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Abstract: Recent advances in hardware and information technology have accelerated the proliferation
of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT).
IoT applications and services are widely adopted in environments such as smart cities, smart industry,
autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring
sensitive and personal data without requiring human interaction. Consequently, it is crucial to
preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)-
and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis
of current privacy threats and attacks. Then, for each ML architecture proposed, we present the
implementations, details, and the published results. Finally, we identify the most effective solutions
for the different threats and attacks.
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1. Introduction

IoT comprises billions of connected smart devices around the world that exchange in-
formation with minimal human intervention. IoT is progressing at an enormous pace with
an estimated 27 billion IoT devices by 2025 (i.e., almost four IoT devices per person) [1,2].
IoT provides real-life smart applications that improve quality of life and they have become
part of our daily activities. Wearable tools and gadgets help us monitor and take care
of our health, vehicles interact with traffic centers and other vehicles to improve safety,
and different home elements and appliances enhance our quality of life. The significant
increase in the number of IoT devices, as well as the success of IoT services and applications,
have contributed to the rapid growth in the amount of generated data. The International
Data Corporation report has estimated that the amount of data will increase from 4 to
140 zettabytes between 2020 and 2025 [3,4]. The significant amount of personal data col-
lected and shared by IoT is posing increasing concerns for user privacy. In this line, several
recent reports identify the different security and privacy threats associated. Gartner [5]
estimates that around 15 billion smart devices will be connected to the computing network
by the end of 2022. Not only could the devices be vulnerable but the enormous amount of
not-secured data collected and stored online is a liability [6].

Privacy has become one of the major concerns due to the difficulty for users to control
the data shared by their devices. IoT solutions must guarantee a high-level protection
of user’s personal data. A data breach or data leakage in a corporation can provide
confidential data to competitors causing a huge economic loss. In government systems,
it can result in a sever threat for personal and medical data, or even for national security.
These concerns affect IoT in different aspects such as privacy protection regulations, and
processes and protocols for data management. In this context, a recent initiative lead by
the IoT industry is the adoption of the EU General Data Protection Regulation (GDRP) [7]
put in place in 2018. The regulation aims to give control of personal data back to users,
providing fundamental directions to accomplish equitable treatments of end users and
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third parties. The regulation also changes the way of handling data and creates standards
for the protection of user data. It addresses important privacy issues: what kind of user
data can be collected and processed, under which circumstances, the purpose of collecting
sensible data, the retention period, and the information provided to users. IoT is in the
spotlight due to its strong dependence on user data collection and sharing. The GDPR aims
to move traditional privacy solutions from focusing on service providers to users, as it
promotes to improve user involvement in protecting their data through the control of what
is collected, when, by who and for what purposes. In 2023, government regulations will
require organizations to ensure consumer privacy rights to five billion citizens and over the
70% of GDPR [5].

Traditional privacy protection solutions have shown to be ineffective in IoT systems as
emerging IoT applications require new and efficient techniques such as distributed cyberse-
curity controls, models, and decisions. These new solutions must take into account system
development flaws, increasing attack surfaces and malicious users to detect cyberattacks.
The proliferation of machine learning and hardware technology advancement could pave
a way to detect the current level of sophistication of cyber-attacks in IoT networks. This
leads researchers to consider ML techniques to improve the privacy of sensitive data in
IoT since they provide better detection of novel cyberattacks and accuracy [8]. Moreover,
ML techniques assist in the collection and processing of the vast amount of data generated
in IoT to strengthen the protection of user data. ML-based solutions also can improve
how sensitive data are shared between the different IoT components to keep sensitive
data protected and private. Thus, they enhance the privacy protection operations and
guarantee the regulatory compliance. This paper bridges the gap between ML and privacy.
It provides, a comprehensive survey of ML techniques relevant to privacy protection in IoT.
This survey aims to:

• Identify and classify privacy threats in IoT environments.
• Identify the challenges for successful application of ML to privacy protection.
• Provide a complete review of research work that applies ML techniques for privacy

protection in IoT.
• Identify the most important and promising directions for further study.

To the best of our knowledge, previous work (reviewed in Section 2) only addresses
partially the aims of this work. The rest of the survey is outlined as follows. Section 3
identifies and provides a classification for privacy threats in IoT environments. Section 4
reviews existing ML-based solutions for IoT privacy protection. Finally, Section 5 concludes
the survey, and discusses challenges and future directions for privacy preservation in
IoT systems.

2. Related Work

In recent years, privacy, ML, and IoT have crossed paths. Given the significance of ML
and cybersecurity in IoT environments, several researchers have conducted surveys and
tutorials (listed in Table 1) to provide a practical guide to address cybersecurity threats and a
roadmap for future solutions. However, most of the existing surveys address cybersecurity
in IoT environments disregarding privacy. In general, they give more importance to other
cybersecurity threats as network attacks or software-based attacks. On the other hand, the
few privacy focused surveys published offer a narrow view as they focus only on specific
privacy preserving solutions.

2.1. ML-Based Cybersecurity

Several surveys analyze ML-based cybersecurity solutions but with little content on
privacy. Al-Garadi et al. [9] reviewed ML-based IoT solutions. First, they provided an
analysis of the vulnerabilities and attack surfaces. Then, they discussed the advantages and
shortcomings of using the different ML models in each IoT layer. This work mainly focuses
on ML-based security solutions. In the privacy domain, they briefly reviewed studies that
demonstrate that ML algorithms can leak data [10]. This makes privacy-preserving ML and
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DL algorithms vulnerable to dominant attacks, for example, distributed DL methods that
are unable to maintain the training set private. This survey concludes that privacy preser-
vation is still in its infancy and needs further investigation. Hussain et al. [11] reviewed
ML-based solutions for IoT cyberattacks in the three different areas: network, malware and
privacy. In the privacy area, they reviewed works based on Federated Learning (FL), an
Artificial Intelligence (AI) model development framework distributed over edge devices
that provides secure models to maintain user privacy while improving performance. They
focused on the health-care domain based on adaptive access control mechanisms, i.e.,
Ciphertext Policy Attribute-based Encryption (CP-ABE) and dual encryption and Merkle
Hash Trees (MHTs). In the same vein, Waheed et al. [12] provided a broad overview
of ML-based cybersecurity solutions. In the privacy area, they differ from the previous
work since they reviewed Blockchain (BC) technologies to improve user privacy. They
propose a taxonomy for security and privacy solutions in IoT using ML algorithms and
BC techniques and analyze their future integration. They categorized privacy attacks
in Man-in-the-middle (MiTM) and Data Privacy. ML-based solutions reviewed include
Stochastic Gradient Descent (SGD), LR, Oblivious Evaluation of Multivariate Polynomial
(OMPE), SVM and Naive Bayes (NB). Khan et al. [13] also reviewed ML-based cyber-
security solutions on 5G networks. They reviewed recent studies that address privacy
issues related with the usage of user private data by service providers. Yet, this survey
simply gives some guidelines on the usage of private data to mitigate such privacy issues.
Dixit and Silakari [14] focused their review on DL models. The authors analyzed existing
cybersecurity threats and DL-based solutions. In the privacy area, they reviewed adver-
sarial attacks that raised concerns as to whether DL can violate user privacy, as well as
attacks where adversaries can hack the Deep Neural Network (DNN) giving false inputs
and causing misclassifications. They present existing solutions [15] based on defensive
distillation and targeted gradient sign methods. Rodriguez et al. [16] surveyed DL-based
solutions for all different types of cyberattacks in mobile networks. In the privacy area,
they review DL-based privacy preservation works, classifying them in three main groups:
collaborative DL, differential privacy, and training on encrypted data. They concluded
that the vast majority of these works use supervised learning. Collaborative DL solutions
only share a subset of their data, and if differential privacy is used, it avoids the disclosure
of datasets. They also showed that the solutions that train DNNs on encrypted datasets
achieve acceptable levels of accuracy, but poor performance (i.e., four or five orders of
magnitude slower than training with non-encrypted data). Finally, Gosselin et al. [17]
focused their study on privacy and security issues related to Federated Learning (FL). They
reviewed unintentional data leakage, model reconstruction attacks, Generative Adversarial
Network (GAN)-based inference attacks and inference attacks. Their analysis includes
privacy-preserving strategies such as gradient noise addition and compression, Secure
Multi-Party Computation (SMC), Differential Privacy and Blockchain technology. They
conclude that inference-based attacks are the most critical to the privacy of FL. It is worth
stressing that all these surveys come to the same conclusion, privacy in IoT environments
is still in its infancy.

Table 1. Summary of existing surveys related to ML and DL for privacy protection.

Publication Summary Scope
Area Scenario

Al-Garadi [9] (2020) Survey of ML and DL methods for IoT Security. Cybersecurity ML IoT

Hussain [11] (2020) Survey of ML and DL based security solutions for IoT
networks. Cybersecurity ML IoT

Waheed [12] (2020) Survey of security and privacy using ML and BC in IoT. Cybersecurity ML IoT
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Table 1. Cont.

Publication Summary Scope
Area Scenario

Khan [13] (2020) Survey of the technologies used to build the 5G security
and privacy model. Cybersecurity ML 5G

Dixit [14] (2021) Survey of DL algorithms for cybersecurity applications. Cybersecurity DL IoT

Rodriguez [16] (2021) Survey of DL based cybersecurity solutions for mobile
networks. Cybersecurity DL Mobile networking

Gosselin [17] (2022) Privacy and Security in Federated Learning: A Survey. Cybersecurity FL IoT

Rigaki [18] (2020) Survey of privacy attacks against machine learning. Privacy attacks ML IoT

Tanuwidjaja [19] (2019) Survey of privacy-preserving DL techniques. Privacy-preserving DL Mobile networking

Boulemtafes [20] (2020) Survey of privacy-preserving techniques for DL. Privacy-preserving DL Mobile networking

Liu [21] (2021) Survey that reviews interactions between privacy and
machine learning. Privacy ML Mobile networking

Zheng [22] (2019) Privacy-preserving ML review for Cloud Computing and
IoT. Privacy-preserving ML Cloud Computing

Seliem [23] (2018) Survey of privacy threats in IoT environments. Privacy-preserving IoT

Amiri-Zarandi [24] (2020) Survey of ML-based solutions to protect privacy in the
IoT. Privacy-preserving ML IoT

Kounoudes [25] (2020) Survey of user-centric privacy protection approaches in
IoT. User-centric privacy-preserving IoT

Zhu [26] (2021) Review privacy-preserving ML training solutions in IoT
aggregation scenarios. Privacy-preserving ML Training IoT

El Ouadrhiri [27] (2022) Differential Privacy for Deep and Federated Learning: A
Survey. Differential Privacy FL IoT

2.2. Surveys on Privacy on Non-IoT Environments

ML-based privacy protection surveys for mobile networks and cloud computing
scenarios have been published in recent years. Tanuwidjaja et al. [19] reviewed privacy-
preserving DL works in mobile environments. They made three categories based on the
use of Homomorphic Encryption, Secure Multi-Party Computation, or Differential Privacy.
The classification also differentiates between classical and Hybrid Privacy-Preserving DL.
Classical methods do not consider DL, while Hybrid Privacy-Preserving methods combine
privacy-preserving with DL. The authors conclude that the main challenge for privacy-
preserving ML techniques is the trade-off between accuracy and complexity. Activation
functions based on high degree polynomial approximations have high accuracy at the
expense of computational cost, while low degree polynomial approximation gives low
complexity but with worse accuracy. Boulemtafes et al. [20] provided a review of privacy
preservation on DL solutions. They categorized them following a multi-level taxonomy
in three main groups: (1) Privacy-Preserving model training or learning, (2) Privacy-
Preserving inference or analysis, (3) release a Privacy-Preserving model. Homomorphic
encryption is the most used concept for Privacy-Preserving model learning and Privacy-
Preserving inference, while differential privacy is the most used for releasing a Privacy-
Preserving model. They evaluate privacy solutions in terms of direct and indirect data
leakage protection guarantees and privacy budget consumption for differential privacy. Liu
et al. [21] conducted a survey from a different perspective; they performed a classification
depending on the role of ML: private ML (ML as protection target), ML enhanced privacy
protection (ML as protection tool), ML-based attack (ML as attack tool). The area with more
publications is private ML and the solutions proposed are mainly based on differential
privacy, while ML enhanced privacy protection is gaining attention and solutions proposed
categorizing personal information and predict information leakage directly from it. Another
area considered is cloud computing. Zheng et al. [22] carried out a taxonomy of the existing
privacy-preserving ML approaches. They classified privacy-preserving solutions into
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two categories: privacy-preserving training and privacy-preserving inference. Privacy-
preserving training schemes are further classified based on whether the privacy-sensitive
training data samples or model parameters are transmitted for training (anonymization,
cryptographic methods, obfuscation, and data synthesis). Privacy-preserving inference
schemes where participants transmit unlabeled data to the coordinator for inference, are
classified in CryptoNets, Multi-party computation, and ObfNet.

2.3. Surveys on Privacy in IoT

Several works reviewed privacy issues in IoT environments but they only focused
on privacy threats and attacks. Rigaki and Garcia [18] proposed a threat model and a
taxonomy for the categorization of the different types of attacks based on the different
actors and assets involved. They identified the assets sensitive to privacy attacks in ML: the
training dataset, the model itself, its parameters, hyper-parameters, and the architecture.
The actors involved are the data owners, the model owners, and the model consumers.
They analyzed the privacy-related attacks which include those that aim to gain knowledge,
as training data or model information. They categorized the attacks in four main groups:
membership inference, reconstruction, property inference, and model extraction. From
the review conducted on the different ML models, the authors conclude that the most
vulnerable are the Decision Tree (DT), Linear Regression (LR), and Support Vector Machine
(SVM).

Finally, the surveys that address IoT environments mainly review specific privacy-
preserving solutions. Most of them focus on differential privacy but do not considering the
different learning architectures: centralized, distributed, and federated. Seliem et al. [23]
review major privacy threats in IoT environments and classify them in four categories: au-
thentication and authorization, edge computing mediators, data anonymization, and data
summarization. They point out the main limitations of current solutions: performance eval-
uation, assessment in real-life scenarios, and data access granularity. Amiri-Zarandi [24]
review centralized solutions that leverage ML in IoT privacy-preservation. First, they
categorize data generated in the different IoT layers, and then review ML-based privacy
solutions. The works reviewed show that the ML techniques used for privacy preservation
are applied to specific data categories. The authors point out the lack of standardization
and interoperability to develop more global privacy-preserving solutions. In the same vein,
Kounoudes and Kapitsaki [25] analyze privacy preservation solutions to identify basic
characteristics that an IoT privacy framework should satisfy to guarantee user privacy
while addressing GDPR requirements. From their analysis, they propose the combination
of the following techniques: (1) ML techniques to provide user privacy protection, (2)
policy languages to specify user privacy preferences and to express complex policies, (3)
Use of negotiation techniques to provide better services to users while preserving their
privacy. Zhu et al. [26] review privacy-preserving ML works differentiating between
privacy-preserving prediction solutions and training solutions. In the prediction area, the
solutions adopt differential privacy, secure multi-party computation, and homomorphic
encryption. Training privacy-preserving solutions are classified in collaborative and ag-
gregation scenarios. Both scenarios adopt differential privacy, homomorphic encryption,
and secret-sharing solutions. Finally, El Ouadrhiri et al. [27] review current techniques
to protect user privacy in FL. They classify these techniques in three main groups: first,
the techniques (k-anonymity, l-diversity, and t-closeness) that protect user privacy before
making a dataset available. Second, the techniques that protect user privacy during the
training phase. Third, Differential Privacy based techniques, which protect users in the
three stages of training a data model. They conclude that differential privacy guarantees
privacy protection in FL, but it has some drawbacks of sequential composition, since the
privacy degrades as the composition time increases.

The works described in this section do not completely cover the different ML tech-
niques used for privacy preservation in IoT environments. Some of them address all the
different aspects of cybersecurity in IoT with a bigger focus on network and software
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security than on privacy. Other works, review privacy issues in other environments. Those
works that review privacy issues in IoT environments do not consider the different learning
architectures (centralized, distributed and federated) and protection techniques (encryption
or differential privacy). In contrast to existing surveys, this work presents a comprehen-
sive review of ML and DL recent advances for IoT privacy preservation considering the
learning architecture (centralized, distributed and federated) and the protection technique
(encryption and differential privacy).

3. Privacy Challenges and Threats in IoT

This section analyzes privacy challenges and threats in IoT. To this end, first, we present
a general overview of IoT systems to identify the privacy threats. The IoT architecture
is formed by several hierarchical layers usually categorized in four main layers [28] (see
Figure 1): Perception Layer, Network Layer, Middleware Layer, and Application Layer. The
Perception Layer consists of devices such as actuators and sensors. It collects information
from the surroundings to control and monitor the physical environment. Sensors are used to
sense temperature, humidity, air quality, motion, acceleration, etc., while actuators control
the activity of physical devices such as the acceleration of a car. Devices in the Perception
Layer generate an an enormous amount of data that is transferred to the Network Layer
for further processing and secure routing. The Network Layer processes and transmits the
data through the IoT infrastructure. Sometimes a Middleware Layer is added as a bridge
between the Network Layer and the Application Layer to manage vendor specific services
and application needs. The Application Layer is the top layer of the IoT infrastructure.
It operates on data processed from the different IoT devices. It carries out application
specific functionalities.

Figure 1. IoT architecture.
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The huge amount of exchanged sensitive data through the IoT infrastructure, the
limited resource nature of IoT devices, and the data processing conducted by IoT smart
applications pose serious privacy concerns. These can be classified as follows: (1) direct
threats where the attacker gains access to sensible information, and (2) indirect threats,
where the attacker infers or guesses the information without gaining access to the actual
data. Direct information exposure can happen at the different layers of the IoT architecture.
Data leakage can be caused intentionally (malicious users, malware, virus, etc.) or inadver-
tently (accidental disclosure of sensitive data). The Intel Security report [29] points out that
45% of data leakage is the responsibility of employees, being 51% accidental. Malicious
parties exploit system backdoors to bypass authentication mechanisms to gain access to
sensitive data. The recent cyberattacks suffered by NVIDIA or T-Mobile lead malicious
users access sensitive information of employees or, in the case of T-Mobile, of over 50 mil-
lion people [30]. Vulnerabilities of Amazon Web Services also gave malicious users access
to the sensitive information of 20/20 Eye Care patients [30]. At the Network Layer, a
usual threat is the transmission of confidential information without proper encryption. For
example, wearable activity tracking devices transmit data over poorly encrypted Bluetooth
connections [31], or Android apps send unencrypted user sensitive data to advertiser
servers [32]. In smart cities, data are shared and used throughout the smart city processes
involving different stakeholders which can adversely impact citizen privacy. Finally, at
the Application Layer, applications and services do not clarify what happens to the data
once it has been processed [33]. Moreover, user preferences and personal information have
become a valued asset that can be sold to third parties, leading privacy to be an inherent
trade-off. Indirect threats are caused by the accumulation and processing of user data that
leads to the leakage of personal information [34]. Privacy indirect attacks [35,36] can be
categorized in six main groups: membership inference, model inversion, model stealing,
property inference, re-identification, and impersonation.

Membership inference attacks focus on the properties of individual samples. In
this attack, given a ML model and an individual data record, an adversary determines
whether or not it was used to train the model. Privacy is then violated if including an
individual in the dataset is itself sensitive. For example, discovering that a personal medical
record has been used in a health-related ML model leaks information about the health
of that individual, which directly threatens the identification of the individual. The first
membership inference attack on ML, proposed by Shokri et al. [37], considers an attacker
with a black-box query access to the model and confidence scores of the input, which
are used to determine the participation of given data in training. More recently, Salem
et al. [38] proposed more generic attacks at a lower cost without significantly decreasing
their effectiveness, while Yeom et al. [39] analyzed the case where the attacker has access to
the model and the average training loss. Model inversion attack [40] enables adversaries
extract the underlying participant training data by the observation of ML model predictions.
Fredrikson et al. show the most prominent attacks. The first one [41] recovers genomic
information of patients inverting the model of a medicine dosage prediction task, while the
second one [42] extracts instances of training data from observed model predictions. They
recover an image of a face similar to a given one and reconstruct them using the confidence
score of the target model. Salem et al. [43] propose a model inversion attack on online
learning considering the difference in the model before and after a gradient update. Model
stealing attacks [44,45] recover internal training parameters or other sensitive details of ML
models. Trained models are confidential [28] as they are considered intellectual property of
their owners. This is especially critical in DNNs as they memorize information about their
training data. Therefore, exposing the model parameters can guide to the disclosure of
training data. Tramer et al. [44] design an attack that recovers parameters of a model by the
observation of its predictions. The attack finds the parameters through equation solving
based on input/output pairs. Property inference attack [46] deduces specific patterns
of information from a target ML model. This kind of attacks finds sensitive patterns in
the training data of the model. They have been conducted in Hidden Markov Models
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(HMM) [46], SVM [47], and Neural Networks (NN) [48]. Re-identification attacks [49]
combine data from multiple collections to re-identify a record from outsourced, public or
open data records. A classic well-known re-identification attack [50] makes use of a voter
registration list for re-identification of a government health record from the records released
by a health insurance company. Impersonation attacks [51] monitor the communication
pattern of a device and try to simulate it. The adversary access to the device and alter
privacy preferences [49] to finally inject fake data in the system.

4. ML-Based Privacy Solutions in IoT

For some time now, ML and cybersecurity have crossed paths. Traditional privacy
protection solutions do not offer enough protection for the emerging IoT applications and
IoT environments. Fog-IoT frameworks consist of three main layers as depicted in Figure 2.
At one end, the IoT layer consists of a collection of end devices which collect and process
data. They transmit data to the next level of the hierarchy, the Fog layer which undertakes
data processing and storage, and connects to the cloud. The fog layer makes the middle
tier of the architecture. The upper layer, the cloud, provides reliable services and support
to IoT devices and Fog nodes, especially for those tasks that require abundant resources.

Figure 2. IoT system architecture.

Given the success of ML and DL techniques in other cybersecurity areas, they are
now considered for privacy. However, ML and DL techniques are a double-edged sword.
One the one hand, they provide better detection capabilities. On the other hand, they are
used in IoT services and applications inadequately and raise privacy concerns when using
sensitive user data. This section reviews, analyzes, and compares the works that use ML
solutions for improving privacy protection in IoT systems. We classify them depending
on the learning architecture: centralized, distributed and federated; and the protection
technique: encryption or differential privacy. For each solution, we review the attack or
threat it prevents. We also analyze the architecture with a special attention to the ML
method(s) used, its implementation, the data sets used for testing, and the results achieved.
Figure 3 provides the summary while Tables 2–4 provide the complete analysis.
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Figure 3. Overview of ML privacy based solutions in IoT.

4.1. Centralized Encryption-Based ML Solutions

Centralized ML-based privacy protection solutions in IoT environments take advan-
tage of encryption techniques for privacy protection. Encryption techniques are used to
preserve user privacy for both ML training and ML classification.

The encryption techniques used include homomorphic encryption (HE), multi-party
computation, attribute access control and lightweight cryptographic techniques. They have
high computational complexity and require huge amounts of computational resources and
large storage facilities. HE is generating high interest due to its excellent privacy advan-
tages. It provides end-to-end data privacy and it allows secure third-party computations.
This has led to the development of lighter HE algorithms such as Somewhat Homomor-
phic Encryption (SHE) and Partially Homomorphic Encryption (PHE). SHE uses small
encryption keys to reduce communication costs, while PHE limits the type of operations in
order to produce smaller ciphertexts, which are applied in IoT lightweight protocols. Initial
works analyze network environments where data samples and ML models belong to differ-
ent parties. Data owners want to perform classification but they are reluctant to expose
sensitive data to the untrusted models. Model owners, in turn, are reluctant to reveal the
information of the classification model as it is a valuable asset. Therefore, to protect privacy
in both sides, classification protocols apply ML classifiers over encrypted data. Initial
works explore the usage of generic classifiers to construct privacy-preserving classification
schemes. Bost et al. [52] constructed three protocols for privacy-preserving classification of
hyperplane decision, Naive Bayes, and decision trees. De Cock et al. [53] also proposed a
privacy-preserving classification protocol of decision trees. Privacy-preserving protocols
use homomorphic encryption and they are subsequently adopted by IoT networks and
cloud computing setups. Rahulamathavan et al. [54] conducted a privacy-preserving solu-
tion in an eHealth scenario. In their setup, classification, using SVM models, is performed
in a cloud server on encrypted data. They test the solution for four different datasets, three
from the UCI machine learning repository (i.e., Wisconsin Breast Cancer (WBC), Pima
Indians Diabetes (PID), and Iris datasets [55]) and the fourth is the facial expression dataset
JAFFE [56]. They report an accuracy of 98.24%, 86.98%, 87.33%, and 89.67%, respectively.
Wang et al. [57] adopted the same solution for image classification based on multi-layer
extreme learning machine (ML-ELM) [58]. They proposed a framework that protects user
privacy directly classifying encrypted images with DES or AES. The framework is eval-
uated using the MNIST dataset. It achieved an accuracy of 79.83% for AES encrypted
images and 90.44% for DES encrypted images. In an eHealth environment, Zhu et al. [59]
adopted the same solution as a basis for an efficient privacy-preserving medical prediagno-
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sis framework based on a nonlinear kernel SVM. The framework, so-called eDiag, provides
a privacy-preserving classification scheme with lightweight multiparty random masking
and polynomial aggregation techniques. The encrypted user query is directly solved at the
service provider without decryption. The diagnosis result can only be decrypted by the
user. Thus, both data and the SVM classifier are protected. The solution is tested using the
PID database of the UCI machine learning repository [60]. It achieves an accuracy of 94%.
Jiang et al. [61] also adopted the same solution for protecting user privacy in automated
medical image diagnosis in IoT environments. The cloud server performs the diagnosis
through ML algorithms over encrypted data to preserve data confidentiality and patients
privacy. The authors designed efficient homomorphic comparison and division schemes
based on the homomorphic encryption (SHE) scheme. SHE uses small encryption keys
and provides low communication costs [62]. The framework provides functionalities for
lesion detection of retinal images. It is evaluated using the retinal image datasets DR1 [63],
RetiDB [64], and Messidor [65]. They achieve an Area Under the Curve (AUC) between
86% and 89%. The last presented works reduce training an execution time when compared
to traditional methods such as CNN or Deep Belief Network (DBN). Yet, there is still room
for improvement for plain image datasets.

Table 2. ML-based privacy works in IoT environments—Centralized Learning.

Reference Attack
Privacy
Protection
Model

ML
Model Dataset Results Scenario

Rahulamathavan [54]
(2014)

Data leakage Encrytion
(Classification)

SVM

WBC
PID
IRIS
JAFFE

ACC
98.24%
86.98%
87.33%
89.67%

Cloud
Computing

Wang [57]
(2017)

Data
leakage

Encrytion
(Classification)

ML-ELM MNIST
ACC
79.83% (AES)
90.44%(DES)

Cloud
Computing

Zhu [59]
(2017) Data leakage

Encrytion
(Classification) SVM PID

ACC
94%

IoT
eHealth

Jiang [61]
(2019)

Data leakage Encrytion
(Training)

Homomorphic
surf and fast
image matching

DR1
RetiDB
Messidor

AUC
[86%, 89%]

IoT
eHealth

4.2. Distributed Learning-Based Solutions

Distributed Machine Learning (DML) [66,67] has received increasing attention in recent
years for privacy preservation in distributed environments and specially in IoT. In DML, the
learning model generation is done at the participant devices, while the coordinating server
generates a global model and shares the ML knowledge to the IoT edge devices (distributed
participants). A pioneer work in this field is conducted by Shokri and Shmatikov [66]. They
develop a system for collaborative DL that preserves user privacy in data training where
multiple users learn NN models based on their inputs while benefiting from other user
data without sharing the inputs. The DL algorithms are based on SGD because they can be
parallelized and executed asynchronously. The solution is tested considering the MNIST
and SVHN datasets. It achieves an accuracy of 99.1% and 93.1%, respectively for each
dataset. However, this method can only protect the properties of individual samples but
not the statistical properties of groups of samples. Another relevant work is conducted by
Servia-Rodriguez et al. [67]. They propose a distributed learning solution on IoT devices
that preserves user privacy on internet services. The solution avoids user data flows to the
cloud. The model is based on a two-step process that first analyze small datasets provided
by voluntary users to create a shared model. Then, the users retrain the model locally
using their personal data. Finally, each user has their own personal model. The system
is based on a Multilayer Perceptron (MLP) and it is trained using the WISDM Human
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Activity Recognition Dataset [68], NIPS and Wikipedia datasets. The solution is evaluated
for shared, local and personal models. It achieves the best results (ACC = 88%) when
training the model with samples of other individuals.

The works listed above assume user data privacy preservation for the simple reason
that the original data never leaves the personal device. However, it has been demonstrated
as erroneous, since DML models are vulnerable to privacy inference attacks (such as
membership inference or model memorizing) which focus on retrieving sensitive data from
trained ML models [37]. Moreover, they are also vulnerable to model inversion attacks [41]
that recover original data. These privacy concerns foster the integration of protection
techniques in distributed learning such as encryption and differential privacy.

4.2.1. Distributed Learning and Encryption

Encryption techniques are integrated in DML to improve privacy in IoT systems.
Homomorphic encryption is the most widely used encryption mechanism. User data are
encrypted before being transmitted to the fog nodes (coordinators) where training and
inference is performed on ciphertexts. Phong et al. [69] designed a system based on MLP
and CNN models. They test it using the MNIST and SVHN datasets. They achieve an ACC
of 99.1% and 93.1%, respectively. However, their solution has two main limitations. First,
all participants share a common homomorphic encryption key which implies that each
participant input is revealed to the other participants. Second, when a participant is revoked,
the key is no longer safe. González-Serrano et al. [70] developed secure algorithms for
training ML models in an IoT eHealth scenario. The solution is based on Pallier, an additive
homomorphic cryptosystem. Pallier has been shown to be more efficient than algorithms
such as RSA or Goldwasser-Micali in terms of encryption and decryption efficiency [71].
They use an authorization server for computation outsourcing. Shen et al. [72] developed
a privacy-preserving solution also based on the Paillier cryptosystem. They proposed a
privacy-preserving SVM training scheme over blockchain based on encrypted IoT data.
They use blockchain techniques to build a secure data sharing platform where IoT data are
encrypted using the Paillier public-key cryptosystem and then it is saved on a distributed
ledger. The solution is tested using two datasets: the Breast Cancer Wisconsin Data Set
(BCWD) [73] and Heart Disease Data Set (HDD) [74] available in the UCI ML repository.
The authors demonstrate the effectiveness and efficiency of the solution. They use precision
and recall to evaluate the ML classifiers.

Homomorphic encryption-based solutions achieve higher privacy guarantees than
differential privacy-based ones at the cost of efficiency. Fully homomorphic encryption
enables complex computations on ciphertexts with a high cost in terms on computation.
Partially homomorphic encryption only supports a single type of operation that requires
the use of trusted third-parties or the use of inaccurate models that approximate complex
equations with a single type of computation. A more recent work, in the Industrial Internet
of Things (IIoT), also based on blockchain technology and distributed learning is conducted
by Almaiah et al. [75]. The DL model they chose is a Variational AutoEncoder (VAE)
technique for privacy, which is trained in a decentralized fashion. It uses lightweight
encryption and decryption based on homomorphic encryption. The framework is validated
using the IoT-Botnet and ToN-IoT datasets [76]. They achieve an ACC of 95% and the
latency of the framework is up to 20 ms. Osia et al. [77] also benefited from encryption
techniques to preserve user privacy. They proposed a hybrid framework based on the
Siamese architecture [78] for efficient privacy-preserving analytics. The solution splits the
NN into the IoT device and the cloud. The IoT device performs feature extraction, and the
cloud performs classification. The main innovation of this work is the feature extractor
module that achieves an acceptable trade-off between accuracy, privacy, and scalability.
The solution, based on the CNN model, is evaluated for two widely used classification
tasks: gender classification and activity recognition. For gender classification, the datasets
chosen are IMDB-Wiki [79] and LFW [80]. It achieves an ACC of 94% and 93%, respectively.
Finally, Zhou et al. [81] proposed a Ciphertext Policy Attribute-Based Proxy Re-encryption
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(CP-ABPRE) scheme with accountability to protect user privacy in Edge Intelligence (EI)
model sharing. The model is designed to enable flexible data access. The party that wants
to share the model develops the access policies that determine who can access the model
and, subsequently, who encrypts them. The authors combine Proxy Re-encryption (PRE)
technology with CP-ABE to enable the delegation of access rights. They also introduce
accountancy and verification mechanisms to track malicious behavior of edge nodes. They
use edge nodes as proxy servers to reduce re-encryption computational load and assign
responsibility tracking to edge nodes to constrain their behavior.

4.2.2. Distributed Learning and Differential Privacy

Differential privacy is a common technique used to protect data privacy adding per-
turbations to the original data. Data perturbation provides privacy preservation efficient
solution with a predetermined error resulting from data modification [82]. Initial data per-
turbation approaches include swapping, additive perturbation, condensation, randomized
response, micro-aggregation, random rotation and projection, and geometric and hybrid
perturbation. However, they reduce the utility of the data due to the modifications. Privacy
models define the relationship between utility and the privacy granted. Initial works that
laid the foundation for algorithmic learning techniques within the framework of differential
privacy were conducted by Abadi [83] and Hitaj [10]. Abadi et al. [83] trained NNs with
differential privacy to avoid the disclosure of dataset information. The algorithms are
based on a differential privacy enhanced SGD and they are tested it using two popular
image datasets: MNIST [84] and CIFAR-10 [85]. The accuracy for a differential privacy
(8,10-5) is of 97% for MNIST and 73% for CIFAR-10. Hitaj et al. [10] trained DL structures
locally and they only share a subset of the parameters obfuscated via differential privacy.
The distributed collaborative learning system is based on CNNs. In this case, the system
achieves an ACC of 97% for the MNIST [84] and AT&T [86] datasets. These initial solutions
are computationally efficient. However, the resulting ML models are inaccurate in some
cases since the perturbations can reduce the quality of the training data. Another related
concern is that perturbations cannot completely protect data privacy. For example, some
parameters are employed in differential privacy to balance data privacy and model accuracy.
Initial differential privacy works have been continued and improved in the IoT ecosystem
as detailed in the following paragraphs.

Wang et al. [87] improved the DML system proposed by Servia-Rodriguez et al. [67]
integrating differential privacy in an IoT environment. They develop the Arden frame-
work for DNN-based private inference using a lightweight privacy-preserving mechanism.
Sensitive information is protected by means of arbitrary data nullification and random
noise addition. The solution also integrates a noisy training method that injects noise
into the training data to mitigate a negative impact on the performance of the cloud side.
The framework is tested using the MNIST and SVHN datasets [84]. It achieves an ACC
of 98.02% and 88.12%, respectively. Inference performance is improved with respect to
previous solutions reducing resource consumption over 60%. A similar work was con-
ducted by Zhang et al. [88] on distributed IoT sensing systems. They proposed the use of
the obfuscate function, also based on random noise, to preserve the privacy of training
data in DML. This enables customers to safely disclose the data or models to third-party
providers. The obfuscate function adds random noise to existing samples or augments
the dataset with new samples. The solution is tested using the CIFAR-10 dataset [85] and
the logistic regression ML model. The obfuscate function slightly reduces the accuracy
of the model without increasing the performance overhead. There is an inherent tradeoff
between validation accuracy and noise ratio. ACC reduces by 2% when noise is added to
50% of the samples (and 5% when it is added to all the samples). Lyu et al. [89], however,
considered Random Projection (RP) to perturb original data. The aim of their solution is
to embed fog computing into DL to speed up computation and reduce communication
costs. The fog-embedded privacy-preserving DL framework (FPPDL) preserves privacy
by means of a two-level protection mechanism. First, privacy is protected using RP by
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perturbing original data (yet, preserving certain statistical characteristics of the original
data). Then, fog nodes train fog-level models applying Differentially Private SGD. The
DL model chosen is MLP with two hidden layers using ReLU activations. The solution is
tested using the MNIST and SVHN datasets [84]. It achieves an ACC of 93.31% and 84.27%,
respectively. Accuracy is slightly reduced compared to the centralized framework but
communication and computation costs are significantly reduced. Other solutions consider
Gaussian projections [90] to improve performance of privacy-preserving collaborative
learning. IoT resource-constrained participants apply independent multiplicative Gaussian
Random Projections (GRP) on training data vectors to obfuscate the contributed training
data. The coordinator applies DL to address the increased complexity of data patterns
posed by GRP. The authors compared their solution with previous approaches that consider
additive noisification for obfuscation and SVMs as ML model. The performance evaluation
is conducted based on two datasets: MNIST [84] and spambase [91]. The DL models
considered are MLP and CNN. The results obtained show that the proposed GRP-DNN
solution maintains the learning performance up to hundreds of participants in contrast
to the GRP-SVM and DP-DNN with additive noisification that significantly decrease the
accuracy and increase the computing overhead.

Obfuscation techniques are also considered in DML to overcome the computational
overhead of encryption solutions in high volume and massive distribution of data systems
(i.e., big data). Alguliyev et al. [92] proposed a method for privacy preservation of big
data in IoT environments that transforms the sensitive data into non-sensitive data. To
implement the method, they propose a two-stage architecture. First, data are transformed
using a denoising autoencoder (AE). The sparsification parameter is added to the objective
function of the AE to minimize loss in data transformation. Second, the transformed
data are classified using CNN models. The method is tested using the Cleveland medical
dataset extracted from the Heart Disease dataset [74], the Arrhythmia dataset [93] and
the Skoda dataset [94]. It achieves an accuracy up to 97%. Du et al. [95] focused their
efforts on big data privacy in Multi-Access Edge Computing (MEC) for the Heterogeneous
Internet of Things (H-IoT). They proposed a ML strategy with differential privacy in
MEC. They realized this strategy through two methods to maximize query accuracy and
minimize privacy leakage. The first proposed object perturbation strategy consists of
adding Laplacian noise to the output value. The second method adds noise to the objective
function minimizing the objective disturbance. They add noise to the data in advance and
then, the edge nodes process it. The proposed method is tested using four different datasets:
MNIST [84], SVHN [84], CIFAR-10 [85], and STL-10 [96]. The ML models chosen use the
SGD and Generative Adversarial Networks (GANs). They achieve an accuracy between
91% and 95%.

Finally, another area which makes extensive use of differential privacy is speech recog-
nition. IoT services use neural network-based speech recognition systems as the standard
human–machine interface. They collect and transmit voice information as plaintext causing
the disclosure of user privacy. In some cases, speech information is used in different types
of authentication which can cause significant privacy losses. In this area, Rouhani et al. [97]
proposed Deepsecure to avoid data disclosure in distributed DL networks. It uses the
Yao’s Garbled Circuit (GC) protocol. It decreases by two orders of magnitude the runtime
compared with homomorphic-based solutions. However, Saleem et al. [98] doubted this
solution due to the efficiency, reusability, and implementation issues. Later works [83]
adopted differential privacy by adding perturbation in the user data. However, they con-
siderably reduce data availability dramatically and decrease the accuracy of NNs [99]. Ma
et al. [100] improved these works proposing a secret sharing-based method for linear and
nonlinear operations. The DL model used is LSTM and they design interactive protocols
for each gate. The designed protocols efficiently process all the data randomly splitting the
audio feature data into secret shares and reduce computation and communication overhead.
The solution is validated using a proprietary dataset. They achieved an accuracy above 90%.
Obfuscation-based works try to overcome the limitations of DML and encryption based
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DML. However, they exhibit vulnerabilities to minimality attacks [101] and foreground
knowledge attacks [102,103].

Table 3. ML-based privacy works in IoT environments—Distributed Learning.

Reference Attack
Privacy
Protection
Model

ML
Model Dataset Results Scenario

Shokri [66]
(2015)

Data
leakage

Based
solutions

MLP
CNN

MNIST
SVHN

ACC
99.1%
93.1%

IoT

Servia-Rodriguez [67]
(2017)

Data leakage
Model
stealing

Based
solutions

MLP
WISDM
NIPS
Wikipedia

ACC
88%

Cloud

Phong [69]
(2017)

Data leakage
Membership
inference

Encryption MLP
CNN

MNIST
SVHN

ACC
99.1%
93.1%

IoT

Osia [77]
(2020)

Data leakage
Model
inversion

Encryption CNN IMDB-Wiki
MotionSense

ACC
94%
93%

IoT

Zhou [81]
(2021)

EI
Model
Stealing
Impersonation

Encryption - - - IoT
EI

Abadi [83]
(2016)

Data leakage
Model
Inversion
Membership
Inference

Differential
Privacy

SGD MNIST
CIFAR-10

ACC
97%
73%

Distributed
Network

Hitaj [10]
(2017)

Data leakage
Membership
Property
Inference

Differential
Privacy

GAN MNIST
AT& T

ACC
97%

Distributed
Network

Wang [87]
(2018)

Data leakage
Membership
Property
Inference

Differential
Privacy

DNN MNIST
SVHN

ACC
98.02%
88.12%

IoT

Zhang [88]
(2018)

Data leakage
Membership
Property
Inference

Differential
Privacy

LG CIFAR-10 ACC
95%

IoT

Lyu [89]
(2019)

Data leakage
Membership
Inference

Differential
Privacy MLP

MNIST
SVHN

ACC
93.31%
84.27%

IoT

Jiang [90]
(2021)

Data leakage
Re-identification

Differential
Privacy

DNN
CNN
SVM

MNIST
spambase

ACC
90%
90%

IoT

Alguliyev [92]
(2019)

Data leakage
Membership
Inference

Differential
Privacy

SAE
CNN

Cleveland ACC
97%

IoT
Big data

Du [95]
(2018)

Data leakage
Membership
Inference

Differential
Privacy

SGD
GAN

MNIST
SVHN
CIFAR-10
STL-10

ACC
[91%,95%]

IoT
Big data

Ma [100]
(2019)

Data leakage Differential
Privacy

LSTM Custom ACC
90%

IoT
Speech
Recognition

4.3. Federated Learning

Federated learning (FL) focuses on learning global models based on decentralized data.
This inherently increases the levels of privacy to distributed systems. FL preserves privacy
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bringing the learning of ML models to the IoT (client) devices. The distributed nodes use
their data to locally train ML models and communicate the parameters with the other nodes.
In this way, clients can generalize their local model based on the model parameters managed
by the server. In FL, participants only share the gradients for aggregation. By doing so,
they increase the privacy protection of localized data. Initial works in IoT networks focus
on big data analytics for sensor devices in IoT eHealth environments.

Guo et al. [104] proposed a privacy-preserving framework that uses a dynamic DL
mechanism to learn and infer patterns from IoT sensor data. They developed privacy-
preserving learning techniques to automatically learn patterns, as similarities, and cor-
relations of abnormalities from big sensing data. They test their framework using the
CIFAR-10 dataset [85] and a CNN model. They achieve an 85% accuracy. Furthermore, in
IoT eHealth environments, Nadian-Ghomsheh et al. [105] proposed a holistic hierarchical
privacy-preserving architecture, based on FL plus differential privacy and secret sharing
techniques. They developed a ML technique to analyze the progress of patients recognizing
accurately the range of motion while preserving user privacy. To validate the proposed
framework, the authors created their own dataset of images based on Pendleton [106]
which includes images from patient wrist and fingers exercises. The framework is validated
for the Naive Bayes Nearest Neighbor (NBNN) [107], SVM and LSTM learning models.
They achieved an ACC up to 99%. Nevertheless, FL is susceptible to different attacks such
as membership inference that exploits the vulnerabilities of ML models and the retrieval
of private data from the coordinating servers. Consequently, it is usually coupled with
additional measures such as encryption and differential privacy.

4.3.1. Federated Learning and Encryption

Federated Learning adopts encryption techniques to improve user privacy. In the IoT
environment, it is commonly found in IIoT and eHealth areas. DL is used to solve data-
driven problems due to its strong capabilities in identification, modeling, and classification
of big data. IIoT promotes FL over distributed datasets due to the lack of large datasets.
Zhang et al. [108] proposed two privacy-preserving DL schemes, DeepPAR and DeepDPA.
DeepPAR, based on proxy re-encryption, preserves data privacy for each participant and
inherently provides dynamic update secrecy, while DeepDPA, based on the group key
management, provides backward secrecy in dynamic lightweight dynamic-preserving DL.
The solution is implemented using a CNN where each participant maintains a replica of
the NN and its own dataset (MNIST [84] in their proposal). The authors evaluated the
performance of the model in terms of computational costs concluding that the proposed
schemes are lightweight and effective. Ma et al. [109] focused their efforts on improving the
homomorphic encryption scheme to prevent privacy leakage in IIoT. The main innovation
of their framework is that they encrypt the model updates via an aggregated public key.
To test the framework, they use the UP-FALL Detection dataset [110] which consists of
raw and feature sets of human activity. They achieve an ACC of 94.28%. Arachchige
et al. [111] explored the encryption of local and global model parameters to improve
privacy protection. They proposed a framework named PriModChain (Privacy-preserving
trustworthy ML model training and sharing framework based on blockchain) that enforces
privacy and trustworthiness in IIoT data. The framework blends encryption, federated
ML, Ethereum blockchain, and smart contracts. The proposed framework is tested using
the MNIST dataset [84]. The ML model chosen is a CNN. Moreover, the local data are not
directly shared with the distributed entities. The local model parameters are encrypted
using public-key encryption and the global model parameters are encrypted using a unique
session key randomly generated for each federation cycle. The framework obtains an
accuracy above 80%. A different approach was conducted by Fu et al. [112]. In this case,
they explored encryption techniques to securely aggregate gradients. They proposed a
verifiable FL (VFL) privacy-preserving framework for efficient and secure model training
for big data. The framework combines Lagrange interpolation and encryption techniques
to securely aggregate gradients. The participants train the model locally and encrypt their
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own gradients. The solution is tested using the MNIST dataset [84]. They analyzed both
MLP and CNN models. It achieves an accuracy of 92.1% and 93.7%, respectively. A different
approach is adopted by Lu et al. [113]. They integrate encryption techniques and FL to
enable secure and intelligent data sharing in IIoT. The novelty of this solution is the privacy-
preserving data sharing mechanism that incorporates FL into permissioned blockchain.
They tested the solution using two datasets: Reuters [114] and newsgroups [115]. It achieves
an average AUC value of 0.918.

4.3.2. Federated Learning and Differential Privacy

FL, as DL, integrates differential privacy to improve privacy protection. It has been
applied to different IoT systems ranging from smart cities to IIoT. Initial works promote
the adoption of differential privacy instead of encryption techniques in smart cities.

Kumar et al. [116] proposed an approach similar to [72] but they used perturbation
techniques rather than encryption for transforming the original data in IoT smart cities.
They proposed a Trustworthy Privacy-Preserving Secured Framework (TP2SF) that consists
of three main modules: a trustworthiness module, a privacy preservation module, and
an intrusion detection module. The trustworthiness module uses an address-based block
reputation system to ensure that IoT nodes in the smart city are not falsified. For privacy
protection, they use a two-level mechanism. The first level is a data integrity checker.
It uses ePoW blockchain to perform data authentication to prevent the framework from
data poisoning attacks. The second level performs data transformation. It first obtains
relevant features using the Pearson Correlation Coefficient (PCC) technique and, then it
transforms the features to an encoded format using the Principal Component Analysis
(PCA) to counteract inference attacks. Finally, the intrusion detection module deploys an
optimized gradient tree boosting system. The framework is evaluated using the BoT-IoT
and ToN-IoT datasets [76]. It achieves an accuracy that ranges between 95% and 99% for
the different ML algorithms analyzed (DT, NB, and RF). In the same vein but based on
gradient perturbation [117] instead of encryption [113], Lu et al. [117] proposed learning
multi-party data without sharing sensitive information based on asynchronous FL and
self-adaptive threshold gradient compression. First, participants learn from their own
data locally (i.e., asynchronously train the network). Then, the participants check whether
they meet the conditions for communicating with the parameter server. If so, they upload
their gradients to the parameter server. The authors perform the experiments using a
custom dataset where multiple problems arise due to high mobility of edge nodes. They
introduce dual-weight corrections to solve the problem of unbalanced learning. Their
proposal achieves an accuracy of 93%.

In geographically distributed data systems, Chamikara et al. [118] proposed a FL
solution in IoT networks, the so-called DISTPAB, to prevent privacy leaks while preserving
high data utility. DISTPAB employs a data perturbation mechanism that uses multidimen-
sional transformations and randomized expansion to improve data randomness. In the
distributed system, the actual data perturbation is conducted by the distributed entities
(edge/fog) while the coordinating entity is in charge of the global perturbation parameter
generation. The solution is tested on six datasets of the UCI Machine Learning Reposi-
tory [119] (WCDS, WQDS, PBDS, LRDS, SSDS and HPDS) and they considered five different
ML models (Naive Bayes, k-nearest neighbor, SVM, MLP, J48). Experiments demonstrate
that the system efficiently resists attacks without loss of accuracy.

Finally, blockchain technologies are integrated in differential privacy FL. Zhao et al. [120]
proposed a blockchain-based crowdsourcing FL system to improve customer learning on
IoT devices to improve the predictions on future consumption behaviors. The system is
based on three main technologies: FL, blockchain distributed storage, and MEC server.
Customer privacy is enforced by means of DP. The workflow of the system comprises
two stages. First, customers train the initial model with data collected from their home
appliances. Then, the models are signed and send to the blockchain. Second, manufacturers
select organizations or users as miners for calculating the averaged model. Finally, one of
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the miners uploads the model to the blockchain. The novelty of this solution is that the
accuracy of the FL model is improved by means of a normalization technique designed
by the authors that outperforms batch normalization when features are under differential
privacy protection. The framework is tested using the MNIST dataset [84] and a CNN
learning model. It achieves an accuracy of 90%.

Table 4. ML-based privacy works in IoT environments—Federated Learning.

Reference Attack
Privacy
Protection
Model

ML
Model Dataset Results Scenario

Guo [104]
(2019)

Data leakage
Membership
Inference

Based on
decentralized
data

CNN CIFAR-10
ACC
85%

IoT
Big data

Nadian-Ghomsheh
[105] (2021)

Data leakage
Re-identification

Based on
decentralized
data

NBNN
SVN
LSTM

Custom
ACC
99%

IoT
eHealth

Zhang [108]
(2021)

Data leakage
Property
Inference

Based on
decentralized
data

CNN MNIST - IIoT

Ma [109]
(2022)

Data leakage
Property
Inference

Encryption DNN UP-FALL
ACC
94.28%

IoT
eHealth

Arachchige [111]
(2021)

Data leakage
Membership
Property
Inference

Federated
Learning
Encryption
Blockchain

CNN MNIST ACC
80%

IIoT

Fu [112]
(2020)

Data leakage
Model
Inversion

Encryption
Blockchain

MLP
CNN MNIST

ACC
92.1%
93.7%

IIoT

Lu [113]
(2020)

Data leakage
Membership
Inference

Encryption

Two-step
Distance
Metric
Learning
Scheme

Reuters
Newsgroups

AUC
0.918

IIoT

Kumar [116]
(2021)

Data leakage
Membership
Property
Inference

Differential
Privacy

CNN ToN-IoT
BoT-IoT

ACC
[95%,99%]

IoT
Smart cities

Lu [117]
(2020)

Data leakage
Membership
Inference

Differential
Privacy DNN Custom

ACC
93% IoT

Chamikara [118]
(2021)

Adversarial
Membership
Inference

Differential
Privacy
Blockchain

Naive Bayes
KNN
SVM
MLP
J48

WCDS
WQDS
PBDS
LRDS
SSDS
HPDS

ACC
[80%,90%]

IoT

Zhao [120]
(2021)

Data leakage
Membership
Inference
Re-identification

Differential
Privacy
Blockchain

CNN MNIST ACC
90%

IoT

5. Lessons Learned and Future Research Challenges

Privacy is one of the major concerns in IoT networks. This area of cybersecurity is in its
infancy and it requires further investigation. DL-based privacy preservation works mainly
follow three different approaches: collaborative DL, differential privacy, and training on
encrypted data. Collaborative DL solutions use the MLP model and participants only share
a subset of their data. If differential privacy is used, it avoids the disclosure of datasets. In
this case, the DL models chosen are MLP, CNN, SVM, VAE, LSTM, SGD, and GAN. Finally,
the proposals that train on encrypted datasets use DNNs (usually, with two hidden layers).
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For architectures where centralized learning prevails, the SVM model has been widely used
with fairly accurate results ranging from 86.98% to 94%.

The vast majority of the studies use distributed learning. In this area, the ML models
used are: MLP, CNN, SVM, and VAE. In the works reviewed, the accuracy is in the range
of 93–99.1%. On the other hand, when applying differential privacy, MLP, CNN, and SVM
models are still considered plus SGD, LSTM, SVHN, and GAN models are added to the
list. In these works, accuracy is between 91% and 97%. Architectures based on federated
learning, which use encryption as a model to preserve privacy, chose the MLP and CNN
models. They achieve an accuracy between 80% and 99%. When using differential privacy
instead of encryption, MLP, CNN, SVM, and DNN models are used. Accuracy is on par
with the FL plus encryption mechanisms. In the context of fog computing, the majority
of the works focus on reducing the computation and communication costs in IoT devices
at the cost of detection accuracy. Although these approaches are evolving and improving
every day, it deserves further study in order to be able to adapt to the constant changes in
edge hardware computation capabilities.

Privacy protection solutions are at an initial stage. Reducing the latency and through-
put of NN training on encrypted data is a big challenge. Current systems outsource DL
tasks to an external service with the appropriate expertise and computational resources
without comprising user data, thus making the solution computationally efficient. However,
it should also consider new alternatives (e.g., quantum computing techniques) to make the
solution competitive. Future directions include parallel learning and computational cost
optimization. Several efforts are on the way, such as network pruning and the interplay
between different malicious activities. Finally, the evaluation and assessment of privacy
solutions in real-life scenarios is still a challenge together with the trade-off between real
IoT application quality-of-service and privacy protection.

6. Conclusions

This survey reviews and examines ML-based solutions for privacy threats in IoT sys-
tems. First, privacy threats are analyzed and classified. In direct privacy threats, attackers
gain access to sensible user data. In indirect threats, the attackers infer the information
without gaining access to the sensible data. Direct data leakage can happen at the different
layers of the IoT architecture and it can be caused intentionally or inadvertently. Indirect
attacks, which usually occur at the application layer, are classified in six main groups: mem-
bership inference, model inversion, model stealing, property inference, re-identification,
and impersonation. In this survey, we analyzed ML-based privacy preservation works ad-
dressing IoT privacy attacks. This work provides a knowledge base for future technologists
and researchers working in this area. For all the works, we analyze the architecture, the
ML method(s) used, its implementation, the data set, and the reported results. Whenever
possible, we compared the performance of the different proposals. Works addressing direct
privacy data leakage attacks use encryption techniques on their datasets before training
or classification. They achieve acceptable levels of accuracy. However, they are still too
slow. They are about four or five orders of magnitude slower than training or classifying
non-encrypted data.

Distributed and federated learning is used for preventing indirect privacy attacks. In
this area, a combination of collaborative learning, encryption and differential privacy is the
most used solution. From all the works analyzed, we can conclude that privacy protection
solutions are at an initial stage. Finding better tradeoffs between privacy guarantees
and computational costs is still a demanding challenge. From reducing outsourcing to
external services to parallel processing, from more efficient ML models to low-complexity
algorithms, privacy protection research requires the effort of researchers in all computing
fields in the next years.
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DML Distributed Machine Learning
DNN Deep Neural Network
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EI Edge Intelligence
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HDD Heart Disease Data Set
H-IoT Heterogeneous Internet of Things
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MLP Multilayer Perceptron
NB Naive Bayes
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