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Abstract: This paper proposes a fast direction of arrival (DOA) estimation method based on positive
incremental modified Cholesky decomposition atomic norm minimization (PI-CANM) for augmented
coprime array sensors. The approach incorporates coprime sampling on the augmented array to
generate a non-uniform, discontinuous virtual array. It then utilizes interpolation to convert this into
a uniform, continuous virtual array. Based on this, the problem of DOA estimation is equivalently
formulated as a gridless optimization problem, which is solved via atomic norm minimization to
reconstruct a Hermitian Toeplitz covariance matrix. Furthermore, by positive incremental modified
Cholesky decomposition, the covariance matrix is transformed from positive semi-definite to positive
definite, which simplifies the constraint of optimization problem and reduces the complexity of the
solution. Finally, the Multiple Signal Classification method is utilized to carry out statistical signal
processing on the reconstructed covariance matrix, yielding initial DOA angle estimates. Experimental
outcomes highlight that the PI-CANM algorithm surpasses other algorithms in estimation accuracy,
demonstrating stability in difficult circumstances such as low signal-to-noise ratios and limited
snapshots. Additionally, it boasts an impressive computational speed. This method enhances both the
accuracy and computational efficiency of DOA estimation, showing potential for broad applicability.

Keywords: DOA estimation; virtual interpolation; covariance matrix reconstruction; atomic norm
minimization; positive incremental modified Cholesky decomposition

1. Introduction

Direction of arrival (DOA) estimation is a critical area of study within array signal
processing, impacting fields such as radar, communications, sonar, and exploration [1–4].
Notably, array-based spatial spectrum estimation techniques such as multiple signal classi-
fication (MUSIC) and estimation of signal parameters via rotational invariance techniques
(ESPRIT) have become the go-to methods for DOA estimation. Several studies have been
conducted on these techniques. For instance, the statistical characteristics of the MUSIC
algorithm were investigated in one study [5], while another study used the low-complexity
GA-ESPRIT algorithm for DOA estimation [6]. Furthermore, a comprehensive study on
the application of MUSIC and ESPRIT in designing intelligent antenna systems revealed
that MUSIC outperforms ESPRIT in precision, stability, and broader application [7]. These
subspace-based methods have dramatically improved direction-finding and localization
technologies by surpassing the Rayleigh limit. However, they were primarily designed for
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traditional uniform linear arrays (ULAs). Enhancing estimation accuracy and resolution
necessitates an increase in the array elements, thereby escalating the algorithmic complexity.
This complexity is particularly pronounced in underdetermined DOA estimation, where
performance can drastically decrease. Moreover, these methods necessitate extensive in-
dependently and identically distributed observational data. In real-world environments,
especially when tracking fast-moving targets, acquiring such data can be a time-consuming
task [8,9]. Dealing with short-duration bursty data becomes a challenge as the received
signals contain an extremely limited number of sample snapshots. This limitation impedes
traditional DOA estimation methods from accurately locating the target. To overcome
these hurdles, some researchers have turned to novel solutions, such as compressed sens-
ing methods. By leveraging signal sparsity, these methods compress measurement data
with fewer sampling points and accurately recover the original signal [10]. As a result,
these approaches provide a new perspective for precise DOA estimation when the data
volume is constrained.

Traditional ULAs necessitate half-wavelength spacing between adjacent elements,
often leading to coupling effects. Moreover, the limited array aperture restricts the precision
and resolution of DOA estimation. To address this issue, researchers introduced a sparse
array known as a coprime array. It leverages the covariance matrix to construct a difference
co-array in the virtual domain, resulting in a virtual array with a greater number of
elements [11]. Several studies have examined DOA estimation methods using coprime
array sensors from varying viewpoints. These include subarray decomposition, subspace
decomposition in the virtual domain, and sparse reconstruction. References [12,13] applied
the MUSIC algorithm directly for DOA estimation in coprime array sensors. Meanwhile,
reference [14] proposed a DOA estimation method suitable for correlated signals in coprime
array sensors. Lastly, reference [15] presented a DOA estimation strategy based on coprime
array sensors in an unknown non-uniform noise environment. The DOA estimation method
of the coprime array sensors mentioned earlier takes advantage of the large aperture of
the array. However, these methods only utilize consecutive elements in the virtual array,
resulting in information loss. To exploit virtual array elements more thoroughly, some
researchers have developed sparse reconstruction problems in the virtual domain, aiming to
obtain more accurate DOA estimates. Reference [11] introduced a sparse sensing approach
for coprime sampling and arrays. Reference [16] suggests a least absolute shrinkage
and selection operator (CO-LASSO) algorithm focused on sparse signal recovery for DOA
estimation. This method employs an overcomplete basis representation of the spatial power
spectrum and constructs a data fitting model. Reference [17] presented a sparse Bayesian
learning (SBL) approach for robust DOA estimation. It establishes a Bayesian model that
integrates prior information and observational data utilizing Bayesian inference techniques
for iterative optimization. Other noteworthy methods include a DOA estimation technique
based on a padding strategy [18] and a source estimation method grounded in sparse
reconstruction [19]. The previously discussed sparse reconstruction methods efficiently use
the benefits of the coprime array sensors’ virtual array aperture and degrees of freedom,
enabling a relatively precise DOA estimation. However, they require partitioning the
continuous angular space into discrete grids and also presuppose the source direction
lies precisely within a predetermined discrete grid. These assumptions result in a basic
mismatch problem, which in turn lowers the algorithm’s performance. Another class
of virtual domain subspace methods achieves DOA estimation by incorporating spatial
smoothing techniques, developing a signal model, and restoring the covariance matrix’s
rank within the coprime array sensors’ virtual domain [20,21]. In contrast to coprime array
sensors’ sparse reconstruction methods, this strategy avoids the requirement of angular
domain discretization, thereby successfully reducing model mismatch issues. Nevertheless,
these methods do not completely exploit the components of the virtual array, leading to a
partial loss of virtual aperture and degrees of freedom. This, in turn, can cause a decrease
in the performance of the DOA estimation.
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In recent years, with the development of compressed sensing technology, DOA esti-
mation based on covariance matrix reconstruction and completion has become a research
hotspot [22,23]. This approach firstly entails the reconstruction of the covariance matrix,
which improves the aperture and degrees of freedom. Following this, methods such as
singular value thresholding are utilized to fill the gaps in the reconstruction, culminating
in the final angle estimation. Zheng et al. proposed an augmented covariance matrix recon-
struction method utilizing differential co-arrays [24]. Shortly thereafter, Barthelme et al.
introduced a covariance matrix reconstruction method for estimation based on neural net-
works [25]. Also, research have focused on DOA estimation using structured methods such
as virtual array interpolation and reciprocal arrays. In this regard, the work of Zhou et al.
is very representative, they proposed a method based on structured Nyquist correlation re-
construction [26]. This method is applicable to DOA estimation in sparse arrays, exhibiting
high estimation accuracy. Furthermore, gridless compressive sensing methods based on
atomic norm minimization (ANM) have made some significant breakthroughs. For instance,
research by Li et al. [27] has viewed ANM as a structural optimization approach, which by
leveraging the Vandermonde structure of the array manifold matrix, acquires the necessary
signal covariance matrix through solving semi-definite programming (SDP) problems.
Zhou et al. [28] combined the ANM method with the MUSIC algorithm for DOA estimation
on co-prime arrays, effectively resolving basis mismatch issues and enhancing the estima-
tion precision. However, these methods encounter slow solving speeds when utilizing
convex optimization toolboxes to tackle optimization problems within sparse recovery
algorithms, making them unsuitable for larger-scale array systems. To address this prob-
lem, Lau et al. [29] introduced a low-complexity single-snapshot angle estimation method
that merges prior information, achieving a higher degree of atomic separation freedom.
Wang et al. [30] proposed a fast algorithm named iterative Vandermonde decomposition
and shrinkage thresholding, which attains near-proximal gradient acceleration for ANM
while avoiding computationally demanding SDP methods. Additionally, Ma et al. [31]
presented a method to efficiently resolve SDP issues using a projection Wirtinger gradient
descent algorithm. Therefore, the challenge of reducing the complexity of gridless methods
such as ANM has emerged as a significant and worthy research topic.

In this paper, a fast DOA estimation algorithm based on positive incremental modified
Cholesky decomposition atomic norm minimization(PI-MCANM) is proposed, which is
designed on the basis of sparse array antenna radar sensors. Figure 1 shows the application
scenario of the algorithm, the framework, and some experimental simulation results.
The algorithm defines the atomic norm of the received signal to establish a continuous set
of atoms, converting the sparse reconstruction problem of the signal covariance matrix into
a SDP optimization problem, which does not require grid division, thus avoiding the grid
mismatch problem. To utilize all the information of the received signal from the augmented
co-prime array, we use virtual interpolation technology to interpolate the original co-prime
array difference into a continuous uniform array. In the process of solving the SDP problem,
we also use the positive incremental modified Cholesky decomposition to preprocess the
Toeplitz matrix, converting the original SDP problem into a new optimization problem,
thereby reducing the complexity of the algorithm and achieving accurate and fast DOA
estimation. Simulation results show the advantages of the proposed DOA estimation
method in terms of resolution, estimation accuracy, and computational complexity.

The main contributions of this paper can be summarized as follows: (1) A novel
augmented coprime array sensor DOA estimation algorithm is introduced using virtual
interpolation technology to address information loss in non-uniform virtual differential
arrays, fully utilizing received information; (2) The algorithm applies multiple atomic norms
of virtual measurements to convert the DOA estimation issue into a gridless optimization
problem, addressing the base mismatch issue from predefined spatial grid points; (3) The
method employs positive incremental modified Cholesky decomposition to preprocess
the covariance matrix, simplifying the optimization problem’s constraints and reducing
its complexity.



Sensors 2023, 23, 8990 4 of 19

x

Far-field narrowband
 signal source

Sensor m

Coprime Sampling

Spatial Temporal 
Virtual

Initial Angle Estimate

Array Interpolation

Atomic Norm 
Minimization

The Solution and Effect of DOA Estimation ProblemSimulation Experiment Scene

Modified Cholesky 
Decomposition

Hermitian

Toeplitz

Matrix

HT BB=
1 1

HT BCB=

δ
δ

δ

δ

       

       

y

0
0.5( 1)= −mr m

sin
mr

Figure 1. Overview of algorithm application scenarios, framework structure, and simulation results.

The remainder of the paper reads as follows. Section 2 introduces the augmented
coprime array sensors structure and its corresponding signal reception model. In Section 3,
the proposed algorithm based on PI-MCANM is provided. Section 4 demonstrates the
effectiveness and superiority of the proposed method through simulation experiments
from multiple perspectives. Finally, we draw conclusions in Section 5.

2. Signal Model
2.1. Array Structure

Due to the Nyquist sampling theorem’s constraints on the uniform linear array,
the original signal can only be effectively restored if the sampling rate exceeds twice
the incident signal’s highest frequency. Therefore, the spatial separation between the linear
array elements must not surpass half the wavelength of the incident signal, as expressed
by the equation d 6 λ/2 [32]. Recently proposed, the coprime array sensors stand as
a unique sparse array, overcoming the Nyquist sampling rate’s limitations. This array
possesses the benefits of sparse perception and the special attributes of prime numbers. It
can maximize the array’s aperture and degrees of freedom while maintaining the same
count of physical array elements. Furthermore, the augmented coprime array sensors,
as suggested in [33], create more virtual array elements in the same orientation and longer
continuous virtual array elements than the traditional coprime array sensors. This feature
can aid in applying subsequent spatial smoothing algorithms and other strategies, making
it a valuable research direction for studying DOA estimation based on augmented coprime
array sensors.

This paper investigates augmented coprime array sensors, as mentioned in [13]. This
array comprises two subarrays; both are uniform line arrays. The first subarray consists
of 2M array elements spaced Nd apart. The second subarray has N array elements with
a spacing of Md. Here, M and N are mutually prime integers, with M being the smaller
of the two. It is assumed that d is the half-wavelength of the target signal that encounters
the augmented coprime array sensors. The structure of this setup is demonstrated in
Figure 2a. The augmented coprime array sensor is constructed by overlapping the initial
array elements of the two subarrays and linearly superimposing them. This results in an
array with a total of 2M+ N− 1 physical array elements. Figure 2b illustrates this structure.
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(a)

(b)

Figure 2. Schematic diagram of augmented coprime array structure. (a) Two uniform linear subarrays.
(b) Augmented coprime array composed of two sparse uniform linear arrays.

2.2. Signal Reception Model

Assuming there is a set of unrelated signal sources received by sensors equipped with
an augmented coprime array sensor system from different incident angles
θ = [θ1, θ2, · · · , θK] at time t, the received signals of the coprime array can be represented as

X(t) = A(θ)S(t) + N(t), (1)

where A(θ) = [a(θ1), a(θ2), . . . , a(θK)]
T represents the P× K-dimensional coprime array

manifold matrix, where P = 2M + N − 1 is the number of physical elements in the

augmented coprime array. Here, a(θk) =
[
1, e−j2πd1 sin θk/λ, . . . , e−j2πdp−1 sin θk/λ

]T
denotes

the array steering vector corresponding to the k-th incident signal, with the first element
position set at 0. dp−1 denotes the pth physical array element position in the coprime
array. S(t) = [s1(t), s2(t), . . . , sK(t)]

T denotes the complex envelope of the signals, and N(t)
represents Gaussian white noise with the power σ2

N , which is independent of the signal
sources. The superscript T represents the transpose of the matrix. The covariance matrix
computation based on the coprime array receiving signal model can be formulated as

R = E
[

X(t)X(t)H
]

= E
[
(A(θ)S(t) + N(t))(A(θ)S(t) + N(t))H

]
= A(θ)Rs AH(θ) + σ2

N I

, (2)

where RS = E
{

S(t)S(t)H} = diag
([

σ2
1 , σ2

2 , · · · , σ2
K
])

represents a K × K diagonal matrix,
where the diagonal elements contain the power of each incident signal. I is an identity ma-
trix with size P by P. E(·) denotes the statistical expectation operation, and (·)H represents
the conjugate transpose. Due to the limited number of samples in practice, the covariance
matrix is typically estimated using L samples of received data, approximating it as

RX =
1
L

L

∑
l=1

X(tl)XH(tl). (3)
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3. PI-MCANM-Based DOA Estimation Algorithm

This section introduces a fast DOA estimation method based on PI-MCANM for
augmented coprime array sensors, including virtual interpolation techniques, atomic norm
minimization methods, and the fast DOA estimation algorithm using positive incremental
modified Cholesky decomposition. Firstly, virtual interpolation techniques are employed
to fully exploit the spatial correlation within the array, allowing for the reconstruction of
missing data in the virtual array. This effectively enhances the degrees of freedom and
accuracy of the array. Secondly, the method utilizes atomic norm minimization for the
reconstruction of the covariance matrix. By leveraging the sparsity of the signals, it enables
the acquisition of crucial signal information at a lower sampling rate. Furthermore, while
ensuring reconstruction accuracy, the approach combines sparse signal recovery techniques,
such as non-negative matrix factorization, to seek the optimal solution and avoid the issue
of local optima that may arise in traditional optimization algorithms. Finally, the DOA
estimation algorithm combines the modified Cholesky decomposition preprocessing with
atomic norm minimization to reconstruct the covariance matrix, thereby facilitating DOA
estimation and improving the computational efficiency of the algorithm.

3.1. Virtual Array Interpolation

From Part A of Section 2, we know that the position set S of 2M+ N− 1 array elements
in a coprime array can be expressed as

S = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ 2M− 1}, (4)

we can obtain the element positions of the difference coarry by taking the differences
between any two elements in the augmented coprime array element set. The difference
coarray is also referred to as the virtual array. Figure 3 shows the different positions of
the array elements in the virtual array and the corresponding weight coefficients (i.e.,
the number of array elements) after the difference operation. It can be observed that the
differencing operation increases the degrees of freedom of the original array. However, it
introduces the issue of discontinuity in the differencing set, which can lead to the loss of
information from certain array elements during DOA estimation. These non-continuous
regions in the virtual array, where the weighting coefficients are zero, are referred to as
holes. Based on the idea of the difference coarray, the set of differencing array positions D
obtained by performing differencing operations on the elements in S can be represented as

D = {±(Mn− Nm)d; 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M− 1}, (5)

by setting the number of array elements in this way, the location difference set of the augmented
coprime array is continuous in the range of [−(MN + M− 1)d, (MN + M− 1)d]. Combining
the knowledge of virtual array construction, we have constructed a virtual uniform linear
array (ULA) with 2MN + 2M− 1 array elements using 2M + N − 1 physical array elements.
Taking the example of an augmented coprime array with M = 3 and N = 5, the position
range of virtual differential array elements that can be constructed is from−25d to 25d, and the
continuous part U is [−17d, 17d]. Other positions with missing elements are called holes,
located at {−24d,−23d,−21d,−18d, 18d, 21d, 23d, 24d}.

To address the issue of reduced degrees of freedom caused by holes in the virtual
difference array, we introduce the concept of interpolation in the virtual difference array.
Considering that it is not possible to obtain the second-order equivalent virtual signals
of the interpolated virtual array in practical signal processing, we treat the hole positions
as inactive antenna elements. By filling the hole positions in the non-uniform virtual
array D with zeros, we transform the non-uniform virtual array into a continuous virtual
uniform linear array V containing 4M(N − 1) + 1 virtual elements, where the virtual
uniform linear arrays are all spaced by d, i.e., half wavelengths. This approach resolves
the model mismatch issue arising from the non-uniform structure. Figure 4 illustrates
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the actual element positions of the augmented coprime array and the constructed virtual
element positions.

Figure 3. Weight coefficients corresponding to virtual array elements at different positions.

Figure 4. Illustration of various array representations with an example of 2M = 6 and N = 5. S
represents the augmented coprime array. D is the virtual array derived from the difference coarray
of the augmented coprime array. U represents the contiguous part of the virtual array. V is the
interpolated virtual array.

3.2. Atomic Norm Minimization

Atomic norm minimization is a method grounded in convex optimization, enabling
gridless DOA estimation through the sparse representation of DOA angles. In essence,
atomic norm minimization operates on the assumption that a finite number of atoms can
form the sparse representation of DOA angles, with each atom corresponding to a potential
DOA angle. The solution with the highest degree of sparsity can be obtained by solving a
convex optimization problem, yielding precise DOA estimation results. The first step of
this method is defining the atomic set

A = {a(θ, φ) = a(θ)φ : θ ∈ d−90◦, 90◦e, φ ∈ C, |φ| = 1}, (6)

for a single snapshot of the received signal A under noise-free conditions z = A(θ)s,
and the l0-atomic norm is defined as follows:

‖z‖A,0 = inf
sk,θk

{
K : z =

K
∑
k=1

a(θk)sk, θk ∈ [−90◦, 90◦]

}
, (7)

the l0-atomic norm refers to the number of the smallest atoms that make up the vector
z. In the context of DOA estimation, the problem is to find the combination of direction
vectors with the smallest number of atoms. For a sparse array, the received signal z is often
incomplete and imperfect. The process of signal recovery can be understood as filling the
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vector z in a way that minimizes the norm of the vector under the atom set A, i.e., finding
the solution to

min
z
‖z‖A,0. (8)

Next, using Lemma 1 of [28], for any positive semi-definite matrix T (z) ∈ CL×L,
if r = rank(T (z)) ≤ L− 1, then the Hermitian Toeplitz matrix can be decomposed by a
unique Vandermonde: T (z) = ∑r

k=1 pka(θk)aH(θk) = A(θ)PAH(θ), where A ∈ CL×r is a
Vandermonde matrix whose columns are regarded as direction vectors for signals coming
from different directions and P = diag(p) ∈ Cr×r is a diagonal matrix. According to

Lemma 2 of [28], we consider the following formula:
[

x zH

z T (z)

]
≥ 0, where x is a variable

to be optimized. This formula corresponds to the following conclusion: (a) T (z) � 0; (b) z
must be located in the column vector of the Toeplitz matrix T (z). Following this, we
modify the problem. Based on Conclusion (b) in Lemma 2, we ascertain that the signal
z can always be linearly depicted by r sub-vectors in A(θ). These r sub-vectors are the r
eigenvectors derived from the Vandermonde decomposition of the matrix T (z). Therefore,
the problem of minimizing the l0-atomic norm of vector z in (8) is equivalent to minimizing
the rank of matrix (9), which can be expressed as

min
x,z

rank(T (z))

s.t.
[

x zH

z T (z)

]
� 0

, (9)

however, this optimization problem belongs to the class of non-deterministic polynomial
(NP) problems, making it difficult to obtain an exact solution. Therefore, we relax the
constraints in the original problem (8) to obtain a larger feasible region. Since the original
problem seeks a minimum value, the optimal value of the relaxed problem must be less than
or equal to the optimal value of the original problem. This enables the transformation of the
original non-convex problem into a convex optimization problem. Similar to Equation (7),
we define the l1-atomic norm as

‖z‖A,1 = inf
sk,θk

{
∑
k
|sk| : z =

K
∑
k=1

a(θk)sk, θk ∈ d−90◦, 90◦e
}

, (10)

the original Problem (8) has been transformed into the following Problem (11) in form,
which aims to recover a single snapshot signal vector z that minimizes its l1-atomic norm.
Problem (11) is represented as

min
z
‖z‖A,1, (11)

at this point, for ease of solution, we perform a Vandermonde decomposition on (11) again.
After the decomposition, the problem can be transformed into Problem (12), which is
represented as

min
x,z1

1
2

x +
1
2

z1

s.t.
[

x zH

z T (z)

]
� 0

, (12)

where x is the variable to be optimized, z1 denotes the first element of the single snap
signal vector z, and T (z) is the Hermitian Toeplitz matrix with z as the first row. In the
objective function, the first term 1

2 x is a regular term set to prevent the appearance of the
trivial solution, and the second term 1

2 z1 is the trace norm of the T (z) matrix. Furthermore,
the T (z) matrix is uniquely decomposed by the Vandermonde decomposition as

T (z) =
r

∑
k=1

pka(θk)aH(θk), (13)
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after taking the trace of matrix (13), we obtain

Tr(T (z)) = L
r

∑
k=1

pk, (14)

in Equation (13), since the direction vectors a(θk) are mutually independent, once we
establish that the signal vector z exists in the vector space spanned by a(θk), the coefficients
pk can be uniquely determined. The lower-bound operation in thedefinition of the l1 atomic
norm in Equation (10) can be ignored, leading to the relationship between the l1 atomic
norm and the positive semidefinite matrix as

‖z‖A,1 = Tr(T (z))/L, (15)

therefore, the convex Problem (12) is transformed into Problem (16), which is expressed as

min
z

Tr(T (z))

s.t. T (z) � 0
. (16)

Next, we can combine the virtual interpolation technique to solve the DOA estimation
problem for augmented coprime array sensors. The procedure is as follows. Referring
to Figure 4, we first calculate the covariance matrix RX based on the received signal
information data from the actual antenna deployment in the set S. Then,we vectorize and
sort the covariance matrix, removing redundant data. Here, we employ virtual interpolation
techniques to replace the holes in the set D with zero elements, resulting in an equivalent
single-snapshot signal vector zex in the set V. Subsequently, using zex, we construct a
reference virtual array covariance matrix RV containing the information from all array
receive signal sources. Lastly, we define a binary matrix G of the same size as RV to reflect
the positions where RV has non-zero values. By solving the optimization Problem (17)
using an atomic norm minimization algorithm, we can obtain the reconstructed Toeplitz
matrix T (z) containing the recovered single-snapshot signals.

min
z

Tr(T (z))

s.t. T (z) � 0

‖T (z) ◦ G− RV‖2
F ≤ η

, (17)

where η is a threshold used to restrict the fitting error between the non-zero elements in
RVand the non-zero values in the reconstructed covariance matrix T (z) projected onto G.
The symbol ◦ denotes the Hadamard product, and | · |2F represents the squared Frobenius
norm. For convenience of solving, the equation above can be reformulated as

minz
1
2‖T (z) ◦ G− RV‖2

F + µ Tr(T (z))
s.t. T (z) � 0

, (18)

where µ is a regularization parameter used to balance the fitting error and the atomic
norm term.

3.3. Fast DOA Estimation via Positive Incremental Modified Cholesky Decomposition

When addressing the DOA problem via the atomic norm minimization method, one
commonly encounters convex optimization challenges. Typically, these necessitate itera-
tive optimization algorithms, such as interior-point methods. While these methods offer
high accuracy, they also entail substantial computational complexity, particularly with
large-scale problems, significantly slowing the solving process. For instance, employing
an interior-point method to resolve a semidefinite programming optimization issue re-
quires handling an N × N dimensional matrix, T, with a Hermitian Toeplitz structure.
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This operation demands O(N3) matrix multiplications and inversions, yielding a compu-
tational complexity of O(N3). Additionally, each iteration of the interior-point method
entails solving an N-size linear system, with the iteration number typically being around
O(log N). As a result, the total computational complexity escalates to O(N3.5), limiting the
method’s practical application. To enhance computational efficiency, we propose using the
Cholesky decomposition algorithm. This algorithm pre-processes the coefficient matrix,
which has a Hermitian Toeplitz structure, thereby reducing complexity and accelerating
the semidefinite programming solution. Nevertheless, the conventional Cholesky decom-
position method is suitable only for positive definite matrices, and our problem involves a
positive semidefinite matrix. We thus propose a positive incremental modified Cholesky
decomposition method based on the traditional model. Specifically, we add a very small
positive value of δ = 1× 10−6 to the diagonal of the semipositive definite matrix, which is a
common smaller value used for approximation in floating-point arithmetic. This operation
also ensures that the elements on the diagonal are always positive, which avoids division-
by-zero errors while minimising the impact on the matrix’s eigenvalues and turns the
semipositive definite matrix into a positive definite matrix that can be processed using the
Cholesky decomposition method [34]. For a given positive definite matrix T, its Cholesky
decomposition is obtained as

T = BBH , (19)

where B is the lower triangular matrix of T and BH is the conjugate transpose of B. Now,
we present the theoretical derivation process of the Cholesky decomposition algorithm to
obtain the lower triangular matrix B. We assume the following:

B =


b11 0 · · · 0
b21 b22 · · · 0

...
...

. . .
...

bn1 bn2 · · · bnn



BH =


b11 b21 · · · bn1
0 b22 · · · bn2
...

...
. . .

...
0 0 · · · bnn


. (20)

Now, based on Equation (19), we seek the relationship between both sides of the equation.
First, we can deduce b11 =

√
t11 from t11 = b2

11. Similarly, from ti1 = b11bi1, we obtain
bi1 = ti1

b11
, where i = 2, 3, ..., n. This allows us to determine the elements of the first

column of matrix B. Assuming that we have computed the first k− 1 columns of matrix B,
by performing the derivation using

tkk =
k

∑
i=1

b2
ki, (21)

we can obtain

bkk =

√√√√tkk −
k−1

∑
i=1

b2
ki, (22)

furthermore, through the equation

tik =
k−1

∑
j=1

bijbkj + bikbkk, (23)
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we can end up with

bik =
tik −∑k−1

j=1 bijbkj

bkk
, (24)

where i = k + 1, . . . , n. This way, we can obtain the kth column of matrix B using the
previously computed k − 1 columns and continue this process iteratively to obtain the
lower triangular matrix.

In practical applications, in order to speed up the solution of the gridless covariance
matrix reconstruction problem based on ANM, we first use the positive incremental modi-
fied Cholesky decomposition method for the constraint matrix T of the original problem to
obtain T = BBH , followed by introducing a new transformation matrix C, as shown in the
following Equation (25). This is applied to the solution of the optimization problem.

T = B1CBH
1 , (25)

where B1 is a unit lower triangular matrix. Now, let us assume that S is a diagonal matrix
containing the diagonal elements of matrix B. By combining Equations (19) and (25), we
can deduce that C = S2 and B1 = BS−1. At this stage, we use the CVX [35] to determine
the final covariance matrix by solving this newly transformed optimization problem as
shown in Equation (26), which is a transformation of the original Problem (18).

minz
1
2‖C(z) ◦ G− RV‖2

F + µ Tr(C(z))
s.t. T = B1C(z)BH

1
, (26)

where C(z) denotes a Hermitian matrix with the vector z as its first column. By conduct-
ing a positive incremental modified Cholesky decomposition of the Toeplitz matrix, we
simplify the original convex optimization problem. This transformation changes it into an
equivalent optimization problem involving a transformation matrix, significantly reducing
the computational complexity from O(N3.5) to O(N2.5). We derive the transformation
matrix from the modified Cholesky decomposition of the Toeplitz matrix, a process with a
computational complexity of O(N2). Once decomposed, we use the transformation matrix
to solve the equivalent optimization problem, which also requires a computational com-
plexity of O(N2). We employ the interior point method to solve the optimization problem.
Each iteration necessitates solving a linear system iteration number problem carrying a
computational complexity of O(N0.5). As a result, the total computational expense be-
comes O

(
N2.5). Therefore, employing preprocessing based on the positive incrementally

modified Cholesky decomposition proves beneficial for diminishing the computational
cost of solving SDP problems involving symmetric Toeplitz matrices.

The reconstructed C(z) derived from Equation (26) aligns with a reference virtual ULA.
Consequently, we can integrate various DOA estimation methods into the virtual domain
for precise DOA estimation [36]. These methods encompass MUSIC-based, ESPRIT-based,
and an array of sparsity-based techniques. Here, we employ the MUSIC method, which is
represented by its spatial spectrum as

fMUSIC(θ) =
1

aH(θ)NC(z)NH
C(z)a(θ)

, (27)

where NC(z) represents the noise subspace of C(z). Therefore, the estimation of the DOA
can be obtained by performing a spectral peak search on the MUSIC method.

The proposed positive incremental modified Cholesky decomposition-based DOA
estimation algorithm is summarized in Algorithm 1 and has the following key advan-
tages. Initially, the method fully capitalizes on the non-uniform virtual array, denoted as
D, by implementing the virtual array interpolation technique. This approach harnesses
all available information in D, offering a robust foundation for more reliable DOA es-
timation. Next, the atomic norm minimization approach is used on equivalent virtual
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signals, allowing for the effective formulation of the optimization problem. The goal is to
reconstruct the virtual array’s covariance matrix without depending on predefined grids.
By avoiding grids, the common issue of grid mismatch is mitigated, thus improving the
reconstruction process’s accuracy and robustness. Following this, a positive incremental
modified Cholesky decomposition is applied to preprocess the reconstructed covariance
matrix, T (z). This procedure, along with the introduction of a new transformation ma-
trix, C(z), transforms the inequality constraints of the convex optimization problem into
equality constraints. This improves the computational efficiency of the gridless approach
and ensures reconstruction accuracy. Lastly, the MUSIC method is utilized to conduct
statistical signal processing on the matrix C(z), which concludes in the final estimation
of the arrival directions. It is worth noting that the PI-CANM algorithm proposed in this
paper is not only applicable to reciprocal arrays, but it can also be applied to sparse arrays
in which there are non-uniform virtual arrays in any virtual-domain signal processing,
and its generalization to different arrays is relatively straightforward, differing only in the
parameters G and RV related to the structure of non-uniform virtual arrays. In conclu-
sion, the proposed algorithm demonstrates potential in augmented coprime array sensor
DOA estimation. It theoretically improves DOA estimation accuracy and computational
efficiency, with detailed simulation experiments to be presented in the following section.

Algorithm 1 Positive incremental modified Cholesky decomposition-based DOA estimation.

1: Input: Array receiving signal X(t).

2: Output: θ = [θ1, θ2, · · · , θK].

3: Initialize: RX , zex, L.

4: Vectorize RX , eliminate redundancy by sorting, and obtain the equivalent virtual signal

zex for the non-uniform virtual array D;

5: Perform interpolation on the virtual array D to create a new virtual array V and use zex

to construct the Toeplitz reference matrix RV for V;

6: Define a binary matrix G of the same size as RV to reflect the positions where RV

has values;

7: Perform a positive incremental modified Cholesky decomposition on the matrix T (z),
which requires reconstruction, to obtain the transformation matrix C(z). Transform the

convex optimization problem from Equation (18) to Equation (26);

8: Solve the optimization problem constructed by Equation (26) to obtain the optimal

solution C(z);

9: Calculate the MUSIC spatial spectrum fMUSIC using Equation (27) and estimate the

directions of arrival by searching for the spectral peaks.

4. Simulation Results

In our simulations, we chose a pair of mutually prime integers M = 3 and N = 5 to
deploy the augmented coprime array, which yielded a total number of 2M + N − 1 = 10
physical sensors, positioned as the set S in Figure 4. We next analyzed the effectiveness
of the proposed algorithm in terms of the following four aspects: degrees of freedom,
resolution, estimation accuracy, and computational complexity.

4.1. Degrees of Freedom Analysis

In the field of array signal processing, degrees of freedom refer to the number of target
directions that can be independently estimated, which is related to the number of sensors
available in the array. In the first example, we assumed a set of far-field narrowband signal
sources, covering 11 arrival angles ranging from −50 degrees to 50 degreeswith a 10-degree
interval. The signal-to-noise ratio (SNR) was set to 0 dB, and the number of snapshots was
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L = 200. We compared the performance of the proposed algorithm with five coprime array
sensor DOA estimation algorithms, including the SS-MUSIC algorithm [20], CO-LASSO
algorithm [16], SBL algorithm [17], NNM algorithm [21], and ANM algorithm [28].

According to Figure 5, most algorithms can effectively resolve 11 signal sources using
10 physical elements. This demonstrates that DOA estimation using augmented coprime
array sensors can increase the degrees of freedom. Further, the SS-MUSIC method did not
use the discontinuous part of the virtual array element due to its ability to utilize only the
continuous part of the virtual array element, which caused the loss of virtual aperture and
degrees of freedom, resulting in the degradation of DOA estimation performance and large
errors in DOA estimation for some sources. In addition, the CO-LASSO and SBL methods
divide the continuous angle space into a set of discrete grids in advance and assume that the
real angle is located between the grids, which inevitably results a base mismatch problem
and cannot accurately estimate all signal sources. In contrast, the proposed method, along
with the ANM and NNM methods, overcomes the limitations of grid-based approaches. It
fills in the gaps in the virtual array and achieves higher accuracy and increased degrees of
freedom compared to the other three methods. Therefore, the proposed method enables
the accurate DOA estimation of 11 signal sources using only 10 elements.

(a) (b) (c)

(d) (e) (f)

Figure 5. Resolution effect in terms of the normalized spatial spectrum with the number of snapshots
L = 200. The vertical dashed lines denote the actual directions of the incident sources. (a) SS-MUSIC
algorithm. (b) CO-LASSO algorithm. (c) SBL algorithm. (d) NNM algorithm. (e) ANM algorithm.
(f) Proposed algorithm.

4.2. Resolution Analysis

In the second example, we assumed there were two far-field narrowband signal
sources with arrival angles of 11.9° and 13.2°, respectively. The SNR was set to 0 dB, and the
number of snapshots was L = 500. Figure 6 shows the specific experimental results using
the six methods from the first example under this experimental condition.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Resolution effect in terms of the normalized spatial spectrum with the number of snapshots
L = 500. The vertical dashed lines denote the actual directions of the incident sources. (a) SS-MUSIC
algorithm. (b) CO-LASSO algorithm. (c) SBL algorithm. (d) NNM algorithm. (e) ANM algorithm.
(f) Proposed algorithm.

According to Figure 6, it can be seen that the SS-MUSIC method, CO-LASSO method,
and SBL method cannot effectively resolve two signal sources with similar incident angles,
while the proposed method has better resolution performance with the NNM and ANM
methods. Therefore, under the same simulation conditions, the proposed method outperforms
the SS-MUSIC method and CO-LASSO method in terms of resolution performance because the
proposed method fills the cavity part of the non-uniform virtual array species by virtual
interpolation to obtain more degrees of freedom and has a larger array element aperture,
thus improving the resolution. Meanwhile, compared with the CO-LASSO and SBL methods,
the proposed method does not require discretization of the angular domain and also effectively
avoids the influence of the base mismatch problem on the resolution accuracy.

4.3. Estimation Accuracy Analysis

In the third example, we compared the estimation accuracy performance of the pro-
posed method with several algorithms for DOA estimation using reciprocal arrays, in-
cluding the SS-MUSIC algorithm, the CO-LASSO algorithm, the SBL algorithm, the NNM
algorithm, and the ANM algorithm. We compared the root-mean-square-error (RMSE) of
each algorithm in the example here to verify the effectiveness of the proposed algorithm,
where the RMSE is defined as follows:

RMSE =

√√√√ 1
JK

J

∑
j=1

K

∑
k=1

(
θ̂k(j)− θk

)2
, (28)

where J represents the number of Monte Carlo trials, K denotes the number of signal
sources, θk represents the true angle of the k-th incoming signal, and θ̂k(j) denotes the
estimated value for the k-th angle in the j-th trial.
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We assumed a single far-field narrowband signal source with an incoming azimuth
angle following a Gaussian distribution with a mean of 5 degrees and a standard deviation
of 2 degrees, denoted as N (5◦, 2◦). This distribution was randomly generated in each
Monte Carlo trial but remained unchanged within each sampling snapshot. The number of
snapshots per trial was L = 100, and the total number of Monte Carlo trials was J = 200. We
conducted simulation experiments for several algorithms under uniformly varying SNR
conditions ranging from −20 dB to 30 dB and observed the performance of the algorithms.
Figure 7a illustrates the DOA estimation performance of each algorithm at different SNRs.
From the figure, we can observe that the RMSE curve of the SS-MUSIC algorithm shows a flat
trend when the SNR is greater than 10 dB. This is because the spatial smoothing operation
in the algorithm can only act on the continuous part of the virtual array in the differential
and array, which leads to a reduction in the array aperture, thus reducing the accuracy
of DOA estimation. Similarly, the RMSE curves of the CO-LASSO and SBL algorithms
also become relatively flat when the SNR exceeds 10 dB. This behavior is attributed to the
requirement of predefined sampling grids in these sparse reconstruction algorithms, which
leads to inherent basis mismatch and limits the estimation accuracy. In contrast, gridless
algorithms such as NNM, ANM, and the proposed algorithm, do not require predefined
sampling grids, and their estimation performance is not constrained by the sampling interval.
Therefore, as the SNR increases, their RMSE curves exhibit a consistent variation trend with
the Cramér–Rao bound (CRB) [37]. Notably, the CRB value is computed considering a
single source, in line with the approach used for calculating the RMSE values for other
algorithms. Among them, the performance of the proposed algorithm is almost the same as
that of the ANM algorithm, and both are better than the performance of the NNM algorithm.
Similar performance comparisons can also be found in Figure 7b, where the number of
snapshots is different. The RMSE for the NNM algorithm is marginally higher compared
to the proposed algorithm. This difference arises due to the NNM algorithm’s method
of recovering the covariance matrix of the virtual interpolated array based on a matrix
completion criterion. This process involves retaining a select number of observation values
computed from sampled snapshots within the optimized covariance matrix. As a result,
the recovered covariance matrix produced by the NNM algorithm might contain certain
inaccuracies. Conversely, the proposed algorithm employs these relevant observation values
only as reference points, and it reconstructs the covariance matrix of the virtual interpolated
array following a matrix reconstruction criterion. Consequently, the proposed algorithm
exhibits superior performance compared to the NNM algorithm.

(a)

Figure 7. Cont.
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(b)

Figure 7. RMSE performance comparison with single incident source. (a) RMSE versus SNR with the
number of snapshots T = 100. (b) RMSE versus the number of snapshots with SNR = 0 dB.

4.4. Computational Complexity Analysis

The computational complexity of the algorithm is also one of the indicators for eval-
uating the performance of the algorithm, so in the fourth example, we used the same six
algorithms used in the third example to conduct simulation experiments. We set them
under the condition of different number of array sensors, completed DOA estimation,
and recorded the time required. The experiments were conducted in the MATLAB 2022
platform using an Intel Core i5-10400 processor (Intel, Santa Clara, CA, USA) and 16 GB of
memory. Here, we assumed there was one signal source, the snapshot count was L = 10,
the SNR = 0 dB, and the number of array sensors varied from 7 to 37.

Figure 8 evaluates the computational cost of various algorithms by comparing their
runtimes under different numbers of array sensors, N. We observe that although the calcu-
lation speed of the SS-MUSIC algorithm is faster than the proposed algorithm, its RMSE
performance is relatively poor. In scenarios where precision of DOA estimation is required,
this degradation in performance cannot be overlooked. Furthermore, compared to the
proposed algorithm, both the SBL and CO-LASSO algorithms are slower in computation,
as they require more computational resources and iterations to address intricate optimiza-
tion problems. Notably, among the three gridless algorithms, our proposed algorithm
exhibits the fastest calculation speed. This is attributed to the implementation of modified
Cholesky decomposition during the solution of convex optimization problems in matrix
recovery. It transforms the matrix from semi-definite positive to definite positive, simplify-
ing the constraints of the optimization problem and thus reducing the complexity of the
solution. Furthermore, as N increases, the slope of the runtime curve for our proposed
algorithm becomes notably smaller than that of the other two gridless algorithms, reflecting
a lower order of computational complexity in an asymptotic sense. In conclusion, while
ensuring the accuracy of DOA estimation, the proposed algorithm is more suitable for
large-scale problems and scenarios demanding high real-time algorithmic performance.
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Figure 8. Runtime performance versus number of sensors.

5. Conclusions

We introduce a PI-CANM-based DOA estimation algorithm for augmented coprime
array sensors. This approach addresses information loss caused by the discontinuity of
the virtual array through virtual interpolation array element technology. It reformulates
the DOA estimation issue as a gridless optimization problem, circumventing limitations
of pre-defined spatial grid points on DOA accuracy. It employs the positive incremental
modified Cholesky decomposition method to ease the optimization problem’s constraints
and reduce complexity. Simulation comparisons confirm the algorithm’s robustness, even
in conditions such as low signal-to-noise ratios and small snapshots, and highlight its
practical applicability. We consider this a valuable DOA estimation method for coprime
array sensors that will be useful for related research fields.
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