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Abstract: The usage of media such as images and videos has been extensively increased in recent
years. It has become impractical to store images and videos acquired by camera sensors in their
raw form due to their huge storage size. Generally, image data is compressed with a compression
algorithm and then stored or transmitted to another platform. Thus, image compression helps to
reduce the storage size and transmission cost of the images and videos. However, image compression
might cause visual artifacts, depending on the compression level. In this regard, performance
evaluation of the compression algorithms is an essential task needed to reconstruct images with
visually or near-visually lossless quality in case of lossy compression. The performance of the
compression algorithms is assessed by both subjective and objective image quality assessment (IQA)
methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the
range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless
compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel “Flicker Test Software” is
developed for conducting the proposed subjective and objective evaluation study. In the flicker test,
the selected test images are subjectively analyzed by subjects at different compression levels. The
IQMs are calculated at the previous compression level, when the images were visually lossless for
each subject. The results analysis shows that the objective IQMs with more closely packed values
having the least standard deviation that guaranteed the visually lossless compression of the images
with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index
measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of
0.9997, 0.9970, and 0.9970 respectively.

Keywords: image compression; visually lossless; JPEG 1; image quality assessment; subjective and
objective evaluation

1. Introduction

Nowadays, it is a common practice to collect and share a great number of pictures due
to advancements in image-acquiring devices such as digital cameras, smartphones with
high-definition image-capturing capabilities, and social media platforms [1]. Therefore,
there is always a need for efficient image compression techniques to compress this huge
amount of image data to reduce its storage size and reduce transmission costs [2]. On a
daily basis, vision sensors capture billions of images, which are compressed with an image
codec before they are stored or transferred. In fact, image compression plays the role of a
fundamental tool which makes it possible to store and share an extensive amount of digital
data, such as images and videos [3]. No doubt, image compression is a useful tool, however,
while reconstructing images, lossy compression standards may cause some distortions
in images that the human eye can detect while comparing the reconstructed images to
the originals [4]. The intensity of this alteration in image quality depends on the type of
media, the compression level to which the image has been compressed, and other display
and environment perspectives [5]. Image compression techniques cause different types of
visual abnormalities in images, such as blocking artifacts, color shift, blurring effects, and
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ringing artifacts, that result in the degradation of the image quality [6]. Therefore, while
introducing a new image compression technique, quality assessment techniques should be
used to evaluate the performance and to consider the severity of the visual abnormalities
produced [7].

To assess the visual quality of the compressed images generated, both objective and
subjective methods of image quality evaluation are used [8]. These two types of methods
are mentioned in many studies, and are used both in traditional and learning-based image
codecs performance evaluation [9]. In an objective case, the image quality is assessed
by calculating IQMs that quantitatively assess the image quality. The objective metrics
are mathematical models that calculate the image quality precisely and instinctively. The
performance of objective metrics is considered a standard that represents a quality perfor-
mance that is the same as that of human subjects. Several IQMs are defined based on the
availability of reference images [10]. In a subjective case, a group of subjects observe image
quality subjectively and present their opinion based on the observed image quality [11]. To
conduct a standardized subjective test of images, several recommendations are proposed
that, when followed, deliver outstanding results [12]. Objective methodologies of image
quality evaluation are considered quick and economical, while subjective methods are
considered time-consuming and expensive. Further, subjective methods are dependent
on the physical conditions and emotions of the viewers, which makes them impractical
in real-life applications. However, subjective methods of evaluation are considered more
reliable and robust because they mainly rely on the opinions of human subjects, who
represent the ultimate users of digital media applications [13].

In the current era, the availability of advanced image-capturing and display de-
vices has increased the interest of researchers to design lossless image compression tech-
niques [13]. Human eyes cannot perceive the very tiny artifacts that appear in compressed
images when reconstructed up to a specific compression level. Therefore, trustworthy
methodologies for standardization of the evaluation strategies for the visually or near-
visually lossless compression standards are released by the joint photographic expert’s
group (JPEG) [14]. Aiming to create a solution for visually lossless compression assessment,
this paper integrates both of the aforementioned subjective and objective methods of IQA to
evaluate the objective metrics, guaranteeing an image’s visually lossless compression with
the JPEG 1 standard. For the subjective case, the two alternative forced choice (2AFC)-based
strategy is adopted, in which the subject has to determine the visual difference between
two images. Human subjects analyze the two test images subjectively through a unique
2AFC-based flicker test method at different compression levels. The compression level is
degraded by the subject up to a just noticeable difference level when the subject observes
the flickering or visual difference between the original and the corresponding compressed
image. The IQMs are determined for the relative images at the point of the previous com-
pression level, at which the images were visually lossless for the particular subject during
the flicker test. To perform this subjective flicker test and to calculate the objective metrics,
a novel platform “Flicker Test Software” was developed that effectively compressed the
images using the JPEG 1 standard at different compression levels to perform the flicker test,
then calculated objective IQMs. Furthermore, the results of the objective IQMs that best
define the visually lossless compression of the images are discussed. The contributions of
this work are summarized in the following points.

1. This study performs a subjective quality assessment of JPEG 1 standard compressed
images and evaluates the objective IQM values range that guarantees the visually or
near-visually lossless compression of the images.

2. A unique platform “Flicker Test Software” is designed that compress the images
using the worldwide utilized JPEG 1 standard at different compression levels to
perform a flicker test for the subjective assessment of visually or near-visually lossless
compressed images and evaluates the objective IQMs.

3. A subjective test activity performing the flicker test is conducted by 25 participants, in-
dividually assessing ten raw images subjectively at different quality levels of compres-
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sion. The objective metrics for the test images at the point of visually or near-visually
lossless compression level observed by each subject are determined.

4. The objective IQMs, named FSIM, MS-SSIM, and IW-SSIM, show the least standard
deviations with a close range of values that best guarantee the visually or near-visually
lossless compression of the images.

The rest of the paper is organized as follows: Section 2 details the related works and
discusses previous IQA methods. Section 3 describes the implementation of the proposed
method. In Section 4, the experiments performed in this study are explained and the results
are discussed in detail. Section 5 concludes this study and presents future directions.

2. Related Work

In the literature, several objective and subjective IQA approaches have been proposed.
These IQA methods are used for the evaluation of the high compression to visually lossless
image compression models [6]. In the following subsections, an overview of the IQA
methods is drawn from the literature.

2.1. Objective Image Quality Assessment

The mathematical models are designed to estimate the quality of the image automati-
cally in qualitative terms as observed by human subjects [15]. These metrics are applicable
in real-time applications as compared to expensive and time-consuming subjective tests [10].
These metrics have a variety of applications in the field of image processing and computer
vision. They can be used in image quality control systems where image quality can be
selected based on these quality metrics [16]. Image processing algorithms can be ranked
by deploying these metrics to select the algorithm with an output of the highest quality
images. In an image communication system of a visual sensors network, these IQMs are
used to optimize the filtering procedures at the encoder and decoder end [17].

Studies presented several intelligent image quality measuring metrics that are being
utilized in different evaluation studies [18]. These metrics are classified into different
categories based on the availability of the absolute quality and distortion-free original image
required as an attribute for quality measurement. These are the no-reference, reduced-
reference, and full-reference IQMs [19].

2.1.1. No-Reference Image Quality Metrics

For these metrics, the original reference image is not required to calculate the quality
of the image [20]. These are the blind IQA metrics that evaluate the visual quality without
any reference image. In the blind IQA, the authenticity of the real source distribution and
quality distinctions are addressed [21]. The no-reference IQMs calculate image attributes
such as luminance, contrast, and other coefficients to predict the image quality. In different
image communications platforms, the image quality is evaluated only on the base of the
test image without passing its original image as a reference [22]. In comparison with other
metrics, prediction of the image quality is complex. The evaluation process of these metrics
is also a challenging task, as the original images are unaccounted for in the assessment.
These no-reference metrics are integrated into different image evaluation tasks that are
briefly discussed in survey papers [23–25].

Several no-reference IQA frameworks are proposed based on both the traditional and
deep learning methods [9,26]. In this regard, Golestaneh et al. [27] presented a transformer
and convolutional neural network (CNN)-based assembled method to rank the images
based on local and non-local features. Similarly, Huang et al. [28] proposed a multi-
region adjacent pixels correlation (MR-PC) approach to assess the quality of panorama
images. Support vector regression (SVR) is used to calculate the difference between the
adjacent pixels of the image and to predict the quality measurements. The study of Lee and
Park [29] examined the blocking artifacts in images that emerged due to the high-frequency
components present on the boundaries of the image and designed a metric verified on the
coded images by JPEG.
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Furthermore, Mittal et al. [30] proposed a model utilizing the regularized luminance
of the images. Similarly, in another study, Mittal et al. [31] proposed a metric named the
natural images quality evaluator (NIQE), which incorporated the measurements of the
natural scene attributes of an image. Su et al. [32] extracted the image semantics and then
adopted the perception rule learning model to predict the image quality. Zhu et al. [33]
presented a deep meta-learning-based model trained on generated distortions, which
performed efficiently to evaluate the image quality. Ma et al. [34] used the structural and
quality features and incorporated a Gaussian mixture model (GMM) and Fisher Vectors
(FV). The quality scores were calculated by mapping image descriptions using SVR. Instead
of using mean absolute error (MAE) and mean squared error (MSE) loss functions, Li
et al. [35] used normalized loss functions based on the Pearson correlation and the root
means square error (RMSE). Ying et al. [36] prepared a dataset of distorted images, patches,
and subjective qualities, and applied a deep learning-based model in order to predict image
quality scores. An adaptive blind IQA framework proposed by Liu et al. [37] utilizes a
variety of distortion and quality grades to generate pseudo features. Similarly, Zhang
et al. [38] presented an accurate and stable continual learning-based approach trained
on different IQA databases. Sun et al. [39] analyzed the relationship between different
distortion levels and their types. They presented a distortion graph representation-based
deep learning blind IQA approach named “GraphIQA.”

2.1.2. Reduced-Reference Image Quality Metrics

Algorithms for assessing the quality of distorted images that only utilize a limited
set of the reference image’s features rather than the entire image are known as reduced
reference image quality evaluation metrics [25]. These features are used by the metric
as supporting information for predicting the quality of the test image. These attributes
possess representation of the reference images and perceptual significance, which are used
to evaluate image quality. In this domain, Balanov et al. [40] proposed a discrete cosine
transform (DCT) subbands similarity (DSS) quality metric. They performed a spatial downs
sampling approach to select the feature for the reference image and maintain good results.
Similarly, a structural degradation model (SDM) was proposed that is computationally
inexpensive and possesses fast performance [41]. This method acquires the structural
degradation information for the original and distorted images and forecasts an image
quality score. Further, a reduced referenced image quality metric for contrast (RIQMC) was
presented that performs image quality prediction based on the contrast properties of the
image [42]. Wu et al. [43] proposed an orientation selectivity-based visual pattern (OSVP)
motivated by the human optic system. For metric value, the difference in histograms
following different spatial correlated patterns was calculated for the original and the
reference images.

2.1.3. Full-Reference Image Quality Metrics

In the case of full reference metrics, the quality of the targeted reconstructed image
is assessed by comparing it with its original undistorted image. The value for the full
reference metric is calculated by measuring the distortion between the reference and
compressed image passed to the metric. Several objective quality metrics following the
fully referenced methodology were proposed and discussed in studies [44–46]. Using
error-based techniques, the mean square error (MSE) and peak signal-to-noise ratio (PSNR)
are the highlighted metrics most widely used in evaluation tasks [47,48]. It is not possible to
correlate these two metrics with human-based perceptions of image quality, however, which
are considered standards in image evaluation tasks [49,50]. In the future, several studies
will upgrade the PSNR and overcome its limitations for effective image quality judgment. A
metric, weighted signal-to-noise ratio (WSNR), was proposed, which measures the quality
by using the contrast sensitivity and weighs the components of the image to predict the
human visual system (HVS) [51]. Similarly, an information weighted PSNR (IW-PSNR)
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was proposed by Wang et al. [52], which utilizes the theoretical principles of information,
applying additional weights for graphic content in an image according to their significance.

Further IQMs based on full-reference strategy are the most apparent distortion mea-
sure (MAD) [53], the perceptual loss and style score proposed by Johnson et al. [54], the
learned perceptual image parch similarity (LPIPS) [55], the perceptual image error assess-
ment via pairwise preference method (PIE-APP) [56], space warping difference network
(SWDN) [57]. In terms of structure similarity-based models, the image quality is perceived
from the structure information of the images. These metrics include the structural sim-
ilarity index measure (SSIM) [48], the MS-SSIM [58], the IW-SSIM [52], the edge-based
SSIM (E-SSIM) [59], the gradient similarity measure (GSM) [60] and gradient magnitude
similarity deviation (GM-SD) [61], the multiscale GMSD (MS-GMSD) [62], the FSIM [63],
the visual saliency induced quality index (VSI) [64], the Haar perceptual similarity index
(HaarPSI) [65], the mean deviation similarity index (MDSI) [66], the deep image structure
and structure similarity method (DISTS) [67], and the visual information fidelity (VIF)
metric [68].

2.2. Subjective Image Quality Assessment

Subjective methods are considered the most reliable methods for assessing image
quality. In these methods, human subjects observe the image quality on displays and
signify their opinion about the image according to different types of scales [69]. Subjective
tests are performed under the consideration of several standards that are proposed for the
trustworthy subjective evaluation of image quality [12,70–72]. The international telecom-
munication union radiocommunication (ITU-R) sector BT.500-11 defined standards for
the subjective experiments of television images [12]. These conditions include the testing
environment, the displaying methods, and the evaluation of the outcomes of the tests.
The ITU-telecommunication (ITU-T) P.910 defined the testing conditions for the subjective
analysis of the video data quality [70]. Similarly, ITU-R BT.814-1 defined the contrast and
brightness setting of the display devices in the subjective test [71]. Further, the ITU-R
BT.1129-2 standardized methods for standard video sequences [72]. Overall, the ITU-R
presents different standards that can be summarized into two main categories. These are
the single stimulus and double stimulus methods. These two methods are categorized
based on the stimulus that is used in the subjective test. In the case of a single stimulus
method, a single image is presented to the subject for grading, while in a double stimulus
method, each subject observes two different images shown side by side. Each of these
methods have specific techniques with different grading scales in order to assess the quality
of the images.

2.2.1. Single Stimulus-Based Methods

In single stimulus methodologies, images are presented to subjects who perform the
test one by one. While observing images, the subject rates the quality of each image before
moving on to the next image. This type is considered the simplest because it is conducted
very easily, having few steps. In the study of Cheng et al. [73], they used the concept of
this single stimulus test and image quality was assessed. Similarly, Sheikh et al. [20] also
used this approach in their evaluation study of the full reference-based IQMs. In single
stimulus methods, the absolute category rating (ACR) is the type in which the subject is
bound to grade the image quality on a scale of five points, which are: bad, poor, fair, good,
and excellent. This method requires a long testing time if the number of images is high. The
image content in the stimulus also influences the subject’s opinion. An absolute category
rating with hidden reference (ACR-HR) is also used, where the original undistorted image
is also included in the stimulus presented to the subject without being known to them.
This results in variance removal due to the subject’s opinion of the image content, and
diffraction mean opinion scores are calculated. In studies [20,59], this ACR-HR approach is
used for the evaluation of the learning-based image codecs. Further, the single stimulus
continuous quality evaluation (SSC-QE) is also introduced in the single stimulus category,
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where a continuous scale is used for grading rather than the discrete scale of one to five.
Similarly, Ascenso et al. [74] reviewed the learning-based methods of image coding and
performed subjective evaluation experiments using these double stimulus methods.

2.2.2. Double Stimulus-Based Methods

In double stimulus methodologies, two different stimuli are displayed for the person
while performing a subjective test for the evaluation of distortion in the images. The
techniques for image grading are different in these methods, depending on the test methods.
In terms of the time required for the test, double stimulus methods of testing require longer
times as compared to single stimulus tests. In these tests, the observer is asked to observe
two stimuli for each image. However, double stimulus methods are considered much
more reliable and efficient for observing distortion in images. These methods were used
by Testolina et al. [19] in their work in which they evaluated the coding performance. The
double stimulus impairment scale (DSIS) is an important type of double stimulus method
in which a subject observes two images side by side and grades the impairment of the
tested image with the second reference original image according to a quality scale of: very
annoying, annoying, slightly annoying, perceptible but not annoying, and imperceptible.
In this method, the reference image is known to the observer and is always fixed at one
position. These methods are also used in state-of-the-art subjective evaluation studies of
image quality [74]. In a double stimulus continuous quality scale (DSCQS), the subject
conducting the test is bound to grade the quality of both images on a continuous scale. In
this test, the reference and the test images are presented randomly. These methods are also
time-consuming because the subject observes the images and grades them at each step. In
the case of the double stimulus comparison scale (DSCS), the test image is compared with
the second original image and graded on a scale of: much worse, worse, slightly worse, the
same, slightly better, and much better. DSCSs are also time-consuming, but are considered
to have the most reliable performance quality for subjective evaluation.

The above-discussed methods are mostly based on the control environment specified
for performing subjective tests. This is the most used method for subjective tests, in which
the tests are conducted in a room with normal lighting. This environment helps to eliminate
the uncertainties that can result from the influence of the outside environment or other
lighting effects. However, crowdsource-based methods were also used for subjective tests
instead of the controlled environment conditions. In a study, Egger et al. reviewed [75] the
crowdsourced-based methodologies used in the past for IQA. This method was adopted
by Chen et al. [76] in their evaluation study. Recently, Testolina et al. [19] performed
crowdsourcing-based subjective tests for the evaluation of the learning-based methods
using the online platform known as Amazon Mechanical Turk. In crowdsourced environ-
ments, the subjects conduct the subjective test remotely in whichever type of environment
is available to them.

2.3. Subjective Assessment of Visually Lossless Compressed Images

The previously discussed subjective methods are mainly suitable for images with
visual distortions that can be easily perceived by human eyes. Recently, high-performance
image compression methods have become capable of reconstructing lossless compressed
images. Further, with the advancements in storage devices and visual sensor networks, the
storage and transportation of a huge amount of data is not a big deal [13]. This leads to a
demand for effective image compression algorithms that can provide lossless reconstruction
of image data. To standardize these high-performance compression methods, the previous
subjective methods discussed are not applicable. While using these approaches, it is
almost impossible to notice slight distortions or color swifts in images. In this regard, the
JPEG committee has launched standardized methodologies for the effective assessment of
high-performance reconstructed visually lossless images. In one case, two test images are
presented to the subject along with the original image and the user has to select the least
similar image to the original image at a particular time. Similarly, in another case, both
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the original and reconstructed images are presented on a screen in the same position for
the user. These images are interleaved at certain intervals of time. In case of noticeable
distortion in the test image, the subject observes some flickering. If the distortion among the
images is not perceptible, the user will be unable to observe any type of flickering [14]. In a
study by Willème et al. [77], the concept of flickering test methodology was used to evaluate
the JPEG XS standard. Recently, Lin et al. [11] used the flicker in the crowdsourced-based
subjective test to perceive tiny artifacts. A study by [78] compared compressed images and
their corresponding original images by using the flicker test method. The subjects observed
the flickering between the two pairs of images. Based on the concept of the flicker test, this
study presents a unique subjective test for performing the subjective test of visually lossless
compressed images.

3. Proposed Methodology

This section of the paper provides a complete overview of the proposed method for
the subjective and objective IQMs evaluation of visually lossless image compression. For
the subjective evaluation, the flicker test procedures proposed by the JPEG committee
for visually or near-visually lossless compressed images are incorporated, and a novel
2AFC-based flicker test is presented [14].

In this proposed framework, the novel “Flicker Test Software” is developed using
MATLAB (R2022b) and Unity3D (2021.3.3f1) to conduct the subjective test and calculate
the objective metrics for the evaluation of the visually lossless compressed images. The
subjective test approach is related to the psychophysical-based adaptive staircase method
that is incorporated for the barely noticeable difference in the experimental analysis [79]. In
this method, the observer starts from a particular threshold and observes the change in the
stimulus. The intensity of the threshold is changed each time and the observer makes a
decision based on the difference. This process continues until the stimulus becomes too
weak, the difference becomes visible to the observer, and the decision is changed.

In this proposed method, the subject compresses the images using JPEG 1 standard
with the highest quality factor and subjectively observes the reconstructed and original
image, then observes the visual difference using the 2AFC-based flicker test. The subject
decreases the quality factor step-by-step up to the level when he or she observes the visual
difference between the original and its reconstructed image.

For the compression task, one of the most popular and widely used standards, JPEG 1,
is employed [80]. In multimedia technologies, JPEG 1 has become one of the most successful
compression standards used across the world. JPEG 1 is used for compression tasks in
diverse applications such as by digital cameras for photography, in medical images, by
web-based applications, for multimedia storage, etc. For performing JPEG 1 compression,
the open source “libjpeg-turbo” JPEG image codec is utilized, which can be accessed on the
JPEG official website [81]. The overall framework of the proposed method and its workflow
is presented in Figure 1. Further description of the “Flicker Test Software” is explained in
the following section.

Flicker Test Software

The visually or near-visually lossless compressed images have very tiny artifacts that
can not be observed by human eyes in normal conditions. To subjectively observe these
small changes, the flicker test is a promising solution and has been used by researchers for
IQA [14]. The developed “Flicker Test Software” has two parts: first, the selected image is
encoded and decoded with the JPEG 1 compression standard using “libjpeg-turbo” imple-
mented in MATLAB, and second, this reconstructed image and the corresponding original
image are displayed in a flicker viewer designed in Unity3D for subjective evaluation.
Figure 2 shows the interface of the developed framework.
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To conduct the subjective test using “Flicker Test Software”, the subject enters his or
her details (name, age, and gender) and starts the test. At this step, the current image in
the hierarchy is reconstructed with the JPEG 1 standard at the maximum q-value. These
reconstructed JPEG 1 images are compressed, and their corresponding original images
are displayed at the same coordinates in the designed image viewer using Unity3D. The
subject shuffles these images with a toggle button and observes the flickering occurring
while shuffling both images in the same position. In case no flickering is noticed, the subject
downgrades the quality level and observes the flickering with the newly reconstructed
image again. Finally, when the observer notices flickering in the images between the
original and reconstructed images at a particular compression level, the objective metrics
for the images are calculated at the previous q-value, when the images were visually lossless
for the subject conducting the test. Consequently, the subject moves to the next image and
conducts the subjective test again for all the test images assigned.

4. Experimentation and Results

This section briefly describes the experimental setup of the proposed method, the
selected test images, and the evaluation of the IQMs guaranteeing the visually or near-
visually lossless compression of images.

4.1. Experimental Setup and Display Configuration

The recommendations proposed in ITU-R BT.500-11 in terms of system and display
configurations for the subjective assessment standards are followed [12]. These tests
are conducted in the controlled environment of the laboratory under controlled lighting
conditions. The system is connected to a BENQ monitor, model PD3200U having a size of
32 inches and a resolution of 4K ultra-high-definition. The images are displayed in their
actual size to avoid the distortion produced due to the display device. While conducting
the test, the subjects are allowed to sit at their preferred comfortable viewing distance
according to the display size.

4.1.1. Test Subjects

In case of subjective assessment, twenty-five subjects participated and performed the
subjective flicker test. Most likely, the subjects were research students who were used to
multimedia applications and had knowledge of image quality and artifacts. However,
before starting the test, each student was briefed on the subjective test and the software in
order to get used to the procedure, then they performed a demo test. The subjects were
guided to perform the test in a relaxed state to obtain authentic results. The subjects were
not bound to any time limit; however, the time taken by the subject to perform a single test
was determined. At the end of the test, a gift was provided to every participant.

4.1.2. Test Images

In the case of test images, ten raw images were used for the subjective test. These
images were selected from the well-known JPEG-AI test dataset that is commonly used
for assessment tasks of the image compression frameworks [82]. These images provide
a balanced set of different types and categories in terms of image content and spatial
resolution. Figure 3 shows the visuals of the selected ten images used for the IQA test.

These sample images possess a variety of image quality attributes [83]. The image
quality attribute values of the zero crossing (ZC), colorfulness, and modified Laplacian
(SML) of the selected images are shown in Figure 4, respectively. These graphs show a
variety of metric values that guarantee the diversity of the sample images.
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4.1.3. Objective Image Quality Metrics

Objective IQMs are calculated for the compressed images at the visually lossless point
observed by a particular subject. In this study, we used the well-known IQMs that are used
for the assessment of the learning-based image codecs by the JPEG committee during the
development of the learning-based image coding standard [84]. Several objective IQMs
were evaluated by the JPEG members to find the best-performing metrics in the compression
domain based on human perceptions. The suggested IQMs for evaluating compression
methods are FSIM, MS-SSIM, IW-SSIM, VIF, the Normalized Laplacian Pyramid (NLPD),
PSNR-HSV, VMAF, and PSNR. These IQMs, along with the specified color spaces and
channels, are given in Table 1.
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Table 1. Objective IQMs and the specified color space and channel used for metric calculation.

S. No. Objective IQMs Color Space

1 Feature similarity index measure (FSIM) RGB
2 Multiscale structural similarity index measure (MS-SSIM) Y
3 The information content weighted SSIM (IW-SSIM) Y
4 Visual information fidelity (VIF) Y
5 Normalized Laplacian pyramid (NLPD) Y
6 Peak signal-to-noise ratio human visual system (PSNR-HVS) Y
7 Video multimethod assessment fusion (VMAF) YUV
8 Peak signal-to-noise ratio (PSNR) YUV

4.2. Results and Discussion

In this section, the resultant data from the subjective and objective assessments are
analyzed. In the case of results, the “Flicker Test Software” stored the results for each
subject while conducting the flicker test. These data include the information regarding
subject and image, test conducting time, and the calculated objective quality metrics for
each corresponding image at the visually lossless compression level. Figure 5 shows the
time taken by a particular subject to perform the complete single subjective test for the
selected images. The average time cost for conducting a single subjective test for the
selected images observed in the proposed study is fifty-three minutes.
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Table 2 shows the noted q-value and bits per pixel (bpp) recorded as the results of the
subjective flicker test. These values are at the point where the images are visually lossless
for the subjects while conducting the subjective flicker test. Test images with corresponding
minimum q-value (Min q-value), maximum q-value (Max q-value), and the average of the
q-value (Avg q-value) recorded while conducting the subjective flicker test by 25 subjects
are presented. Similarly, the Min bpp, Max bpp, and Avg bpp are also presented in the table.
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Table 2. Test images with corresponding q-values and bpp values recorded by the flicker test in the
proposed subjective test at the point of visually lossless compression.

Image Min q-Value Max q-Value Avg q-Value Min bpp Max bpp Avg bpp

Image_01 69 99 87 1.14 6.42 2.46
Image_02 79 100 92 0.94 4.29 2.09
Image_03 71 100 91 1.74 6.39 3.37
Image_04 78 100 92 0.35 1.99 0.86
Image_05 82 100 95 0.87 3.43 2.23
Image_06 68 97 83 0.53 1.90 0.86
Image_07 73 100 89 2.16 8.36 3.87
Image_08 66 97 80 0.58 2.40 0.96
Image_09 65 95 78 0.88 2.55 1.32
Image_10 67 93 80 0.85 2.74 1.47
Overall 65 100 86.61 0.3525 8.3588 1.9502

In the overall subjective flicker test, the minimum q-value noted for compression is 65
and the maximum value experienced is 100. Because in a few images, the high-frequency
color regions are distorted upon the first compression and are easily perceivable by human
eyes. In the case of bpp, the overall minimum bpp value across the flicker test noted is
0.3525 and the maximum bpp is 8.3588. The average bpp value is 1.9502 for the visually
lossless compressed images across the flicker test observed by the subjects. These results
confirm that the range of the q-value and the bpp are not suitable pillars for guaranteeing
the visually lossy compression level of images.

The objective quality metrics calculated for the visually lossless compressed images
are presented in Table 3. These metrics are calculated in the prescribed channel and color
spaces as mentioned in Table 1. The table presents the corresponding average values of
the FSIM, MS-SSIM, IW-SSIM, VIF, NLPD, PSNR-HVS, VMAF, and PSNR by each subject
recorded from the flicker test.

Table 3. The calculated average IQMs for the corresponding images at the point visually lossless
compression level in the overall subjective test.

Image Avg FSIM Avg MS-SSIM Avg IW-SSIM Avg VIF Avg NLPD Avg PSNR-HVS Avg VMAF Avg PSNR

Image_01 0.9998 0.9958 0.9964 0.9928 0.0644 44.45 95.10 41.21
Image_02 0.9999 0.9988 0.9985 0.9934 0.0369 46.46 95.31 45.06
Image_03 0.9999 0.9985 0.9985 0.9971 0.0466 46.63 95.12 43.02
Image_04 0.9994 0.9983 0.9983 0.9943 0.0391 45.92 95.82 44.23
Image_05 0.9999 0.9989 0.9985 0.9979 0.0348 48.24 96.30 46.05
Image_06 0.9995 0.9970 0.9977 0.9950 0.0581 43.91 94.90 41.58
Image_07 0.9999 0.9982 0.9986 0.9950 0.0548 43.30 94.82 38.51
Image_08 0.9993 0.9954 0.9940 0.9911 0.0677 43.54 94.88 40.98
Image_09 0.9998 0.9974 0.9967 0.9892 0.0609 42.20 92.57 41.03
Image_10 0.9997 0.9922 0.9923 0.9846 0.0786 41.90 93.45 39.10
Overall 0.9997 0.9970 0.9970 0.9930 0.0542 44.65 94.83 42.08

The varied nature of the selected images (presented in Figure 4) helps us to present a
diverse variety of results. The IQMs presents a diverse range of values to the corresponding
images at the visually lossless compression level. The overall average value of the FSIM
metric noted is 0.9997, guaranteeing visually lossless compression of the images in the
subjective test conducted. Similarly, the overall average MS-SSIM value is 0.9970, the
average value noted for IW-SSIM is the same (0.9970), the average value for the VIF metric
is 0.9930, and the average NLPD value is 0.0542. The PSNR-HVS and PSNR show average
values of 44.65 and 42.08, respectively. The average VMAF value guaranteeing the visual
losslessness of the compressed images is 94.83 in the overall flicker test.

The objective metrics show different trends for the corresponding images. Figure 6
shows the line trends of the objective IQMs for the corresponding images at the stage that
are observed as visually lossless by the subjects during the subjective flicker test.
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visually lossless compressed level observed by subjects.

The overall statistical analysis of the IQM values for the test images is presented
in Table 4. It shows the overall minimum (Min value), maximum (Max value), average
(Avg value), and standard deviation (Std) for the targeted metrics calculated.

Table 4. Statistical analysis of the IQMs for the corresponding test image guarantees visually lossless
compression of the images in the flicker test.

IQMs Min Value Max Value Avg Value Std

FSIM 0.9985 1.0000 0.9997 0.0003
MS-SSIM 0.9882 0.9998 0.9970 0.0025
IW-SSIM 0.9877 0.9998 0.9970 0.0026

VIF 0.9722 0.9992 0.9930 0.0054
NLPD 0.0169 0.1014 0.0542 0.0209

PSNR-HVS 37.8483 51.8247 44.6545 3.2799
VMAF 90.0126 97.1580 94.8265 1.5799
PSNR 32.9527 50.6389 42.0773 3.7473

The statistical analysis of the objective metrics reveals that the FSIM metric shows
the range of the values between the minimum value of 0.9985 to the maximum value of
1.0000, which guarantees the visually lossless compression of the images. The average
FSIM value as the outcome of the overall subjective flicker test is 0.9997. As a result, the
best metric to guarantee the visual losslessness of the JPEG 1 compressed images is FSIM,
with the metrics values at the smallest standard deviation of 0.0003. Next, the best metric
that predicts the visual losslessness of JPEG 1 compressed images is MS-SSIM, with an
overall average result of 0.9970. It shows a range of values between 0.9882 to the maximum
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value of 0.9998. These values are almost in the same range, with a standard deviation of
0.0025. In the case of IW-SSIM, it shows a standard deviation of 0.0026, which is the next
best metric that guarantees the visual losslessness of the compressed images. The IW-SSIM
values are in the range of 0.9877 to 0.9998, with an average of 0.9970 for the particular set of
the test images that guarantee visually lossless compression. Further, the VIF also shows
satisfying results, with a standard deviation of 0.0054. The VIF shows an overall average of
0.9930. The range of the VIF result values is 0.97722 minimum to 0.09992 maximum. The
VMAF values are in the range of 90.01 minimum up to 97.16 maximum. The average of the
VMAF is 94.83, with a standard deviation of 1.5799. The performance of the VMAF can also
satisfactorily guarantee the visually lossless compression of the images. The performance
of NLPD shows an average of 0.0542, with a range of 0.0169 minimum to 0.1014 maximum,
and a standard deviation of 0.0209. The performance of the NLPD is not good, with a high
range of results as compared to the results of previous metrics. The results of PSNR-HVS
fall in the range of 37.8483 minimum and 51.8247 maximum, with an average of 44.6545 at
the standard deviation of 3.2799. The PSNR results are in the range of 32.9527 and 50.6389.
The average value notified is 42.0773, with a standard deviation of 3.7473.

5. Conclusions and Future Work

This paper conducted subjective and objective image quality evaluations for the
visually lossless assessment of JPEG 1 compressed images. For this purpose, a platform
was developed that accomplished the compression task of images at different quality levels
and performed the calculation of IQMs. In the case of the subjective test, a unique concept
of the flicker test was used in order to observe the flickering in compressed and reference
original images. The subjective activity was performed by 25 students on the test images
from the JPEG-AI test dataset. Each image was subjectively observed by all the subjects at
different compression levels. The IQMs of the images were calculated at the compression
level when the compressed and original images were visually lossless for the subject in the
flicker test. The results analysis discussed the range of the quality metrics that guarantee
the visually or near-visually lossless compression of the images. The calculated values
of the FSIM, MS-SSIM, and IW-SSIM can be effectively utilized with average values of
0.9997, 0.9970, and 0.9970, respectively, to predict the compression level of the images and
reconstruct them at the visually lossless compressed quality.

Furthermore, this work can be extended for the performance evaluation of other
state-of-the-art image compression algorithms. Moreover, recent IQMs can also be incorpo-
rated into the presented framework for further validation. The proposed subjective test
methodology can be performed in a crowdsourced-based environment using additional
image databases. Our next idea is to integrate the machine and deep learning approaches
to perform prediction of the compression level and quality range for reconstructing visually
or near-visually lossless compressed images for unknown raw images.
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