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Abstract: Wildfire poses a significant threat and is considered a severe natural disaster, which endan-
gers forest resources, wildlife, and human livelihoods. In recent times, there has been an increase
in the number of wildfire incidents, and both human involvement with nature and the impacts of
global warming play major roles in this. The rapid identification of fire starting from early smoke can
be crucial in combating this issue, as it allows firefighters to respond quickly to the fire and prevent
it from spreading. As a result, we proposed a refined version of the YOLOv7 model for detecting
smoke from forest fires. To begin, we compiled a collection of 6500 UAV pictures of smoke from
forest fires. To further enhance YOLOv7’s feature extraction capabilities, we incorporated the CBAM
attention mechanism. Then, we added an SPPF+ layer to the network’s backbone to better concentrate
smaller wildfire smoke regions. Finally, decoupled heads were introduced into the YOLOv7 model
to extract useful information from an array of data. A BiFPN was used to accelerate multi-scale
feature fusion and acquire more specific features. Learning weights were introduced in the BiFPN so
that the network can prioritize the most significantly affecting characteristic mapping of the result
characteristics. The testing findings on our forest fire smoke dataset revealed that the proposed
approach successfully detected forest fire smoke with an AP50 of 86.4%, 3.9% higher than previous
single- and multiple-stage object detectors.

Keywords: forest fire; smoke detection; wildfire smoke; deep learning; remote sensing; CBAM;
decoupled head; UAV images; YOLOv7

1. Introduction

The forestry industry is a critical feature of the global system, being an essential
resource for both human well-being and progress, as it plays a crucial role in ecosystem
functioning. Consequently, protecting forest resources is therefore necessary for human
existence and development and for preserving Earth’s ecosystems in a constant balance.
Forest fires pose a significant threat as they spread rapidly and are challenging to extinguish
due to the large amount of combustible material. These fires cause severe damage to
human life and property and accelerate the degeneration of the ecological environment [1].
Therefore, the early detection of forest fires is crucial for reducing disasters. Image-based
fire detection methods are particularly suitable for outdoor environments, such as forests,
mountains, and parking areas, in contrast to sensor-based approaches [2]. These techniques
are often classified as either smoke detection or fire detection [3]. The latter is essential for
early fire detection as smoke spreads faster than a flame and covers a more extensive area [4].
Conventional image-based fire smoke detection methods rely on low-level handcrafted
features, such as color, texture, shape, and others based on experience. However, these
scenario-specific methods exhibit a decreased accuracy rate when environmental conditions
change [5].

Summer is the season that is the most commonly associated with forest fires due to
drought, low plant water content, and increased human activity in forested areas. However,
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significant and intermediate mountain regions are particularly vulnerable to forest fires in
the late fall, winter, and early spring. A fire requires three things in proper proportions to
start and spread: fuel, which can be any combustible object; a source of heat, such as a flame
or spark; and oxygen to feed the fire. Devastating everything in their path, uncontrolled
wildfires may travel great distances, even crossing rivers and roadways [6]. Wildfires
annually damage between four and twelve million miles or sixty-five to eighty thousand
acres. The intensity of forest fires determines the scope of their environmental damage, and
the causes of forest fires can range widely [7].

When forest fires are not put out immediately, the resulting destruction and cost of
fighting them rise dramatically as a result [8]. To lessen the severity of wildfires, the time it
takes to report a blaze is of paramount importance [9]. Official agencies receive help from
a wide range of terrestrial and spatial technology to detect wildfires at an early stage and
identify their exact position [10]. Nevertheless, these systems have limitations that may
reduce their fire detection efficacy. Therefore, to lessen the devastation of forests and their
resources, we need to design new methods for observing forest fires and enhance our fire
management tactics. The fast development of computer vision technologies and artificial
intelligence (AI) has led to considerable advances in deep learning for various complex
visual tasks [11–14]. Image classification [15], object identification [16], semantic segmen-
tation [17], and other applications [18] are only some of the computer vision problems
that have benefited from the use of machine learning. Recently, the convolutional neural
network (CNN) based smoke detection algorithms have received much attention and have
made significant improvements in the accuracy with which they identify smoke from fires.

There are several ways in which fires can exhibit a significant effect on biodiversity.
They release much carbon into the atmosphere, raising temperatures and altering animal
and plant life [19]. Fires can negatively impact ocean infrastructure, coral reefs, and other
underwater environments due to the way in which they can change biomass accumula-
tion in ecosystems and disturb the natural cycle of water [20]. Also detrimental to the
well-being of humans and animals is the fact that smoke from forest fires may greatly
limit the production of photosynthesis [21]. The Amazon jungle, for instance, is home to
an astonishing number of both plant and animal species, many of which have not been
thoroughly described. Repeated forest fires therefore constitute a significant danger to the
unique species that exist there. All of these effects make combating fires more difficult,
which is a significant problem [22].

Compared to the traditional methods of detecting smoke in images for forest fire de-
tection, modern approaches using CNNs can extract depth features automatically, thereby
making them more adaptable to variable wilderness environments. However, these meth-
ods can have a higher false alarm rate when the amount of smoke in the image is small.
This is because CNNs can have difficulty focusing on small smoke and may be more likely
to detect the background of the image rather than the smoke itself. Additionally, images in
these environments often contain scattered areas, such as shadows, clouds, haze, and fog,
which can be challenging for small smoke detection.

Unmanned aerial vehicles (UAVs) versatility, speed, and precision in spotting forest
fires have led to their widespread adoption. With their ability to fly at low altitudes, UAVs
can capture high-resolution images of forest areas, thereby making it possible to identify
fires early. UAVs also have the ability to fly in dangerous, inaccessible regions [23]. They
are able to carry various cameras and sensors that can detect the different wavelengths of
light, including infrared, which can detect heat sources that are not visible to the naked
eye. In addition, UAVs can be equipped with real-time communication systems that allow
firefighters to respond quickly to fires and provide them with helpful information regarding
the fire’s location, size, and movement [24,25]. Overall, using UAVs in forest fire detection
is becoming increasingly important, and is likely to play an even more significant role in
the future of wildfire management.

In addition to their widespread use in forest fire detection, deep learning systems have
shown better performance than classical image processing techniques across a number
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of other contexts. To serve as a classifier for finding forest fires, Pan et al. [26] developed
an AddNet [27]. To determine the scope and location of the blaze, they segmented photos
into many tiny patches and categorized them with a great precision. Zhang et al. [28] used
a cascade strategy and a combined classifier to detect whole pictures and fine-grained
patches. The effectiveness of YOLOv3 [29] for forest fire detection was enhanced by
Valikhujaev et al. [30], and it has since been applied to UAVs for forestry surveillance.
Wu et al. [31] made an analogous inquiry into the efficiency of several detectors involving
YOLO, SSD [32], and Faster R-CNN [33]. They modified the YOLO network’s architecture
to speed up and more accurately detect fires.

Xu et al. [34] used an ensemble learning method to improve the precision of detecting
forest fires while reducing the frequency of false positives. However, this approach was
very complicated and needed to respond more adequately. Other methods presented
here have effectively located and identified areas where fires have occurred in photos.
Additionally, several studies have used semantic segmentation techniques to provide pixel-
level information on fire zones, which provides more extensive and accurate coverage. The
ATT Squeeze U-Net, suggested by Zhang [35], is an attention-based variant of the original
U-Net that aims to enhance accuracy without sacrificing the network’s compact size. Real-
time speed, efficiency, and high accuracy were all found to have been attained when the
compressed fire binary categorization model proposed by Song [36] was implemented in
an embedded device.

Identifying wildfires using UAV photos requires developing a deep-level network
approach for obtaining abstract data from pictures. However, training a deep neural
network can be tough and time intensive when just a small amount of labelled data is
available. Transfer learning, which entails applying a pre-trained model and modifying its
parameters to suit the new job, is the answer to this problem. Since labeled data is in short
supply, transfer learning can solve the overfitting issue. Through utilizing the information
learned from pre-trained models, transfer learning may considerably speed the training
process and thereby improve the model’s performance on the new task. Therefore, transfer
learning is an effective strategy for training deep learning models for image analysis tasks,
and especially requires more labeled data.

To overcome these limitations, this research proposes a new method for identifying for-
est fire smoke using photos captured by UAVs. Our system uses the modernized YOLOv7
model to detect smoke from forest fires. We used pre-trained weights as initialization
parameters for the backbone network and modified the network structure parameters to
boost the performance of the classic YOLOv7 model. Deploying the improved network
to a forest fire smoke dataset allowed us to identify hazardous chemicals, such as smoke
reliably. Sections 3 and 4 detail how we improved the YOLO7 model and ran tests on
an AI server.

The following are the significant findings from this research:

• To enhance the performance of the smoke detection model, a massive collection of
forest fire smoke photos was collected using pictures taken from UAVs and forest
land pictures;

• A completely automated forest fire smoke detection model was built using deep learn-
ing algorithms and YOLOv7 to decrease natural disasters and wildland resource loss;

• We adopted the CBAM module after evaluating the effects of three different atten-
tion mechanisms on the model’s output. The decoupled head and CBAM attention
mechanism were verified to be successful;

• We applied SPPF+ and BiFPN modules to concentrate on small-size forest fire smoke
and distribute the feature information more evenly across the scales. Improved sensitiv-
ity to localized smoke is one of the many benefits of the BiFPN feature fusion approach.

This paper is organized as follows: Section 2 examines the current research on UAVs
and deep-learning smoke detection strategies for forest fires. In Section 3, we describe the
experimental dataset we employed and break down the inner workings of the YOLOv7
model in greater depth. In Section 4, we explore the experimental results in depth and
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compare the efficiency of our proposed system to that of other current smoke detection
systems. Lastly, we present a discussion and brief overview of the work in Sections 5 and 6.

2. Related Works

The conventional point sensors utilized in early fire smoke detection systems are
inadequate for effectively detecting smoke signals in larger spaces. In the case of a forest fire,
substantial plumes of smoke are emitted into the environment, making a properly operating
smoke warning essential for preventing casualties. Climate change exacerbates the risk
of catastrophic wildfires, which may have far-reaching effects on human populations,
ecosystems, and the economy if they are not extinguished quickly. Two methods are
available for monitoring wildfires: detecting smoke and flames. Smoke serves as the
primary indicator of an impending wildfire, necessitating early warning and detection
systems that are sensitive to the smoke in the operating environment, such as deep-learning
models. Despite this, advancements in technology have enabled the development of
modern methods for detecting smoke and fires, taking into account the availability of
processed data, as previously reported by several studies.

Previous research [37] have stated that the advent of deep learning techniques makes
it possible to detect forest fires using image analysis, thereby providing novel insights for
wildfire alert systems. It has been shown that deep learning techniques can detect shifts in
smoke photos by extracting features from labeled photographs [38]. In [39], the authors
proposed a method for detecting wildfires by utilizing UAVs to collect imagery of the area,
which would subsequently be evaluated with the YOLOv3 model and a modest CNN. As
the trial findings revealed, the UAV system and the deep learning-based fire detection
technique exceeded their expectations regarding accuracy and speed, with the test results
for the algorithm’s accuracy in recognition being close to 83%.

YOLOv5 was updated in [40] to incorporate adaptive anchor training through the
K-means++ technique to increase the detection speed and performance and reduce fire
damage. The authors subjected three different YOLOv5 models—a small one, a medium
one, and a large one—to various loss functions, namely CIoU and GIoU, respectively.
Initially, they used a synthetic approach to grow their collection of 4815 images to include
20,000 images. The enhanced model performed 4.4% better on average than the baseline
YOLOv5, with the CIoU loss function producing the highest results (mean accuracy of
86.0% and recall of 78.0%, respectively).

The study in [41] also offered a method for detecting fires at all hours of the day and
night using an improved YOLOv3 model, but with a larger detection area and a faster de-
tection speed. This study emphasized the need to gather accurate information to determine
fires correctly, and it achieved it by amassing a dataset of 9200 images from a wide variety
of places, such as Google image archives and publicly available sources, as well as stills
from videos. The database’s overall size was increased using data augmentation methods,
including image rotation. This technique relied on a custom set of cameras and the YOLOv3
model for real-time detection of fires, with a mean precision of 98.9%. However, it is still a
challenge for researchers to identify non-fire flame characteristics, such as the presence of
bright light or high-beam lamp illumination.

A novel ensemble learning framework for detecting forest fires was introduced in the
study [42]. Publicly available data was used as the basis for the framework’s significant
learners, Yolov5, and EfficientDet, with EfficientNet having been used for both detection
and classification. The authors collected 10,581 photos from widely used resources, such
as VisiFire and FD-dataset to create their dataset. The research showed that, compared to
other models, its fire detection accuracy was significantly higher, with an average precision
of 79.7% at an IoU of 50%. Nevertheless, the suggested approach was flawed in incorrectly
classifying the sun as a fire during sunset. The authors then proposed a new framework,
Swin-YOLOv5 [43], that uses a transformer over three heads to improve the extraction of
features in the original YOLOv5 design, and thereby address the limits of the previous [42]
model. The research compared seven hyperparameters using a dataset of 16,503 images
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from two target classes. Swin-YOLOv5 beat the baseline model statistically, with an average
precision increase of 4.5% points and an average accuracy increase of 0.7% for IoUs between
0.5 and 0.95, respectively. Together, these results show that ensemble learning approaches
have the potential to enhance the accuracy of forest fire detection. However, further research
is necessary to address the limitations of these models and explore alternative approaches
for enhancing the performance of these systems.

Detection frameworks have been the subject of further research into developing
specific methods for interior and exterior item detection and classification that may be
applied to detect flames and smoke. One such study is [44], which presented a unique
architecture for identifying items within occupied spaces. By utilizing the anchor-free
technique for variable minimization and the VariFocal loss for data weighing, this suggested
design made optimal use of the YOLOv5 model. In addition to the publicly available
dataset, the authors offered a newly built sample with 11,367 images divided into training,
testing, and validation sets, respectively. The popular Pascal-VOC2012 dataset was used
throughout the study. Decoupling the head’s layer was one component of the YOLOv5
improvement that was implemented to enhance the detection accuracy and efficiency,
which was accomplished using a size of 640 × 640 pixels. Eleven existing models that
used YOLO across multiple formats were then compared to the findings of the new system.
The evaluation results showed that the suggested system successfully identified internally
occupied items with an average precision of 93.9% at an IoU of 0.9. This research provides
evidence that altering the model design and training data of the YOLOv5-based system
can improve its ability to identify flames and smoke.

In the research presented in [45], a real-time experiment was conducted to detect
internal and external objects by designing a system that employs camera sensors commonly
used in Lidar devices, such as OS1-64 and OS0-128. The primary innovation was high-
resolution (2048 × 128), 360 degree panoramic photos. Results from the created system
were compared between Faster R-CNN, Mask R-CNN, YOLOx, and YOLOv5, respectively.
Individuals, bicycles, seats, and automobiles were isolated from the sensor images for
indoor and outdoor usage. When compared to other models, YOLOx performed the best in
terms of accuracy (over 81%), precision (over 99%), and recall (over 95%) while recognizing
indoor and outdoor items. According to the study, YOLOx is faster and more accurate
than YOLOv5.

The authors in [46] devised an ABi-LSTM model to detect forest fire smoke. This
model comprises a spatial features extraction network, a bidirectional extended short-term
memory network, and a temporal attention subnet. The network for extracting spatial
characteristics from candidate patches use the ViBe method for removing unnecessary
background information. Long short-term memory (LSTM) networks similar to this use
spatial data to learn about smoke over time, whereas attention networks focus on finding
discriminative images. When applied to 1920 × 1080 videos from a forest fire monitoring
system, the Abi-LSTM model produced a 97.8% accuracy rate, outperforming the image-
based deep learning model by 4.4%.

According to the study [47], there needs to be more adequate and high-quality data
in research archives for detecting fires and smoke. The absence of development- and
use-ready labeled data significantly contributes to this shortcoming. NEMO (Nevada
Smoke Detection Benchmark) is the first data repository of its sort and was offered as
an innovative solution to this issue. NEMO uses a database of aerial photographs collected
from the detection sites to determine wildfires. The dataset includes 7023 images taken by
different cameras at different times and places and were used for fire detection. The data
was evaluated using many different detection models. These included Faster R-CNN and
RetinaNet. The results showed a sensitivity of 98.4% within 5 min and a specificity of 42.3%
on average for detection, respectively. Notably, NEMO was designed to work with photos
of varied sizes, including those that are horizontal, far away, or in-between.

The study’s authors [48] considered six different CNN architectures when creating a
wildfire inspection system that could estimate geolocation using a cheap commercial UAV.
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These architectures were Inception v3, VGG16, MobileNet v2, DenseNet, and ResNet 50.
There are three primary phases to the planned structure, beginning with a tablet’s graphical
user interface (GUI), with which the operator initially defines the search area. Once
the drone has the location’s coordinates, it may fly there and inspect to collect further
information. Using this information, the quadcopter pinpoints the location of the fire and
sends back its coordinates along with a live video feed of the search area to the operator’s
tablet computer. Based on the assessment, the system’s accuracy was 99.29% for the
Inception v3, 99.38% for the ResNet-50, 99.74% for the VGG-16, 99.47% for the MobileNet
v2, 98.9% for the NASNetMobile, and 99.65% for the DenseNet, respectively.

In order to identify forest fires using UAVs, Ali Khan et al. suggested a dataset and
benchmark which they named as DeepFire [49]. When a fire is detected, the UAVs will
coordinate with other UAVs in the area and send the information to a far-off wildfire
catastrophe administration center. There are a total of 1900 images in the DeepFire dataset,
950 of which are classified as fire and 950 as non-fire, respectively. The authors used transfer
learning with the VGG19 architecture to improve the prediction precision. Simulation
data showed that the suggested method was highly effective, with a precision of 95.7%,
an accuracy of 95%, and a recall of 94.2%, respectively.

Diyana et al. [50] established a forest monitoring system to aid in early fire detection
and assessment. UAVs with optical, thermal, or both types of cameras are used for this
platform, which can be either fixed- or rotary-winged. To confirm possible fire spots, rotary-
wing drones operate at a lower height, while fixed-wing drones fly a medium-altitude
assessment of the monitored region. The detection of a fire causes an alarm to go off,
which notifies the appropriate authorities on the ground. With a model built on the SSD,
employing MobileNetv1 as its backbone, and the COCO dataset as weights, the authors
reached a 94% accuracy.

Panagiotis et al. [51] introduced a method for fire detection that uses a 360 degree aerial
digital camera placed on a UAV to capture footage from an infinite swath of sky. Images
taken by the optical camera are projected onto an isosceles rectangle before being converted
to a stereographic form. Two different DeepLab V3+ architectures were then used to
conduct research on flame and smoke segmentation. Consideration of the image’s aesthetics
was used to verify the identified areas. The authors created a dataset for 360 degree fire
detection using 150 equirectangular images. The experiment showed that the suggested
system had a 94.6% F-score.

Alireza et al. [52] curated the FLAME dataset, which consists of fire-related visual data
in Northern Arizona taken by drones. This database employs regular and thermal cameras
and captures aerial videos and images in four color palettes: fusion, regular, green-hot,
and white-hot. The authors developed a CNN approach, which yielded a classification
accuracy of 76% for frame-based fire identification. Additionally, segmentation techniques
were used to accurately detect fire borders, resulting in a precision of 92% and a recall of
approximately 84% for the FLAME system, respectively.

Several studies have explored the potential of satellite-based object detection methods,
which can be used alongside video cameras and drones to improve the detection of wildfires
across large areas. The framework [53] was created to find safe landing areas for the UAVs
and examined the usefulness of several versions of YOLO in finding acceptable landing
areas. The DOTA database was utilized, which includes 11,270 satellite images with high-
resolution and 15 labels. According to the findings that were obtained, YOLOv5 with large
network weights outperformed the competition with an accuracy rate of 70%, a recall rate
of 61%, and a mean average accuracy rate of 63%, respectively.

Yifan et al. [54] introduced Light-YOLOv4, a lightweight real-time flame and smoke
detector. First, they used a more lightweight backbone network than YOLOv4. Second,
they added bidirectional cross-scale connections. Finally, they partitioned the convolu-
tion and independently computed the channel and geographical region, all of which are
improvements over YOLOv4. Light-YOLOv4 had an accuracy of 86.43% when detecting
flames and 84.86% when detecting smoke, respectively. Furthermore, it also had a mean
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average precision of 85.64% at a confidence threshold of 0.5 for flame and smoke detection,
and a mean average precision of 70.88% when detecting smoke at the same confidence
level, respectively.

3. Materials and Methods
3.1. Dataset Acquisition for Forest Fire Smoke Detection

The proper dataset preparation plays a vital role in successfully implementing the
algorithm, as presented in this paper. It is worth noting that deep learning model accuracy
heavily relies on the quality of the images utilized in the training and testing processes. Our
evaluation of forest fire smoke images revealed that vision-based systems had inadequacies
in their datasets, and existing open-access datasets also had issues. To ensure that our learn-
ers were capable of detecting various sizes of forest fire smoke, we utilized forest fire smoke
images [18,55], wildland images [56] for non-wildfire photos, and other web-based images.
These datasets were obtained through crawling pictures or videos captured by a UAV, as
the forest fire smoke model was developed to utilize the UAVs for monitoring purposes.

The images collected for this study primarily consisted of aerial photos of wildfire
smoke and forest backgrounds. The size of pictures varied between 2048 × 3072 and
512 × 512 pixels, respectively. The images depicted recent wildfires in the world. This
diverse dataset made the algorithm more generalizable in complex forest environments.
After undergoing manual filtration, we created a single integrated dataset consisting of
3500 forest fire smoke pictures and 3000 non-forest fire smoke pictures, respectively. All
images were then resized to the size of 640 × 640 pixels. These findings are depicted in
Table 1, and Figure 1 demonstrates the sample images of the forest fire smoke dataset which
display variability in the shape and size of smoke in natural environments, which can lead
to misclassification by the conventional detection methods.

Table 1. Forest fire smoke dataset and its specification.

Dataset
Smoke Images Non-Smoke Images

Total
Google Kaggle Flickr Bing Google Kaggle Flickr Bing

Forest smoke 350 2600 200 350 150 2550 100 200 6500
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Figure 1. A sample of images from the forest fire smoke dataset. (a) Large and medium smoke;
(b) small smoke where the attention of smoke is high in the center and low at the edge; (c) low smoke
density makes it hard to make out details, including color, edge, and texture; and (d) non-smoke
images captured under different weather conditions including sunny and cloudy.

Large- and medium-sized forest fire smoke images are shown in Figure 1a. In contrast,
Figure 1b displays images with a small smoke size, a high concentration in the smoke
center, and a low concentration at the edge, making the determination of the extent of the
smoke challenging. Figure 1c shows an example of a picture with a low concentration of
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smoke, where the edge, texture, color, and other properties of smoke are not very noticeable.
Finally, Figure 1d shows non-smoke images captured under different weather conditions,
such as sunny and cloudy conditions. In conclusion, standard smoke detection systems
need help to effectively identify smoke due to the variety in form and quantity of smoke in
natural surroundings. Therefore, it is essential to create a smoke detection algorithm for
forest fires that works well with photos of smoke that exhibit in various forms due to its
origin in the natural world.

A substantial amount of labeled training data is crucial to the success of a deep
learning model. However, it might be difficult to achieve trustworthy findings for wildfire
smoke detection with such datasets due to overfitting, class imbalance, or inadequate data.
Failure to capture visual patterns reliably by a model is known as overfitting. Image data
augmentation, in which existing photos are tweaked and reused to boost a model’s accuracy,
was used to solve this problem. A survey of the relevant literature [57,58] revealed that
geometric changes, including flipping and rotation, are the most valuable methods for
improving picture data. The number of photos in the forest fire smoke detection dataset
was increased by experimentation and applying data augmentations such as rotation and
horizontal flips [59,60]. The CNN’s model performance is very sensitive to the amount and
quality of the picture datasets used to train the models.

We added multiple adjustments to each original fire image to improve the model’s
generalization of the preceding training photos and allow it to learn from a broader range
of events. These adjustments included horizontal flip and counterclockwise rotations of
60 and 120 degrees. Furthermore, we incorporated training photos portraying non-smoke
but comparable scenes, such as mountains, clouds, fog, and others, in an effort to reduce
the frequency of false positives.

For our objectives, we employed a dataset of 6500 photos to identify forest fire smoke,
splitting it into a training set of 5200 images and a test set of 1300 images, respectively.
Data augmentation techniques were used exclusively on the training set to enhance its size.
According to Table 2, this meant that there were a total of 32,500 photos available for use in
identifying smoke from forest fire.

Table 2. Data augmentation on the forest fire smoke dataset.

Forest Smoke
Training Images Testing Images

Total
Original Images Rotated Images Flipped Images Original Images

Smoke images 2800 5600 8400 700 17,500
Non-smoke images 2400 4800 7200 600 15,000

Total 5200 10,400 15,600 1300 32,500

3.2. Overall Architecture of Forest Fire Smoke Detection

Deep learning’s effectiveness in identifying forest fire smoke has been proven com-
pared to the more conventional techniques. However, further research into the many
characteristics of smoke is required in order to enhance the detection accuracy in dense
wildland scenes. In this study, unlike previous research, our focus is on extracting more
detailed smoke features to distinguish smoke from complex backgrounds, such as clouds
and fog. The primary goal of this research was to implement the most efficient detection
models for smoke detection, with the capability to notice smoke from different distances,
including close, medium, and distant areas. As shown in Figure 2, the suggested framework
incorporates a flowchart of the approach developed to decrease the sensitivity of the detec-
tion methods employing prospective data by integrating data augmentation strategies. We
also set aside 20% of the dataset specifically for testing and assessing detection outcomes,
which should thereby help keep the detection more consistent. Due to its comprehensive
nature, the suggested approach could be used with a variety of different datasets.
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In order to determine the most effective and precise model for a specific task, com-
paring detection models is therefore crucial. This is especially crucial in detecting smoke
in forest fires, where the precision of detection models can have significant impacts. This
study aimed to develop detection methods for forest smoke and compare them with single-
and multiple-stage object detectors, such as YOLOv5, DeepSmoke, Mask R-CNN, and
Cascade R-CNN using our smoke images. By employing the same dataset, the researchers
guaranteed that any differences in the model’s performance are attributable to the model’s
architecture and not the dataset. This methodology could also be applied to other applica-
tions, such as monitoring warning signals during fire outbreaks using detection models
coupled with UAVs and detecting fires early via smoke detection. Overall, comparing detec-
tion models is crucial for developing accurate and efficient models for specific applications,
and has significant real-world implications.

In order to increase the accuracy of early forest fire smoke detection in various weather
conditions, including foggy, hazy, and sunny, the usage of UAVs equipped with cameras
for collecting images and videos have been integrated with deep learning and computer
vision algorithms. We proposed forest fire smoke detection using UAV images and built
an optimized YOLOv7 model. Images captured by the UAVs are transmitted to a base
command post. They are then processed by an AI system equipped with deep CNNs to
identify the existence of fire or smoke. This system provides a high accuracy in detecting
smoke regions and executes real-time image processing quickly due to its powerful proces-
sor. The steps involved in utilizing the UAV camera and computer to identify smoke from
forest fires are shown in Figure 1. Deep learning procedures have been used to replace the
conventional methods, thereby simplifying feature extraction and detection considerably.

Once the image has been acquired and preprocessed, the next step was to extract
the pixels that corresponded to the object of interest, such as smoke and fire. Feature
extraction involves identifying image characteristics, including motion, colors, corners,
edges, brightness levels, and intensities, which are all relevant to the object of interest. This
method allows for a more in-depth inspection of the segmented image to pinpoint the
relevant details. A trained AI model was then used to analyze the input image for patterns
that indicate the existence or absence of smoke. If the system returns a smoke existence
result, the system then sends an alert to the fire department through the UAVs or base
command post. Overall, feature extraction and pattern recognition using deep learning
models play a crucial role in early wildfire detection and notification systems.

3.3. Original YOLOv7

YOLOv7 is considered an advanced object detector due to its remarkable performance
on publicly available datasets [61]. Figure 3 depicts the two primary parts that make up
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the YOLOv7 model: the backbone network and the head network. The original picture
undergoes preprocessing before being sent into the backbone network. The input pictures
are evenly scaled to a 640 × 640 size during the preprocessing stage using hybrid and
mosaic data augmentation methods and the adaptive anchor frame estimation approach
introduced by the YOLOv5 model. This ensures that the input size satisfies the criteria of
the backbone network. Features are extracted using the backbone network and then fused
in the head network.
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Figure 3. Network architecture of the YOLOv7 object detector.

The backbone network in the YOLOv7 model consists of three key components: ex-
tended efficient layer aggregation network (E-ELAN), CBS, and MP-1. The CBS module
consist of convolution, batch normalization, and SiLU activation function. The E-ELAN
component keeps the gradient route from the initial ELAN design and allows the network
to learn a wider variety of features through the guidance of various feature group com-
putational blocks. Upper and lower branches make up MP-1, which is made up of CBS
and MaxPool, as shown in Figure 4 (where C is the channel). The MP structure is applied
for a down-sampling purpose. Both the picture’s width and length are reduced due to
the usage of MaxPool, and the number of channels in the image is cut in half according
to CBS’s 128 output-channel configuration, which is used by the top branch. The bottom
branch employs a CBS algorithm with a 1 × 1 stride and kernel to down-sample the picture
channels, a 2 × 2 stride and 3 × 3 kernel to down-sample the picture width and length,
and a concatenation operation to merge the features recovered from the two branches.
Both MaxPool and CBS improve the network’s feature extraction capacity by extracting the
maximum and minimum value information from tiny local regions, respectively.
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Figure 4. Structure of the MP.

The feature pyramid network (FPN) architecture and the E-ELAN are used in YOLOv7’s
head network to extract and fuse features from various backbone levels. Attributes are
extracted at multiple scales using the spatial pyramid pooling (SPP) structure while com-
putation costs are reduced, and feature extraction is enhanced using the convolutional
spatial pyramid (CSP) design. By fusing these two methods, we obtain the SPPCSPC, which
is utilized to broaden the network’s perception. The feature extraction process receives
additional enhancements by the ELAN-W layer. The MP-2 block is analogous to the MP-1
block, except that it contains two extra output channels. The number of image channels
utilized in the features generated by the head network is modified using the Rep structure,
and a 1 × 1 convolution is used to estimate category, confidence, and anchor frame. Ul-
timately, network complexity is decreased without losing in predictive performance, as
the Rep structure uses a specific residual design inspired by RepVGG [62], which could be
simplified to a simple convolution in actual estimations.

3.4. Attention Mechanism Module

In deep learning, the attention mechanism has commonly been used for drawing
attention to the critical details by discovering hidden patterns in the raw data. This method
has seen extensive usage in the field of computer vision, where it has been implemented
in the form of multi-order attention, pixel attention, and channel attention, respectively.
However, channel-only approaches to attention control, such as squeeze-and-excitation
(SE) [63], ignore location information that is essential for visual activities. To address this
limitation, researchers developed the convolutional block attention module (CBAM) [64],
which builds on SE but incorporates location information through global pooling on
the channels.

The CBAM module is an attention mechanism that can focus on both the spatial
and channel dimensions. As shown in Figure 5, it is made up of two distinct parts: the
CAM (channel attention module) and the SAM (spatial attention module). The CAM
emphasizes the foreground and meaningful regions of the image, while the SAM focuses
on the positions that contain contextual information for the entire image.
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There are two phases to the CBAM attention mechanism: 1D channel attention (dark
grey box) and 2D spatial attention (dark purple box). In the Figure 5,

⊗
denotes element-
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wise multiplication. During multiplication, the attention weights are accordingly broad-
casted (copied): channel attention values are broadcasted along the spatial dimension, and
vice versa. Two 1 × 1 C feature maps are produced from the H ×W × C input feature map
using global max pooling (GMP) and global average pooling (GAP) in the channel attention
module. These feature maps are then inputted into a two-layer multilayer perceptron
(MLP), with the first layer consisting of C/r neurons (with r representing the reduction
rate) and employing the ReLU activation function, and the second layer consisting of C
neurons, with the weights of both levels being equally distributed across the network. The
output characteristics are accumulated piecemeal, and the final channel attention feature is
generated through a sigmoid activation function. The input feature for the spatial attention
module is calculated by multiplying the output of the channel attention feature with the
input feature map. This procedure is illustrated by Equation (1).

The output of the channel attention module is fed into the spatial attention module of
the CBAM to create a feature map. Two feature maps of size H ×W × 1 are first generated
using global max pooling and global average pooling techniques. The dimensionality
of these feature maps is lowered by joining them. The spatial attention feature is then
generated using sigmoid activation on the resultant feature map. The output feature
map is calculated by multiplying the input feature map by this spatial attention feature.
Equation (2) is a model for this operation.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool( f )])
)

(2)

The CBAM attention mechanism can be utilized in UAV images, where there is a large
and intensive variation in the object scales. The detection performance of the CBAM could
be improved through extracting the attention zone by eliminating noise and zeroing in on
the essential items.

3.5. SPPF+

We proposed a modified version of the SPPF structure termed SPPF+, which leverages
the concepts of feature reuse from the SPPF and the SPPCSPC. The SPPF+ component
successively pools the feature maps using pooling kernels of varying sizes (13 × 13, 9 × 9,
and 5× 5) and a stride of 1. Different kernel sizes correspond to distinct receptive fields, and
combining numerous characteristics facilitates the extraction of fine-grained object details
from aerial photographs. In high-density scenes of aerial photographs, the interaction of
feature information can be improved by extracting features from many receptive fields
on a single feature map, leading to a more precise object location. An image may learn
features at multiple sizes before fusing the local and global elements using maximum
pooling and jump connections at many scales to increase the feature map’s representational
depth. Max pooling is one such method, which takes a whole picture and splits it into many
rectangular areas, with the maximum value from each zone being produced as a result. The
max pooling procedure helps reduce redundancy, but often results in the disappearance of
valuable features.

In this work, we strengthened the SPPF by developing dense linkages and promoting
the concept of feature reuse. The SPPF module was then obtained, and the feature informa-
tion loss associated with max pooling was mitigated. For the improved long-term recall of
global information on small-target forest fires, the SPPF+ module was subsequently put to
use. The SPPF+ module effectively retains global information and is useful for detecting
small targets in forest areas affected by fires. A visual representation of the SPPF+ structure
is shown in Figure 6.
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3.6. BiFPN

Insufficient original data for learning can result in training deviations and negatively
impact object detection accuracy. To address this issue, we improved the YOLO-V7 head
portion using an enhanced bidirectional feature pyramid network (BiFPN) [25]. In the
initial BiFPN, features from the feature extraction network were merged directly with
the relative size features in the bottom-up path. A bidirectional channel was built using
cross-scale connections and an additional edge. This allowed the network to maintain
a sufficient deep semantic knowledge while preserving relatively superficial levels. To
further improve feature fusion, the original BiFPN provided various input features with
varied weights and used the same underlying structure several times.

Multiscale feature fusion aims to combine information collected at several spatial
and temporal resolutions [65]. For example, when given a set of features at various scales
termed as Pin =

(
Pin

l1
, Pin

l2
, . . .

)
, where Pin

li
represents the feature at level li, we want to

discover a mapping function f that can efficiently merge these characteristics into a new
set of features in the form of Pout = f

(
Pin). The top-down FPN [66] shown in Figure 7a is

representative of the norm. Pin consists of elements from levels 3–7 of the input picture,
represented by Pin =

(
Pin

3 , . . . Pin
7
)
, where Pin

i is the feature level from the input image, and
1
2 is its size. If the input size is 640 × 640 pixels, for example, Pin

3 corresponds to feature
level 3 (640/23 = 80) with a resolution of 80 × 80 pixels, while Pin

7 corresponds to feature
level 7 with a size of 5 × 5 pixels, respectively. The conventional FPN performs a top-down
merging of the multiscale characteristics as follows:

Pout
7 = Conv

(
Pin

7

)
, (3)

Pout
6 = Conv

(
Pin

6 + Resize
(

Pout
7
))

, (4)

. . .

Pout
3 = Conv

(
Pin

3 + Resize
(

Pout
4
))

. (5)

In the context of multiscale feature fusion, the operation Resize has been commonly
used to adjust the size of feature maps to match each other, and Conv refers to a convolu-
tional operation that is applied to extract features from the feature maps.

The traditional FPN’s multiscale feature fusion is limited by its top-down data flow.
To address this, PANet adds a bottom-up path assembly network, as shown in Figure 7b.
Bi-FPN has often been used with level 3–7 features obtained from the backbone network
to perform bidirectional feature fusion. This merged information set can then be used to
predict the object’s class and bounding box by the box and class networks. All feature levels
contribute equally to the weights used by the box and class networks. Bi-FPN improves
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YOLOv7 by allowing for both top-down and bottom-up multiscale feature fusions with
the use of learnable weights, thereby making the process both more convenient and faster.
Regarding real-time wildfire smoke detection, Bi-FPN outperforms PANet, since it requires
fewer parameters and FLOPS without sacrificing its accuracy.
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Figure 7. Differences between the FPN, PANet, and Bi-FPN designs. (a) In FPN, a top-down path is
presented; (b) in PANet, an additional bottom-up path is added on top of the FPN; and (c) in Bi-FPN,
each top-down and bottom-up path is treated as a separate layer in the feature network, with the
same layer repeated several times to permit a more complicated feature fusion.

3.7. Decoupled Head

The decoupled head in YOLOx [67] separates the classification and localization opera-
tions, which helps improve the detection accuracy. There are more convolutional layers
for prediction, regression, and classification in the YOLOx decoupled head compared
to the YOLOv7 coupled head. For each level of feature, the decoupled head includes
a 1 × 1 convolutional layer for channel dimension reduction, followed by two parallel
branches consisting of two 3 × 3 convolutional layers. In both branches, there is an addi-
tional 1 × 1 convolutional layer. The regression branch also includes an IoU branch. As
shown in Figure 8, the decoupled head has more parameters, but it improves the converging
speed as a result.
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4. Experimental Results and Analysis

The experimental setup, test dataset, hyperparameters, and validation of the effec-
tiveness of the enhanced YOLOv7 in detecting forest fire smoke in UAV pictures are all
described in this section. All experiments were run on identical hardware to ensure the
suggested approach’s reliability. All tests were performed on a custom-built personal
computer with features such as Nvidia GeForce 1080Ti graphics processing units, a 32 GB
of random access memory, and a nine core, 4.90 GHz central processing unit [68], as shown
in Table 3. The input pictures for the improved YOLOv7 model were 640 × 640 pixels,
obtained from a forest fire smoke dataset. The comprehensive evaluation includes a wide
range of factors, such as the experimental setup and design, YOLOv7 performance analysis,
method impacts analysis, model comparisons, ablation study, and visualization outputs.

Table 3. Specification of the hardware and software.

Components Specifications Descriptions

GPU GPU 2-GeForce 1080 Two GPU’s were installed

CPU Intel Core 9 Gen i7-9700k (4.90 GHz)

RAM DDR4 32 GB (DDR4 16 GB × 2) Samsung DDR4 16 GB PC4-21300

Storage SSD: 512 GB/HDD: TB (2 TB × 2)

Motherboard ASUS PRIME Z390-A STCOM

OS Ubuntu desktop Version: 18.0.4 LTS

4.1. Evaluation Metrics

In this work, we conducted quantitative tests using the widely used Microsoft COCO
benchmarks (in Table 4) to assess the efficacy of the suggested approach, in line with
the prior studies [18,68–71]. One way to measure a classifier’s accuracy is to count the
times it correctly categorizes a given object. On the other hand, the recall of a model
is the proportion of its correct predictions to the total quantity of ground truths. It is
another indicator of its capacity to indicate critical situations correctly. When a model
has a high recall, it may accurately identify a large proportion of ground-truth items
while still retaining a high level of precision by focusing on only identifying the relevant
objects. An ideal model would have a false-negative rate of zero, a recall rate of one, and
an accuracy rate of one, respectively. By comparing the proposed system’s outputs with
the ground-truth photos at the pixel level, and then calculating the precision and recall
using suitable formulas, we were therefore able to assess the accuracy and recall rates of
the proposed smoke detection method.

PrecisionCij =
TPCij

TPCij + FPCij

, (6)

RecallCij =
TPCij

TPCij + FNCij

. (7)

Table 4. The precision and recall of object detection models, which are commonly evaluated using
Microsoft’s COCO benchmarks at various levels.

AP at different levels

AP50 AP at IoU = 0.5

AP75 AP at IoU = 0.75

APS AP0.5 for small area: area < 322

APM AP0.5 for medium area: 322 < area < 962

APL AP0.5 for large area: area > 962
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The number of correctly identified smoke regions is represented by TP, while false
positives resulting from the mis-identification of non-smoke regions as smoke are repre-
sented by FP, respectively. False negatives occur when actual smoke regions are incorrectly
identified as non-smoke regions, and are represented by FN. The average precision (AP)
was determined using Equation (8) based on these values:

APCij =
1
m∑m

j=1 PrecisionCij . (8)

The rate of detection can be quantified in frames per second (FPS), which in this study
represents the mean detection rate in terms of pictures per second. The formula used to
determine the frames per second is as follows:

FPS =
1
t

(9)

where t is the average time required to process each picture.
In addition, we also measured the complexity of the model using the number of

floating point operations per second (FLOPS), which reflects the amount of computation in
the model.

4.2. Quantitative Comparisons

To assess the effectiveness of our proposed model, we performed rigorous quantitative
evaluations using the standard Microsoft COCO benchmarks, including recall, precision,
and AP, as previously calculated by Equations (6)–(8). Given the varying sizes and distances
of smoke in our dataset, including both the large and small particles at different proximities,
we systematically assessed and compared the performance of various one-stage object
detectors, including several members of the YOLO series in order to identify the optimal
model for detecting smoke under forest fire scenarios.

Our research focused on detecting forest fire smoke using deep learning models to
limit the devastation of forest ecosystems and protect lives. After careful consideration
of our dataset, we chose to utilize the YOLOv7 model due to its ability to quickly detect
smoke of varying sizes and directions. Single-stage detectors were found to be more suitable
for emergency situations and real-time implementation compared to the state-of-the-art
multiple-stage object detectors. The proposed forest smoke detection model builds on
YOLOv7 and achieves superior results in AP, AP50, AP75, APS, APM, and APL, respectively,
compared to other object detectors.

To fully assess the merits of the suggested approach, we compared it to other multi-
stage object identification techniques, including Libra-R-CNN [72], Faster R-CNN [73],
Cascade R-CNN [74], Mask R-CNN [75], CoupleNet [76], MegDet [77], and DeNet [78], as
well as several single-stage object detection methods, including M2Det [79], RFBNet [80],
FSAF [81], SSD [32], RefineDet [82], NAS-FPN [83], DeepSmoke [84], RetinaNet [85], Effi-
cientDet [65], YOLOv3 [29], YOLOv4 [86], YOLOv5 [87], and YOLOv7, respectively [61].
Table 5 provides an in-depth evaluation of the wildfire smoke dataset’s performance with
the improved YOLOv7 model and the multi-stage object detectors. When comparing the
efficacy of various object identification models, we maintained consistency by always
employing the same collection of training and testing photos of the smoke from the custom
wildfire smoke dataset. It is also shown how the improved YOLOv7 model compares
against other single-stage object detectors on the same dataset in Table 6. When comparing
our proposed model to other object detectors, it excels in detecting forest fire smoke.

4.3. Qualitative Evaluation

In addition to a quantitative evaluation of the suggested approach for detecting smoke
from wildfires, we also conducted a qualitative study. To achieve this, we chose eight
pictures from our dataset, four of which showed massive plumes of smoke from a forest
fire and the four showing minor plumes of smoke that arose spontaneously. Using the



Sensors 2023, 23, 5702 17 of 25

optimized YOLOv7 model, we were able to obtain consistent and reliable results for both
categories, as shown in Figure 9. These images depicted diverse scenes and conditions,
including smoke traveling in different directions.

Table 5. Comparison results between the proposed method and multiple-stage object detectors.

Model AP AP50 AP75 APS APM APL FPS

Mask R-CNN [75] 68.6 76.9 72.1 60.5 67.5 80.2 -
Fast R-CNN [73] 62.7 69.5 63.6 53.1 61.5 74.3 -

Faster R-CNN [33] 64.9 71.8 66.5 55.7 63.5 75.4 -
Cascade R-CNN [74] 71.4 79.6 75.4 63.9 70.5 84.8 -

Libra-R-CNN [72] 53.5 64.6 60.4 45.2 52.8 69.5 -
CoupleNet [76] 59.7 66.5 61.8 50.4 59.2 71.7 -

DeNet [78] 56.3 65.4 59.7 47.3 57.5 71.6 -
MegDet [77] 63.4 72.3 66.5 54.8 62.7 77.2 -

The proposed 78.6 86.4 81.7 70.3 77.2 91.5 153

Table 6. Comparison results between the proposed method and single-stage object detectors.

Model AP AP50 AP75 APS APM APL FPS

M2Det [79] 59.3 69.5 63.7 51.4 58.6 74.8 26.3
FSAF [81] 59.6 69.8 63.9 51.7 59.3 75.2 22.7

RFBNet [80] 63.5 69.4 64.3 52.5 60.2 73.9 25
EfficientDet [65] 71.8 78.3 74.6 63.7 70.4 83.8 28.5
NAS-FPN [83] 62.4 72.1 66.5 54.3 61.8 76.3 20.4

SSD [32] 64.5 72.6 66.3 55.8 64.7 77.2 82.6
RefineDet [82] 69.2 76.5 71.8 60.9 67.6 82.4 61.5

DeepSmoke [84] 72.3 79.7 75.4 64.6 71.5 86.2 35.4
RetinaNet [85] 66.4 73.8 68.2 57.6 64.3 69.7 67.2
YOLOv3 [29] 68.6 76.3 69.5 60.1 67.8 79.6 31.8
YOLOv4 [86] 70.7 78.5 72.6 61.4 69.2 82.8 35.6
YOLOv5 [87] 71.9 79.2 73.4 63.8 70.5 84.5 156
YOLOv7 [61] 74.8 82.5 75.4 67.2 73.6 87.3 161
The proposed 78.6 86.4 81.7 70.3 77.2 91.5 153
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Figure 9. Sample results of smoke detection from forest fire: (a) massive plumes of smoke, and
(b) minor plumes of smoke.

According to the literature, several strategies for identifying smoke from minor wild-
fires in photos have so far failed. We collected photographs of forest fire smoke in various
sizes in an effort to enlarge the dataset and improve the accuracy of smoke detection.
Figure 9b shows smoke pictures that are on the smaller side. To identify small-moving
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objects while preserving the detailed features, we adopted an approach inspired by [18]
that combines a feature map from a preceding layer with a large-scale feature map. This
extensive feature map can recognize smoke pixels of varied sizes by combining the location
data from lower levels with the complicated properties from the upper layers.

Figure 9 shows that the suggested approach for identifying wildfire smoke, which
employed the enhanced YOLOv7 model, can detect smoke in a wide variety of forest
scenarios. The stability of the proposed technique was assessed using both big and small
smoke pictures in the trials. To prevent and put out forest fire, early smoke detection
is essential. If allowed to spread, even a tiny quantity of smoke can start a devastating
wildfire that threatens human lives, forest resources, and the environment. The suggested
approach can also identify small patches of smoke in photos with a high accuracy.

Our results show that the suggested technique can efficiently eliminate false detections,
thereby allowing for early suppression and quick response times under all scenarios when
forest fire smoke is present, despite its direction, scope, or form. Small amounts of smoke
with a similar color and intensity levels as the surrounding scenery are often misidentified
as smoke by the conventional visual fire detectors.

4.4. Ablation Experiments

Firstly, to conduct ablation investigations to assess the usefulness of the various
attention mechanisms, we replaced the CBAM modules with the SE and ECA modules.
The SE attention mechanism was designed to capture the relationship between global and
local information in a flexible manner. In doing so, the model can identify an object’s
important areas and assign them more weight, thereby emphasizing the relevant features
and suppressing the irrelevant ones, leading to an improvement in the accuracy. The ECA
module presents an alternative method of cross-channel interaction that does not rely on
dimensionality reduction. This tactic protects the learning effect of channel attention from
the detriment of dimensionality reduction. The ECA module can gather local cross-channel
interaction data by evaluating the current channel and its k nearest neighbors. This little
building component exhibits a significant effect despite having few moving parts.

To validate the efficacy of the enhanced algorithm, the proposed study incorporated
the CBAM as the attention mechanism in the YOLOv7 model and performed investigations
on the custom smoke dataset. Table 7 displays the results obtained using the AP, AP50,
AP75, APS, APM, and APL metrics of the assessment.

Table 7. Comparison results of ablation study for attention mechanisms.

Model Attention Mechanism Evaluation Metrics

CBAM ECA SE AP AP50 AP75 APS APM APL FPS GFLOPS Latency

YOLOv7

× × × 74.8 82.5 75.4 67.2 73.6 87.3 161 105.7 12 ms√
× × 75.9 83.4 76.2 68.1 74.5 88.3 157 105.5 8 ms

×
√

× 75.5 83.2 75.8 67.8 74.2 88 152 105.3 9 ms
× ×

√
75.3 82.9 75.7 67.6 73.8 87.7 158 105.8 11 ms

Table 7 illustrates the comparison results of the ablation experiments using the im-
proved YOLOv7 model and the SE and ECA modules added to the YOLOv7 model.
Compared to the original YOLOv7 algorithm, the SE and ECA algorithms resulted in
a lower accuracy, decreased recall, and reduced AP scores while increasing the model com-
putational pressure parameters. In contrast, the CBAM attention mechanism performed
better with increased average precision scores. The CBAM, which included spatial and
channel attention mechanisms, was found to have outperformed the SE and ECA modules.

Secondly, the current study included ablation experiments to evaluate whether the
SPPF+, BiFPN, and decoupled head (DP) modules enhance the accuracy of the proposed
YOLOv7 smoke detection model. A total of eight ablation experiments were performed,
including YOLOv7, YOLOv7 + (SPPF+), YOLOv7 + BiFPN, YOLOv7 + DP, YOLOv7
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+ (SPPF+) + BiFPN, YOLOv7 + (SPPF+) + DP, YOLOv7 + BiFPN+ DP, and YOLOv7 +
(SPPF+) + BiFPN + DP, respectively. Experiments 2–8 were run in order, with the first
two involving training the original YOLOv7 model with the addition of just SPPF+, the
second two involving training the original YOLOv7 model with the addition of only
BiFPN, and the third and final experiment including training the original YOLOv7 model
with the acquisition of the DP, respectively. The results of the ablation experiments are
shown in Table 8, and they suggest that the proposed changes can improve the YOLOv7
model’s performance.

Table 8. Comparison results of the ablation study for various modules.

Model Modules Evaluation Metrics

SPPPF+ BiFPN DP AP AP50 AP75 APS APM APL FPS GFLOPS Latency

YOLOv7 +
CBAM

× × × 75.9 83.4 76.2 68.1 74.5 88.3 157 105.9 8 ms√
× × 76.7 84.3 78 68.7 75.3 89.2 162 106.2 12 ms

×
√

× 76.9 84.5 78.2 69 75.5 89.5 156 104.8 9 ms
× ×

√
76.8 84.4 77.9 68.8 75.4 89.4 154 104.5 8 ms√ √

× 77.7 85.4 80 69.6 76.3 90.4 158 106 11 ms
×

√ √
77.8 85.5 79.9 69.7 76.4 90.6 155 104.6 8 ms√

×
√

77.6 85.3 79.7 69.4 76.2 90.3 160 106.1 10 ms√ √ √
78.6 86.4 81.7 70.3 77.2 91.5 153 104.2 7 ms

Ablation research has shown that although YOLOv7 is a popular object detection
model, it produces unsatisfactory results. These results indicate that upgrading the net-
work topology in YOLOv7 with SPPF+, BiFPN, and DP may significantly enhance the
model’s accuracy.

5. Discussion

Unlike other vision inspection tasks, including face identification, defect detection, and
lane line detection, detecting forest fire smoke has its distinct obstacles. The identification
task is made more difficult by the ever-shifting smoke target’s irregular form, and by the
presence of many interfering variables in the complicated woodland environment, such as
haze and clouds. A minor fire might quickly become a large-scale tragedy with catastrophic
damages if its discovery is delayed or overlooked. Using computer vision technology to
replace human inspection is an effective way to deal with these issues due to its many
benefits. Computer vision enhances smoke detection, allowing for the early and exact
identification of possible fire breakouts. As a result, reaction times are reduced, and fire
prevention and control are improved overall.

To multi-directionally detect smoke from forest fires, we curated a large dataset that
includes many types of smoke properties. Multiple experimentation sets were compared
and analyzed to verify the effectiveness of the proposed improved YOLOv7 model for forest
fire smoke detection. The model successfully accounted for the existence of tilted smoke,
the detection of small in size smoke, and the difficulty of distinguishing smoke from clouds
and fog. Despite the abundance of the publicly available smoke image datasets, smoke
detection research has historically been limited by a lack of dataset variety. Therefore, aerial
pictures of forest fire smoke collected by UAVs at varied distances during fire occurrences
formed the basis of a carefully curated object detection dataset.

Our model initially integrated the CBAM into the YOLOv7 network’s core infrastruc-
ture. To further concentrate smoke from localized wildfires, the SPPF layer of the backbone
was updated to SPPF+. To further fine-tune the neck and accomplish a more exact fusion of
characteristics across several scales, a BiFPN module was introduced as a third stage. Fi-
nally, decoupled heads were incorporated into YOLOv7 instead of coupled heads to further
enhance detection results. These three improvements boosted the detection performance
by 3.8–5.3% in terms of AP, AP50, AP75, APS, APM, and APL, respectively. The model’s de-
tection capacity was enhanced across various scenarios thanks to the considerable increases
in the average precision for small, medium, and large smoke.
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However, despite its successes, the suggested forest fire smoke detection method
has particular restrictions. Its sensitivity to atmospheric phenomena, including fog, haze,
and clouds is a significant limitation, which might give the impression of smoke presence.
Furthermore, having pixel values similar to those of a smoke plume is a substantial obstacle
in cloudy or hazy environments. To improve the correct detection to locate the origin of
forest smoke, we plan to invest in a technology that can identify the difference between the
different-sized clouds and types of smoke. These enhancements were made to improve the
model’s smoke prediction performance by increasing the quantity of the training data and
extracting more valuable features from the data. One potential expansion of this area could
be to use the size and form determination modules for smoke. In addition, our analysis
was limited to daylight times. Therefore, we will concentrate on the model’s ability to
spot wildfires at night in the future. Based on our research, smoke detectors may not be as
effective as fire alarms under dark environments.

Our future efforts will address the model’s tendency to produce many false positives
under challenging conditions, such as under low-altitude cloud cover and haze. Since
fires tend to occur in the same places and under the same conditions during particular
months, we want to improve our predictions by including additional information, such as
fire location, date, and previous meteorological data. The incompatibility of the suggested
method with edge devices is another area for enhancement. However, this problem could be
fixed by decreasing the model size without sacrificing its performance. By using distillation
techniques to train a smaller deep network, such as YOLOv7-tiny, we present the possibility
of constructing a model tailored for edge computing while retaining the same level of
performance as our existing model.

6. Conclusions

Forest fire smoke detection algorithms need better performance since collecting enough
training images is difficult, leading to problems, including data imbalance and overfitting.
This research provides an optimized YOLOv7 model for identifying smoke from forest
fires in complicated wildland scenes. It can be seen from Table 7 that these improvements,
such as SPPF+, BiFPN, and decoupled heads achieved an AP of 78.6%, AP50, of 86.4%,
and AP75 of 81.7, respectively, which improved AP, AP50, and AP75 by 2.7%, 3%, and 5.5%,
respectively. In terms of the ablation study on attention mechanism, the CBAM was found
to perform consistently better with an AP50 of 83.4%, compared to ECA and SE with AP50s
of 83.2% and 82.9%, respectively. Experimental results revealed that the optimized YOLOv7
model outperformed the state-of-the-art and multiple-stage object detection models on the
custom smoke image dataset, with an AP50 of 86.4% and an APL of 91.5%, respectively.
Furthermore, while YOLOv7 showed the second-best result for AP50 and an APL with 82.5%
and 87.3%, respectively, the traditional forest fire smoke detection sensor was confined to
a small, contained area, and can only detect one fire at a time. This new and enhanced
YOLOv7 technology eliminates these problems. Outdoor smoke detection with temporal
and geographical features is possible under the current conditions. This research presents
a novel model for a high-performance detection network that could be used to spot the
smoke of forest fires.

Improving the quality of smoke photos is essential for advancing smoke detection
in wildland scenarios. Therefore, future research will focus on gathering a wide and
diverse collection of forest fire smoke datasets and using image enhancement techniques.
Compressing the model is another avenue we will explore to speed up detection without
sacrificing precision.
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ABi-LSTM Attention enhanced bidirectional long short-Term memory network
AI Artificial intelligence
AP Average precision
BiFPN Bidirectional feature pyramid network
CAM Channel attention module
CBAM Convolutional block attention module
CBS Convolution, batch normalization, SiLU activation function
CIoU Complete intersection over union
CNN Convolutional neural network
CSP Convolutional spatial pyramid
DOTA Dataset for object detection in aerial images
DP Decoupled head
ECA Efficient channel attention
E-ELAN Extended efficient layer aggregation network
FLAME Fire luminosity airborne-based machine learning evaluation
FLOPS Floating point operations per second
FPN Feature pyramid network
FP False positive
FPS Frame per second
FN False negative
GAP Global average pooling
GB Gigabyte
GPU Graphics processing unit
GFLOPS GPU floating point operations per second
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GMP Global max pooling
GIoU Generalized intersection over union
GUI Graphical user interface
IoU Intersection over union
Microsoft COCO Common objects in context
NEMO Nevada smoke detection benchmark
PANet Path aggregation network
ReLU Rectified linear unit
SAM Spatial attention module
SE Squeeze-and-excitation
SiLU Sigmoid linear unit
SPPCSPC Spatial pyramid pooling cross stage partial network
SPPF+ Spatial pyramid pooling fast+
SSD Single-shot detector
TN True negative
TP True positive
UAV Unmanned aerial vehicle
VGG16 Visual geometry group 16
YOLO You only look once



Sensors 2023, 23, 5702 22 of 25

References
1. Peng, Y.S.; Wang, Y. Real-time forest smoke detection using hand-designed features and deep learning. Comput. Electron. Agric.

2019, 167, 105029. [CrossRef]
2. Frizzi, S.; Kaabi, R.; Bouchouicha, M.; Ginoux, J.M.; Moreau, E.; Fnaiech, F. Convolutional neural network for video fire and

smoke detection. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence,
Italy, 23–26 October 2016; pp. 877–882.

3. Avazov, K.; Mukhiddinov, M.; Makhmudov, F.; Cho, Y.I. Fire detection method in smart city environments using a deep-learning-
based approach. Electronics 2021, 11, 73. [CrossRef]

4. Wang, Y.B.; Dang, L.F.; Ren, J.Y. Forest fire image recognition based on convolutional neural network. J. Algorithms Comput. Technol.
2019, 13, 1748302619887689. [CrossRef]

5. Hu, Y.C.; Lu, X.B. Real-time video fire smoke detection by utilising spatial-temporal ConvNet features. Multimed. Tools Appl. 2018,
77, 29283–29301. [CrossRef]

6. Hu, Y.; Zhan, J.; Zhou, G.; Chen, A.; Cai, W.; Guo, K.; Hu, Y.; Li, L. Fast Forest fire smoke detection using MVMNet.
Knowl.-Based Syst. 2022, 241, 108219. [CrossRef]

7. Wahyono; Harjoko, A.; Dharmawan, A.; Adhinata, F.D.; Kosala, G.; Jo, K.-H.G. Real-Time Forest Fire Detection Framework Based
on Artificial Intelligence Using Colour Probability Model and Motion Feature Analysis. Fire 2022, 5, 23. [CrossRef]

8. Wu, C.; Shao, S.; Tunc, C.; Hariri, S. Video Anomaly Detection using Pre-Trained Deep Convolutional Neural Nets and Context
Mining. In Proceedings of the IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA),
Antalya, Turkey, 2–5 November 2020; pp. 1–8.

9. Avazov, K.; Hyun, A.E.; Sami S, A.A.; Khaitov, A.; Abdusalomov, A.B.; Cho, Y.I. Forest Fire Detection and Notification Method
Based on AI and IoT Approaches. Future Internet 2023, 15, 61. [CrossRef]

10. Pan, J.; Ou, X.; Xu, L. A Collaborative Region Detection and Grading Framework for Forest Fire Smoke Using Weakly Supervised
Fine Segmentation and Lightweight Faster-RCNN. Forests 2021, 12, 768. [CrossRef]

11. Ferreira, M.P.; Almeida, D.R.A.D.; Papa, D.D.A.; Minervino, J.B.S. Individual tree detection and species classifcation of Amazonian
palms using UAV images and deep learning. For. Ecol. Manag. 2020, 475, 118397. [CrossRef]

12. Xie, J.J.; Li, A.Q.; Zhang, J.G.; Cheng, Z.A. An integrated wildlife recognition model based on multi-branch aggregation and
squeeze-and-excitation network. Appl. Sci. 2019, 9, 2794. [CrossRef]

13. Liu, J.; Zhou, Q.; Qiang, Y.; Kang, B.; Wu, X.F.; Zheng, B.Y. Fddwnet: A lightweight convolutional neural network for real-time
semantic segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 4–8 May 2020.

14. Hu, W.; Guan, Y.P. Landmark-free head pose estimation using fusion inception deep neural network. J. Electron. Imaging 2020,
29, 043030. [CrossRef]

15. Zhang, Q.X.; Lin, G.H.; Zhang, Y.M.; Xu, G.; Wang, J.J. Wildland forest fire smoke detection based on faster R-CNN using synthetic
smoke images. Procedia Eng. 2018, 211, 441–446. [CrossRef]

16. Jeong, M.; Park, M.; Nam, J.; Ko, B.C. Light-Weight Student LSTM for Real-Time Wildfire Smoke Detection. Sensors 2020, 20, 5508.
[CrossRef] [PubMed]

17. Xin, Z.; Chen, F.; Lou, L.; Cheng, P.; Huang, Y. Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution
Neural Network. Remote Sens. 2022, 14, 536.

18. Mukhiddinov, M.; Abdusalomov, A.B.; Cho, J. A Wildfire Smoke Detection System Using Unmanned Aerial Vehicle Images Based
on the Optimized YOLOv5. Sensors 2022, 22, 9384. [CrossRef] [PubMed]

19. Guede-Fernández, F.; Martins, L.; de Almeida, R.V.; Gamboa, H.; Vieira, P. A Deep Learning Based Object Identification System
for Forest Fire Detection. Fire 2021, 4, 75. [CrossRef]

20. Benzekri, W.; El Moussati, A.; Moussaoui, O.; Berrajaa, M. Early Forest Fire Detection System using Wireless Sensor Network and
Deep Learning. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 5. [CrossRef]

21. Shahid, M.; Virtusio, J.J.; Wu, Y.H.; Chen, Y.Y.; Tanveer, M.; Muhammad, K.; Hua, K.L. Spatio-Temporal Self-Attention Network
for Fire Detection and Segmentation in Video Surveillance. IEEE Access 2022, 10, 1259–1275. [CrossRef]

22. Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient Deep CNN-Based Fire Detection and Localization in
Video Surveillance Applications. IEEE Trans. Syst. Man. Cybern. Syst. 2019, 49, 1419–1434. [CrossRef]

23. Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical
remote sensing. Sensors 2020, 20, 6442. [CrossRef]

24. Cruz, H.; Eckert, M.; Meneses, J.; Martínez, J.-F. Efficient forest fire detection index for application in unmanned aerial systems
(UASs). Sensors 2016, 16, 893. [CrossRef] [PubMed]

25. Lu, K.; Xu, R.; Li, J.; Lv, Y.; Lin, H.; Liu, Y. A Vision-Based Detection and Spatial Localization Scheme for Forest Fire Inspection
from UAV. Forests 2022, 13, 383. [CrossRef]

26. Pan, H.; Badawi, D.; Zhang, X.; Cetin, A.E. Additive neural network for forest fire detection. Signal Image Video Process. 2020, 14,
675–682. [CrossRef]

27. Faraone, J.; Kumm, M.; Hardieck, M.; Zipf, P.; Liu, X.; Boland, D.; Leong, P.H. Addnet: Deep neural networks using fpga-optimized
multipliers. IEEE Trans. Very Large Scale Integr. Syst. 2019, 28, 115–128. [CrossRef]

https://doi.org/10.1016/j.compag.2019.105029
https://doi.org/10.3390/electronics11010073
https://doi.org/10.1177/1748302619887689
https://doi.org/10.1007/s11042-018-5978-5
https://doi.org/10.1016/j.knosys.2022.108219
https://doi.org/10.3390/fire5010023
https://doi.org/10.3390/fi15020061
https://doi.org/10.3390/f12060768
https://doi.org/10.1016/j.foreco.2020.118397
https://doi.org/10.3390/app9142794
https://doi.org/10.1117/1.JEI.29.4.043030
https://doi.org/10.1016/j.proeng.2017.12.034
https://doi.org/10.3390/s20195508
https://www.ncbi.nlm.nih.gov/pubmed/32993003
https://doi.org/10.3390/s22239384
https://www.ncbi.nlm.nih.gov/pubmed/36502081
https://doi.org/10.3390/fire4040075
https://doi.org/10.14569/IJACSA.2020.0110564
https://doi.org/10.1109/ACCESS.2021.3132787
https://doi.org/10.1109/TSMC.2018.2830099
https://doi.org/10.3390/s20226442
https://doi.org/10.3390/s16060893
https://www.ncbi.nlm.nih.gov/pubmed/27322264
https://doi.org/10.3390/f13030383
https://doi.org/10.1007/s11760-019-01600-7
https://doi.org/10.1109/TVLSI.2019.2939429


Sensors 2023, 23, 5702 23 of 25

28. Zhang, Q.; Xu, J.; Xu, L.; Guo, H. Deep convolutional neural networks for forest fire detection. In Proceedings of the 2016 Inter-
national Forum on Management, Education and Information Technology Application, Guangzhou, China, 30–31 January 2016;
pp. 568–575.

29. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
30. Valikhujaev, Y.; Abdusalomov, A.; Cho, Y.I. Automatic fire and smoke detection method for surveillance systems based on dilated

CNNs. Atmosphere 2020, 11, 1241. [CrossRef]
31. Wu, S.; Zhang, L. Using popular object detection methods for real time forest fire detection. In Proceedings of the 2018 11th

International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 280–284.
32. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
33. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]
34. Xu, R.; Lin, H.; Lu, K.; Cao, L.; Liu, Y. A Forest Fire Detection System Based on Ensemble Learning. Forests 2021, 12, 217. [CrossRef]
35. Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT squeeze U-Net: A lightweight network for forest fire detection and recognition.

IEEE Access 2021, 9, 10858–10870. [CrossRef]
36. Song, K.; Choi, H.-S.; Kang, M. Squeezed fire binary segmentation model using convolutional neural network for outdoor images

on embedded devices. Mach. Vis. Appl. 2021, 32, 120. [CrossRef]
37. Tian, L.; Wang, J.; Zhou, H.; Wang, J. Automatic detection of forest fire disturbance based on dynamic modelling from MODIS

time-series observations. Int. J. Remote Sens. 2018, 39, 3801–3815. [CrossRef]
38. Gaur, A.; Singh, A.; Kumar, A.; Kumar, A.; Kapoor, K. Video flame and smoke based fire detection algorithms: A literature review.

Fire Technol. 2020, 56, 1943–1980. [CrossRef]
39. Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A Deep Learning Based Forest Fire Detection Approach Using UAV

and YOLOv3. In Proceedings of the 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China,
23–27 July 2019; pp. 1–5.

40. Wang, Z.; Wu, L.; Li, T.; Shi, P. A Smoke Detection Model Based on Improved YOLOv5. Mathematics 2022, 10, 1190. [CrossRef]
41. Abdusalomov, A.; Baratov, N.; Kutlimuratov, A.; Whangbo, T.K. An Improvement of the Fire Detection and Classification Method

Using YOLOv3 for Surveillance Systems. Sensors 2021, 21, 6519. [CrossRef] [PubMed]
42. Abdusalomov, A.B.; Islam, B.M.S.; Nasimov, R.; Mukhiddinov, M.; Whangbo, T.K. An improved forest fire detection method

based on the detectron2 model and a deep learning approach. Sensors 2023, 23, 1512. [CrossRef]
43. Zhang, S.G.; Zhang, F.; Ding, Y.; Li, Y. Swin-YOLOv5: Research and Application of Fire and Smoke Detection Algorithm Based on

YOLOv5. Comput. Intell. Neurosci. 2022, 2022, 6081680. [CrossRef]
44. Wang, C.; Zhang, Y.; Zhou, Y.; Sun, S.; Zhang, H.; Wang, Y. Automatic detection of indoor occupancy based on improved YOLOv5

model. Neural Comput. Appl. 2022, 35, 2575–2599. [CrossRef]
45. Xianjia, Y.; Salimpour, S.; Queralta, J.P.; Westerlund, T.J. Analyzing general-purpose deep-learning detection and segmentation

models with images from a lidar as a camera sensor. arXiv 2022, arXiv:2203.04064.
46. Cao, Y.; Yang, F.; Tang, Q.; Lu, X. An Attention Enhanced Bidirectional LSTM for Early Forest Fire Smoke Recognition. IEEE Access.

2019, 7, 154732–154742. [CrossRef]
47. Yazdi, A.; Qin, H.; Jordan, C.B.; Yang, L.; Yan, F. Nemo: An Open-Source Transformer-Supercharged Benchmark for Fine-Grained

Wildfire Smoke Detection. Remote Sens. 2022, 14, 3979. [CrossRef]
48. Novac, I.; Geipel, K.R.; Gil, J.E.D.; Paula, L.G.D.; Hyttel, K.; Chrysostomou, D. A Framework for Wildfire Inspection Using

Deep Convolutional Neural Networks. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII),
Honolulu, HI, USA, 12–15 January 2020; pp. 867–872.

49. Khan, A.; Hassan, B.; Khan, S.; Ahmed, R.; Abuassba, A. DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for
Forest Fire Detection. Mob. Inf. Syst. 2022, 2022, 5358359. [CrossRef]

50. Kinaneva, D.; Hristov, G.; Raychev, J.; Zahariev, P. Early Forest Fire Detection Using Drones and Artificial Intelligence. In Proceed-
ings of the 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics
(MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1060–1065.

51. Barmpoutis, P.; Stathaki, T.; Dimitropoulos, K.; Grammalidis, N. Early Fire Detection Based on Aerial 360-Degree Sensors, Deep
Convolution Neural Networks, and Exploitation of Fire Dynamic Textures. Remote Sens. 2020, 12, 3177. [CrossRef]

52. Shamsoshoara, A.; Afghah, F.; Razi, A.; Zheng, L.; Fulé, P.Z.; Blasch, E. Aerial imagery pile burn detection using deep learning:
The FLAME dataset. Comput. Netw. 2021, 193, 108001. [CrossRef]

53. Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
Sensors 2022, 22, 464. [CrossRef]

54. Wang, Y.; Hua, C.; Ding, W.; Wu, R. Real-time detection of flame and smoke using an improved YOLOv4 network. Signal Image
Video Process. 2022, 16, 1109–1116. [CrossRef]

55. High Performance Wireless Research and Education Network. Education Network University of California San Diego. HPWREN
Dataset. 2023. Available online: http://hpwren.ucsd.edu/HPWREN-FIgLib/ (accessed on 18 February 2023).

56. Jeong, C.; Jang, S.-E.; Na, S.; Kim, J. Korean Tourist Spot Multi-Modal Dataset for Deep Learning Applications. Data 2019, 4, 139.
[CrossRef]

https://doi.org/10.3390/atmos11111241
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/f12020217
https://doi.org/10.1109/ACCESS.2021.3050628
https://doi.org/10.1007/s00138-021-01242-1
https://doi.org/10.1080/01431161.2018.1437294
https://doi.org/10.1007/s10694-020-00986-y
https://doi.org/10.3390/math10071190
https://doi.org/10.3390/s21196519
https://www.ncbi.nlm.nih.gov/pubmed/34640842
https://doi.org/10.3390/s23031512
https://doi.org/10.1155/2022/6081680
https://doi.org/10.1007/s00521-022-07730-3
https://doi.org/10.1109/ACCESS.2019.2946712
https://doi.org/10.3390/rs14163979
https://doi.org/10.1155/2022/5358359
https://doi.org/10.3390/rs12193177
https://doi.org/10.1016/j.comnet.2021.108001
https://doi.org/10.3390/s22020464
https://doi.org/10.1007/s11760-021-02060-8
http://hpwren.ucsd.edu/HPWREN-FIgLib/
https://doi.org/10.3390/data4040139


Sensors 2023, 23, 5702 24 of 25

57. Tang, Y.; Li, B.; Liu, M.; Chen, B.; Wang, Y.; Ouyang, W. Autopedestrian: An automatic data augmentation and loss function
search scheme for pedestrian detection. IEEE Trans. Image Proc. 2021, 30, 8483–8496. [CrossRef]

58. Avazov, K.; Abdusalomov, A.; Mukhiddinov, M.; Baratov, N.; Makhmudov, F.; Cho, Y.I. An improvement for the automatic
classification method for ultrasound images used on CNN. Int. J. Wavelets Multiresolution Inf. Proc. 2022, 20, 2150054. [CrossRef]

59. Abdusalomov, A.; Mukhiddinov, M.; Djuraev, O.; Khamdamov, U.; Whangbo, T.K. Automatic salient object extraction based on
locally adaptive thresholding to generate tactile graphics. Appl. Sci. 2020, 10, 3350. [CrossRef]

60. Mukhiddinov, M.; Muminov, A.; Cho, J. Improved Classification Approach for Fruits and Vegetables Freshness Based on Deep
Learning. Sensors 2022, 22, 8192. [CrossRef]

61. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

62. Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13733–13742.

63. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In IEEE Transactions on Pattern Analysis and Machine
Intelligence; IEEE: Piscataway, NJ, USA, 2020; Volume 42, pp. 2011–2023.

64. Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the 2018 European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

65. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

66. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

67. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430.
68. Mukhiddinov, M.; Cho, J. Smart Glass System Using Deep Learning for the Blind and Visually Impaired. Electronics 2021, 10, 2756.

[CrossRef]
69. Mukhiddinov, M.; Abdusalomov, A.B.; Cho, J. Automatic Fire Detection and Notification System Based on Improved YOLOv4 for

the Blind and Visually Impaired. Sensors 2022, 22, 3307. [CrossRef] [PubMed]
70. Mukhiddinov, M.; Djuraev, O.; Akhmedov, F.; Mukhamadiyev, A.; Cho, J. Masked Face Emotion Recognition Based on Facial

Landmarks and Deep Learning Approaches for Visually Impaired People. Sensors 2023, 23, 1080. [CrossRef]
71. Islam, M.R.; Amiruzzaman, M.; Nasim, S.; Shin, J. Smoke Object Segmentation and the Dynamic Growth Feature Model for

Video-Based Smoke Detection Systems. Symmetry 2020, 12, 1075. [CrossRef]
72. Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 821–830.
73. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,

7–13 December 2015; pp. 1440–1448.
74. Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162.
75. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer

Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.
76. Zhu, Y.; Zhao, C.; Wang, J.; Zhao, X.; Wu, Y.; Lu, H. Couplenet: Coupling global structure with local parts for object detection. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4126–4134.
77. Peng, C.; Xiao, T.; Li, Z.; Jiang, Y.; Zhang, X.; Jia, K.; Yu, G.; Sun, J. Megdet: A large mini-batch object detector. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6181–6189.
78. Tychsen-Smith, L.; Petersson, L. Denet: Scalable real-time object detection with directed sparse sampling. In Proceedings of the

IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 428–436.
79. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2det: A single-shot object detector based on a multi-

level feature pyramid network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; Volume 33, pp. 9259–9266.

80. Deng, L.; Yang, M.; Li, T.; He, Y.; Wang, C. RFBNet: Deep multimodal networks with residual fusion blocks for RGB-D semantic
segmentation. arXiv 2019, arXiv:1907.00135.

81. Zhu, C.; He, Y.; Savvides, M. Feature selective anchor-free module for single-shot object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 840–849.

82. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-shot refinement neural network for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212.

83. Ghiasi, G.; Lin, T.Y.; Le, Q.V. Nas-fpn: Learning scalable feature pyramid architecture for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7036–7045.

84. Khan, S.; Muhammad, K.; Hussain, T.; Del Ser, J.; Cuzzolin, F.; Bhattacharyya, S.; Akhtar, Z.; de Albuquerque, V.H.C. Deepsmoke:
Deep learning model for smoke detection and segmentation in outdoor environments. Expert Syst. Appl. 2021, 182, 115125.
[CrossRef]

85. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

https://doi.org/10.1109/TIP.2021.3115672
https://doi.org/10.1142/S0219691321500545
https://doi.org/10.3390/app10103350
https://doi.org/10.3390/s22218192
https://doi.org/10.3390/electronics10222756
https://doi.org/10.3390/s22093307
https://www.ncbi.nlm.nih.gov/pubmed/35590996
https://doi.org/10.3390/s23031080
https://doi.org/10.3390/sym12071075
https://doi.org/10.1016/j.eswa.2021.115125


Sensors 2023, 23, 5702 25 of 25

86. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
87. Jocher, G. YOLOv5. Ultralytics: Github. 2022. Available online: https://github.com/ultralytics/yolov (accessed on

10 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/yolov

	Introduction 
	Related Works 
	Materials and Methods 
	Dataset Acquisition for Forest Fire Smoke Detection 
	Overall Architecture of Forest Fire Smoke Detection 
	Original YOLOv7 
	Attention Mechanism Module 
	SPPF+ 
	BiFPN 
	Decoupled Head 

	Experimental Results and Analysis 
	Evaluation Metrics 
	Quantitative Comparisons 
	Qualitative Evaluation 
	Ablation Experiments 

	Discussion 
	Conclusions 
	References

