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Abstract: The analysis of infrared spectroscopy of substances is a non-invasive measurement tech-
nique that can be used in analytics. Although the main objective of this study is to provide a review
of machine learning (ML) algorithms that have been reported for analyzing near-infrared (NIR)
spectroscopy from traditional machine learning methods to deep network architectures, we also
provide different NIR measurement modes, instruments, signal preprocessing methods, etc. Firstly,
four different measurement modes available in NIR are reviewed, different types of NIR instruments
are compared, and a summary of NIR data analysis methods is provided. Secondly, the public
NIR spectroscopy datasets are briefly discussed, with links provided. Thirdly, the widely used
data preprocessing and feature selection algorithms that have been reported for NIR spectroscopy
are presented. Then, the majority of the traditional machine learning methods and deep network
architectures that are commonly employed are covered. Finally, we conclude that developing the
integration of a variety of machine learning algorithms in an efficient and lightweight manner is a
significant future research direction.

Keywords: machine learning; near-infrared spectroscopy; light absorption; non-invasive measurement;
deep architectures

1. Introduction

Infrared (IR) is an electromagnetic radiation that is divided into three categories based
on their wavelengths: (1) near infrared (NIR) is defined as wavelengths between 0.78 and
2.5 µm; (2) mid infrared (MIR) is defined as wavelengths between 2.5 and 25 µm; and (3) far
infrared (FIR) is defined as wavelengths between 25 and 1000 µm. When a substance is
exposed to NIR light from a light source, the infrared-active molecular bonds interact with
the light to produce NIR spectrum absorption. The absorption of molecules in the infrared
spectral region results from changes in the vibrational or rotational state or transitions
between energy levels. Energy transitions include fundamental frequency transitions
(corresponding to molecular vibrational state transitions between adjacent energy levels),
double frequency transitions (corresponding to molecular vibrational state transitions
that are separated by one or more energy levels), and combined frequency transitions
(corresponding to the simultaneous transition of the energy levels of the two vibrational
states of the molecule). All near-infrared absorption bands are multiplied and combined
with the frequency of the fundamental mid-infrared absorption band (2000∼4000 cm−1).
Among them, the hydrogen-containing group X-H (such as C-H, O-H, N-H, etc.) is the
dominant group. There is also information regarding other groups (such as C=C, C=O, etc.)
but their intensity is weak. These groups are important organic matter constituents, and
the NIR absorption wavelengths and intensities of the different groups or the same group
in different chemical environments are significantly distinct. NIR spectroscopy contains
a wealth of structure and composition information, which is excellent for evaluating the
chemical and physical characteristics of substances.
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An IR spectrum is a two-dimensional plot of the IR absorption values and the corre-
sponding IR wavelengths. IR spectra contain three distinct types of peaks: (1) fundamental;
(2) overtone; and (3) combination [1]. The fact that NIR spectra contain all three peak types
but MIR spectra only contain the fundamental peak is the primary distinction between
NIR spectra and MIR spectra. The molecular covalent bonds can be identified using the
absorbed IR wavelengths because MIR spectra are straightforward and each molecular
covalent bond is represented by a distinct group of IR wavelengths. In contrast, it is dif-
ficult to directly identify the molecular covalent bond in NIR spectra because each type
of molecular covalent bond can be represented by a combination of the three peak types.
Since the FIR electromagnetic signal has low energy, designing light sources and detectors
can be challenging. Typically, increasing the energy of the FIR light source would result
in an increase in temperature and require special materials to handle the temperatures [2].
The majority of this work was concentrated on MIR due to the challenges of FIR and NIR.
NIR is used with data analysis algorithms that learn the relationship between the sample
composition and NIR spectra, as opposed to MIR, where the sample composition can be
determined by visually inspecting the peaks in the MIR spectra [3,4].

The composition of a sample, such as its protein, fat, vitamin, and fiber content, can be
used to determine its quality. The food industry can use this data to identify premium food
items. Similarly, the health sector can use the composition of a sample to determine the
malignancy of a tumor or the agriculture sector can use it to assess the quality of manure.

To the best of our knowledge, this is the first review paper that focuses on the topic
of machine learning for infrared spectroscopy. Although the majority of review articles
investigate the broader topic of artificial intelligence (AI) for photonics, the coverage of
machine learning algorithms used in infrared spectroscopy is relatively limited.

2. Machine Learning-Based NIR Spectroscopy Analysis System

NIR spectroscopy is underpinned by three pillars: (1) fundamentals; (2) instruments;
and (3) data analysis. As illustrated in Figure 1a–d, the fundamentals are the different
measurement modes available in NIR: (a) transmittance; (b) transflectance; (c) diffuse
reflectance; and (d) transmittance through a scattering medium [5].

The sample material determines the measurement mode used to produce the spectra.
Transmittance mode is used for gases, liquids, or semi-solid samples, where the samples
are placed in cuvettes and NIR is applied on one side and NIR transmittance is measured
on the other. Without placing the sample in a cuvette, transflectance mode is used for
semi-solid samples. In this mode, the sample is treated with NIR on one side, which
penetrates the sample and is reflected through the sample using a stainless steel or gold
reflector to measure the NIR transmittance. Hence, in transflectance mode, the light
path is twice as long as that in transmittance mode. Diffuse reflectance mode is used for
solid samples where NIR is applied on one side of the sample and the NIR scattering
and absorption are measured. Interactance mode is applied to solid samples, where
the absorption measurement is performed at a greater distance from the NIR incidence.
Therefore, these absorption measurements are not affected by the NIR incidence signal
but they may be affected by ambient NIR signals. In contrast, transflectance and diffuse
reflectance measurement modes find the composition in the surface of the sample.

As there are different types of NIR instruments, the choice of which one to use depends
on the application requirements, cost, signal-to-noise ratio, and measurement speed. NIR
instruments can be classified as follows: (1) light-emitting diode (LED) [6]; (2) acousto-optic
tunable filters (AOTF) [7]; (3) dispersive optics [8]; and (4) Fourier transform [9]. The least
expensive instruments are those that use LEDs, and each LED produces a distinct NIR
wavelength. AOTF-based instruments are fast as they do not contain any moving parts.
AOTF-based instruments generate NIR of different wavelengths with a crystal made of
TeO2, radio frequencies (RFs), and polychromatic light. The crystal adjusts the refractive
index of the crystal using the RF signal to change the wavelength of the polychromatic light
to the desired value. A reflective concave grating, which is used in dispersive optics-based
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instruments, shifts the wavelength of the polychromatic light. The first generation of NIR
spectrometers employed dispersive optics, which are incapable of accurately producing NIR
wavelengths. An interferometer and the Fourier transform are used in Fourier transform-
based instruments to split the polychromatic light into NIR waves of various wavelengths.
The main advantage of Fourier transform-based instruments is that they have a low signal-
to-noise ratio. The advantages and disadvantages of the various NIR instrument types are
compiled in Table 1.

Figure 1. (a) Transmittance measurement mode, which is used with gases and semi-solids placed in
a cuvette; (b) transflectance measurement mode, which is used with semi-solids without a cuvette;
(c) diffuse reflectance measurement mode, which is used with solids where the measurement is taken
from the NIR incidence; (d) transmittance through a scattering medium.

Table 1. Comparison of different NIR instruments.

Instrument Cost Speed Signal to Ratio

LED very low moderate moderate
AOTF moderate very fast low

Dispersive low slow high
Fourier high fast very low

Data analysis is the pillar that maps the NIR absorption or transmittance values to the
desired sample properties. In this review article, we primarily highlight research on data
analysis using machine learning.

As illustrated in Figure 2, ML algorithms map the NIR absorption values to the desired
output. ML algorithms include training and testing phases. ML algorithms learn model
parameters during the training stage using the light absorption values as inputs and the
desired outcome as outputs. Based on the provided light absorption values, ML algorithms
predict the desired outcome during the testing phase.
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Figure 2. Architecture of machine learning for NIR spectroscopy.

ML algorithms can be categorized as traditional machine learning methods and deep
network architectures. Traditional machine learning methods have few or no hidden
layers, such as partial least squares (PLS), K-nearest neighbor (KNN), principal component
analysis (PCA), etc., whereas deep network architectures have multiple hidden layers such
as AlexNet, GoogLeNet, etc. Traditional machine learning methods require an expert to
engineer suitable features, whereas deep network architectures use raw features. In contrast
to deep network architectures, the performance of traditional machine learning methods
depends on the engineered features. As a result, deep network architectures are becoming
more prevalent, as an expert is not required to engineer features.

Traditional machine learning methods employ feature selection algorithms to find
interesting features. As a result, traditional machine learning methods usually take the
form of a pipeline architecture, where feature learning is used to select interesting features
followed by regressors or classifiers. In contrast, deep architectures have many hidden
layers that are trained end to end including specialized layers such as convolution layers to
learn local feature patterns and recurrent layers to learn the temporal information of the
input data. Therefore, deep learning architectures generally outperform traditional ma-
chine learning methods when there are large numbers of training samples. Deep network
architectures, however, frequently encounter overfitting issues and have high computa-
tional costs during the training phase when there are few training samples. Traditional
machine learning methods can overcome the shortcomings of deep network architectures
with insufficient data. In this scenario with limited data, deep network architectures aug-
mented with regularization and dropout techniques are preferable to traditional machine
learning methods.

3. Public Datasets

The methods used to collect the data and number of samples from freely accessible
datasets are both described in this section. Publicly accessible datasets are available for a
variety of uses including identifying tumors and analyzing soil, food, pharmaceuticals, and
wood.

The Swedish soil dataset [10] provides data on the infrared spectroscopy absorption
values of soil organic matter. The data were collected from soil plots located in Sweden,
where each plot had a size of 120 × 120 cm. To produce soil organic matter, six different
methods were used on six plots for a total of 36 plots. A total of 108 samples were collected,
with one sample of organic matter taken from a depth of 0∼5 cm and two samples from
a depth of 5∼10 cm. Roots and rocks were removed from the samples that were then
manually homogenized for 15 min before being dried in an oven at 70 ◦C. Between the
wavelengths of 400 and 2500 nm at 2 nm intervals, the infrared spectroscopy absorption
values were recorded. The dataset is available at http://www.models.life.ku.dk/NIRsoil
(accessed on 18 November 2022).

The corn dataset contains recordings of the infrared spectroscopy absorption values
of corn. The absorption values were taken from a range of 1100∼2498 nm at intervals
of 2 nm and their corresponding moisture, oil, protein, and starch values were recorded.
There are 80 samples and 700 features in total in the dataset and it is available at http:
//www.eigenvector.com/data/Corn/index.html (accessed on 18 November 2022).

http://www.models.life.ku.dk/NIRsoil
http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
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The tablet dataset contains recordings of the infrared spectroscopy absorption values
of 654 tablets. The absorption values were taken from a range of 600∼1898 nm at intervals
of 2 nm and their corresponding tablet ingredients API tramadol, plus talc, ethyl cellulose,
and stearyl alcohol were recorded. The dataset is available at https://eigenvector.com/wp-
content/uploads/2019/06/nir_shootout_2002.mat_.zip (accessed on 18 November 2022).

The melamine–formaldehyde (MF) dataset [11] contains recordings of the infrared
spectroscopy absorption values of different chemical mixtures used in the polymerization
process. The polymerization process generates different types of plastics. The absorption
values were taken from a range of 3900∼11,000 cm at intervals of 1 cm from four chemical
mixtures. Multiple readings were taken from each mixture, which yielded 1413 samples in
total. The dataset is available by request to the authors of [11].

The soil dataset contains recordings of the infrared spectroscopy absorption values
of different soil samples to identify fertility. The absorption values were taken from a
range of 1000∼2500 nm from 40 soil samples and the fertility was measured by nitrogen
(N), phosphorus (P), potassium (K), soil pH, magnesium (Mg), and calcium (Ca). The
dataset is available at https://data.mendeley.com/datasets/h8mht3jsbz/1 (accessed on 18
November 2022).

The pleural effusion dataset contains the infrared spectroscopy absorption values
of benign and malignant lung tissue samples. The absorption values were taken from
a range of 4000∼10,000 cm−1 at intervals of 4 cm−1 from 82 tissue samples. There are
47 malignant tissues and 35 benign tissues. The data were divided into 62 and 20 samples
for training and testing, respectively. The tissues were spun at 1600 g for 10 min at 4 ◦C
and then stored at −80 ◦C before the absorption values were recorded. The dataset is
available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093263/ (accessed on 18
November 2022).

The wood quality dataset [12] contains the infrared spectroscopy absorption values of
wood with different defects: (1) knot; (2) decay; (3) bark (4) normal; (5) resin; (6) reaction;
and (7) unsigned. The absorption values were taken from a range of 340∼2500 nm with
four different light-detecting sensors. A total of 25 wood samples with diameters from
100 mm to 400 mm were collected from the wood cutting area and wrapped in aluminum
before storing at −21 ◦C. These stored samples were transported to a lab where they were
thawed to 15 ◦C before taking measurements. The measurements were taken at 36 locations,
which resulted in a total of 1800 readings; 66% were used as training and the rest as testing.
The dataset is available by request to the authors of [12].

The land use/cover area frame statistical survey (LUCAS) soil dataset [13] contains the
infrared spectroscopy absorption values of soil samples and their respective soil properties:
(1) clay; (2) silt and sand content; (3) coarse fragments; (4) pH; (5) organic carbon content;
and (6) nitrogen. The absorption values were taken from a range of 400∼2500 nm at
intervals of 0.5 nm. There are in total 19,019 samples, where 75% were used for training
and 25% were used for testing. The dataset is available at https://esdac.jrc.ec.europa.eu/
content/lucas-2009-topsoil-data#tabs-0-description=0 (accessed on 18 November 2022).

The chicken meat dataset [14,15] contains the infrared spectroscopy absorption values
of chicken samples and their corresponding quality labels. Slaughtered chicken breast fillets
were selected by an experienced analyst and there was a large variation in quality. A total
of 158 samples within 5 h of slaughtering were transported under refrigerated conditions to
the lab, where the central part of each sample was carefully trimmed with a surgical scalpel
to fit into a sample cell. Subsequently, the samples were minced using a kitchen chopper
for 10 s and the infrared spectroscopy absorption values from the wavelength range of
400∼2500 nm were collected. The quality labels were determined by the pH values and
the colors, which were (1) pale; (2) pale, soft, and exudative; (3) dark, firm, and dry; and
(4) normal. The dataset is available by request to the authors of [14,15].

The manure dataset [16] contains the infrared spectroscopy absorption values of ma-
nure samples and their corresponding properties: (1) dry matter; (2) ammonium nitrogen;
(3) nitrogen; (4) calcium oxide; (5) potassium oxide; (6) magnesium oxide; (7) phosphorus

https://eigenvector.com/wp-content/uploads/2019/06/nir_shootout_2002.mat_.zip
https://eigenvector.com/wp-content/uploads/2019/06/nir_shootout_2002.mat_.zip
https://data.mendeley.com/datasets/h8mht3jsbz/1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093263/
https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data#tabs-0-description=0
https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data#tabs-0-description=0
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pentoxide; and (8) the type of manure. A total of 332 manure samples were collected
from France and Reunion island, where 196 were cattle samples and 136 were poultry
samples. The samples were frozen after collection and homogenized by crushing them
in a blender cutter. These samples were then dried for 4 days at 40 ◦C in a convection
oven. The infrared spectroscopy absorption values were taken from three spectrome-
ters, two of which had detection wavelength of 400∼2500 nm, whereas the third spec-
trometer had a detection wavelength of 4000∼12,500 cm. The dataset is available at
https://doi.org.remotexs.ntu.edu.sg/10.15454/JIGO8R (accessed on 18 November 2022).

4. Data Preprocessing

Data preprocessing methods, whose aims are to separate the signal from the noise
and reduce the signal-to-noise ratio, play a crucial role in the success of NIRS-based
target sample composition estimation. In this section, we provide an overview of the
most well-liked signal preprocessing algorithms that have been applied to NIR absorption
spectroscopy signals in the past.

The Beer–Lambert law states that the absorption of NIR depends on the NIR path
length, molecular absorptivity, and concentration of the sample. The molecular absorptivity
and NIR path length are typically constant, and the NIR absorption is proportional to the
sample concentration. However, the NIR scattering caused by sample particle distribution
alters particle size, sample density, sample shape, path length, and molecular absorptivity.
As a result, samples with the same concentrations would have different NIR spectra. These
differences in NIR spectra are reflected in the additive bias noise for all NIR spectra,
multiplicative bias noise for all NIR spectra, and additive and multiplicative bias noise in a
specific wavelength in the NIR spectra.

Due to the fact that some machine learning algorithms perform poorly with noisy
data, preprocessing aims to eliminate additive and multiplicative bias noise. The preva-
lent data preprocessing-related functions in NIR are (1) mean centering [17]; (2) stan-
dard normal variate (SNV) [18]; (3) multiplicative scatter correction (MSC) [18,19]; (4) ex-
tended multiplicative scatter correction (EMSC) [20]; (5) inverse scatter correction (ISC) [21];
(6) and Savitzky–Golay smoothing [22].

Detailed explanations of the preprocessing functions are available in [23] and the
following subsections summarize the preprocessing functions used for NIR data.

4.1. Mean Centering and Standard Normal Variate (SNV)

Mean centering is the simplest approach to removing additive bias noise from all NIR
spectra by calculating the mean and subtracting it. The SNV takes the mean centering
further by removing both the additive and multiplicative bias noise from all NIR spectra
by calculating the mean and variance, followed by subtracting the mean and dividing
by the variance; both the mean centering and SNV assume that the additive bias noise
can be approximated by the mean of the data and the multiplicative bias noise can be
approximated by the variance of the data. Mean centering has been investigated with
other preprocessing functions on six NIR datasets and found to be suitable if there are few
training samples [17]. Sesame seed protein content was investigated using the SNV and it
was found to be useful [18].

4.2. Multiplicative Scatter Correction (MSC)

MSC assumes that the noise can be described by a multiplicative and additive bias.
This bias can be determined by comparing a noise-free reference NIR with each NIR
data sample. MSC is applied by iteratively fitting the reference NIR sample with linear
regression to each NIR data sample, followed by subtracting linear regression intercept
and dividing the linear regression slope from the NIR data sample; the mean or median
of all the data samples in the NIR data serves as an approximation for the reference NIR.
MSC has been demonstrated to be helpful in determining the amount of protein in sesame
seeds [18].

https://doi.org.remotexs.ntu.edu.sg/10.15454/JIGO8R
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4.3. Extended Multiplicative Scatter Correction (EMSC)

EMSC extends MSC by removing nonlinear noise and the nonlinear noise sources are
defined by an expert such as the path length correction terms and chemical constituents
of the sample. EMSC iteratively calculates the linear and nonlinear multiplicative and
additive noise for each NIR data sample based on a reference signal. The reference NIR is
approximated by the mean or median of all the data samples in the NIR data. The effect of
the path length in gasses can be effectively eliminated by EMSC [20].

4.4. Inverse Scatter Correction (ISC)

In contrast to MSC, ISC inverts the regressors for the reference NIR sample and
dependent variables NIR data sample of MSC when applying linear regression to determine
the multiplicative and additive bias noise. Furthermore, the reference signal of ISC is a
known noise-free NIR data sample. ISC was shown to be an effective preprocessing function
in eight food NIR datasets [21].

Savitzky–Golay

Savitzky–Golay is a filter that smooths the NIR signal by removing high-frequency
noise. Savitzky–Golay performs polynomial regression on windowed NIR data samples.
The amount of smoothing is thus determined by the window size and number of polynomi-
als. This process is formulated as a convolutional operation, where the kernel represents the
polynomial regression weights. Savitzky–Golay is typically used for NIR data that show a
significant effect on the path length due to different particle sizes such as in soils [24].

4.5. Discussion

The NIR data are shaped during preprocessing to eliminate path-length differences
and molecular absorptivity-related variability. The preprocessing functions shape NIR data
differently, as they determine additive and multiplicative bias noise differently. Hence, the
preprocessing functions should be carefully selected based on the application. For example,
solid samples tend to have different path lengths than gas samples due to scattering caused
by different particle sizes. Since gas samples have less variability than solid samples, a
simple preprocessing step would suffice.

To find the best preprocessing function, experiments were conducted on 13 datasets
of foods, liquids, and plants [25,26]. The results revealed that Savitzky–Golay smoothing
with SNV preprocessing performed better than other preprocessing functions [25]. Savitzky–
Golay smoothing outperformed other preprocessing functions according to the experiments
on the soil spectra data that were conducted to determine the best preprocessing function [26].
However, it should be noted that Savitzky–Golay smoothing is computationally expensive.

5. Feature Selection

Feature selection has been shown to be an effective and efficient data preprocessing
technique for preparing data (especially high-dimensional data) for a variety of data mining
and machine learning problems. Finding the most consistent, pertinent, and non-redundant
subset of features from the feature vector is the aim of feature selection. It lessens not only
model complexity and training time but also the risk of overfitting. Feature selection
algorithms can efficiently reduce the dimension of spectral data and remove redundant
information from the spectrum. Here, we compile a brief overview of the most popular
feature selection methods for NIR absorption spectroscopy as reported in the literature.

With regard to absorption values at particular wavelengths, NIR spectra data describe
the composition of a sample. Contrary to expectation, noise causes the NIR spectra data to
contain more peaks than expected, each of which corresponds to a different wavelength.
As noise impairs the performance of machine learning algorithms, feature selection aims to
identify the crucial features that describe the composition of a sample.

Feature selection algorithms are categorized as filter, wrapper, and embedded ap-
proaches. The classification diagram is depicted in Figure 3. The primary distinction
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between the three types of algorithms is how the learning algorithm is used to analyze and
choose features.

Figure 3. Classification of feature selection methods.

The significance of the features is determined by filter-based approaches using a
function such as statistics, distance, or similarity. As a result, features selected using
filter-based approaches do not overfit and are ranked according to importance. Filter-
based algorithms include covariance selection, minimal redundancy maximal relevance
(mRMR) [27], and correlation-based feature selection (CFS) [14]. However, the filter-based
approaches do not account for the generalizability of selected characteristics.

Wrapper-based approaches select features based on their generalization capability.
Hence, wrapper-based features tend to overfit and most of the feature selection approaches
in NIR use this approach. The exhaustive search required by wrapper-based methods to
prevent overfitting also makes them computationally expensive. Wrapper-based algorithms
used in NIR include particle swarm optimization (PSO) and binary particle swarm optimiza-
tion (BPSO) [28], genetic algorithms (GA) [29–33], variable combination population analysis
(VCPA) [32,34], the variable iterative space shrinkage approach (VISSA) [35], bootstrapping
soft shrinkage (BOSS) [36], iteratively retaining informative variables (IRIV) [32], compet-
itive adaptive reweighted sampling (CARS) [37–39], the successive projection algorithm
(SPA) [40], uninformative variable elimination (UVE) [41], Monte Carlo uninformative
variable elimination (MCUVE) [35], partial least squares feature selection approaches [42],
the randomization test (RT) [43], variable importance in the projection (VIP) [44], and the
jackknife procedure.

Embedded approaches consist of a model learning term that evaluates the generaliza-
tion capability of selected features and a feature selection term to select features. Embedded
approaches jointly optimize both terms and require fewer computational resources than
wrapper-based approaches because they do not require the learning of multiple models.
The least absolute shrinkage and selection operator (LASSO) [45,46] and elastic-net [47]
algorithms are both examples of embedded approaches.

5.1. Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO)

PSO is an evolutionary computational technology that evolved from research into bird
predation behavior. The basic idea behind the particle swarm optimization algorithm is
to find the best solution through group cooperation and information sharing. Birds are
abstracted as particles (points) in an N-dimensional space without mass or volume. The po-
sition of a particle in the N-dimensional space is expressed as a vector Xi = (x1, x2, . . . , xN),
and the flight speed is expressed as a vector Vi = (v1, v2, . . . , vN). Each particle has a fitness
value that is determined by the objective function. Additionally, each particle is aware of
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the best position (pbest) discovered thus far and the current position (Xi). This could be
considered the particle’s personal flight experience. In addition, each particle is aware of
the best position (gbest) discovered to date by each particle in the whole group (gbest is the
best value in pbest), which can be regarded as the experience of the particle companion.
Particles determine their next movement based on their and their peers’ best experiences.

The following are the update rules:

vi = vi + c1 ∗ rand() ∗ (Pbesti
− xi) + c2 ∗ rand() ∗ (gbesti

− xi) (1)

xk
id = xk−1

id + vk−1
id (2)

where vk−1
id denotes the d-th dimension vector of the (k− 1)-th iteration’s flight velocity

vector for particle i; xk
id the d-th dimension vector of the position vector of particle i in

the k-th iteration; c1 and c2 the learning factors that are usually set to 2; rand() a random
number between 0 and 1; xi the current location of the particle; and vi the particle’s speed.

In contrast to PSO, which focuses on continuous real-value problems, BPSO prioritizes
discrete-space constraint problems [28]. The BPSO algorithm is based on the discrete
particle swarm algorithm, and it is agreed that the position vector and velocity vector are
composed primarily of 0 and 1 values, respectively. Although BPSO has good global search
capabilities, it cannot converge to the global optimal value. Moreover, as the algorithm
searches iteratively, the randomness grows stronger and stronger and it lacks local search
capabilities in the later stages. In the study in [48], four soy sauce quality parameters were
determined using Vis-NIR techniques in conjunction with variable selection using a simple
modified particle swarm optimization (PSO) algorithm. The findings demonstrated that
the application of variable selection based on a modified PSO optimization algorithm not
only simplified the models but also significantly improved the quality of the models in
terms of accuracy and reliability.

5.2. Genetic Algorithms (GAs)

A GA is stochastic and based on biological evolution and genetics. A GA consists
of five steps: (1) initialization; (2) fitness; (3) selection; (4) crossover; and (5) mutation.
Different sets of features are randomly chosen during the initialization step. The fitness
step evaluates each set of features through cross-validation and ranks them based on cross-
validation accuracy. Two sets of features are chosen in the selection step based on rank and
non-uniform random selection probability (NRSP). NRSP has a high probability value for a
set of features with a higher rank and a low probability value for a set of features with a
low rank. A crossover step creates a new set of features by randomly selecting features in
a non-overlapping manner from the two selected sets of features in the selection step. A
feature from the freshly produced set of features is randomly selected or deselected during
the mutation process. Steps 2 through 5 are repeated until a stopping criterion is met such
as the number of iterations or the desired accuracy of cross-validation. GAs have been
used to determine food quality [32,33], the quality of soil [29], document dating [30], and
ailments using blood plasma [31]. The study in [49] proposed a nondestructive method
for determining the internal quality of apples using a contactless NIR spectrometer and
genetic algorithm for model optimization. The performance of the contactless system was
enhanced by 30% as a result of model optimization using genetic algorithms, bringing it
closer to the performance of the models from the multipurpose analyzer.

5.3. Covariance Selection

The covariance selection method chooses features by calculating the correlation matrix
between the input and output data, then choosing input data features that have a strong
correlation with output data features. To address the fact that visible and near-infrared
(Vis-NIR) spectra are produced by the combination of many low-resolution features, the
spectral variables are highly correlated, which causes difficulties in the selection of the most
appropriate variable for a given application. This study proposes the application-dedicated
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selection of filters (ADSF), which can choose the most relevant subset of filters from any
predefined shapes by maximizing covariance and using orthogonal projection. The ADSF
acts as a regularization process, resulting in a selection that should be resistant to overfitting
even in the context of a small sample size [50].

5.4. Variable Combination Population Analysis (VCPA)

VCPA consists of three steps: (1) binary matrix sampling (BMS); (2) model population
analysis (MPA); and (3) feature selection. BMS is a random sampling matrix that includes
one and zero values to uniformly and equally likely select and deselect features, respectively.
The MPA step calculates the cross-validation accuracy of the sampled features using BMS.
The frequency of each feature being selected from the top 10% of the cross-validation
accuracy is then calculated. Finally, an exponential function is used in the feature selection
step to determine the number of features to retain based on the frequency with which
each feature is selected. These steps are repeated until the stopping criteria, such as
the number of maximum iterations or the desired cross-validation accuracy, are met. To
achieve the rapid detection of the bacteria food-borne pathogen (Escherichia coli O157 and
Staphylococcus aureus) contamination of fresh longissimus pork muscles, in the study
in [32], visible near-infrared (V-NIR) hyperspectral imaging along with PLSR and VCPA
algorithms were proposed for the prediction and quantification of Escherichia coli O157:
H7 and Staphylococcus aureus. The results demonstrate that the updated VCPA step is a
very effective way to eliminate irrelevant variables.

5.5. Variable Iterative Space Shrinkage Approach (VISSA)

VISSA randomly samples features using BMS sampling and then uses PLS models
to calculate the cross-validation accuracy for each randomly sampled feature. The top
5% of PLS models are then chosen, and features are chosen using the high-valued model
coefficients. To determine whether the chosen features are the best, a PLS model is then
created with the chosen features, and its cross-validation accuracy is compared to the
cross-validation accuracy of the prior model. If the PLS model’s cross-validation accuracy
with the selected features is less accurate than without feature selection, BMS is applied
once more to choose features. VISSA repeats the aforementioned steps until the stopping
criteria are met in order to further optimize the optimal features that have been chosen.
The origin of apples was identified using a method combining a variable iterative space
shrinkage approach with stepwise regression (VISSA-SR), which obtained the characteristic
wavelength effectively and reduced the modeling process’s operating time [35].

5.6. Bootstrapping Soft Shrinkage (BOSS)

The correlation between the input and output data is used by BOSS to choose features.
In contrast to covariance selection, which only considers global feature importance, BOSS
determines the optimal features by considering both local and global feature importance.
BOSS consists of three steps: (1) sampling; (2) MPA; and (3) feature selection. First, BOSS
randomly samples the features of the input data, selecting only 63.2% of the features
without repetition. The cross-validation accuracy of each feature set is determined in
the MPA step using PLS. The absolute weight vector of each PLS model is normalized
during the feature selection step, and the normalized weight vectors of each model are
then added to determine the likelihood of the feature being selected. If the added weight
is high or low, the likelihood of selecting a feature will be high. BOSS therefore assumes
that a high absolute weight value denotes an interesting feature. Finally, BOSS samples the
features based on the probability of feature selection to choose 63.2% of the features using
weighted bootstrap sampling (WBS). The process iterates until a stopping point is reached
such as the maximum number of iterations, the minimum number of optimal features,
or the predetermined cross-validation accuracy. The determination of the adulteration
content in extra virgin olive oil using FT-NIR spectroscopy combined with the BOSS–PLS
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algorithm was proposed in [36]. The results obtained demonstrate the superiority of the
BOSS algorithm in the selection of instructive wavenumbers.

5.7. Iteratively Retaining Informative Variables (IRIV)

IRIV is an exhaustive feature selection approach that uses the Mann–Whitney U test
to determine the optimal features. IRIV first uses BMS to create a set of features and
select a feature of interest in the feature set. The feature of interest is added to the feature
set to calculate the mean cross-validation accuracy, and the feature is excluded from the
feature set to calculate the other mean cross-validation accuracy. To determine whether
the feature of interest is useful, the Mann–Whitney U test is finally run on the two mean
cross-validation values. Iteratively selecting the feature of interest from the first to last
features is computationally expensive. Therefore, IRIV is frequently combined with other
feature selection algorithms. A feature selection algorithm such as VCPA is used to pick
out a select few features from the input data and the selected features are then subjected to
IRIV to further reduce the number of features. Pork quality was assessed using IRIV in [32]
and the purpose of the study was to assess whether it is feasible to create an enhanced
and effective reduced spectrum model for quantitatively tracking food-borne pathogens.
The results of the experiment demonstrate that, in comparison to other methods, variable
combination population analysis combined with a genetic algorithm (VCPA-GA) and
variable combination population analysis combined with iteratively retaining informative
variables (VCPA-IRIV) can significantly increase the model’s predictive effectiveness.

5.8. Competitive Adaptive Reweighted Sampling (CARS)

The CARS algorithm determines the optimal features by assuming that the optimal
features are represented by large absolute PLS regression weights. CARS first calculates the
regression weights using PLS and then normalizes the regression weights. The exponential
decreasing function (EDF) is used to determine the number of features to be retained based
on the values of the normalized regression weights. To further choose features based on
the normalized regression weights, adaptive reweighted sampling is then used. A high
regression weight value denotes a high likelihood that the feature will be chosen, whereas
a low regression weight value denotes a low likelihood that the feature will be chosen.
These steps are iteratively repeated until the stopping criteria, such as the number of
maximum iterations or the desired cross-validation accuracy, are reached. CARS was used
to determine the quality of oilseed [37], rice [38], and seeds [39]. To find the rice-grain
moisture NIR spectroscopy [38], the partial least squares (PLS) and competitive adaptive
reweighted squares (CARS) models were used to model and analyze the spectral data. The
findings demonstrate the effectiveness of the CARS feature selection algorithm.

5.9. Successive Projection Algorithm (SPA)

The SPA is a forward feature selection method that builds on one feature at a time
until the desired cross-validation accuracy is achieved. PLS is used iteratively by the SPA
to calculate the cross-validation accuracy from the first feature to the feature where it stops
increasing. As a result, the SPA combines PLS and forward feature selection into a single
algorithm. The SPA was used to determine the quality of grape seed oil [40]. The study
in [51] proposed an alternative analytical technique for determining the fat content of
commercial chicken hamburgers based on near-infrared (NIR) spectroscopy and the SPA
for interval selection in partial least squares regression (iSPA-PLS), which outperformed
full-spectrum PLS and iPLS in terms of predictive performance.

5.10. Uninformative Variable Elimination (UVE)

The UVE feature selection algorithm removes noisy features. PLS is initially used
to determine the leave-one-out cross-validation accuracy and model coefficient stability
values by dividing the mean of each coefficient by the standard deviation of the coefficient.
The accuracy of the leave-one-out cross-validation is then calculated by building a new
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model on the noisy data after adding uniform random noise with a noise level of 10−10.
The coefficient stability values for the model made with noisy data were then calculated
and features larger than the coefficient stability values for the model made with noise-free
data were eliminated. It is possible to combine UVE and the SPA to remove noisy and
uncorrelated features. UVE and MCUVE were used to determine the adulteration of virgin
olive oil [41]. The study in [52] proposed the UVE-SPA method, a successive projection
algorithm (SPA) combined with uninformative variable elimination (UVE), which was
effectively used for variable selection in the NIR spectroscopic analysis of nicotine in
tobacco lamina and active pharmaceutical ingredients in intact tablets.

5.11. Monte Carlo Uninformative Variable Elimination (MCUVE)

MCUVE is an extension of UVE that lowers computational complexity by replacing
leave-one-out cross-validation with random leave-one-out cross-validation. The process
of calculating the coefficient stability values of noisy data is also skipped by MCUVE by
eliminating features with low coefficient stability values. To predict pH in lime concretion
black soil, the study in [53] used CWT to preprocess the soil spectra, followed by ELM
combined with four spectral variable selection methods, GA, SPA, MCUVE, and CARS,
and the full spectrum. According to the results of the experiment, the MCUVE feature
selection algorithm had the lowest residual prediction deviation.

5.12. Randomization Test (RT)

The RT is a two-step process for feature selection. The input data are used to learn
a model and the output data are randomly permuted in the first step. This process is
repeated numerous times to learn various random models. With the input and output data,
the model is learned in the second step. Then, features that had smaller normal model
coefficient values than random model coefficient values were removed. Compared to CARS
and UVE, the RT is a more efficient method for feature selection in NIR datasets [54] despite
being computationally intensive due to its random permutation. In the study in [55], a
novel method known as RT-PLS for wavelength selection in NIR spectral analysis was
proposed based on the randomization test. In the suggested approach, a statistic can assess
the significance of the variables in a spectrum.

5.13. Variable Importance in the Projection (VIP)

VIP uses PLS coefficients to select features. To achieve this, VIP first learns the model
of the input and output data before determining the importance of the features based on
the coefficients weighted by the output data. Weighted coefficients with values higher
than 1 are selected. VIP was used to determine the quality of nursery plants. Three
scientifically recognized indicators—the vector of the regression coefficients, the selectivity
ratio, and VIP—were used to analyze the most crucial variables to distinguish between
these varieties [44]. The experimental results show that VIP can select the key variables to
distinguish between these varieties.

5.14. Jackknife Procedure

The jackknife feature selection procedure generates PLS models equal in number to
the number of training samples by removing one sample at a time. The ratio between the
model coefficients and the standard deviation of the model coefficients is then calculated
for each feature. A high ratio value denotes the usefulness of a particular feature. The
study in [56] proposed analyzing NIR spectroscopy data using a functional approach. They
used an approach based on the leave-one-out jackknife procedure technique to assess the
variance in such estimates.

5.15. Minimal Redundancy Maximal Relevance (mRMR)

The mRMR algorithm minimizes redundancy and maximizes the relevance between
features. Relevance describes the highest correlation between the selected features in the
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input data and output data and redundancy describes the smallest correlation between
those features in the input data. Redundancy can be determined for discrete and con-
tinuous data using mutual information and Pearson’s coefficient, respectively. Similarly,
mutual information and F statistics are used to determine the relevance of the discrete
and continuous data, respectively. In order to select a feature with the least amount of
redundancy and the greatest amount of relevance with respect to the selected features in
the pool, mRMR iteratively selects the features from the input data that are not included in
the pool. mRMR reiterates this procedure until the stopping criteria such as the maximum
number of features are reached. The study in [57] investigated a novel feature selection
technique, the mRMR, for choosing the best wavelengths from the visible to near-infrared
spectra of the hyperspectral imaging data for classifying foreign matter in cotton. The
experimental results show that the selected wavelengths are compatible with a variety of
cotton foreign matter classifiers.

5.16. Correlation-Based Feature Selection (CFS)

The CFS method seeks to maximize relevancy between features while minimizing
redundancy. In contrast to mRMR, the CFS stopping criteria are based on the shift in
the relevance-to-redundancy ratio that occurs when a new feature is chosen. This means
that CFS stops selecting features if the change in the ratio is marginally smaller than a
predefined value. In the greedy feature selection method used by CFS, features are added
to the pool if they produce the highest ratio of relevance to redundancy. Backtracking
can be used to further improve the selection process after adding a feature to the pool by
removing features one at a time and calculating the ratio between relevance and redundancy.
Backtracking steps should be limited to lessen the computational complexity. CFS was
used to determine the quality of chicken meat [14]. To achieve an efficient dimensionality
reduction, correlation-based feature selection (CFS) was used to remove irrelevant and
redundant information from the spectra.

5.17. LASSO and Elastic Net

LASSO consists of two terms, where one is the OLS term and the other is the L1 weight
penalization term. The OLS term evaluates the generalization capability of the selected
features and the L1 term selects the features by shrinking the weights representing the
unimportant features to zero. LASSO was used to determine the quality of diesel in [45] and
the goal of the study was to create a model for predicting diesel fuel parameters using data
from a near-infrared spectroscopic analysis of the fuel. The results show that LASSO variable
selection, followed by regression tree modeling, produced the best prediction accuracy.

Elastic net is LASSO with an extra L2 weight penalization term. From a group of
correlated features, LASSO will only select one feature. Elastic net resolves this shortcoming
of LASSO with the aid of the extra L2 penalization term. As a result, elastic net selects more
features than LASSO and is better suited for multicollinear data such as NIR data [47].

5.18. Discussion

NIR spectra data contain a large number of features and low number of samples.
Therefore, NIR spectra data are sparse because there are few data samples to cover this vast
dimensional space, a problem known as the curse of dimensionality. The use of a features
selection algorithm to reduce the number of features so that NIR spectra data are dense in
low-dimensional spaces is a common approach to resolving this issue.

The composition of a sample is described by a set of particular wavelengths that
are identified by feature selection. For instance, the amount of moisture in tea can be
determined using wavelengths between 6694∼7293 cm and 7892∼8193 cm. These specific
ranges were determined by applying a feature selection algorithm [28]. The fact that
the first-order O-H stretching bond frequency doubles at 7143 cm [58] indicates that the
feature selection algorithm has found potential ranges for the chosen amount of moisture.
The number of features are decreased through feature selection, which also lowers the
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computational complexity of the machine learning models. Because of this, such machine
learning models with low complexity can be used in portable NIR devices.

6. Traditional Machine Learning Methods for NIR

The machine learning architectures for NIR reported in the literature can be divided
into two categories: traditional machine learning methods and deep network architectures.
In a typical pipeline architecture based on traditional machine learning techniques, feature
learning is used to select interesting features from the input data and then traditional
machine learning techniques are used to model those features to produce the output
data. Its limitation is the restricted generalization capability for complex classification
problems due to the limited representation ability of complex functions in the case of limited
samples and computing units. Applications of traditional machine learning methods to
NIR spectroscopy that have been reported in the literature are compiled in this section. A
summary of traditional machine learning methods in NIR is compiled in Table 2.

NIR data are affected by multicollinearity due to fundamental, overtone, and combi-
nation peaks. Multicollinearity is the redundant representation of the same component
by multiple features such as the O-H bond in the sample. A sample should ideally have a
single feature for each component. The ability of traditional machine learning algorithms
to generalize is negatively impacted by the linear relationship between redundant features.
By removing these redundant features, traditional machine learning methods for resolv-
ing multicollinearity in NIR can be used including (1) partial least squares (PLS) [59,60];
(2) extreme learning machines (ELM) [61–63]; (3) support vector regression (SVR) [64] and
support vector machines (SVM) [65]; and (4) single-layer feed-forward neural networks
(SLFN) [66].

6.1. Partial Least Square (PLS)

As a result of multicollinearity, NIR datasets lack full rank and cannot be modeled
using ordinary least squares (OLS). PLS retains the input data features that have a strong
correlation to the output data and learns a regression model between those features and
the output data. In contrast to the random noise that PLS removes, extensions of PLS
such as orthogonal partial least squares (OPLS) aim to remove the structured noise [67].
LASSO and PLS are combined for feature selection and NIR data analysis, respectively, in
another variant known as sparse partial least squares (SPLS) [68]. A detailed explanation of
PLS variants is available in [69]. The PLS method is one of the most frequently employed
methods for analyzing NIR spectral data. For instance, partial least squares (PLS) regression
was used in [70] to develop a calibration model for the prediction of the concentration of
two antioxidants, Irganox 1010 and Irgafos 168, in high-density polyethylene. The findings
show that PLS regression can be used to extract valuable chemical information from NIR
spectral data.

6.2. Extreme Learning Machine (ELM)

The output of the ELM feature-embedding algorithm is a random sample of the
features of the input data. In ELM, random sampling is accomplished by multiplying the
input data with a random matrix that randomly scales and rotates the input data. If there
are sufficient steps in random sampling, ELM feature embedding can learn the uncorrelated
features. The number of hidden neurons in an ELM determines the number of random
sampling steps. Therefore, more ELM hidden neurons are preferred. Finally, ELM develops
a regression model between the output data and the ELM feature embedding. A detailed
explanation of the variants of ELM can be found in [71]. The in [72] proposed a novel
recognition method that employs a near-infrared (NIR) spectrometer and a multilayer–
extreme learning machine (ML-ELM) algorithm to quickly and non-destructively identify
the production regions of flue-cured tobacco leaves. The results show that different Yunnan
tobacco-leaf-producing regions can be quickly, precisely, and non-destructively identified
using a combination of NIR and ML-ELM.
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Table 2. Summary of traditional machine learning methods used in NIR.

Ref. Publish Date NIR Task Models Merits Limitation

Apr. 2007, [58] Wine Principal component analysis
(PCA)+partial least squares (PLS) Can effectively calibrate.

The creation of NIR calibrations for wine
compositional parameters was not the aim
of this study.

May 2018, [73] Olive oils Partial least squares regression (PLSR)
The major and minor components of olive
oils can be simply, quickly, and
simultaneously quantified.

The performance of individual sterol
form-prediction models was subpar.

Jun. 2017, [74] α-tocopherol and total
tocopherol contents PLS and discriminant analysis (PLS-DA) Quick and practical techniques used in the

industry for sorting olive oils. The number of samples were limited.

Mar. 2021, [75] Moisture, protein, and fat
in meat

Orthogonalization
(SPORT)/orthogonalization
(PORTO)+PLSR

Reduced the error and bias by up to 52%
and 84%, respectively.

A combination of data from various
scatter-correction techniques was required.

Apr. 2019, [39] Rice-grain moisture PLS+competitive adaptive reweighted
squares (CARS) Rapid determination of rice-grain moisture.

The results of stability and transitivity
verification experiments for models were
not provided.

Dec. 2019, [76] Rice flour types PLS-DA+support vector machines (SVM) High level of accuracy. The robustness of the model needs to be
verified further.

May 2020, [77] Multiple adulterations of
flaxseed oil.

Orthogonal partial least squares–one-class
partial least squares (OPLS-OCPLS)

Can effectively detect single, dual, or
multiple adulterants with high accuracy;
can rapidly detect multivariate adulteration
of known targets.

The types of actual adulterated flaxseed oils
were insufficient and the recognition
accuracy of 95.8% still needs to
be improved.

Aug. 2020, [78] Milk powder Multivariate curve resolution–alternating
least squares (MCR-ALS) Can correctly identify. Inadequate milk samples were tainted with

melamine and sucrose.

Dec. 2021, [79] Hemoglobin concentration
of blood

Monte Carlo+least absolute shrinkage and
selection operator+extreme learning
machine (MC-LASSO-ELM)

Better stability and the highest accuracy.

The model operation procedure was
complicated and the MC results for a subset
of samples had a direct impact on the
results of the complete model.

Sep. 2017, [80] Osteoarthritis PCA+SVM+PLS
Demonstrated the capacity of NIR
spectroscopy to monitor changes in the
articular cartilage matrix.

The ability to assess the capacity of NIR
spectroscopy to estimate collagen-related
information was not provided.

Mar. 2020, [81] Soil organic matter (SOM) Savitzky–Golay (SG)+standard normal
variate (SNV)+first derivative (FD)+PLSR

Rapid test; a simple and nondestructive
analytical method.

The preprocessing procedure was
complicated; preliminary
experimental results.



Sensors 2022, 22, 9764 16 of 32

Table 2. Cont.

Ref. Publish Date NIR Task Models Merits Limitation

Mar. 2017, [82] Coffee Genetic algorithm+SVM A fast and effective method without the
production of chemical wastes. Sample selection was required.

Apr. 2022, [83] Sulfur hexafluoride GA-ELM
Higher prediction accuracy; operating
efficiency; better stability; generalization
performance.

It was challenging to effectively extract
features using the GA algorithm.

Oct. 2015, [84] Seed oil MLR+SVR+ANN Fast, simple, and lower prediction error. Better wavelength selection methods for
use as input signals should be addressed.

Jun. 2017, [33] Acid value in peanut oil GA-Si-PLS Simultaneous and rapid measurement of
acid value in peanut oil.

All of the algorithms compared were
simple PLS-based algorithms.

Sep. 2017, [85] The rancidity of perilla oil ANN multivariate analysis methods ANN models produced the best
prediction results.

Only PCR and PLSR were used to compare
the experimental results and the model’s
parameters can be further optimized.

Sep. 2017, [86]

Oil, phenols, glucosinolates,
and fatty acid content in the

intact seeds of oilseed
Brassica species

Modified partial least squares (MLPS) Higher prediction accuracy.

The NIRS-based equation should be
improved further by including samples
from various environments with an even
greater range of values.

Nov. 2017, [87] Copaiba oils PLSR Fast; no sample preparation was required;
reliability.

More algorithms must be compared to
demonstrate the superiority of PLSR.

Jun. 2019, [36] Olive Oil BOSS-PLS Rapid quantitative analysis. The experimental samples were not
diverse enough.

Nov. 2019, [6] Sugar content estimation of
citrus Stepwise multiple linear regression (SMLR) Higher detection efficiency. Online citrus experiment detection

was required.

Aug. 2018, [14] Chicken meat SVM; Decision trees Avoided complex configurations or need
for expertise in a particular technique. Accuracy could be further improved.

Apr. 2016, [88] Sesame seeds Multi-elemental discriminant analysis Classification accuracies of more than 90%.
Further seed sample analysis was necessary
in order to increase the
discrimination accuracy.
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6.3. Support Vector Machine (SVM) and Support Vector Regression (SVR)

SVM is a classifier that learns a hyperplane that maximizes the difference between two
classes. The hyperplane is computed by locating data points close to the class boundary;
these data points are called support vectors (SV). A regressor called SVR learns a hyperplane
based on two boundary planes that are equally spaced from it. Most data points to be
learned are captured by the boundary planes. Multicollinearity is eliminated using a
regularization term to remove the dependent data points in the SVM and SVR algorithms.
The linear relationships between the input data and output data are modeled using SVM
and SVR. SVM and SVR both model linear relationships between the input and output data.
A kernel employs the inner product in a high-dimensional space to assess the similarity
between data points. The hyperplane between the kernel and the output data is learned by
the kernel SVM and SVR. A detailed explanation of SVM and SVR can be found in [89]. The
work in [90] proposed using a combination of near-infrared (NIR) imaging spectroscopy
and support vector machines (SVM) to detect meat and bone meal (MBM) in compound
feeds. SVM performed significantly better than the other two stoichiometric PLS and ANN
algorithms, with a significantly lower rate of false-positive detection.

6.4. Single-Layer Feed-Forward Network (SLFN)

SLFNs [66] are networks that have an output layer and one hidden layer. An SLFN’s
hidden nodes can be neuron-like sigmoid hidden nodes or Fourier hidden nodes. An
SLFN’s hidden- and output-layer weights are trained with back-propagation, which calcu-
lates the gradients of the network parameters at each layer, and use gradient descent to
update the network parameters at each layer. The uncorrelated features of NIR datasets are
learned using regularization. The study in [91] investigated the potential of combining an
SLFN, which consisted of 451 neurons in the input layer, 1 to 30 neurons in the hidden layer,
and a single neuron in the output layer, and near-infrared spectroscopy (NIRS) to predict
sensory attributes. The results indicated that the optimized SLFN architecture applied to
NIR spectra correctly classified all samples.

6.5. Decision Tree (DT) and Random Forest (RF)

A decision tree (DT) [92] is a non-parametric architecture that consists of nodes in a
tree structure. The nodes consist of a decision rule based on input data that decides whether
to transverse the right- or left-side nodes’ and the bottom nodes’ output data. A DT is used
for both classification and regression tasks and the main advantage is that the algorithm is
interpretable. Information gain is a popular method for building nodes in a tree that uses
entropy to calculate the amount of information each feature in the input data retained before
determining the output data. The study in [93] presented several examples of how DTs and
their ensembles can be used in the analysis of NIR spectroscopic data both for regression
and classification. The experimental finds demonstrate that the DT method is very efficient
for the classification/discrimination of NIR data including multivariate datasets.

A random forest (RF) [94] is an ensemble of DTs, where each DT is created by a subset
of the input data. As a result, each DT architecture is distinct from the others and decisions
are made by a majority vote. However, for RF to function, the subsets of the input data
used to create the individual trees should be uncorrelated. The same DT architecture
could be produced by correlated subsets of the input data. The study in [95] proposed to
determine the food dye indigotine in cream using near-infrared spectroscopy technology in
conjunction with a random forest model. The experimental results presented in the study
show for the first time that NIRS in conjunction with a random forest model is an effective
tool for the quick and non-destructive prediction of indigotine pigment in cream.

6.6. Discussion

The investigation of different applications has been the primary research focus of
NIR. NIR has been used extensively in applications where determining the quality of
food is time consuming due to the use of intrusive approaches [14,33,38,73–76,96,97]. The
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adulteration of expensive food items has become widespread and NIR has been used
to successfully determine adulteration levels [36,77,78,87,98–100]. As a low-cost quick
method for identifying illnesses, NIR has also been used in health applications [79,80].
Due to the fact that the geographic location only provides a cursory indication of the
quality of a food or mineral, NIR is able to determine the location of the production of
these items [81,82,101]. In addition, NIR is also capable of determining wood quality [12],
determining the age of polyvinyl chloride (PVC) [102], assessing water pollution [103],
determining sulfur hexafloride concentrations [83], determining the adulteration of diesel
blends [104], classifying types of fruits and vegetables [105], classifying types of seeds [106],
and determining stem rot in oil palms [107].

Some research has investigated developing new algorithms for NIR and performing
extensive hyperparameter selection to determine the efficacy of the proposed algorithms
such as ensemble extreme learning machine (EELM) [108], boosting ELM [109]. Hyperpa-
rameter selection for SVM based on support vector (SV) and grid-based searches has been
investigated for NIR so that the learned model is interpretable [110].

Data fusion has been used in NIR to combine information from different sensors
that capture different information such as determining the adulteration level of honey
using NIR and MIR [111], determining the contents of rice flour using NIR and MIR [112],
determining rice storage life based on storage conditions using NIR and gas sensors [113],
enhancing tea processing using NIR and computer vision [114], determining the quality of
plant seeds using NIR and X-ray images [115], and determining the quality of fruits using
two portable NIR instruments with different ranges [116].

7. Deep Architectures for NIR

Deep architectures are multilayered architectures that integrate classification or regres-
sion tasks end to end. They are capable of approximating complex functions by learning
a deep nonlinear network structure, defining the distributed representation of the input
data, and showcasing a potent capacity to learn the key properties of datasets from a lim-
ited number of test sets. Deep learning neural networks are able to automatically learn
effective feature representations by applying nonlinear transformations to raw data fea-
tures. The most common deep architectures and their applications in NIR spectroscopy are
summarized in this section. A summary of deep architectures in NIR is compiled in Table 3.

The most common deep architectures include (1) stacked autoencoders (SAEs) [117];
(2) variational autoencoders (VAEs) [118]; (3) convolutional neural networks (CNNs) [119];
(4) CNNs with recurrent neural networks (RNNs) [120]; (5) multilayer–extreme learning
machines (ML-ELMs) [121]; (6) local receptive field–extreme learning machines (LRF-
ELMs) [122]; and (7) generative adversarial networks (GANs).

7.1. Stacked Autoencoder (SAE) and Variational Autoencoder (VAE)

An SAE consists of an encoder that learns a low-dimensional manifold of the input
data and a decoder that reconstructs the input data. In reverse order, the decoder has the
same number of layers and hidden neurons as the encoder. Being a multilayer network,
an SAE converges to a local minimum. To improve convergence, a two-step learning
approach is used. A single-layer autoencoder (AE) learns the encoder–decoder weights for
each layer in the greedy layer-wise learning step before fine-tuning the SAE. As a result,
the SAE divides the multilayer SAE learning into two phases: single-layer AE learning
and multilayer AE fine-tuning. Wojciech et al. at the AGH University of Science and
Technology employed three different models to evaluate soil and land: an SAE, a CNN,
and the stack model, which consists of a collection of multilayer perceptron algorithms
with two distinct methods for regression estimation that analyze the Vis-NIR spectral
response signal [123]. Fu et al. proposed a stacked sparse autoencoder combined with
a cuckoo search (CS)-optimized–support vector machine (SSAE-CS-SVM) for analyzing
the near-infrared (NIR) hyperspectral data of maize seeds (871.61–1766.32 nm) to achieve
maize seed variety identification [124].
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Table 3. Summary of deep architectures used in NIR.

Ref. Publish Date NIR Task Models Merits Limitation

Dec. 2022, [125] Bright-blue pigment
in cream Autoencoder–deep learning (AE-DN) Lower calculation costs, high accuracy, and

faster speed with samples undamaged. Redundant signal preprocessing steps.

Sep. 2019, [126] Aristolochic acids (AAS) 1D CNN Without feature extraction, could effectively,
nondestructively, and rapidly identify.

The experimental data sample was limited
and no comparisons to other deep learning
methods were made.

Jun. 2020, [127] Drugs CNN-based transfer learning Higher classification accuracy with fewer
training data.

Validation was performed with small
experimental datasets; does not compare
with state-of-the-art transfer
learning models.

Aug. 2020, [128] Salmon, tuna, and
beef delicacies CNN-based machine learning

With a shift-invariant feature, the variation
caused by the use of multiple devices in a
real-world setting can be minimized.

The types of freshness recognition must be
expanded, real-world scene applicability
must be improved, and recognition accuracy
can still be improved.

Sep. 2021, [129] Fresh fruit Multi-output 1-dimensional convolutional
neural network

Lower RMSE; easily adaptable to
multi-response modeling by altering the
output of the fully connected layers.

The use of transfer learning to process,
update, and transfer a single model to
integrate multiple responses was
not discussed.

Jun. 2019, [130] Soil Convolutional neural network

Multitask learning ability; multidimensional
input utilization; higher performance;
interpretability of the important wavelength
variables used to predict soil properties
through sensitivity analysis.

Data hungry; many hyperparameters;
requires more advanced
computing hardware.

Nov. 2021, [131] Tea Standard normal variate (SNV)+TeaNet;
SNV+TeaResNet; SNV+TeaMobilenet

A quick, non-intrusive, and environmentally
friendly solution with 100% accuracy.

Various NIR data types necessitated the
selection of the best data
preprocessing method.

May 2021, [132] Dried mango Chemometric approaches + DL models Improved the predictive performance of DL
models; achieved the lowest RMSEP. The use of large datasets is required.

Dec. 2020, [13] Soil total nitrogen
(STN) content

Three different structured CNN
models+inception

Good performance and robust
generalization.

A sufficient number of the same types of soil
samples with similar physical structures
were required; the experimental results of
the algorithm were heavily influenced by
preprocessing such as feature selection.
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Table 3. Cont.

Ref. Publish Date NIR Task Models Merits Limitation

Oct. 2020, [133] Coal
Improved coyote optimization algorithm
(I-COA) +local receptive field-based–extreme
learning machine (LRF–ELM)

Improved the economy, speed, and accuracy
while more effectively extending the spectral
properties of coal.

Long training time.

Dec. 2020, [134] Soil
A joint convolutional neural network and
recurrent neural network architecture
(CCNVR)

A significant improvement in prediction
accuracy and a better ability to migrate.

With fewer training samples, the model’s
robustness and accuracy will
significantly decrease.

Jun. 2021, [135] Salt content in
saline-alkali soil (SAS)

Convolutional neural network–gravitational
reservoir-computing–extreme learning
machine (CNN-GRC-ELM).

A fast, low-cost, and accurate method.
Does not compare to other state-of-the art
deep learning models; the experimental
sample data were insufficient.

Jun. 2022, [136] Polyethylene β-variational autoencoder (β-VAE) Improved ability to analyze spectroscopic
data from complex heterogeneous systems.

More algorithms needed to be compared
than with the PCA algorithm.

Oct. 2020, [137] Water pollution An improved convolutional neural network
(CNN)+decision tree

Improved NIR prediction accuracy;
rapid determination.

Only preliminary experimental results; the
decision tree’s parameters had an impact on
the model’s performance.

Jan. 2020, [138] Cereal
Stacked sparse autoencoder (SSAE)+affine
transformation (AT)+extreme learning
machine (ELM)

A quick, effective, and economical method
for analyzing cereal characteristics with
good prediction results.

The test samples were insufficient in terms of
quantity and variety.

May. 2020, [139] Cells Mie extinction–extended multiplicative
signal correction (ME-EMSC)

In terms of the speed, robustness, and noise
levels, the DSAE performed better than Mie
extinction–extended multiplicative signal
correction (ME-EMSC).

In the experimental preliminary results, a
sizable number of additional experimental
samples were required.

Nov. 2020, [140] Soil CNN
When the number of calibration samples
exceeded 2000, the CNN was more accurate
than the machine learning models.

Larger datasets should be explored to test
the generalization of the accuracy vs. sample
size and explore whether the deep learning
CNN model ever reaches a plateau in
accuracy.

Nov. 2020, [141] Physical distortions Extended multiplicative signal
augmentation (EMSA)+SpectraVGG

The convergence occurred much more
quickly and the results were better.

The final model results were strongly
influenced by the methods used for data
augmentation and signal preprocessing.
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The encoder output of a single-layer AE is given by

h = f (xW1 + b1) (3)

where f () is a nonlinear activation function such as sigmoid and W1 and b1 are the weights
and bias of the encoder, respectively. The decoder output of a single-layer AE is given by

z = f (hW2
T + b2) (4)

where z is the reconstructed input x and W2 and b2 are the weight and bias of the decoder,
respectively. The following objective function is minimized by the AE and SAE:

Jr = Ex

[
||x− z||22

]
(5)

where Ex is the expected value. Finally, the SAE decoder layer is removed and, depending
on the task, a classification or regression layer is added. Other SAE variants, such as the
stacked contractive autoencoder (SCAE) [142], learn a low-dimensional manifold that is
invariant to small changes and is given by

Jc = Jr + ∑
i

∑
j

( δ(hi)

δxj

)2
. (6)

The stacked denoising autoencoder (SDAE) [143] learns a low-dimensional manifold
that is noise-invariant and given by

Jd = Ex

[
||x̃− z||22

]
(7)

where x̃ is randomly corrupted input data.
A low-dimensional manifold is learned by the AE, which is advantageous for a

subsequent task such as classification or regression.
A VAE is a generative model that generates samples by modeling the joint distribution

P(x, z). The joint distribution is calculated by modeling the conditional distribution P(x|z)
and multiplying by P(z) as P(x, z) = P(x|z)P(z). As a result, the VAE encoder maps
the input data to a low-dimensional manifold with Gaussian distribution since the joint
distribution P(x, z) can be calculated if the distribution of the low-dimensional manifold
is known. Therefore, the encoder can be removed from the VAE and a random Gaussian
distribution value can be generated and passed to the decoder to generate a sample. The
VAE optimization is given by

Jsvae = Jsae + KL(q(z|x)||N(0, 1)) (8)

where N(0, 1) is the normal distribution with a mean of zero and a variance of one and
q(z|x) is the approximated output distribution of the encoder.

7.2. Convolutional Neural Network (CNN)

A CNN learns local features such as NIR data peaks by employing a series of con-
volutional and pooling layers, followed by a fully connected layer for classification or
regression. Convolutional layer weights are referred to as kernels and each kernel connects
only to a portion of the input data referred to as the local receptive field (LRF). To process
all of the input data, the kernels are moved from one end to the other, covering all of them
with overlap. The kernel size, kernel movement or stride, and number of kernels are the
hyperparameters given by the user. The convolutional layer outputs a feature map for each
kernel by calculating the dot product of each LRF and kernel. Each kernel connects only
to an LRF, allowing the kernel to acquire local features. There are two different outputs
from a convolutional layer: (1) same; and (2) valid. In order to give the feature map after
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the convolutional operation the same dimension as the input data, the same convolutional
layer increases the dimension of the input data by padding zeros. The input data are not
padded by the valid convolutional layer and the feature map has a lower dimension than
the input data. The 2D convolutional operation is given by

h(k)1 = ∑
i

∑
j

W1(k) · x(i, j) (9)

where W1(k) is the k-th kernel and h(k)1 is the k feature map of the convolutional operation.
The feature map is downsampled by the addition of a pooling layer after a convolutional
layer. To learn the high-level features, the pooling layer combines the low-level features.
The pooling layer consists of a kernel with fixed values that moves from one end to the
other covering all previous layers’ outputs and uses a maximum or mean operation to
calculate the output instead of the dot product. The 2D max-pooling operation is given by

h(k)2 = maxi(i,j)∈Rh(k)1(i, j) (10)

where R is the region of max pooling that is used. The convolutional and pooling operations
are illustrated in Figure 4.

Figure 4. Illustration of a convolutional and pooling layer used in CNN.

When designing a CNN, the main research direction has been to improve the gen-
eralization capability of the CNN by increasing the layers and resolving the problems
that are encountered when increasing the layers. AlexNet was the first CNN applied to
image classification tasks and was shown to be capable of using the graphical processing
unit (GPU) to reduce the training time [144]. VGGNet [145] further expanded AlexNet
by increasing the number of layers from 8 to 19 and reducing the kernel sizes from 11
to 3, which improved the model’s generalization ability. One of the main issues with
increasing the number of CNN layers beyond 19 is that the initial layers are not updated as
the gradients become smaller at each layer or explode as a result of the large error of the
deep CNN network. ResNet [146] was the first network to use 152 layers and solved the
vanishing and exploding gradient problem with skip connections between a block of layers.
However, some layers did not acquire any useful capabilities. To avoid this issue, Wide
ResNet [147] reduced the number of layers to 40 while increasing the number of feature
maps of each layer.

The CNN architecture uses various types of layers to learn a model that maps the
input data to the output data and captures important features. As a result, different CNN
architectures are employed for different types of data. For example, for speech-to-text
conversion, a CNN architecture with convolutional and recurrent layers was used [148]
because the recurrent layers can capture long-term temporal information. DeepSpectra, a
CNN architecture with three convolutional layers and an inception module, was also intro-
duced for NIR data [149]. The inception module consisted of parallel convolutional layers
with different kernel sizes. The inception module trained sparse filters by distributing the
features among parallel convolutional layers to improve generalization capacity. NIR data
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features were sparse because only a few features described the composition of the sample
and were captured by the convolutional layers with the inception module in DeepSpectra.

7.3. Recurrent Neural Networks (RNNs) and Attention

An RNN is used for time-series data in natural language processing (NLP), speech-
emotion recognition (SER), speech-to-text (STT), and other processes [150]. Since wave-
lengths are measured at regular intervals, the wavelength axis is regarded as the time-series
axis in NIR data.

There are many types of RNNs such as simple RNNs, long short-term memory
(LSTM) [151], and gated recurrent units (GRUs) [152]. An RNN computes the hidden
layer based on the previous time step, and the output of a simple RNN’s hidden layer is
given by

h(t) = f (W1x(t) + W2h(t− 1) + b1) (11)

where W1 is the weight input data, W2 is the weight of the previous hidden layer’s output
h(t− 1), and b1 is the bias. The vanishing and exploding gradient problem affects simple
RNNs with long time steps. LSTM solves the vanishing gradient problem by using memory
to remember the gradients of previous time steps. A GRU is a streamlined version of LSTM
with lower computational complexity. GRUs have been shown to perform similarly to
LSTM on datasets with a limited number of data samples, but LSTM outperforms GRUs on
datasets with a large number of samples.

RNNs output a series of hidden states at each time step when used for classification or
regression, with the most recent state or statistics from the hidden states, such as the mean
or standard deviation, used as inputs. However, these methods do not always choose the
most appropriate hidden state. In contrast, an attention mechanism can be used to select
the best-hidden state for an RNN for classification or regression.

In language translation, attention is first introduced to identify key words. Figure 5
shows a recurrent layer, which is followed by an attention mechanism. Attention achieves
this by using weights to quantify the significance of each RNN’s output, which is given by

s =
T

∑
t

α(t)h(t) (12)

where α(t) is a weight learned by attention to measure the importance of the RNN’s hidden
state and is calculated as

α(t) = so f tmax(v(t)) (13)

where W3 is a learnable weight and v(t) is an SLFN output, which learns the significance
of the RNN’s hidden state and is given by

v(t) = W4tanh(W3h(t) + b2) (14)

7.4. Deep Extreme Learning Machine Architectures

ELM was first introduced as SLFN and has demonstrated good performance for data
with a limited number of training samples such as NIR data [153]. Due to the fact that
other deep architectures require a large number of training samples, ELM was extended
to deep architectures in order to improve the generalization capability for data with few
training samples.

Multilayer–extreme learning machine (ML-ELM) is developed by stacking extreme
learning machine–autoencoder (ELM-AE) output weights in order to learn a low-dimensional
manifold with a limited number of training samples. In contrast to SAE, ML-ELM employs
a more straightforward training methodology, where the classification or regression layer
is learned after a single step of greedy layer-wise training. As a result, ML-ELM does not
require any fine-tuning, which shortens the training period. Furthermore, the ELM-AE’s
input weights are chosen at random and are not tuned, whereas the output weights are
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calculated using a closed-form solution. The ELM-AE’s hidden layer output is calculated
as follows:

h = f (xW1 + b1) (15)

where f () is a nonlinear activation function such as sigmoid and W1 and b1 are the untuned
random weights and biases. The ELM-AE’s output is as follows:

z = hWT
2 (16)

where z is the ELM-AE’s output and W2 is the output weight of the ELM-AE calculated
using a closed-form solution as follows:

WT
2 = (HT H + 1/C)−1HTX (17)

where C is a hyperparameter given by the user. In the case of a one-layer ML-ELM, the first
hidden layer of the ML-ELM is calculated as follows:

h1 = f (xW2). (18)

The ELM-AE calculates and stacks the subsequent layers of ML-ELM weights, as
shown in Equations (17) and (18), respectively.

An LRF-ELM is a CNN architecture with one or more convolutional layers followed
by a max-pooling layer and a classification or regression layer. In contrast to conven-
tional convolutional layers, which update their kernel weights using back-propagation,
the LRF-ELM’s kernel weights are orthogonally random and not tuned. Singular value
decomposition (SVD) is applied to the random kernel weights to produce orthogonal
random kernel weights. Features that are randomly scaled and rotated are contained in
random kernel weights, whereas the features in the orthogonal random weights are simply
rotated at random. Randomly scaled features are rendered useless and only randomly
rotated features are useful, as the pooling layer introduces scale invariance.

Figure 5. Recurrent layer with an attention mechanism.

7.5. Generative Adversarial Networks (GAN)

Due to the limited number of training samples available for NIR data, GAN is uti-
lized to generate new training samples [154]. GAN is a generative model composed of a
generator network that generates data from a random vector sampled from a Gaussian
distribution and a discriminator that attempts to determine whether the generated data
resemble the actual data, as depicted in Figure 6. Therefore, the goal is to maximize discrimi-
nator loss while minimizing generator loss. Fully connected neural network, CNN, or RNN
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architectures, which are selected based on the data type, could be used as the generator and
discriminator. A CNN+RNN architecture for the generator and discriminator would be
appropriate for NIR data because it can capture local features, as well as long-term relation-
ships between the wavelengths. Zheng et al. proposed a modified bidirectional generative
adversarial network (BI-GAN) method for classifying the near-infrared spectra of drugs,
given the dilemma of insufficient samples within a class and sample imbalance between
classes. The results demonstrate that CNN-based modeling outperformed the stacked
autoencoder, which had the highest error rates when estimating soil characteristics [155].
Yang et al. proposed machine learning algorithms combined with NIR spectroscopy to
accurately distinguish cumin and fennel from three different regions, Turpan, Yumen, and
Dezhou, with all model parameters remaining unchanged [156]. The GAN optimization is
as follows:

minSGmaxSDV(D, G) = Ex

[
log(D(x))]

]
+ Ez

[
log(1− D(G(z))

]
(19)

where D() is the discriminator, G() is the generator, and z is the random vector sampled
from a Gaussian distribution. A GAN classifies generated and real data using a two-step
learning process, where the first step only updates the discriminator weights. In the second
step, the generator weights are modified to generate data in an attempt to deceive the
discriminator into believing it is real data. The majority of architectures described in the
literature use ML algorithms to map the NIR absorption values to the desired output.

Figure 6. The structure of a GAN network.

In contrast to VAE, which uses the mean square error (MSE) to measure reconstruction,
a GAN uses a discriminator model to measure reconstruction. The MSE is not an appropri-
ate metric for measuring reconstruction because it does not account for the significance of
the features. As a result, GAN reconstructions have been perceived by users to be more
realistic than VAE reconstructions.

7.6. Discussion

Although most traditional machine learning methods are used for NIR data from
liquid or gas samples, deep architectures are used for NIR data from solid samples. Deep
architectures can reduce the variance introduced by solid samples, which have variable
path lengths due to scattering. Deep architectures are used in NIR to determine the quality
of medicines [125–127,157], meats, vegetables and fruits [128–132], the contents of soil
and minerals [13,133–135,158], cracks in water pipes [136], the manufacturing date of
paper [159], and water pollution [137], as well as in the cursory evaluation of malady [160].
Experiments conducted on four distinct datasets containing solid samples demonstrated
that the number of training samples influences the generalization ability of deep learning
algorithms [140,141].

NIR data have a limited number of training samples due to the difficulty of obtaining
labeled data. Generating data using a GAN is one method for increasing the number
of training samples [154]. However, the generalization ability of the machine learning
algorithm can be influenced by the quality of the generated data. Therefore, As a result,
a labeler should evaluate the generated data to determine whether they are of sufficient
quality for training.



Sensors 2022, 22, 9764 26 of 32

Deep architectures such as SAE and VAE are used as a nonlinear feature reduction
approach as opposed to the PCA feature reduction approach commonly used by traditional
machine learning methods for NIR data. The feature reduction approach is nonlinear in
SAE and VAE, there is no mapping with the reduced features, and non-reduced NIR data
features cannot be interpreted.

Deep architectures are also used for preprocessing, which aims to eliminate scattering-
related variance. To accomplish this, a convolutional encoder–decoder architecture that
outperformed other preprocessing functions was introduced [139].

8. Conclusions

Machine learning algorithms for NIR spectroscopy research have been reviewed in
this paper. The processing of NIR spectroscopy using ML algorithms is a widely used,
rapid, and non-invasive method for determining the composition of the target sample.
The majority of architectures reported in the literature utilized ML algorithms to map NIR
absorption values to the desired output. There are two types of network architectures for
ML algorithms: traditional machine learning methods and deep network architectures.
Deep network architectures have many hidden layers, whereas traditional machine learning
methods only have a few or no layers. Deep network architectures use raw features,
whereas traditional machine learning methods call for the expert engineering of suitable
features. In contrast to deep network architectures, the performance of traditional machine
learning methods depends on the features that were engineered. As a result, the prevalence
of deep network architectures is increasing, as experts are no longer required to engineer
features. The preprocessing of noisy data to remove additive and multiplicative bias noise
is required before ML algorithms can perform as intended since the space available for
batteries and the powerful processing of components in portable NIR devices is limited.
Another significant aspect is feature selection, which identifies the specific wavelengths
that describe the composition of a sample and reduces the number of features, reducing the
computational complexity of machine learning models. In summary, the integration of a
variety of machine learning algorithms in an efficient and lightweight manner is the goal of
future research and development efforts.

Author Contributions: Conceptualization, Z.L., Y.Z. and Q.J.W.; methodology, L.C.K. and W.Z.;
writing—review and editing, W.Z. and L.C.K. All authors have read and agreed to published version
of the manuscript.

Funding: This work was partially supported by the Agency for Science, Technology, and Research
(A*STAR) (grant no A2090b0144), the National Research Foundation Singapore (grant nos. NRF-
CRP18-2017-02 and NRF-CRP19-2017-01), and the National Medical Research Council (NMRC) (grant
no 021528-00001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smith, B.C. The benzene fingers, part I: Overtone and combination bands. Spectroscopy 2016, 31, 30–34.
2. Ozaki, Y. Infrared Spectroscopy—Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37,

1193–1212. [CrossRef] [PubMed]
3. Norris, K.H.; Hart, J.R. 4. Direct Spectrophotometric Determination of Moisture Content of Grain and Seeds. J. Near Infrared

Spectrosc. 1996, 4, 23–30. [CrossRef]
4. Ben-Gera, I.; Norris, K.H. Direct spectrophotometric determination of fat and moisture in meat products. J. Food Sci. 1968, 33,

64–67. [CrossRef]
5. Skvaril, J.; Kyprianidis, K.G.; Dahlquist, E. Applications of near infrared spectroscopy (NIRS) in biomass energy conversion

processes: A review. Appl. Spectrosc. Rev. 2017, 52, 675–728. [CrossRef]

http://doi.org/10.2116/analsci.20R008
http://www.ncbi.nlm.nih.gov/pubmed/33612556
http://dx.doi.org/10.1255/jnirs.940
http://dx.doi.org/10.1111/j.1365-2621.1968.tb00885.x
http://dx.doi.org/10.1080/05704928.2017.1289471


Sensors 2022, 22, 9764 27 of 32

6. Fu, X.P.; Wang, X.Y.; Rao, X.Q. An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis:
A case study for sugar content estimation of citrus. Biosyst. Eng. 2017, 163, 87–93. [CrossRef]

7. Xie, L.J.; Wang, A.C.; Xu, H.R.; Fu, X.P.; Ying, Y.B. Applications of near-infrared systems for quality evaluation of fruits: A review.
Trans. ASABE 2016, 59, 399–419.

8. Pasquini, C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003, 14,
198–219. [CrossRef]

9. Haghi, R.K.; Yang, J.; Tohidi, B. Fourier Transform Near-Infrared (FTNIR) Spectroscopy and Partial Least-Squares (PLS) Algorithm
for Monitoring Compositional Changes in Hydrocarbon Gases under In Situ Pressure. Energy Fuels 2017, 31, 198–219. [CrossRef]

10. Rinnan, R.; Rinnan, Å. Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological
and chemical properties of arctic soil. Soil Biol. Biochem. 2007, 39, 1664–1673. [CrossRef]

11. Nikzad-Langerodi, R.; Zellinger, W.; Lughofer, E.; Saminger-Platz, S. Domain-invariant partial-least-squares regression. Anal.
Chem. 2018, 90, 6693–6701. [CrossRef]

12. Sandak, J.; Sandak, A.; Zitek, A.; Hintestoisser, B.; Picchi, G. Development of low-cost portable spectrometers for detection of
wood defects. Sensors 2020, 20, 545. [CrossRef]

13. Wang, Y.T.; Li, M.Z.; Ji, R.H.; Wang, M.J.; Zheng, L.H. Comparison of soil total nitrogen content prediction models based on
Vis-NIR spectroscopy. Sensors 2020, 20, 7078. [CrossRef]

14. Barbon, S.; Costa Barbon, A.P.A.d.; Mantovani, R.G.; Barbin, D.F. Machine Learning Applied to Near-Infrared Spectra for Chicken
Meat Classification. Asian J. Spectrosc. 2018, 2018, 8949741. [CrossRef]

15. Nikzad-Langerodi, R.; Zellinger, W.; Saminger-Platz, S.; Moser, B.A. Domain adaptation for regression under Beer–Lambert’s law.
Knowl.-Based Syst. 2020, 210, 106447. [CrossRef]

16. Gogé, F.; Thuriès, L.; Fouad, Y.; Damay, N.; Davrieux, F. Dataset of chemical and near-infrared spectroscopy measurements of
fresh and dried poultry and cattle manure. Data Brief 2021, 34, 106447. [CrossRef]

17. Schoot, M.; Kapper, C. Investigating the need for preprocessing of near-infrared spectroscopic data as a function of sample size.
Chemom. Intell. Lab. Syst. 2020, 204, 104105. [CrossRef]

18. Guo, R.; Wang, J.S.; Jin, H.L.; Luo, L.; Yan, L.H.; Xie, A.G. Measurement of protein content in sesame by near-infrared spectroscopy
technique. In Proceedings of the 2011 International Conference on New Technology of Agricultural, Zhengzhou, China, 22–25
October 2011.

19. Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl.
Spectrosc. 1985, 39, 491–500. [CrossRef]

20. Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods
for near infrared spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. [CrossRef]

21. Helland, I.S.; Næs, T.; Isaksson, T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic
data. Chemom. Intell. Lab. Syst. 1995, 29, 233–241. [CrossRef]

22. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

23. Rinnan, Å.; Van Den Berg, F.; Engelsen, S. Review of the most common pre-processing techniques for near-infrared spectra.
Trac-Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

24. Chen, H.Z.; Song, Q.Q.; Tang, G.Q.; Feng, Q.X.; Lin, L.L. The combined optimization of Savitzky-Golay smoothing and
multiplicative scatter correction for FT-NIR PLS models. Anal. Chem. 2013, 2013, 642190. [CrossRef]

25. Jiao, Y.P.; Li, Z.C.; Chen, X.S.; Fei, S.M. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, e3306.
[CrossRef]

26. Heil, K.; Schmidhalter, U. An Evaluation of Different NIR-Spectral Pre-Treatments to Derive the Soil Parameters C and N of a
Humus-Clay-Rich Soil. Sensors 2021, 21, 1423. [CrossRef]

27. Gu, X.Y.; Guo, J.C.; Xiao, L.J.; Li, C.Y. Conditional mutual information-based feature selection algorithm for maximal relevance
minimal redundancy. Appl. Intell. 2022, 52, 1436–1447. [CrossRef]

28. Bai, X.; Zhang, L.; Kang, C.; Quan, B. Near-infrared spectroscopy and machine learning-based technique to predict quality-related
parameters in instant tea. Sci. Rep. 2022, 12, 3833. [CrossRef]

29. Yang, M.H.; Xu, D.Y.; Chen, S.C.; Li, H.Y.; Shi, Z. Evaluation of machine learning approaches to predict soil organic matter and
pH using Vis-NIR spectra. Sensors 2019, 19, 263. [CrossRef]

30. Bossard, J.A.; Yun, S.; Werner, D.H.; Mayer, T.S. Synthesizing low loss negative index metamaterial stacks for the mid-infrared
using genetic algorithms. Opt. Express 2009, 17, 14771–14779. [CrossRef]

31. Silva, L.G.; Péres, A.F.S.; Freitas, D.L.D. ATR-FTIR spectroscopy in blood plasma combined with multivariate analysis to detect
HIV infection in pregnant women. Sci. Rep. 2020, 10, 20156. [CrossRef]

32. Bonah, E.; Huang, X.; Aheto, J.H.; Yi, S.; Tu, H. Comparison of variable selection algorithms on vis nir hyperspectral imaging
spectra for quantitative monitoring and visualization of bacterial foodborne pathogens in fresh pork muscles. Infrared Phys.
Technol. 2020, 107, 103327. [CrossRef]

33. Yang, M.X.; Chen, Q.S.; Kutsanedzie, F.Y.H.; Yang, X.J.; Guo, Z.M.; Qin, O.Y. Portable spectroscopy system determination of acid
value in peanut oil based on variables selection algorithms. Measurement 2017, 103, 179–185. [CrossRef]

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.022
http://dx.doi.org/10.1590/S0103-50532003000200006
http://dx.doi.org/10.1021/acs.energyfuels.7b01677
http://dx.doi.org/10.1016/j.soilbio.2007.01.022
http://dx.doi.org/10.1021/acs.analchem.8b00498
http://dx.doi.org/10.3390/s20020545
http://dx.doi.org/10.3390/s20247078
http://dx.doi.org/10.1155/2018/8949741
http://dx.doi.org/10.1016/j.knosys.2020.106447
http://dx.doi.org/10.1016/j.dib.2020.106647
http://dx.doi.org/10.1016/j.chemolab.2020.104105
http://dx.doi.org/10.1366/0003702854248656
http://dx.doi.org/10.1016/0731-7085(91)80188-F
http://dx.doi.org/10.1016/0169-7439(95)80098-T
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1016/j.trac.2009.07.007
http://dx.doi.org/10.1155/2013/642190
http://dx.doi.org/10.1002/cem.3306
http://dx.doi.org/10.3390/s21041423
http://dx.doi.org/10.1007/s10489-021-02412-4
http://dx.doi.org/10.1038/s41598-022-07652-z
http://dx.doi.org/10.3390/s19020263
http://dx.doi.org/10.1364/OE.17.014771
http://dx.doi.org/10.1038/s41598-020-77378-3
http://dx.doi.org/10.1016/j.infrared.2020.103327
http://dx.doi.org/10.1016/j.measurement.2017.02.037


Sensors 2022, 22, 9764 28 of 32

34. Mishra, P.; Woltering, E.J. Identifying key wavenumbers that improve prediction of amylose in rice samples utilizing advanced
wavenumber selection techniques. Talanta 2021, 224, 121908. [CrossRef]

35. Tian, Y.; Sun J.; Zhou, X.; Wu, X.H.; Lu, B.; Dai, C.X. Research on apple origin classification based on variable iterative space
shrinkage approach with stepwise regression-support vector machine algorithm and visible-near infrared hyperspectral imaging.
J. Food Process Eng. 2020, 43, e13432. [CrossRef]

36. Jiang, H.; Chen, Q.S. Determination of adulteration content in extra virgin olive oil using FT-NIR spectroscopy combined with the
BOSS–PLS algorithm. Molecules 2019, 24, 2134. [CrossRef]

37. Kong, W.W.; Liu, F.; Zhang, J.F.; Feng, H.L. Non-destructive determination of malondialdehyde (mda) distribution in oilseed rape
leaves by laboratory scale nir hyperspectral imaging. Sci. Rep. 2016, 6, 35393. [CrossRef]

38. Lin, L.; He, Y.; Xiao, Z.T.; Zhao, K.; Dong, T.; Nie, P.C. Rapid-Detection Sensor for Rice Grain Moisture Based on NIR Spectroscopy.
Appl. Sci. 2019, 9, 1654. [CrossRef]

39. Wang, H.Q.; Rehmetulla, A.G.; Guo, S.S.; Kong, X. Machine learning based on structural and FTIR spectroscopic datasets for seed
autoclassification. RSC Adv. 2022, 12, 11413–11419. [CrossRef]

40. Yang, L. Rapid Quality Discrimination of Grape Seed Oil Using an Extreme Machine Learning Approach with Near-Infrared
(NIR) Spectroscopy. Spectroscopy 2021, 36, 14–20.

41. Han, Q.J.; Wu, H.L.; Cai, C.B.; Xu, L.; Yu, R.Q. An ensemble of Monte Carlo uninformative variable elimination for wavelength
selection. Anal. Chim. Acta 2008, 612, 121–125. [CrossRef]

42. Sampaio, P.S.; Soares, A.; Castanho, A.; Almeida, A.S.; Oliverira, J.; Brites, C. Optimization of rice amylose determination by
NIR-spectroscopy using PLS chemometrics algorithms. Food Chem. 2018, 242, 196–204. [CrossRef] [PubMed]

43. Liu, Y.; Wang, Y.; Xia, Z.; Wang, Y.; Wu, Y.; Gong, Z. Rapid determination of phytosterols by NIRS and chemometric methods.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 336–341. [CrossRef] [PubMed]

44. Borraz-Martínez, S.; Simó, J.; Gras, A.; Mestre, M.; Boqué, R. Multivariate classification of prunus dulcis varieties using leaves of
nursery plants and near-infrared spectroscopy. Sci. Rep. 2019, 9, 19810. [CrossRef] [PubMed]

45. Shukla, A.; Bhatt, H.; Pani, A.K. Variable selection and modeling from NIR spectra data: A case study of diesel quality prediction
using LASSO and Regression Tree. In Proceedings of the 2nd International Conference on Data, Engineering and Applications
(IDEA), Bhopal, India, 28–29 February 2020.

46. Zhao, Z.; Wang, K.; Wang, S.; Xiang, Y.; Bian, X. Sense the Real Change: Proceedings of the 20th International Conference on Near Infrared
Spectroscopy; ICNIR 2021; Springer: Singapore, 2022; pp. 291–300

47. Craig, A.P.; Wang, K.; Franca, A.S.; Oliveira, L.S.; Irudayaraj, J.; Ileleji, K. Application of elastic net and infrared spectroscopy in
the discrimination between defective and non-defective roasted coffees. Talanta 2014, 128, 393–400. [CrossRef] [PubMed]

48. Hu, L.Q.; Yin, C.L.; Ma, S.; Liu, Z.M. Vis-NIR spectroscopy combined with wavelengths selection by PSO optimization algorithm
for simultaneous determination of four quality parameters and classification of soy sauce. Food Anal. Meth. 2019, 12, 633–643.
[CrossRef]

49. Nturambirwe, J.F.I.; Nieuwoudt, H.H.; Perold, W.J.; Opara, U.L. Non-destructive measurement of internal quality of apple fruit
by a contactless NIR spectrometer with genetic algorithm model optimization. Sci. Afr. 2019, 3, e00051. [CrossRef]

50. Hadoux, X.; Kant Kumar, D.; Sarossy, M.G.; Roger, J.M.; Gorretta, N. Application-Dedicated Selection of Filters (ADSF) using
covariance maximization and orthogonal projection. Anal. Chim. Acta 2016, 921, 1–12. [CrossRef]

51. Krepper, G.; Romeo, F. Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections
Algorithm for interval selection in PLS regression (iSPA-PLS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 300–306.
[CrossRef]

52. Ye, S.F.; Wang, D.; Min, S.G. Successive projections algorithm combined with uninformative variable elimination for spectral
variable selection. Chemom. Intell. Lab. Syst. 2008, 91, 194–199. [CrossRef]

53. Wang, L.S.; Wang, R.J. Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection:
A case study in lime concretion black soil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121707. [CrossRef]

54. Zhang, J.; Cui, X.Y.; Cai, W.S.; Shao, X.G. A variable importance criterion for variable selection in near-infrared spectral analysis.
Sci. China-Chem. 2019, 62, 271–279. [CrossRef]

55. Xu, H.; Liu, Z.C.; Cai, W.S.; Shao, X.G. A wavelength selection method based on randomization test for near-infrared spectral
analysis. Chemom. Intell. Lab. Syst. 2009, 97, 189–193. [CrossRef]

56. Dias, R.; Garcia, N.L.; Ludwig, G.; Saraiva, M.A. Aggregated functional data model for near-infrared spectroscopy calibration
and prediction. J. Appl. Stat. 2015, 42, 127–143. [CrossRef]

57. Jiang, Y.; Li, C.Y. mRMR-based feature selection for classification of cotton foreign matter using hyperspectral imaging. Comput.
Electron. Agric. 2015, 119, 191–200. [CrossRef]

58. Cozzolino, D.; Liu, L.; Cynkar, W.U.; Dambergs, R.G.; Janik, L.; Colby, C.B.; Gishen, M. Effect of temperature variation on the
visible and near infrared spectra of wine and the consequences on the partial least square calibrations developed to measure
chemical composition. Anal. Chim. Acta 2007, 588, 224–230. [CrossRef]

59. Wold, H. Estimation of principal components and related models by iterative least squares. J. Multivar. Anal. 1966, 1, 391–420.
60. Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [CrossRef]
61. Huang, G.B.; Siew, C.K. Extreme learning machine: RBF network case. In Proceedings of the ICARCV 2004 8th Control,

Automation, Robotics and Vision Conference, Kunming, China, 6–9 December 2004.

http://dx.doi.org/10.1016/j.talanta.2020.121908
http://dx.doi.org/10.1111/jfpe.13432
http://dx.doi.org/10.3390/molecules24112134
http://dx.doi.org/10.1038/srep35393
http://dx.doi.org/10.3390/app9081654
http://dx.doi.org/10.1039/D2RA00239F
http://dx.doi.org/10.1016/j.aca.2008.02.032
http://dx.doi.org/10.1016/j.foodchem.2017.09.058
http://www.ncbi.nlm.nih.gov/pubmed/29037678
http://dx.doi.org/10.1016/j.saa.2018.12.030
http://www.ncbi.nlm.nih.gov/pubmed/30583164
http://dx.doi.org/10.1038/s41598-019-56274-5
http://www.ncbi.nlm.nih.gov/pubmed/31875019
http://dx.doi.org/10.1016/j.talanta.2014.05.001
http://www.ncbi.nlm.nih.gov/pubmed/25059177
http://dx.doi.org/10.1007/s12161-018-01407-1
http://dx.doi.org/10.1016/j.sciaf.2019.e00051
http://dx.doi.org/10.1016/j.aca.2016.04.004
http://dx.doi.org/10.1016/j.saa.2017.08.046
http://dx.doi.org/10.1016/j.chemolab.2007.11.005
http://dx.doi.org/10.1016/j.saa.2022.121707
http://dx.doi.org/10.1007/s11426-018-9368-9
http://dx.doi.org/10.1016/j.chemolab.2009.04.006
http://dx.doi.org/10.1080/02664763.2014.938224
http://dx.doi.org/10.1016/j.compag.2015.10.017
http://dx.doi.org/10.1016/j.aca.2007.01.079
http://dx.doi.org/10.1016/0003-2670(86)80028-9


Sensors 2022, 22, 9764 29 of 32

62. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

63. Huang, G.B.; Zhu, H.M.; Ding, X.J.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans.
Syst. Man Cybern. Part B Cybern. 2011, 42, 513–529. [CrossRef]

64. Drucke, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst.
1997, 9, 155–161.

65. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
66. Huang, G.B.; Chen, L.; Siew, C.K. Universal approximation using incremental constructive feedforward networks with random

hidden nodes. IEEE Trans. Neural Netw. 2006, 17, 879–892. [CrossRef] [PubMed]
67. Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [CrossRef]
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