28], Expanse [29] are aimed at integration (with terrestrial networks (TNs)), soft-
warization, and expansion of EC facilities over NTN platforms. Several study items such
as IoT over NTN, new radio (NR) over NTN, satellite components in 5G architecture,
and unmanned aerial systems are part of 3rd generation partnership project (3GPPs) Re-
lease 17 studies, which will be finalized at the end of the first quarter of 2022 [30]. It is
also expected that 3GPP will reconsider many of these items in an upcoming release (i.e.,
Release 18) [31].

In [32], the authors presented the new opportunities and challenges ahead for inte-
grating the NTN technologies into upcoming 6G networks. The work in [33] analyzes
the importance and challenges of integrating NTN networks into VN. A space-air-ground
integrated VN architecture for supporting different vehicular services in diverse scenarios
is proposed. Furthermore, in [34], the authors have presented a space-air ground integrated
VN architecture highlighting the key features of each platform layer. It is possible to enable
several EC services over different NTN layers by deploying proper computing resources.
In [12], authors proposed EC-enabled UAV platforms for improving computation per-
formance and reducing the execution latency of MEC systems. Recently in [35], authors
studied the energy performance of an offloading strategy designed over EC-enabled satel-
lites and HAP networks for ground-based users. In [36], the importance of the UAV-assisted
VEC system and corresponding implementation issues are highlighted.

3. Enabling Technologies and Challenges for Futuristic Vehicular Networks

A suitable VN architecture able to serve users with new innovative services and
applications has to exploit together several key technologies. However, with limited
EC capacities and coverage restrictions, it is challenging to integrate these high-level
technologies into the vehicular environment. Here, we introduce the main technologies for
designing futuristic VNs and corresponding challenges.
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3.1. Network Softwarization

Network softwarization is a key trend that uses Software-Defined Networking (SDN),
Network Function Virtualization (NFV), and network slicing techniques for providing
additional programmability, flexibility, and modularity in different parts of the wireless
communication networks [37]. Network softwarization allows a flexible deployment and
control of different vehicular services once adapted into VNs. Here, we introduce the main
technologies that allows to create a flexible and programmable VN.

3.1.1. Network Function Virtualization (NFV)

NFV is a key technological trend to tackle the flexibility and scalability problems
associated with traditional hardware-based Network Functions (NFs). In the past, different
NFs such as firewalls, Content Delivery Networks (CDNs), Network Address Translation
(NAT) were installed as dedicated hardware-based appliances. With this, the implemen-
tation of new services and applications were restricted by the deployment of specific
hardware-based elements. NFV decouples this network functions from proprietary hard-
ware appliances and runs them as software instances in Virtual Machines (VMs)/containers
as Virtual Network Functions (VNFs) [38]. Through NFV, standard network resources such
as compute, storage, and network functions can be virtualized and kept on Commercial
Off-the-Shelf (COTS) hardware like x86 servers. In addition, multiple VMs/containers,
through the proper assignments of virtualized resources, can run on a single server for
improving server resource utilization. With the NFV technology, different network func-
tions can be placed in different locations of the networks elements such as data centers, EC
servers, etc.

In the case of a Multiple EC (Multi-EC) platforms-enabled-VN architecture, NFV can
potentially bring several benefits, including reduced network cost, less time-to-market
for new services, higher resource efficiency, and better scalability. However, each VNF
demands specific computation resources based upon the service types. Furthermore,
since VNFs can be deployed at multiple locations, it is important to find proper function
placement strategies for implementing many hybrid vehicular services over a resource-
constrained VN.

3.1.2. Software-Defined Networking

With the unprecedented increase in demand for heterogeneous services in VN, there
is a need for a platform that can dynamically adapt the network and service according to
the demand request. Software-Defined Networking (SDN) technology can create a more
flexible and programmable VN for supporting the critical requirements of the services and
applications [39,40]. The SDN forms a fully programmable wireless network by logically
separating the data and control plane, where all control operations are performed through
the centralized controller unit. The controller can have a global view of network topology,
traffic load, network states, and link failures. In the case of an EC-enabled VN, having
different EC layers of heterogeneous hardware having a proper centralized controller
assisted by the individual layers local controller can be useful for providing flexible VN
services. In the past several studies have shown the importance of SDN-based VNs,
where SDN technology is integrated into VN to manage different parts with improved
performance in terms of network flexibility, throughput, and flexible deployments of
new services and applications. However, various issues need to be handled carefully
during the integration of SDN into VN including, possible security attacks over the data
plane, the vulnerability of a centralized controller in terms of single-point failures, issues
related to the heterogeneous hardware of different EC platforms, various access network
technologies, etc. Over the years, researchers have provided numerous solutions for
these issues [26,40–43]. As an example, in [41], a 5G software-defined vehicular network
having integrated SDN technology is proposed with clear separation of data, control,
and application planes. In another study [26], the authors proposed a collaborative EC-
based software-defined VN with multiple EC platforms. Furthermore, in [40], the authors
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have experimented with the different SDN controllers over a complete software-defined
vehicular networking on hardware. Recently in [42], the authors have proposed a novel
IoV automation and orchestration system using SDN for connected autonomous vehicles.
In [43], the authors study different VN architectures and propose a localized intelligence
augmented highly reconfigurable software-defined heterogeneous vehicular networking
architecture for avoiding single-point failures.

3.1.3. Network Slicing

The network slicing technique takes advantage of NFV and SDN for creating multiple
logical networks or network slices over a common physical infrastructure of VN [44,45].
Multiple network slices can be configured over the same physical infrastructure to provide
different services with diverse requirements. It provides dynamic resource management
by enabling efficient resource sharing by considering various key performance indicators
(KPIs) for each slice and can be an efficient technology over the VN with limited resources.
Inherently, the network slice contains a chain of physical and virtual network functions that
can be placed at different locations based upon the service requirements. In the case of an
EC-enabled VN with users requesting services with different KPIs, each slice function needs
to place carefully for satisfying the user demands. The problem of network slicing and
corresponding network function placement over a Multi-EC multi-service VN is discussed
later in Scenario 3 in Section 5.

3.2. Vehicular Edge Computing

With the development of IoT and new wireless communication technologies, many
new services and applications have been enabled into the VN. Users are demanding services
with tighter requirements in terms of latency, bandwidth, computational capability; with
limited onboard resources VUs alone are not capable of providing a satisfying Quality
of Service (QoS). One way to solve this issue is to use cloud computing, where each VU
can transmit their workloads towards the computationally rich cloud servers located deep
inside networks. Thus, cloud servers perform the computation operations on behalf of
the VUs and send back the results. With high computation resources, the cloud server can
serve many VUs with negligible computation latency. However, with a long transmission
distance between VU and cloud platforms, this approach introduces large communication
delays. Furthermore, user data can be exposed over a large transitional distance can
be prone to the security challenges such as third-party attacks. With limited backhaul
resources, issues like network connections are likely to happen when many VUs from a
giver service area request cloud computing services. Thus, providing a satisfying QoS can
be challenging over the cloud computing platform.

For solving cloud computing problems, the MEC approach was introduced [46]. MEC
brings cloud computing services closer to the end-users by deploying several edge servers
in proximity. Thus, users can transmit their workload to these servers without incurring
large delays, security issues, or network congestion problems. MEC has gained lots of
attention in the recent past and enabled several new latency-critical applications and
services over wireless networks [47,48]. In the vehicular scenario, the MEC framework is
configured as the deployment of several RSUs along with the road networks and equipping
them with the edge servers deployed in the proximity [8]. This approach is called vehicular
edge computing (VEC) and has a huge potential for enabling latency-critical and data-
intensive VN services [49]. Figure 1, shows the main elements of a reference VEC system
which includes distributed VUs, several RSUs along with the road network, and EC servers
located nearby RSU nodes. VUs can access VEC services provided by EC servers through
RSU nodes with V2I communication links, while they can communicate among them
through V2V communication links [50]. RSUs can also act as a gateway for uploading
vehicular data to the BS and Cloud facilities.
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Figure 1. Vehicular edge computing framework.

The limited available resources and RSU coverage are the main bottlenecks for reduc-
ing the performance of a VEC system. The resource limitation often increases the VEC
system cost in terms of computation latency when multiple VUs request services from
the same EC server. The RSU coverage limitations, along with VUs mobility, can add
an extra cost in terms of handover latencies. In some works, authors have considered
hybrid system models in which both VEC and Cloud computing facilities are considered
together for solving the capacity and coverage issues in VEC systems [6,51]. However,
such approaches can have some serious drawbacks, such as long transmission distances
for accessing cloud facilities. A VN with multiple EC layers of different air and ground
networks in proximity (e.g., base station, LAPs, HAPs) can be a better approach compared
with a hybrid VEC-cloud system. It can reduce the transmission latencies or network
congestion caused by multiple VUs requesting cloud resources and solve the coverage and
capacity problems of VEC systems alone.

Within Multi-EC multi-service VN, selection of proper EC platforms and the amount to
be offloaded can improve VNs performance. The offloading operations of the surrounding
VUs can be useful for other vehicles for a proper offloading decision, such as selection
of EC platform, and amount to be offloaded. Such network selection and computation
offloading problem have been discussed in the Scenario 2 in Section 5. Table 1 lists the
advantages and disadvantage of different EC platforms in vehicular services.

3.3. Machine Learning

The traditional approaches used for solving VNs problems include convex optimiza-
tion, game-theoretic approaches, and several other metaheuristics. These techniques mainly
suffer from the heavy computational burden with exponentially increasing search space in
large-scale scenarios; this is even more enforced when the considered VN system employs
multiple EC nodes, and network softwarization solutions, enabling more flexible implemen-
tations. Heuristic approaches used for solving the VN problems with their NP-hardness
are not able to adapt to the increasing complexity of the new applications.
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Table 1. Advantages and disadvantages of different EC platforms for VN services and applications.

EC Platform Advantages Disadvantages

VEC Reduced Transmission Distance with Line
of Sight (LOS) Communication

Limited Resources, Coverage Range, Fre-
quent Handovers

TN-EC (i.e., BS) Higher Computation and Communication
Resources, Better Coverage Range

High Transmission Delay with Degraded
Channel Quality (NLOS Communication)

Cloud Unlimited Resources and No Coverage Is-
sues

Huge Transmission Delay, Backhaul Net-
work Congestion, Security Issued Due to
Long Distance Communication Channels

LAP-EC Reduced Transmission Distances with LOS
communication, Reduced Deployment and
Maintenance Time and Costs

Limited Resources, Low Flight Time

HAP-EC Moderate Transmission Distances with
LOS communication, Can Have High Re-
sources, Solar Energy Source

High Deployment and Maintenance Time
and Costs Compare with LAP, Communi-
cation can be Affected by Rain Fading

Satellite-EC High Computation and Communication
Resources

Large Transmission Distances (not suitable
for latency critical VN), Large Deployment
and Maintenance Cost

With the addition of IoT techniques, enabling what is usually referred to as IoV [5,50,52,53],
vehicles become an excellent element for training data that can be utilized for solving
vehicular problems (i.e., ML-based solutions). Several complex vehicular problems such as
dynamic resource allocation, traffic predictions, cooperative congestion control, content
caching, computation offloading, intrusion detection, anomaly detection can be solved
by using popular ML methods such as supervised learning, unsupervised learning, rein-
forcement learning, etc. [24]. Among other ML techniques, Deep Reinforcement Learning
(DRL) is a potential solution for many complex vehicular scenarios, which allows exploit-
ing Deep Neural Networks (DNN) for analyzing VNs data without requiring any prior
knowledge of the VN environment, which is hard to capture [54], e.g., correct state trans-
mission matrix over VN states for Markov Decision Processes (MDP) based solutions. ML
solutions outperform the heuristic and one-shot-based optimization techniques with better
long-term performance.

Different approaches are available for the integration of ML-based solutions into vehic-
ular environments. In each of these approaches, various communication, and computation
strategies can be involved during the training process of an ML model. For example,
a centralized ML model training approach requires each VN to send its data towards a
centralized, more powerful server. In another case, a centralized ML server can further split
the training data and corresponding operations with nearby servers to reduce the required
computation time. A new collaborative learning-based approach such as federated learning
(FL) can allow participating VUs to train ML models locally. The powerful central server
can be employed for collecting and averaging the local training ML models parameters
to combine the VUs learning experience. These technologies can have certain advantages,
disadvantages and can face several new challenges in vehicular environments. In the
following, we describe each of these approaches in detail.

3.3.1. Centralized ML

Even though VUs are capable of training fairly complex ML algorithms by themselves,
it is yet not recommended due to several reasons. First, with their limited resources, train-
ing complex ML algorithms over Vehicles Onboard Units (OBUs) will be computationally
expansive and can introduce large latency and energy costs. Complex ML techniques such
as DNN require a large amount of data during training, which individual VUs are not capa-
ble of providing. Furthermore, dynamic environments like VNs are continuously changing,
and the surrounding environments can affect the VUs performance while performing ML
model training.
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In the centralized learning approach, several randomly distributed VUs transmit their
raw data towards a powerful centralized server (ML-server) with rich communication and
computation resources. With this approach, fairly complex ML techniques like DNN can
be adapted to solve VNs problems with better performance. With these advantages, some
challenges need to be considered while implementing centralized ML-based solutions over
vehicular environments. Though centralized computation servers are rich with compu-
tational resources, ML model training costs can grow exponentially with the increasing
complexity of ML techniques (DNN with a high number of layers), which ensures large
computation delays at servers. Furthermore, the transmission of the whole dataset towards
centralized servers can be challenging with VUs limited communication resources and
dynamic channel environments. In the case of VNs, with changing environment dynamics
and corresponding renewed datasets, it is important to update the trained ML models
for a short duration of time to avoid issues like model drift. Thus, centralized ML model
training approach can have several issues while considering it for solving VNs problems.

Figure 2 shows an example of a centralized ML model training over VN where
centralized ML server collects training data from individual VUs for performing train-
ing operations.

Figure 2. Centralized machine learning.

3.3.2. Distributed ML

For reducing the model training cost at a centralized ML server, the workload dis-
tribution methods can be adapted, in which the main server can select a set of powerful
computing servers around it and allocate the model training tasks. This approach is known
as a distributed learning approach in which multiple powerful servers collaboratively per-
form the training process. This allows to limit the model training latency at the centralized
server and allows to train fairly complex ML models with acceptable latency. However,
this approach does not solve the communication overhead problem faced by the individual
VUs and thus can have limited performance over VNs.

Figure 3 shows the distributed ML model training over VN. In the case of distributed
learning, the centralized server employs the nearby idle server resources for reducing the
overall training latency.
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Figure 3. Distributed machine learning.

3.3.3. Federated ML

For overcoming the problems of the centralized and distributed approaches, the FL
technique is proposed, where individual devices can perform model training by themselves
exploiting local data and transmit only the ML model updates towards a centralized server
In some articles, authors do not distinguish between Distributed Learning and Federated
Learning. However, here we have considered these two as separate ML model training
techniques with different features [55]. The main differences between FL and distributed
learning approaches are listed in Table 2. Once receiving updates from all vehicles in
the coverage area, a centralized server performs an averaging operation (i.e., Federated
Averaging (FedAvg)) for creating a centralized global model, whose parameters are then
transmitted back to the vehicles. The averaging process allows individual vehicles to take
advantage of other vehicles’ data and learning experiences for improving their ML models
while the local device training process improves the time and energy efficiency of the
model training process. Thus, a single FL process communication round includes several
steps, such as individual VUs performing the local training operations, the transmission of
the local model parameters towards the centralized server, after receiving parameters from
an individual VUs, the averaging operation performed at centralized server for creating
a global model that allows VUs to take advantage of other VUs training experiences and
retransmission of model parameters back to VU. Such communication rounds can be
performed for creating a suitable ML model with lesser estimation errors. The complete FL
process over VN is shown in Figure 4.

Figure 4. Federated learning.

Algorithm 1 lists the possible steps involved during the FL process. FL process requires
several input parameters, including the number of FL devices participating (M), their
datasets ({Dm}), and the maximum number of FL communication rounds ρ. It should be
noted that the FL communication rounds limit can also be replaced by any other stopping
criteria such as model convergence parameter, loss function value, etc. The initialization
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step begins the FL process by defining the initial value of a global FL model parameter
and FL communication round to zero (Line 1). At the beginning of each round, local
model parameters are updated by the previous rounds’ global parameter values (Line 3).
Next, FL devices perform the ML model training for generating local ML model wit

m at
itth iteration in parallel (Lines 4–5), where η is a learning rate. After completing the local
training process, each device forwards its parameters to the FL server (Line 6), where it
performs the FedAvg operation to create a new global model (Line 8) which is then used by
VUs in next round of communication. FL process continues over ρ communication rounds.

Algorithm 1. Federated Learning.

Input: M, ρ, {Dm}
Output: wρ

G

1: Initialize w0
G ∧ it = 0

2: for each it = 1, · · · ρ do
3: initialize wit

m = wit−1
G

4: for each m = i, · · ·M do in parallel
5: Update wit

m based upon the η and the local device learning process.
6: send wit

m to FL Server
7: end for
8: FL server collects all the wit

m and performs averaging

9: wit
G =

1
M ∑M

m=1 wit
m

10: end for
11: return wρ

G

In general FL based solutions can have many benefits in VN environments, includ-
ing reduced communication overheads compared with centralized/distributed learning
models. However, in the case of a Multi-EC enabled VN, selecting a proper FL-server, FL
devices, and the proper number of FL communication rounds can be beneficial in terms of
training costs. We will discuss these issues in detail in the Scenario 1 in Section 5.

Table 2. Characteristics of the ML Models over VNs.

Characteristics Centralized Learning Distributed Learning Federated Learning

Learning Entity Centralized Server Distributed Centralized
Servers

On Device (VUs)

Communication
Cost/Latency

High High Limited

Computation
Cost/Latency

High Limited Limited

VUs Sensitive Data
Privacy

Less Less High

Useful for Training Fairly Complex
ML models (i.e., DNN with
limited number of layers)

Training Complex ML
Models

Training Models with
Limited Complexity

4. Multiple Edge Computing Platforms Enabled Air-Ground Network Architecture for
Vehicular Scenarios

In this section, we propose a VN architecture with multiple EC layers to serve VUs
with diverse service requests. We characterize different EC platform layers in detail and
highlight their importance for serving VUs.

TN-based infrastructures are playing an important role in creating a fully functional
intelligent VN for futuristic Smart City environments. However, they alone are not ca-
pable of providing adequate services to dynamic VUs, which often request services with
extremely low latency and high reliability. TN is vulnerable to ground-based security
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attacks due to its fixed positions. Furthermore, in the case of natural disasters such as
tsunamis, earthquakes users often fail to connect to the services of TN. Low accessibility
into remote areas mainly because of the unwillingness of mobile operators to provide
services into low revenue parts needs to be considered while integrating TN into VNs.
NTN such as Air networks has a considerable advantage over TN in terms of availability,
reliability, scalability, and low deployment costs. With these advantages, they can play an
important role in complimenting TN for providing better quality services to VUs. Both TN
and NTN platforms can enable EC-based services through placements of edge computing
servers along with their distributed infrastructures. Therefore, a Multilayered joint T-NTN
constituted by different EC platforms over TN and NTN can be utilized for providing
heterogeneous services requested by VUs with demanded quality.

In Figure 5, we propose an air–ground network having multiple EC platform layers
and jointly exploiting TN and NTN for serving VUs.

Figure 5. Multiple EC enabled VN.

Several VUs are randomly distributed in the considered service area and demand
many latency-critical and data-intensive services. The proposed network architecture is
constituted by several elements as shown in Figure 5: a set of VUs, RSU, BS elements,
LAPs, and HAP. For avoiding redundancies, in the following, we omit the legend from the
figures. A set of RSUs is deployed alongside roads having a limited capacity EC servers for
providing computation services to the VU. Each RSU can serve a limited set of VUs in its
coverage range. VUs are also supported by the BS elements equipped with EC services.
BS elements can sever VUs over larger coverage areas compared with RSUs and can have
powerful EC servers. However, the required roundtrip time for sending and receiving back
the VUs task can be much higher. Thus, RSUs and BC servers jointly forms form a multi-
layered TN-based EC service platform for supporting VUs. VUs are also complemented
by a swarm of LAPs (i.e., UAVs) deployed on top of them. UAVs can enable limited EC
services with a pre-installed EC server. UAVs can have limited coverage and flight time
that often limits their service range. VUs are also covered by multiple decentralized HAPs
having better coverage and computing capacity compared with UAVs. Thus, Jointly, UAVs
and HAPs form a multilayered NTN based EC platform for supporting VUs with better
quality services and intelligent applications. Jointly both TN and NTN based EC platforms
serve VUs with their available computation and communication resources.

As shown in Figure 6, the considered network infrastructure can be split into several
layers of ground-based and areal networking infrastructures. The TN is constituted by
several connected VUs in Layer 1 which can form a small vehicular cloud, RSUs equipped
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with the EC servers in Layer 2, and multiple BS with EC facilities in Layer 3. The NTN
has two layers of LAPs and HAPs belonging to the areal networks. LAP nodes are located
at a relatively low distance from the ground compared with the HAPs and have limited
computation and communication resources. Though HAPs are at a long distance from the
VUs layer they can serve large coverage areas. Below we describe each of these networking
layers in detail.

Figure 6. The Multi-EC framework for the vehicular scenario.

Layer 1—Connected VUs layer

Several connected VUs having communication and computation capabilities are
grouped into Layer 1. Each VU can communicate with its neighboring VUs for possi-
ble information sharing through V2V communication technologies and use V2I links for
interacting with other EC layers. VUs can communicate over a limited distance to share
important information for enabling several safety-related, traffic flow management services
that make drivers life easy on the road. Through V2I communication, VUs can share their
workloads towards EC servers in proximity for enabling latency-critical and data-intensive
applications. VUs often generate different tasks requests with specific requirements of
computation, communication, and storage resources. These task requests often come with
additional requirements (i.e., critical latency requirements), for which VUs often need
assistance from the EC platforms in the proximity.

Layer 2—RSU-Edge Computing (RSU-EC) Layer

For enabling the EC facilities into VNs, several RSUs have been deployed alongside
road infrastructures. RSUs can have communication technologies installed for commu-
nicating with VUs and other higher lever networking layers (i.e., cellular BSs, cloud
infrastructures, etc.). EC servers having limited computation and storage resources can be
deployed alongside RSUs to integrate the EC services into VNs. Thus, RSUs equipped with
EC servers and communication technologies constitute an EC layer in the proximity of VUs
for providing low latency services. However, with their limited resources and coverage,
RSUs can serve a limited number of VUs. Furthermore, VUs mobility often restricts them
from accessing RSU services for longer periods of time.

Layer 3—5G Base Station (BS) Layer

5G base stations (5G-gNB) have integrated modern communication and computation
technologies that can be exploited as an EC platform. With larger coverage areas, they
can serve a higher number of VUs. However, the BS-EC platform can have additional
transmission delays due to longer communication distance compared with RSUs.
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Layer 4—Low Altitude Platform (LAP) Layer

LAP platforms such as UAVs equipped with EC servers can add several benefits
in terms of a reduced transmission time (less than 1 msec), reduced deployment and
maintenance time, line of sight communications with better channel quality, etc. They can
also act as a relay node for allowing VUs to transmit their information towards higher
air networking layers such as HAP with reduced latency and energy costs. With the
limited size and reduced flight times, UAVs can only have limited communication and
computation resources onboard.

Layer 5—High Altitude Platform (HAP) Layer

A HAP network constituted by several nodes able to communicate amongst them-
selves and other infrastructures is forming another EC layer in the air network. Each HAP
node can have a powerful EC server and the communication resources for serving VUs
under its coverage. Better coverage, additional renewable energy sources, better stability
are some of the HAPs main advantages over LAPs. However, HAP performance can be
reduced by longer communication distances, additional channel loss in terms of rain fading
high deployments, and maintenance time and costs. The HAPs coverage area can depend
upon its altitude. In general HAP platform can provide coverage between a few 10 s of
Kms to up to several 100 s of Km [56,57].

Communication, Computation and Storage Characteristics

Each EC platform layer of the proposed network architecture can adapt different
computation and communication strategies. Several virtualization techniques (i.e., Virtual
Machines (VMs), containers) can be used for the efficient utilization of EC resources.
Furthermore, an SDN-based centralized control approach can be applied for managing the
computation and storage resources of individual EC platforms. Multiple operators based
communication technologies can be adapted for enabling the communication between EC
nodes of the same and distinct layers. Table 3 lists the most important characteristics of
individual EC layers considered in the proposed network architecture.

Table 3. EC platforms’ characteristics.

EC Platform VU Cloud RSU EC LAP EC 5G-BS EC HAP EC

Computation Resources Low Limited Limited High High

Communication Low Limited Limited High High

Storage Low Limited Low High Limited

Coverage few 10 s m few 100 m few km few km up to 200 km

Energy Source Electric/Fuel Cells Electric Grid Fuel Cells Electric Grid Fuel Cells/Solar

5. Proposed Multi-EC Enabled Air-Ground VN Scenarios

In this section, we describe the most prominent vehicular scenarios gaining more from
the presence of a Multi-EC enabled air–ground architecture, by considering to serve VUs
with different service requests. In particular, we have considered three main aspects able to
enhance actual vehicular scenarios, i.e., the use of efficient ML platform, the exploitation of
computation offloading approaches, and the optimal network function placement focusing
on a slice-based Multi-EC multi-services VN architecture. The prominent scenarios are
described in detail, by listing the important challenges ahead and the possible solution
methods involving ML-based approaches for addressing them over VN environments.



Smart Cities 2021, 4 1483

5.1. Cost Efficient Federated Learning Platform for Vehicular Applications
5.1.1. Scenario Description

For the case of VN, each connected vehicle is equipped with multiple sensor devices
that can generate tons of data in real-time. These data, through proper analysis, can be
utilized for providing a better QoS to the end-users. Several ML tools are available for
analyzing data and inferring important information from them. Furthermore, there are
multiple ways for performing the ML model training over dynamic wireless environments,
like the VN.A centralized ML model training approach is not much suitable technique to
perform over VNs, mainly because of high communication and computation overheads.
If a centralized training approach is adapted over VNs, VUs need to transmit their complete
data towards the centralized server which performs training operations. Such an approach
adds significant cost in terms of data transmission and training latency at the server. Thus,
other distributed and collaborative training approaches like FL can be a better approach
for ML model training over VUs data.

The importance of FL-based approaches for solving VUs problems is highlighted in
several recent works [19–21]. Here we aim at proposing an efficient FL-based platform
for generic VN applications such as optimal pathfinding, multimedia streaming, colli-
sion avoidance, etc. The model training cost of the FL process should be analyzed for
implementing the optimal FL-based platform to solve the vehicular problem.

5.1.2. Possible Challenges

Here we describe the important challenges that need to be considered for implement-
ing an efficient FL platform over a Multi-EC enabled VN.

• Proper FL-server selection The FL process training cost can depend upon the number
of users participating in the training process, channel environment, the transmission
distance between FL devices and the server, type of ML model, types and quality of
datasets, etc. Selecting a proper FL-server can limit the training cost. The FL server
should have better coverage, high computation capacity, a short transmission distance,
and better channel environments. However, most of these properties are contradictory
and thus require tradeoffs while selecting the FL server node. For example, RSU EC
nodes can be considered as an FL-server for reducing transmission distances and
better quality channel environments but with coverage limitations, only a few VUs
can participate in the training process. Similarly, considering the LAPs/UAVs as
FL-server can be costly due to their limited coverage, shorter flight times, etc. On
the other hand, HAP-EC nodes can have better coverage for allowing many VUs to
participate in the training process; however, long transmission distance and poor
quality channel environment can be challenging.

• FL Device Selection It is not always possible and advisable to consider all VUs data
while performing the FL training process. It is often the case that some of the VUs
might not be able to transmit their ML model parameters to the FL server because
of poor transmission medium. Some VUs might have a poor quality dataset which
results in poor training performance. Considering such VUs into the FL training
process can degrade the overall training process performance. Therefore a suitable
strategy is required to be implemented for selecting a proper set of VUs for the training
process.

• Training Cost Vs Convergence in FL During FL, the training process can be continued
till the loss function value converges to some predefined value. For having a reduced
FL training process, the number of FL rounds performed by each VU can be limited
based upon its available resources.

5.1.3. Proposed Solutions

We have considered two different approaches for implementing an efficient FL plat-
form over VN assisted by multiple EC layers.
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Hierarchical FL Platform over Multi-EC VN Architectures

In this approach, we develop a hierarchical learning-based FL platform over the Joint
T-NTN (Figure 7). The HAP with larger coverage and resources acts as FL-server, while
VUs (FL-devices) with local datasets perform model training. For the conventional FL
process, VUs transmit the local model parameters to the HAP. This can result in higher
transmission times, high energy costs, and often VUs dropouts from the training process
mainly because of unreliable long-distance communication channels between VUs and
HAP. In the case of the proposed hierarchical learning approach, instead of transmitting
their model parameters to the HAP server over long distance/unreliable communication
links, VUs resort to sending them to the nearby EC layers that includes LAP and RSU
based EC servers. After receiving data from VUs, nearby EC servers perform the averaging
operation to create a sub-global model parameter and transmit them to the HAP server.
In this way, the amount of connections over long-distance links is limited and, as a result,
saves the training process time and energy for each FL communication round. Furthermore,
BC-EC nodes are used as a backup for avoiding service failures when HAP fails to connect
with other platforms, mainly because of security issues or environmental conditions. In this
case, nearby ECs transmit their model parameters to the BS instead of HAP.

Figure 7. The hierarchical FL platform over a Multi-EC VN architecture.

Computation Offloading Based FL Platform over Multi-EC VN Architectures

In the case of a conventional FL process, many VUs drop out from the training process
mainly because of limited computation/communication resources onboard. If a VU has
limited computation resources, performing a local training process can result in a larger
computation time and may not be able to send their updates to the FL server in time.
For avoiding such issues during FL, a computation offloading-based FL platform can
be used, exploiting the computation offloading services from the nearby EC servers for
allowing VUs with scarce resources to participate in the FL process (Figure 8). In this
approach, VUs mobility, limited coverage range of nearby EC servers, the security threats
of EC platforms are required to be taken into account.

In Table 4, the most important characteristics of the proposed solutions for the cost-efficient
FL platform implementation over Multi-EC enabled VN architecture are summarized.
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Figure 8. Computation Offloading for FL.

Table 4. The characteristics of the proposed solutions for the cost efficient FL platform.

FL Platform VUs Computation
Latency/Energy

VUs Communication
Latency/Energy

Data Privacy VUs Participation Possible Challenges

Hierarchical FL High on-device com-
putation cost

Reduced VUs commu-
nication delay/energy
due to short-distance
communication
between VUs and
LAP/RSUs

FL model training pro-
cess is performed by
VUs alone without
sharing data with any
other nodes (privacy-
preserving).

High on device train-
ing latency and en-
ergy cost can limit the
number of VUs partic-
ipating in the FL pro-
cess.

Selection of proper
LAP/RSU node (for
mid-layer processing)
is required for avoid-
ing additional han-
dover costs.

Computation
Offloading based
FL

Offloading process re-
duces the computa-
tion time and energy
during the training
process,

High Communication
Delay/Energy Cost
Due to Long Distance
Communication

Large Number of VUs
can Participate into FL
Process.

VUs Data Needs to be
Shared with the Out-
side World.

Selection of a Proper
Edge Node and Of-
floading Amount Dur-
ing Offloading, Re-
quires VUs data to be
Send to the Outside
World.

5.2. ML for Computation Offloading in Multi-Service Multi-EC Vehicular Environments
5.2.1. Scenario Description

In multi-service multi-vehicular environments, several VUs randomly distributed over
large coverage areas generates different kinds of vehicular services requests. In general a
service request can be represented by a tuple 〈Ds,m, Ωs,m, T̄s,m〉 where, s is the particular
service type, m is the index VU requesting s, Ds,m is the service task size in Byte, Ωs,m are
the requested CPU execution cycles and T̄s,m is the maximum latency of the requested
service. With limited onboard resources, VUs alone cannot handle such requests and require
computation offloading services from different EC platforms over joint T-NTN, allowing
them to offload a complete/certain portion of their workload towards EC nodes. This
allows VUs to share their workload with EC nodes for halving the overall task processing
costs (e.g., task processing latency energy). However, in the case of a Multi-EC multi-service
vehicular environment, for handling a large number of service requests of different kinds,
the selection of a proper EC platform and its individual EC node/nodes for offloading can
be a challenging problem to be solved. This is due mainly because of different natures of
services, varying coverage limits transmission distances, and available resources of EC
platform layers. Moreover, selecting the wrong EC platform can add larger latency and
energy overheads or might even create service failures. For example, if the requested
service is a critical latency service, such as autonomous driving or drivers safety-related
services (i.e., small T̄s,m), selecting a BS-EC or HAP-EC platform can not be a practical
solution due to longer transmission delays (see Table 3). On the other hand, if the requested
service is data-intensive, requiring larger computation resources (i.e., large Ωs,m), selecting



Smart Cities 2021, 4 1486

RSU-EC or LAP-EC might not be a good idea. With their limited computation capabilities,
overall computation latency can become very high. During computation offloading, VUs
might need to transfer sensitive data towards EC-node. Therefore, a proper assessment of
EC-nodes security is required to be done in advance.

Furthermore, individual EC nodes of EC platforms can only have a limited number of
services available with them mainly because of resource limits. Therefore, selecting a proper
EC node of an EC platform is required to avoid offloading service failures. VUs mobility
limits are also needed to be considered before making offloading decisions. For example, if a
certain VU offloads its content towards an RSU-EC node, it has to complete the offloading
procedure before it passes through the coverage range of RSUs. If failed, additional latency
and energy costs in terms of RSU-handovers can be unbearable for the critical latency
services. Thus, over a Multi-EC multi-services vehicular environment, finding a proper
EC platform and selecting a proper EC-node along with the amount to be offloaded based
upon VUs service request constraints and mobility limitation is an important problem to
be solved.

5.2.2. Possible Challenges

The main challenges that need to be considered during computation offloading over a
Multi-EC multi-service vehicular environment are described below.

• Resource limitations of EC nodes: Each EC node can have limited communication,
computing, and storage resources through which they can only serve a limited number
of users with acceptable costs. Furthermore, they can hold a limited number of services
that can be accessed by users mainly because of resource limits.

• Transmission Distance vs. Capacity Tradeoff: For the case of Multi-EC multi-service
VNs, an important coverage-vs-capacity tradeoff needs to be considered, while select-
ing an EC platform and an amount to be offloaded. The nearby EC platforms, such
as RSUs and UAVs, can have a limited capacity and coverage range. Therefore they
can serve only a few users with acceptable latency. On the other hand, 5G BS and
HAP can have powerful EC servers with a better coverage range. However, they are
located at further distances from VUs and can have longer transmission distances
with poor quality channel environments. Therefore, a proper EC selection needs to be
done for taking advantage of EC benefits from different platforms.

• Vulnerability of EC servers towards Third-party Attacks: It is often the case that
during computation offloading VUs shares a piece of sensitive information, including
location, speed, possible directions/destination with the EC servers. If EC is vulnera-
ble to third-party attacks, it can be dangerous to share such sensitive data with them,
especially in the case of autonomous driving environments where an attacker can take
control of vehicles and can unimaginable damages.

• VUs Mobility and a Handover Latency: In dynamic environments, like VNs, VUs
mobility limits the computation offloading performance. The offloading process
should be completed before VUs pass through the coverage range of an EC node,
failure of which can add additional costs in terms of handover latency. VUs mobility
can also impact the channel characteristics in terms of unstable channel behaviors,
Doppler spread, etc, which can seriously degrade the offloading performance. In
the past, researchers have adopted different approaches for modeling VUs mobility.
In some cases, mobility characteristics are analyzed with mathematical frameworks
(i.e., mobility models) with certain assumptions over VUs speed, directions, surround-
ing environments, etc. In some other cases, researchers have resorted to the trajectory
predictions of VUs movements. In particular, the VUs mobility parameters can be
used for trajectory prediction; thanks to this we are able to predict how the system
resources can be used and in case reserve them. In the past, some authors have
considered such approaches [49].
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5.2.3. Proposed Solutions

We have considered two different approaches for efficiently manage the computation
offloading challenges in a vehicular scenario.

V2V Technology for Finding the Proper VN-EC Pair during Offloading

With recent advances in communication technologies, connected VUs are able to
communicate with each other over short distances by using V2V communication links. Such
communication capabilities allow them to share important information with each other.
Through the V2V communication links, VUs can share their offloading experiences, helping
to select proper EC platforms and their nodes for computation offloading. For example,
if a particular EC server is compromised in terms of security or has a low resource pool for
serving new VUs, new VUs can be warned over V2V communication links for avoiding
such EC for offloading data.

It is not practical for VUs to communicate with other vehicles, which are far away
from them due to the short distance communication capabilities. Furthermore, individual
VUs can not always collect information from each other and analyze it in real-time for
taking decisions. By taking this consideration into account, here we propose a cluster-
based approach, where a cluster head is selected to perform the data collection, data
analysis, and sharing of findings with requesting VUs. The selection of a cluster head can
be based upon several criteria, such as available resources, its distance from other VUs, etc.
For solving the data analysis problem to find and forward the adequate set of EC nodes,
various solution techniques can be adapted.

However, conventional solution methods such as convex optimization, heuristic,
and metaheuristic methods need to be avoided since implementation costs can be huge.
An ML-based solution technique, where a pre-trained ML model deployed over a cluster
aimed at analyzing the real-time input data from other VUs over a cluster head can be an
excellent solution to be considered. Once analyzed, the findings can be either broadcast
to individual VUs or can also be provided in terms of request-response basis to avoid
additional costs. Figure 9 shows the important steps considered.

Figure 9. Intelligent solution for the offloading problem.

Multiple Edge Connectivity Mode for VU-EC Server Task Offloading

By resorting to one of the possible management solutions for managing EC nodes in
5G, we introduce here the possibility of integrating the presence of logical anchor points in
our network [58]. Different anchor point-based connectivity strategies can be adapted for
computation offloading between VU and EC platforms.
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A simple distributed anchor point-based strategy allows VUs to select different EC
servers from multiple EC platforms available for offloading. In another case, a primary-
secondary server approach can be adapted. In this case, VU transfers its data to the selected
EC server, which acts as a primary anchor point. After receiving VUs data, it can then
further offload to the nearby secondary EC servers for reducing its workload. This strategy
can reduce the overall computation time required for processing the overall data. In another
case, VU can offload its data to multiple EC platforms simultaneously.

Figure 10 shows these three strategies adapted over a proposed Multi-EC enabled
VN architecture. VU1 uses a distributed anchor point-based strategy and selects a BS-
EC platform for computation offloading. VU2 uses a primary-secondary server-based
strategy and offloads data to the BS-EC server. Being a primary anchor point, the BS-EC
server selects two UAVs as secondary anchor points for reducing the overall computation
time. This approach allows EC servers that are not able to server VUs in the first place
mainly because of coverage limitations to act as a secondary anchor point for improving
VUs operations. In the third case, VU3 itself selects multiple anchor points for data
offloading. With multiple splits, it offloads a portion of the computation load to the
selected anchor points.

In Table 5, we evaluate the different features of the proposed solutions for the compu-
tation offloading problem in multi-service Multi-EC vehicular environments.

Figure 10. Anchor point based strategies.

Table 5. Computation offloading in multi-service Multi-EC vehicular environments.

Computation Of-
floading Solution

Offloading Servers Number of Offload-
ing Servers

Flexibility Link Failures Task Scheduler

V2V Technology
for Finding the
Proper VN-EC
Pair During
Offloading

VUs can offload data
to the limited number
of servers

Only One Limited For the case of link
failure, the complete
task needs to be re-
transmitted

Scheduler complexity
can be limited

Multiple Edge
Connectivity
Mode for VU-
EC Server Task
Offloading

VUs can offload
data to the servers
beyond it’s coverage
range (i.e., secondary
servers)

Multiple More Flexible Strat-
egy

Link failure damage
can be limited due to
the decentralized data
processing

A proper task schedul-
ing is required for
having better perfor-
mance
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5.3. ML-Based Network Function Placement Approaches for Vehicular Services over Multi-Service
Multi-EC Vehicular Environments
5.3.1. Scenario Description

Network Slicing is considered an important enabling technology for the next gen-
eration 5G network architecture for multiple logical networks over a common physical
infrastructure. Several VNFs can be embedded together to form a network slice associated
with a particular networking service. VNF embedding and placement over several virtual-
ized networking platforms is an important problem to be solved. Different services can
have heterogeneous requirements and VNF placement needs to consider such requirements
before performing VNF placement.

In this scenario, we consider the Network Function Placement (NFP) problem for
multiple slices of VN services with heterogeneous requirements over the Multi-EC enabled
VN. Based upon each slice requirement, VNF placement is performed over different EC
platforms by considering their limited resources. The scenario is depicted in Figure 11,
where two possible slices are deployed on network infrastructure.

Figure 11. Network Slicing based VNF placement.

5.3.2. Possible Challenges

• Resource Allocation problem: In the vehicular environment, VUs often request mul-
tiple slices with stringent requirements. As described before, each network slice can
be embedded as multiple VNFs embedded together. Each VNF of a network slice can
have specific computation demands. Allocating a sufficient amount of resources for
each slice, considering their particular requirements is a challenging problem over
Muli-EC-enabled VN and needs to be addressed carefully for reducing service failures.

• VNF Placement Problem: Each service request can have specific demands in terms
of latency, data rate, etc. To satisfy such requests performing a proper VNF placement
over multi-EC enabled VN is can be beneficial. For example, to fulfill the stringent
latency requirements of Ultra-Reliable Low Latency Communications (URLLC) based
slices, placing several VNFs into proximity of an end-user (i.e., over RSU-EC or LAP-
EC) can be beneficial with reduced transmission delays. However, in the case of
enhanced Mobile Broadband (eMBB) slice, requiring high data rates, it is needed
to explore higher layers of EC platforms, (i.e., BS-EC, HAP-EC, etc.) for having
sufficient resources.
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5.3.3. Proposed Solution
Preference Weighted Network Function Placement for a Heterogenous Vehicular
Service Slices

Each VUs service request comes with a specific demand. Required service latency and
the data rate are two main characteristics of demanded services. The VN services can be
differentiated into two main categories. A set of slices with high data rate requirements can
be grouped as eMBB Service slices. Services with critical latency requirements are grouped
into URLLC classes. Each of these services can be deployed as a chain of VNFs.

For avoiding the excess transmission delay between VNFs, to satisfy the critical
latency requirement of service, it is preferred to place VNFs associated with URLLC
services in proximity. On the other hand, for satisfying the user data rate requirements of
eMBB, several VNFs of eMBB slices can be placed on platforms with large computation
capabilities. Such an approach can have many benefits for serving many users with efficient
utilization of EC resources. However, such placement can not be done with a random
guess, and a proper strategy is required. In one of our past works, we have considered
a network operator-biased approach for multi-service network function placement in a
5G network slicing architecture [59]. In this approach, we have defined a preference
function that assigns a proper weigh value for each slice’s functions based upon the slice
category and the function types. A similar strategy can be adapted for VUs slices over a
Multi-EC enabled VN. An ML-based intelligent strategy can be applied for designing a
preference function for associating a proper weight for each VNFs placement over different
platform layers.

Thus, by analyzing the individual VUs service request data and the available resources
of EC platforms, an intelligent approach can be defined, for solving both VU slice function
placement and resource allocation problem over a Multi-EC enabled VN. Table 6 presents
the important features of a proposed solution for the NFP problem for vehicular services
over multi-service Multi-EC vehicular environments.

Table 6. Network function placement over multi-service Multi-EC vehicular environments.

NFP Solution Resource Allocation Service Demands Service Prioritization Challenges

Preference Weighted
NFP for a Heterogenous
Vehicular service slices

Enables efficient allocation
of computation and com-
munication resources of
various platforms to the
different slices functions
based upon their require-
ments.

Various services demands
in terms of low latency,
high data rates can be
fulfilled by preference
weighted flexible NFP.

It is possible to prioritize
the services with stringent
requirements by allocating
their functions first.

A proper preference func-
tion mapping various ser-
vices demands need to be
defined.
Various platforms having
heterogeneous hardware
and communication tech-
nologies need to work co-
herently to have benefits

6. Discussion

In the previous section, we have discussed various vehicular scenarios that can be
considered for the proposed Multi-EC enable VN architecture.

In Scenario 1, we discuss the importance of a cost-efficient FL platform over a Multi-EC
enabled Vn architecture. The selection of proper FL devices having high-quality datasets
and FL servers with better coverage characteristics can help to reduce the overall FL process
convergence cost. We have proposed two innovative solutions, including the hierarchical
FL-based and the computation offloading enabled FL platform, to address the challenges
of this scenario.

In Scenario 2, we have discussed the important characteristics and corresponding
challenges of the efficient computation offloading process over Multi-EC enabled VN
architecture for enabling latency-critical and data-intensive applications and services.
Proper EC server selection and the amount to be offloaded can reduce the overall process
cost. VUs can utilize other VUs offloading experiences for making better decisions. We
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propose a V2V data sharing enabled ML approach and multiple edge connectivity-based
solution approaches for addressing the challenges of a computation offloading problem.

In Scenario 3, we have addressed the NFP problem for the multi-service Multi-EC
enabled VN architecture. Network slicing technology can realize heterogeneous vehicular
services with different requirements over common VN infrastructure. Specific services are
implemented as a chain of VNFs with multiple possible placement options. VNs limited
resources and service requirements need to be considered during function placements over
various platforms available in Multi-EC enabled VN. We propose a preference-weighted
approach for the NFP problem where the preference function models the specific weighting
associated with each VNF based upon its characteristics. Innovative ML-based solutions can
be used for modeling the proper preference function based upon the service characteristics.

The most prominent characteristics, challenges, and the proposed solution methods
for the three proposed scenarios are summarized in Table 7.

Table 7. VN Scenarios Characteristics.

VN Scenarios Key Features Challenges Proposed Solutions

Cost Efficient Federated
Learning Platform for Ve-
hicular Applications

• A cost-efficient FL platform is required over a
resource-constrained VN.

• The communication and computation cost of
each FL iteration needs to be analyzed.

• FL servers with better coverage characteristics
can reduce training costs.

• FL devices with better quality datasets can re-
duce the FL process cost.

• Proper FL-server selec-
tion

• FL device selection
• Training cost vs. con-

vergence in FL

• Hierarchical FL platform over
Multi-EC VN architecture

• Computation offloading based
FL platform over Multi-EC VN
architecture

ML for Computation Of-
floading in Multi-Service
Multi-EC Vehicular Envi-
ronments

• Computation offloading enables new latency-
critical and data-intensive applications and ser-
vices

• Proper EC server selection can reduce the pro-
cessing cost.

• An optimal amount of data should be offloaded
to have benefits.

• VUs can share important data for making better
offloading decisions.

• Several EC server selection technologies can be
adapted.

• Resource limit of EC
nodes

• Transmission distance
vs. capacity trade-off

• Vulnerability of EC
servers towards third-
party attacks

• VUs mobility and a
handover latency

• V2V technology for finding the
proper VN-EC pair during Of-
floading

• Multiple edge connectivity
mode for VU-EC server task
offloading

ML-Based NFP Ap-
proach for Vehicular Ser-
vices over Multi-Service
Multi-EC Vehicular
Environments

• Network slicing technology can be adapted for
providing multiple VN services with heteroge-
neous requirements.

• Service-based proper resource allocation needs
over resource-constrained VN.

• It is possible to place VNF at different locations
over a Multi-EC enabled VN.

• Resource allocation
problem

• VNF placement prob-
lem

• Preference weighted NFP for
a heterogeneous vehicular ser-
vice slices

7. Conclusions

Modern cities have to face with several challenges, and of the most important for
the citizen-life is the management of an efficient ITS. In this paper, we aim at designing
some possible scenarios where EC solutions allows to solve some of the challenges of
VNs. Differently from other approaches we aim at integrating NTNs in the system so as to
create a multi-level Air-Ground architecture. The paper discusses the possible exploitation
of network softwarization technologies, vehicular EC and ML for creating an intelligent
system able to fulfill the vehicular network requirements. The proposed solutions are
discussed analyzing the main challenges and the solutions they are able to take into
account. Our future works will be focused on implementing the considered scenarios for
understanding their feasibility and how each one can cope with the given challenges.
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ICT Information and Communication Technologies
EC Edge Computing
VN Vehicular Networks
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VUs Vehicular Users
ITS Intelligent Transportation System
IoT Internet of Things
IoV Internet of Vehicles
V2V Vehicle-to-Vehicle
V2R Vehicle-to-Road Side Units
V2I Vehicle-to-Infrastructure
V2S Vehicle-to-Sensors
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VEC Vehicular Edge Computing
TN Terrestrial Networks
NTN Non-terrestrial Networks
LAP Low Altitude Platforms
HAP High Altitude Platforms
ML Machine Learning
MEC Mobile Edge Computing
NR New radio
3GPP 3rd generation partnership project
UAV Unmanned Aerial Vehicle
NFV Network Function Virtualization
SDN Software-defined Networking
CDN Content Delivery Network
NAT Network Address Translation
VMs Virtual Machines
COTS Commercial Off-the-shelf
VNF Virtual Network Function
KPI Key Parameter Index
QoS Quality of Service
DRL Deep Reinforcement Learning
DNN Deep neural Network
FL Federated Learning
MDP Markov Decision Process
LOS Line of Sight
NLOS Non Line of Sight
OBU On-board Unit
FedAvg Federated averaging
eMBB enhanced Mobile Broadband
URLLC Ultra-reliable Low Latency Communications
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