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Abstract: An energy management strategy is a key technology used to exploit the energy-saving
potential of a plug-in hybrid electric vehicle. This paper proposes the environmental perceiver-based
equivalent consumption minimization strategy (EP-ECMS) for parallel plug-in hybrid vehicles. In
this method, the traffic characteristic information obtained from the intelligent traffic system is used
to guide the adjustment of the equivalence factor, improving the environmental adaptiveness of the
equivalent consumption minimization strategy (ECMS). Two main works have been completed. First,
a high-accuracy environmental perceiver was developed based on a graph convolutional network
(GCN) and attention mechanism to complete the traffic state recognition of all graph regions based on
historical information. Moreover, it provides the grade of the corresponding region where the vehicle
is located (for the ECMS). Secondly, in the offline process, the search for the optimal equivalent factor
is completed by using the Harris hawk optimization algorithm based on the representative working
conditions under various grades. Based on the identified traffic grades in the online process, the
optimized equivalence factor tables are checked for energy management control. The simulation
results show that the improved EP-ECMS can achieve 7.25% energy consumption optimization
compared with the traditional ECMS.

Keywords: plug-in hybrid electric vehicle (PHEV); energy management strategy (EMS); equivalent
consumption minimization strategy (ECMS); real-time traffic state perception; deep learning

1. Introduction

With the growth of a vehicle’s preserved volume, large amounts of greenhouse gas
(GHG) emissions, and massive consumption of petroleum resources, the problems of
global warming and the energy crisis have become severe [1–3]. Developing environmen-
tally friendly and energy-efficient transportation is critical to mitigating these problems.
Compared with hybrid electric vehicles (HEVs), conventional internal combustion engine
vehicles (ICEVs), battery electric vehicles(BEVs) and hydrogen fuel cell vehicles (HFCVs),
have their own advantages and disadvantages [4]. Although HFCVs emit water and
heat, which are harmless greenhouse gases [5] and are the most environmentally friendly,
the cost of hydrogen fuel infrastructures will limit the applications. ICEVs are limited by
the thermal efficiencies of engines, resulting in excessive NOx emissions. Although BEVs
have the advantages of zero emissions and high electrical energy utilization, if the source of
the electric energy is calculated from a coal-burning plant, the energy conversion efficiency
of this process will not be high because the heat energy generated by coal and natural gas is
converted into electric energy, and greenhouse gases cannot be completely avoided in the
process [6]. As a bridge connecting ICEV and BEV, HEVs can maximize the energy conver-
sion efficiency at the vehicle end through the management of multiple energy sources. It is
a practical solution for the commercialization to reduce emissions and has been paid close
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attention to among scholars and practitioners [7]. As an improved form of HEV, the plug-in
hybrid electric vehicle (PHEV) has massive advantages in energy-saving performances,
benefiting from large capacities and improved engines [8,9]. However, the essential solu-
tion to boost the potential of PHEV with a high control of freedom is an effective energy
management strategy (EMS), which is a considerable task that needs to be solved.

At present, the massive amounts of EMSs utilizing single-vehicle data are being
explored, and some are applied in industrial circles. General EMSs are classified into
rule-based EMSs, global optimization-based EMSs, and instantaneous optimization-based
EMSs. Among them, EMSs based on rules develop rules for controlling the working
conditions of the engine and motor, so that the reference values expressed as the vehicle’s
required power or the state of charge (SOC) of the battery are approached. Benefiting
from the low complexity of the calculation, the methods are applied to the developers of
production vehicles, who are divided into the algorithm based on deterministic rules and
fuzzy logic [10,11]. On the flip side, the kind of strategy that relies on expert experience
requires time, which leads to energy consumption reaching the global optimum in a tough
manner. Due to the intelligent group optimization algorithm proposed and abundant
traffic data mined, a scheme that combines genetic algorithms and traffic information
with rule-based EMSs was developed, and the high fuel economy and low emission were
realized [12–14]. However, it is still difficult to satisfy the fitness of conditions under them;
hence, vehicular energy conservation potential needs to be developed.

Global optimization-based EMSs complete vehicular energy management under
known working conditions. The intelligent traffic system (ITS) merging geographic in-
formation system (GIS), a global positioning system (GPS), enormous amounts of traffic
flow data, and high-performance traffic modeling technology have developed rapidly,
inspiring the proposal of the global optimization-based EMS [15]. Mainstream methods
include dynamic programming (DP) [16], reinforcement learning (RL) [17], quadratic pro-
gramming (QP) [18], and Pontryagin’s maximum principle (PMP) [19]. DP, considering
the restriction of the Bellman equation, has found the global-optimization solution under
separate questions [20]. On account of the simplification of the high non-linear problems,
DP has been adopted widely by researchers. RL seeks the optimal solution based on the
state probability function [21]. QP is suitable for situations where the cost functions can be
described as quadratic functions, which look for optimal solutions according to the distri-
bution of energy [22]. PMP (fully considering the bound) solves the best solution under
the deterministic target function [23]. Although globally optimized EMSs can solve the
optimal power distributions under random working conditions, the high requirements for
time costs and calculation costs from the complexities of the automotive dynamic models
constrain the online applications [24]. Consequently, the results of the globally optimized
EMS are regarded as the performance benchmarks of other EMSs in general [25].

To overcome the limitations of the calculation costs from global optimization-based
EMSs and the low efficiency brought about by rule-based EMSs, the instantaneous
optimization-based EMS is proposed and developed. It adjusts the power distribution
with the driving condition and component states during the per-control period to obtain
the optimal energy consumption every time, which is mainly divided into EMSs based
on the model predictive control (MPC) and equivalent consumption minimum strategy
(ECMS). MPC uses optimization algorithms to solve the optimal control sequence in the
predicted time domain based on the predicted future operating condition data and feeds
the decision’s results back to the vehicle [26,27]. However, the MPC energy consumption
optimization performance relies on a high precision reference speed or SOC with high
computational costs, which limits its practical application. In contrast to MPC, the ECMS
is widely used due to its low computational efforts and high real-time performance. It
converts real-time electric consumption into equivalent instantaneous fuel consumption
through the equivalent factor, solves the total fuel consumption composing the real-time
equivalent fuel consumption and engine fuel consumption, and achieves real-time min-
imum total fuel consumption by controlling the engine and battery power allocation to
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obtain the optimal control decision [28–30]. The ECMS factor of ECMS usually needs to
be calibrated for the representative working conditions. However, a single equivalent
factor cannot satisfy the adaptive control of power components under different operating
conditions, so adaptive ECMS is proposed to improve the working condition adaptabilities
of vehicles.

The critical technologies of A-ECMS can be divided into two parts, adaptation op-
timization of equivalence factors and sensing for vehicle driving status. With the devel-
opment of ITS and vehicle-road cooperation [31], large amounts of traffic sensor data are
generated, making it possible to predict future traffic conditions based on historical traffic
data [32–34]. Currently, the vehicle energy consumption optimization scheme integrates
traffic information, specifically, the traffic data are utilized to predict the vehicle energy
demand, vehicle speed conditions, or vehicle driving cycles, which guide the control
actions of ECMS. Some scholars simply use the predicted vehicle states for ECMS adjust-
ment, which obtains the vehicle’s demand power, speed, driving cycle, and SOC reference
curve. Zeng et al. proposed an optimization-oriented adaptive equivalent consumption
minimization strategy (A-ECMS) based on the demand power prediction realized by the
iterative predictor. The proposed strategy periodically updates the optimal equivalent fac-
tor according to the predicted power through the local optimization process [35]. Liu et al.
utilized the grey neural network to predict the future speed trend of the vehicle ahead.
Based on the upper-level speed planning, the lower-level controller is responsible for the
energy management of the vehicle based on the target speed, i.e., to generate the planned
SOC reference track, and uses the fuzzy logic algorithm to update the equivalent factor
in real-time according to the charge state difference [36]. Liu et al. adopted the nonlinear
autoregression (NAR) algorithm of the moving horizon to predict short future driving
cycles. The backpropagation (BP) neural network algorithm is used to identify the type of
driving cycle, which provides a basis for adaptive ECMS [37]. Liu et al. utilized the adap-
tive network fuzzy inference system (ANFIS) model to train the SOC consumption curve
under different driving cycles so that the vehicle could calculate the SOC reference curve in
real-time according to the traffic data, and ensure that the A-ECMS strategy can adjust the
equivalent factors according to the actual driving cycle. However, the vehicular driving
state perception is mainly based on the vehicle’s state, i.e., for estimating the future driving
conditions of the vehicle. However, such solutions ignore the influence of environmental
information on the vehicle. More complex reference SOCs following control schemes also
increase the computational loads of the onboard controller, so it is essential to enhance the
vehicular perception of the driving environment and reduce the computational load of the
onboard controller to enhance the real-time A-ECMS application capability.

To solve the above problems, this paper proposes an environment-perceived PHEV-
based energy management strategy, EP-ECMS. EP-ECMS uses two-layer architecture to
manage the energy system’s execution optimally. The high layer adopts an environmental
perceiver based on a convolutional graph network and attention mechanism to identify
the traffic state of the vehicle. The bottom layer utilizes an optimized ECMS to manage
the energy system in the PHEV based on P2 configuration and to control the output of
the electrical system and the fuel system; EP-ECMS calls the optimized equivalent factor
according to the identified traffic state, and this operation is performed once more in a
certain period of time to balance the performance and calculation costs, and fully exploit
the energy-saving potential of PHEV.

The contributions of this paper are summarized as follows:

1. An advanced two-layer architecture of a PHEV energy management strategy (EP-
ECMS) is proposed to realize the integration of traffic information and single-vehicle
energy management, significantly improving the environmental adaptability of the
vehicle and providing a new idea for single-vehicle energy management;

2. We developed a high-performance environmental perceiver based on a graph convolu-
tional neural network and attention mechanism to accurately identify the traffic state,
which guides the energy management of a single vehicle adapting to the environment;
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3. The traffic conditions are classified by a self-organizing mapping neural network
(SOM); the equivalent factors under various traffic conditions were optimized by the
Harris hawk optimization algorithm (HHO) offline to improve the adaptability of
EP-ECMS under different traffic states.

The rest of this paper is organized as follows. In Section 2, the vehicular configuration
and component model are described. In Section 3, the structure of the proposed EP-ECMS
is detailed. In Section 4, the control strategy simulation tests are performed to compare
the regular EMS, the conventional ECMS, and the EP-ECMS. Section 5 draws the main
conclusions of this study.

2. Model
2.1. Vehicle Configuration

This paper is based on a parallel plug-in hybrid vehicle with the architecture shown in
Figure 1. The vehicle’s fuel-related components consist of the engine, which is started by a
high-speed generator. The electrical-related components consist of the electric motor and
the battery. The engine and the electric motor are connected in parallel through a clutch.
A six-speed mechanical automatic transmission transmits the driving force from the engine
and the electric motor to the differential, which distributes it to the wheels. Table 1 shows
the detailed parameters of the different components.

Generator

Engine

Clutch

Motor
6-Speed AMT

Battery Pack

F
in

al
 G

ea
r

Mechanical connection

Electric connection

Figure 1. The architecture of the vehicle.

Table 1. Vehicle configuration parameters.

Component Parameter Value Component Parameter Value

Engine

Displacement 2.0 (L) Capacity 21 (Ah)

Type In-line four-cylinder
gasoline engine Battery Type Lithium

Maximum power 103 (kW) @6200 (r/min)
Generator (starter)

Nominal voltage 300 (V)
Maximum

torque 160 (N m) @2500 6000(r/min) Maximum power 8.5 (kW)

Motor

Maximum power 124 (kW) Maximum torque 45 (N m)
Maximum

torque 305 (N m) Maximum speed 5000 (r/min)

Maximum speed 12,480 (r/min) Gearbox Type 6 Speed AMT
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2.2. Mathematical Model of Vehicle Dynamics

The vehicle driving resistance equation and the driving demand power equation are
calculated in Equations (1) and (2).

Frest = mg f cos α + mg sin α +
CD Av2

21.15
+ σm

dv
dt

(1)

Preq =
v
ηd

(
mg f cos α

3600
+

mg f sin α

3600
+

CD Av2

76140
+

σm
3600

dv
dt

)
(2)

where m is the overall vehicle mass, g is the gravitational acceleration, f is the rolling
resistance coefficient, α is the slope, CD is the air resistance coefficient, A is the frontal wind
area, v is the vehicle speed, σ is the rotating mass conversion coefficient, and ηd represents
the total efficiency of the drive system.

2.3. Mathematical Model of Fuel System

The engine, as a fuel-related component of the vehicle, provides traction power for
the vehicle. The relationship between the non-linear dynamics of the engine, i.e., torque,
speed, and fuel consumption can be obtained by checking the table, as shown in Figure 2,
to obtain the engine operating point and fuel consumption.

Figure 2. The fuel consumption map of the engine.

The instantaneous fuel consumption of the engine is calculated as in Equations (3) and (4).

ṁ f = feng(Teng, ωeng) (3)

where the mapping function feng is obtained from the engine benchmark test, ṁ f denotes
the fuel consumption rate (g/s), Teng is the engine torque, and ωeng represents the engine
angular velocity. In addition, the engine operating efficiency is described as

ηeng(Teng, neng) =
Tengneng

Qlhvṁ f
(4)

where ηeng is the engine mechanical efficiency, neng is the engine speed, and Qlhv is the low
fuel heat value.

The engine transmits power to the wheels and drives the vehicle through the clutch,
transmission, and main gearbox. The relationship between the torque and angular velocity
at the engine and wheel end is expressed in Equations (5) and (6).

Td_eng = Tengigb(n)i f gηt_eng (5)
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ωeng = ωwheel igb(n)i f g (6)

where Td_eng is the engine torque acting on the wheels, Teng is the torque provided by
the engine in the fuel-related components, igb and i f g represent the transmission ratio of
transmission and main reducing gear, respectively, n is the transmission gear, ηt_eng is the
engine-to-wheel transmission efficiency, ωeng denotes the engine angular speed, and ωwheel
represents the wheel angular speed, respectively.

2.4. Mathematical Model of Electrical System

The motor as an electrical component provides traction power for the whole vehicle
and its fast transient response is ignored. The relationship between the torque, speed, and
efficiency is described by an efficiency diagram obtained from benchmark tests as shown
in Figure 3. The efficiency of the motor is expressed in Equations (7)–(11).

ηem = fem(Tem, nem) (7)

where the mapping function fem is obtained from the motor benchmark test, Tem and nem
represent the motor torque and speed, respectively. In the parallel PHEV, the motor can op-
erate in the traction motor and generator states. In the traction motor mode, the relationship
between the torque and power is expressed as follows.

Pem =
Temωem

ηmot
(8)

where Pem is the motor power, ωem is the motor angular speed, and ηmot denotes the motor
efficiency in traction mode. In the generator mode, the relationship between c torque and
power is as follows:

Pem = Temωemηgen (9)

where ηgen indicates the motor efficiency in generator mode. The motor transmits power
to the wheels and drives the vehicle through the transmission and the main reducer.
The relationship between the torque and angular velocity at the motor and wheel end is
expressed as.

Td_em = Tmotigb(n)i f gηt_em (10)

ωmot = ωwheel igb(n)i f g (11)

where Td_em denotes the motor torque acting on the wheel, is the torque provided by the mo-
tor in the electrically related components, Tmot represents the motor-to-wheel transmission
efficiency, and ωmot is the motor angular velocity.

Figure 3. The motor efficiency map.
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In this paper, a lithium-ion battery is used, the effects of temperature and aging are
ignored, and a simple equivalent circuit model is used to describe the battery performance.
The output voltage of the battery is calculated in Equations (12) and (13).

U = Uoc − I · Rint (12)

where U denotes the output voltage, UOC is the open circuit voltage, I is the battery current,
and R represents the internal resistance of the battery. Then, the battery SOC is calculated
as follows.

SOC = −Uoc −
√

Uoc − 4RintPbatt
2RintQbatt

(13)

where Pbatt is the battery power and Qbatt indicates the battery capacity (Ah). The value
range of SOC is [0, 1]. When SOC = 0, the battery is fully discharged, and when SOC = 1,
the battery is fully charged.

3. Implementation of Environmental Perceptive ECMS

In this paper, for the complex nonlinear system composed of multiple power sources in
P2 parallel PHEV, an energy management control system based on the perception of traffic
state is proposed to combine traffic state information with energy management to fully
utilize the energy-saving potential of PHEV in multiple environments. The architecture
is shown in Figure 4. Considering that ECMS has an excellent balance between global
optimization and instantaneous optimization, ECMS is selected as the core algorithm of
energy management in this paper. In order to increase the adaptability of the environment
and reduce the computational effort of a single vehicle, the regional traffic state obtained
by the computing center deployed at the edge of the road was adopted to guide the energy
management control of a single vehicle.

Select Equivalent Factors at

the Current Grade

Statistical 

Characteristics
Region-Based

Traffic Grade
Statistical 

Characteristics

Condition at all 

Traffic Grades

Optimized Equivalent 

Factors at all Grades

Region-Based 

Condition Segment

Offline Training Online Testing

Condition Curve
Condition

CD

Eq_factor

CS

Eq_factor

1 𝜆𝐶𝐷_1 𝜆𝐶𝑆_1

2 𝜆CD_2 𝜆𝐶𝑆_2

3 𝜆CD_3 𝜆𝐶𝑆_3

4 𝜆CD_4 𝜆𝐶𝑆_4

5 𝜆CD_5 𝜆𝐶𝑆_5

Well Trained Model 

Parameters

Excellent Fuel 

Consumption Performance

Environmental perceiver Training

Processed Floating Vehicle Data

Markov Condition Generation

ECMS Based on HHO Algorithm

Processed Floating Vehicle Data

Environmental perceiver

EP-ECMS

Figure 4. The architecture of EP-ECMS.

The offline design consists of three steps. The first step is to define the regional
traffic state and train an environment-aware model. The environment-aware model is built
based on a deep learning network, which can capture the spatiotemporal correlation of
traffic data at the same time to achieve higher accuracy in traffic state perception. Then,
the representative working conditions are generated for different grades of traffic data.
The segments of the conditions in the area corresponding to all grades are counted, and the
feature conditions of the corresponding grades are generated based on the classical Markov
method. Finally, the equivalent factors in the ECMS strategy are trained offline by the HHO
algorithm based on the feature conditions of different classes.
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For the online test, the proposed energy management control strategy consists of
two modules, the ECMS as the core control algorithm and the well-trained environmental
perceiver. First, the environmental perceiver senses the traffic grades in all regions of the
map at regular intervals and transmits the grade to a single vehicle. Then, the control of
energy management of the vehicle is completed by invoking the well-optimized ECMS
equivalent factor corresponding to the grades.

3.1. Environmental Perceiver

The main task of environment sensing is to enable each vehicle to quantify the current
traffic state, represented in the form of a hierarchy, which is shown in Figure 5. The per-
ceived traffic grade guides the control of vehicle energy management. The road edge
computing center completes the environmental sensing process through vehicle data col-
lection, computation, and transmission. To reduce the complexity and computation when
perceiving, we divide the city into regular sub-regions; vehicles in the same region are
considered to be in the same traffic environment. Based on the defined area network,
the environmental perceiver senses the grade of the traffic condition within each region in
real-time. However, considering the traffic system’s scale and the network transmission’s
delay, the environment sensing process is chosen to be performed at regular intervals.

Fixed Time  
Interval 𝑇𝑇 h Current time t

Aggregation and Mapping of Nodes

Spatial Correlation Extraction with Multi-layer GCN Temporal Correlation 
Extraction with 

Attention Mechanism

Fixed Time  
Interval (𝑇𝑇 + 1) h

Current Environment Condition

Fixed Time  
Interval (𝑇𝑇 − 1) h

Fixed Time  
Interval (𝑇𝑇 − 𝑤𝑤) h

…

× 𝐿𝐿

1 Layer 
GCN

…

…

Road Topological Adjacency Matrix

20 40 60
Nodes

10

20

30

40

50

60

N
od

es

0

0.2

0.4

0.6

0.8

1
Weight

Figure 5. The architecture of the environmental perceiver.

3.1.1. Pre-Processing of Traffic Data

Since the original data are the floating vehicle trajectory point data, pre-processing
work is needed to serve the training task of the environmental perception model. The main
pre-processing tasks include the statistics of area features and the generation of area classes.
The area features are input to the perception model, and the area classes are used as
prediction labels for the environmental perception model.

Features of the region are generated by counting the trajectory point data. Firstly,
for the trajectory points xi = [ti, idv, ido, lati, lngi] ∈ R5, where ti denotes the time stamp,
idv is the vehicle number, ido is the order number, lati is the dimension, lngi is the longitude,
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the ratio of the distance and time difference from the previous trajectory point is calculated
to obtain the speed vt

i at the corresponding moment. Second, in the spatial dimension,
the city area is divided into N × N sub-regions. In the temporal dimension, the data are
divided into different periods according to certain time intervals, and the time period
boundaries are expressed as T ∈ [1, Ttotal ]. The statistical characteristics of each area under
all time periods are counted, and the statistical characteristics of the areas r ∈ [1, (N × N)]
under time periods [T, T + 1], specifically the average speed v̄T

r , the average flow f T
r ,

and the maximum speed v̂T
r , are calculated in Equation (14).

v̄T
r = 1

m ∑m
i=1 vt

i , t ∈ [T, T + 1]

f T
r = 1

m (numT+1 − numT)

v̂T
r = Top(vt

i), t ∈ [T, T + 1]

(14)

where m is the speed of all trajectory points in the time period [T, T + 1], numT denotes the
number of trajectory points in the region at the junction of the time period T, and Top(.) is
the formula for taking the maximum value.

In order to objectively and comprehensively evaluate the traffic state, this paper adopts
a self-organizing mapping neural network (SOM) to cluster the region’s features into a
Class grades. Specifically, the three features of each region of the whole map at all moments
are normalized to the maximum and minimum and then input into the SOM network
to output the grade distribution of the whole map region at the corresponding moment.
The calculation process is shown in the following Algorithms 1 and 2.

Algorithm 1 Training process of self-organizing mapping neural network (SOM)

Input: The normalized traffic condition sample X.
Output: The well-trained SOM network.

1: Initializing and normalize weight W, Wj, j = 1, ..., Class; initial neighborhood radius
fneighbor(1) = n0 = 3; initial learning rate flearn(1) = l0 = 0.1; initial max iterations
MaxIter and iterations Iter.

2: while Iter < MaxIter do
3: for i = 1 to T × N do
4: Choose the traffic condition sample xi ∈ X.
5: for j = 1 to Class do
6: Calculate the Euclidean distance and select the nearest winning node.

dij(x) =
√
(xi − wj)

2

7: for K = 1 to fneighbor(1) do
8: Update the weight of the winning node and the neighbor nodes.

wk = wk + flearn(iter)× fneighbor(iter)× (xi − wk)

9: Update the number of iteration, learning rate, and neighborhood radius
function.
fneighbor(Iter+1) = n0 × exp(−Iter/t1),
t1 = MaxIter/ log(n0)

flearn(Iter+1) = l0 × exp(−Iter/t2),
t2 = MaxIter
Iter = Iter + 1

10: end for
11: end for
12: end for
13: end while
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Algorithm 2 Testing process of self-organizing mapping neural network (SOM)

Input: The normalized traffic condition sample X; Trained SOM network.
Output: The traffic grade Y corresponds to the traffic condition sample X.

1: for i = 1 to T × N do
2: Choose the traffic condition sample xi ∈ X.
3: for j = 1 to Class do
4: Calculate the Euclidean distance and select the nearest winning node.

dij(x) =
√
(xi − wj)

2

5: The index j∗ of nearest node wj∗ is the class of sample xi.
6: end for
7: end for

The distribution of classes is shown in Figure 6. The figure shows the distribution of
five classes in the three dimensions of average speed, traffic flow, and maximum speed.
Different classes show obvious boundaries in space, indicating that clustering results are
effective. Different classes mainly reflect large differences in the two dimensions of average
speed and traffic flow. First, based on the size of the traffic, the traffic is divided into class 1,
class 3, class 4, and class 5 in order of distribution from small to large, corresponding to the
traffic flow in the regions of [0, 500], [500, 1000], [1000, 1500], and [1500, 3000], and class 2
in the traffic. The distribution of class 2 in traffic covers the traffic ranges corresponding
to classes 3 and 4, i.e., in the range [500, 1500]. Secondly, for the distribution of average
speed, class 1 spans the widest range of [5, 20] km/h, class 2 is mainly distributed in the
higher average speed part, which corresponds to the area [15, 20], and classes 3, 4, and 5
are distributed in the range of [5, 15] km/h with little difference in the average speed.

Figure 6. The distribution of five classes in the three dimensions of average speed, average flow, and
maximum speed.

3.1.2. Construction of Environmental Perception Model

The performance of environmental perception depends on the ability to capture spatial
and temporal correlation characteristics in traffic data, and a graph convolutional neural
network can capture complex non-Euclidean spatial correlation characteristics and is widely
used in the field of traffic prediction; the attention mechanism benefits from the ability of
global capture of time series and gradually becomes a research hotspot. Therefore, this
paper tandemly connects the graph convolutional network and the attention mechanism to
complete the construction of the environment perception model, and the model architecture
is shown in Figure 6.

In this paper, we chose the GCN proposed by Kipf et al. [38] to capture spatially
relevant features. Graph convolutional networks (GCNs) are widely used in traffic pre-
diction tasks because they can effectively extract the correlation between nodes in the
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graph network space and are easy to compute. The graph convolutional neural network is
based on the constructed graph network to perform aggregation and map each node input.
For the first layer of GCN, the computational formula is shown in Equation (15).

H(k) = Re LU
(

D̃(k)−
1
2 W̃(k)D̃(k)−

1
2 H(k−1)θ(k)

)
×LGCN

(15)

where W̃(k) = W(k) + I is the adjacency matrix considering the self-loop, D̃(k) = ∑j W̃(k)
ij

is the degree matrix, θ(k) ∈ Rd×d′ is a trainable parameter matrix, W(k) ∈ Rn×n is the
adjacency matrix of the graph network, H(k−1) ∈ Rn×d is the node representation of the
k− 1th layer output, and H(k) ∈ Rn×d′ is the node representation after feature extraction.

From the formula, it is clear that the way the graph network is constructed affects the
correlation weights between nodes. In this paper, the road network is constructed from
the topological perspective of the road network space called the road network topological
graph. It has been proved that this graph network can directly reflect the spatial distribution
between roads and facilitate the extraction of spatial correlation characteristics. The road
network topology diagram is represented as an undirected graph Gr = (V, E, Wr), where
the weight ωr(i, j) ∈ (0, 1] of the corresponding edge eij is expressed as the reciprocal of
the number of edges between road vi and road vj. As the weight ωr is closer to 1, the closer
the two roads are to each other, and vice versa. The adjacency matrix Wr composed of the
weights of the Gr is denoted in Equation (16), visualized as shown in Figure 7.

Wr =


0 ωr(1, 2) · · · ωr(1, N)

ωr(2, 1) 0 · · · ωr(2, N)
...

...
. . .

...
ωr(N, 1) ωr(N, 2) · · · 0

 (16)

Figure 7. The road topological adjacency matrix.

For the aspect of temporal correlation capture of traffic data, this paper uses the self-
attention mechanism to complete the feature fusion of temporal dimension. The specific
computational procedure is shown in Equation (17).

Attention(X, X, X) = so f tmax
(

X× XT
√

dk

)
X (17)

where X is the historical sequence, the attentional weights among the historical time points
are obtained by calculating X and XT with the scaled dot product operation and so f tmax(.).
Then the result is weighted and summed with V to obtain the road features with fused time
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correlation. The value of dk equals the feature dimension of X, which adjusts the result
after multiplication to avoid gradient disappearance and improve computational efficiency.

After extracting temporal and spatial correlation, the road features must be mapped
to the corresponding grade distribution of all nodes using a fully connected network.
The calculation formula can be found in Equations (18)–(20).

Xout = [linear(Xin)]×LLinear
(18)

Linear(l)(Xin) = ReLU(W(l) × Xin + b(l)) (19)

Out = so f tmax(Reshape(Xout
linear)) (20)

where Xout ∈ R(n×Class) is the feature vector of the mapping of the road to the traffic grade,
linear(.) is the linear layer, and L is the number of stacked linear layers. Equation (19) rep-
resents the calculation process of the lth linear layer, where ReLU(.) is the ReLU activation
function, W(l) ∈ Rin f eat(l)×out f eat(l)and b(l) ∈ Rout f eat(l) denote the mapping weight and bias
of the first layer, respectively. Finally, the output of the linear layer Xout

linear ∈ Rn×Class is oper-
ated with the operation of Reshape(.) and so f tmax(.) to obtain the probability distribution
of all roads at different levels Out ∈ Rn×Class, i.e., Sum(Outi,:) = 1, i = 1, · · · , n.

3.2. ECMS-Based Energy Consumption Control for PHEVs

The core control problem of PHEV is the distribution of the whole vehicle’s demand
power to the engine and battery power. The core idea of ECMS is to calculate the equiva-
lence factor, which converts the used electrical energy into equivalent fuel consumption,
and to determine the optimal control variable, which determines the optimal engine to
battery power distribution ratio for a given equivalence factor.

In the ECMS control process, the positive power (discharge) of the power battery
means that energy is outputting, and the consumed energy needs to be replenished by the
engine or the grid in the future, thus increasing the additional equivalent fuel consumption;
the negative power (charge) of the power battery means that energy is being input, and the
replenished energy is used to be released in the future, thus reducing some equivalent fuel
consumption. The equivalent fuel consumption is expressed in Equations (21)–(23).

ṁequ(t) = ṁ f (t) + ṁe2 f (t) (21)

ṁ f (t) =
Peng(t)

ηeng(t)Qlhv
=

Preq(t)u(t)
ηeng(t)Qlhv

(22)

ṁe2 f (t) =
s

Qlhv
Pbatt(t) =

s
Qlhv

Preq(t)(1− u(t)) (23)

where ṁequ is the instantaneous equivalent fuel consumption rate (g/s), ṁ f denotes the
instantaneous fuel consumption rate (g/s), ṁe2 f is the equivalent fuel consumption rate for
electrical energy conversion (g/s), s(t) is the equivalence factor, Peng denotes the engine
power, Preq is the overall vehicle demand power, and u(t) denotes the control variables.

In order to reduce the computational complexity, we simplify the unimportant factors
in vehicle dynamics. In this paper, we only consider the effect of rolling resistance, air
resistance and acceleration resistance power on the power demand of the whole vehicle,
and Equation (2) can be simplified to Equation (24).

Preq = Pf + Pw + Pa =
1
ηt

(
mg f v
1000

+
CD Av3

1632
+

σmvαs

1000

)
(24)

where Pf is the rolling resistance power, Pw is the air resistance power, and Pa is the
acceleration resistance power.
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Based on the proposed concept of equivalence factor, the energy management control
objective of PHEV is formulated in Equation (25).

J(t) = min
∫ te

t0

ṁequ(Preq(t), u(t), s, t)dt

= min
∫ te

t0

[ṁ f (Preq(t), u(t), s, t) + ṁe2 f (Preq(t), u(t), s, t)]dt
(25)

In this paper, the minimum value of the objective function is solved by the Hamiltonian
function as shown in the equation. The mathematical expressions of the constraints in the
solution process are shown in Equations (26) and (27).

H(Preq(t), u(t), s, t) = ṁ f (Preq(t), u(t), s, t) + ṁe2 f (Preq(t), u(t), s, t) (26)

H(Preq(t), u∗(t), s, t) ≤ H(Preq(t), u∗(t), s, t)

s.t. umin ≤ u∗(t) ≤ umax

smin ≤ s ≤ smax

t0 ≤ t ≤ te

(27)

where u∗(t) is the optimal control sequence of vehicle demand power distribution ratio at
time t, umin and umax denote the maximum and minimum bounds of power distribution
ratio, respectively. smin and smax denote the minimum and maximum bounds of equivalence
factor, respectively.

The optimal sequence of control variables u∗(t) is solved in a finite set of Hamiltonian
equations to obtain the minimum value of the Hamiltonian equation. The constraints of
the actuating components, the constraints of the regenerative energy storage system and
the constraints of the battery SOC need to be considered in the calculation process, and the
calculation process and the main constraints are shown in Equation (28).

u∗(t) = argminH(Preq(t), u(t), s, t)

s.t. Pbatt_min ≤ Pbatt(t) ≤ Pbatt_max

Peng_min ≤ Peng(t) ≤ Peng_max

Teng_min ≤ Teng(t) ≤ Teng_max

Tmot_min ≤ Tmot(t) ≤ Tmot_max

ωeng_min ≤ ωeng(t) ≤ ωeng_max

ωmot_min ≤ ωmot(t) ≤ ωmot_max

SOCmin ≤ SOC(t) ≤ SOCmax

umin ≤ u(t) ≤ umax

t0 ≤ t ≤ te

(28)

where Pbatt_min and Pbatt_max denote the minimum and maximum power boundaries of the
battery in turn, and the engine power Peng, engine torque Teng, motor torque Tmot, engine
speed ωeng and motor speed ωmot constraints depend on the torque and speed limits of the
engine and motor. SOCmin and SOCmax denote the minimum and maximum values of the
SOC of battery, respectively.

Based on equivalence factors, current researchers have focused more on adjusting
equivalence factors by individual vehicle information (driving state and component state),
such as assigning equivalence factors based on identified road conditions [39] and adjusting
equivalence factors based on online prediction information [40]. The accuracy of road
condition identification and vehicle speed estimation affects the environmental adaptability
of the energy management strategy and places increasing demands on the computational
power of the vehicle controller as the control algorithm becomes more complex. In the
next section, we propose EP-ECMS to capture macroscopic traffic information and guide a
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single vehicle for energy management control by formulating a more efficient and accurate
environmental perceiver.

3.3. The Optimization Process of EP-ECMS

Many hardware facilities are deployed with the development of intelligent transporta-
tion systems (ITS). ITS integrates information, data communication, and sensing technology
to realize the close cooperation between workshop communication and the vehicle en-
vironment. In this paper, the prediction of the raffic state levels is accomplished by the
environment-aware model proposed by Section 3.1, and the corresponding optimized
ECMS equivalent factors are selected based on the predicted levels. In the offline process,
these equivalent factors are optimized by the swarm intelligence optimization algorithm of
HHO. Therefore, the EP-ECMS architecture and the optimization algorithm are presented
in the following sections.

3.3.1. The Operation Process of EP-ECMS

In the EP-ECMS, the call of equivalence factors is based on the current traffic grade
of the vehicle identified by the environmental perceiver, and the operation process is
shown in Figure 8. Firstly, after collecting the working condition fragments under different
classes, the Markov chain method [41] is used to generate the characteristic working
conditions of the corresponding class; then, based on the generated characteristic working
conditions, the HHO algorithm is adopted to complete the optimization of the equivalent
factors of the corresponding working conditions, as shown in Section 3.3.2; finally, the
actual working condition test, according to the current vehicle class, is identified by the
environment perception. Finally, during the actual test, the offline optimization table is
called online according to the current vehicle level identified by the environment sensor,
so as to control the energy consumption performance of the whole vehicle with a high
environment-adapted energy allocation strategy.

Condition 
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CS
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1 𝜆𝐶𝐷_1 𝜆𝐶𝑆_1

2 𝜆CD_2 𝜆𝐶𝑆_2

3 𝜆CD_3 𝜆𝐶𝑆_3

4 𝜆CD_4 𝜆𝐶𝑆_4

5 𝜆CD_5 𝜆𝐶𝑆_5 Time (s)

S
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Figure 8. The operation process of EP-ECMS. Especially, The grid diagram on the upper right shows
an example of the vehicle path. Among them, the red box represents the driving track of the vehicle.
The vehicle is in CD mode when driving in the front section, as shown in the grid diagram on the left,
while the vehicle is in CS mode in the rear section, as shown in the grid diagram on the right.
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3.3.2. HHO-Based Optimization of ECMS Equivalence Factors

By analyzing the process of the Harris hawk predation, Heidari et al., in 2019, proposed
HHO as a population intelligence optimization algorithm [42]. HHO has a strong global
search capability and requires fewer parameters to be adjusted. In this paper, the equiva-
lence coefficients are optimized for the characteristic working conditions under different
classes. The values of the two equivalence factors for CD and CS modes are optimized
according to the different operating modes of PHEVs of P2 configuration. In the HHO algo-
rithm, the position of the Harris hawk represents the equivalence factor in the optimization
process, and the equivalent fuel consumption is represented by the adaptation of the prey
position, so the smaller the equivalent fuel consumption is, the lower the adaptation is.

The Harris eagle optimization algorithm consists of three main components: the search
phase, the transition between search and exploitation, and the exploitation phase. In the
exploration phase, all individuals in the hawk flock are in a waiting state, and by examining
and monitoring the search space in order to find prey, different perching strategies are
selected based on random values, as modeled in Equation (29).

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)|, q ≥ 0.5

|Xrabbit(t)− Xm(t)| − r3[lb + r4(ub− lb)], q < 0.5
(29)

where X(t) and X(t+ 1) denote the positions of individuals at the current and next iteration,
respectively, t is the number of iterations, Xrand(t) is the randomly selected position,
and Xrabbit(t) is the prey position, i.e., the positions of individuals with optimal fitness.
r1, r2, r3, r4, and q are random numbers between [0, 1]. q is used to select the adopted
strategy, Xm(t) is the average position of the individuals, and the expression is shown in
Equation (30).

Xm(t) =
M

∑
k=1

Xk(t)/M (30)

where Xk(t) is the position of the kth individual in the population and M is the popula-
tion size.

The energy based on prey escape varied between exploitation behaviors during the
search and exploitation transition phase. The energy of prey escape was significantly
reduced during the escape behavior. The escape energy is defined in Equation (31).

E = 2E0

(
1− t

T

)
(31)

where E0 is the initial energy of the prey, which is a random number between [−1, 1]
and is updated automatically at each iteration. t is the number of iterations, and T is the
maximum number of iterations. When |E| ≥ 1 enters the search phase, |E| ≤ 1 enters the
development phase.

During the development phase, the Harris Hawk began to make surprise attacks on its
prey. Based on the energy and behavior of the prey’s escape, the Harris hawk evolved four
attack strategies. The prey tried to escape from the danger during the chase by indicating
the chance of the prey escaping before the raid as r; r ≥ 0.5 indicates a successful escape
and vice versa. Specifically, the four strategies are shown below.

Soft siege: The prey still has enough energy and checks to escape from the chase by
some random misleading jumps, i.e., r ≥ 0.5 and |E| ≥ 0.5. In this case, Harris’s Hawk
uses the soft siege strategy to exhaust the rabbit and then makes a surprise attack, see
Equation (32).

X(t + 1) = Xrabbit(t)− X(t)− E|J · Xrabbit(t)− X(t)| (32)

where J is the prey escape process jump distance, J = 2× (1− rand).
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Hard siege: The prey is very tired and the escape energy is low. The prey does not
have enough energy to rid itself of the pursuit, and there is no chance of escape, i.e., r ≥ 0.5
and |E| < 0.5. At this time, Harris hawk uses the hard siege method of hunting, the formula
is in Equation (33).

X(t + 1) = Xrabbit(t)− E|Xrabbit(t)− X(t)| (33)

Soft siege with a progressive fast dive: The prey has a chance to escape and has
sufficient escape energy. For this situation, Harris’s hawk needs to form a gentle siege with
a progressive fast dive before attacking, at this time r < 0.5 and |E| ≥ 0.5. Specifically, two
strategies were adopted based on prey adaptations, summarized in Equation (34).

X(t + 1) =
{

Y i f f itness(Y) < f itness(X(t))
Z i f f itness(Z) < f itness(X(t))

(34)

where Y and Z correspond to two strategies, respectively, which are shown in Equation (35).

Y = Xrabbit(t)− E|J · Xrabbit − X(t)| (35)

If the adaptation does not improve after this measure is implemented, an alternative
strategy is implemented.

Z = Y + S× LF(D) (36)

where D is the spatial dimension and S is a random vector of 1× D, i.e., S = randn(1, D),
LF(D) is the Levy flight function, which is shown in Equation (37).

LF(x) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin(πβ
2 )

Γ
(

1+β
2

)
× β× 2

β−1
2

 1
β

(37)

where u and v are random numbers uniformly distributed within [0, 1], β = 1.5.
Tough encirclement with progressive fast dive: When r < 0.5 and |E| < 0.5, the prey

has a chance to escape, but the escape energy is insufficient, so the Harris hawk forms a
tough encirclement before the raid, and gradually reduces the average distance to the prey
on the basis of stabilizing the field. The equations are shown in Equations (38)–(40).

X(t + 1) =
{

Y i f f itness(Y) < f itness(X(t))
Z i f f itness(Z) < f itness(X(t))

(38)

Y = Xrabbit(t)− E|J · Xrabbit − X(t)| (39)

Z = Y + S× LF(D) (40)

4. Simulation and Evaluation

In this section, the environmental sensing and energy management strategies are
tested separately, where the high accuracy of environmental sensing provides the basis for
the vehicle to control the energy distribution with a rational strategy, and the optimization
of the energy management strategy is the core of the energy management by the vehicle.
Therefore, it is necessary to test both.

4.1. Environmental Perception Model Testing

The highly accurate environmental perceiver depends on the architecture and param-
eters of the perception model. Based on the set parameters, we tested the performance
of the environmental perception, which is described below in terms of both the model
configuration and the testing of the environmental perception.
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4.1.1. Model Configuration

This experiment is conducted based on the floating vehicle data from the big data plat-
form of DiDi, and the vehicle trajectory data of the zone from 1 November to 30 November
2016 were selected as the source data. The average vehicle speed, average traffic flow,
maximum vehicle speed, relative average traffic flow, and relative average vehicle speed
of the area were counted once an hour according to the divided sub-regions, and the total
data set size was 720 groups.

The hyperparameters and training parameters of the environmental perception model
are shown in Table 2.

Table 2. Hyperparameters and training parameters of the environmental perceiver.

Detailed Parameter Setting

Number of roads 64 Optimizer ADAM
features of roads 3 Learning rate 5× 10−4

Historical length 24 Weight decay 1× 10−3

GCN layer LGCN 2 Batch size 24
GCN hidden dimension 32 Training Epoch 500

Linear hidden dimension 64 Training set size 576
Linear layer Llinear 2 Validation set size 72

Number of traffic condition grades 5 Testing set size 72

4.1.2. Performance of Environmental Perceiver

In this paper, the quadratic weighted kappa coefficient (Kappa coefficient) was used as
the evaluation index of the prediction effect, where the quadratic weighted kappa coefficient
indicates the consistency of the predicted grade with the true grade distribution, and this
coefficient characterizes the accuracy and deviation of the prediction. The calculation
process is based on the confusion matrix, which takes values between −1 and 1. The closer
the value is to 1, the higher the consistency of the prediction grade results. The accuracy
and weighted kappa coefficients are calculated as shown in Equations (41)–(43).

ACC =
1
n

n

∑
t=1

(1, i f vt = ṽt else 0) (41)

KAPPA =
Po − Pe

1− Pe
(42)

Po = ∑Class
i=1 ∑Class

j=1 ωi,j pi,j

Pe = ∑Class
i=1 ∑Class

j=1 ωi,j pi,: p:,j

ωi,j = 1−
(

i−j
Class−1

)2

(43)

Based on the test set data, this paper demonstrates the prediction performance of the
environment perception, where the accuracy and kappa coefficient results are shown in
Table 3. Finally, the prediction accuracy is 90.332%, and the kappa coefficient is 0.9511,
which indicates that the environment perception shows a better prediction performance on
different traffic levels, which provides a stable basis for the subsequent selection of energy
management strategies.

Table 3. The performance of the environmental perceiver.

Perception Performance Value

Accuracy 90.332%
Quadratic Weighted Kappa Confidence 0.9511
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To judge the prediction performance under different grades, Figure 9 shows the state
of the absolute difference distribution between the predicted grade and the true grade for
all instances under different grades, presented in the form of a violin plot. It can be seen
that the predictions for the traffic grades 1 to 4 are significantly better than that of grade 5,
as reflected by the more concentrated quartiles. This situation is understood to be due
to the fact that there are fewer traffic data for grade 5, which prevents the environment
perception model from fully learning the corresponding features, thus causing a certain
degree of misjudgment. Under the prediction task of grades 1 to 4, grades 2 and 3 are
slightly better than grades 1 and 4, as reflected by a greater concentration on the grade
difference of 0, along with the presence of fewer outliers.

Environment Condition (Grade)

A
bs

ol
ut

e 
D

ev
ia

tio
n

Prediction Performance Violinplot

Grade 1
Grade 2
Grade 3
Grade 4
Grade 5

Figure 9. The prediction performance.

In order to show the prediction of traffic status level more intuitively, Figure 10
shows the speed curve, original traffic grade curve, and predicted traffic grade curve
corresponding to a randomly selected trajectory. From the figure, it can be seen that there
are certain deviations and anomalies in the predicted grade distribution over time compared
with the real grade, with the deviations basically differing by one grade in general and
the anomalies lasting for a shorter period of time due to environmental disturbances more
often. In general, there is some inaccuracy in prediction, but it does not affect the overall
accuracy of the prediction and the consistency of the prediction results.

Figure 10. The prediction effect display.
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4.2. The Simulation Testing of Working Conditions

In order to verify the potential of EP-ECMS in terms of fuel economy, simulations
were performed in Matlab/Simulink. In addition to EP-ECMS, this paper also compares
a rule-based control strategy (RB) with a fixed equivalence factor ECMS. Four modes of
operation are available for the charge-depleting (CD) and charge-sustaining (CS) stages:
pure electric drive mode, engine drive mode, hybrid drive mode, and charging mode.
In the pure electric drive mode, the electric motor is the only power source for the vehicle;
in the engine drive mode, the engine drives the vehicle alone; the hybrid drive mode
corresponds to the dual power source of the engine and the battery; and in the charging
mode, the engine drives the vehicle and charges the battery at the same time.

In the constructed PHEV model, the initial battery SOC is 0.32 and enters the CS phase
when the SOC is lower than 0.28, and the final battery SOC is controlled between 0.28
and 0.304.

In this paper, the algorithm’s adaptability to the environment and the optimization
of energy consumption are tested by two sets of randomly selected actual trajectory data,
respectively. In order to exclude the interference caused by the environment perception,
the table look-up of the equivalence factor is completed by inputting the real traffic condi-
tion grade, and the corresponding lines are simulated by running in MATLAB/Simulink.

4.2.1. Energy Optimization Assessment

In order to evaluate the performance of EP-ECMS for fuel economy optimization, this
paper compares the rule-based control strategy, the fixed equivalence factor ECMS control
strategy, and the proposed EP-ECMS control strategy. We perform pre-processing work
on a randomly selected floating vehicle trajectory, resulting in a speed profile of the 1040s.
After the fuel consumption simulation test, the table shows the total fuel consumption
(equivalent fuel consumption) for different energy management strategies. Compared with
the conventional RB and fixed equivalent factor ECMS, EP-ECMS brings 25.18% and 5.03%
savings in the vehicle’s equivalent fuel consumption, respectively.

Figure 11 shows the driving speed versus SOC variation curves for a given trajectory
route. The figure clearly shows that the SOC curves exhibited by the different methods have
significant differences. First, comparing the rule-based control strategy with the ECMS-
based control strategy, the SOC variation trend of the rule-based method is the flattest in
the interval from 500 s to 1060 s, which is inappropriate in working conditions with more
intense speed changes and reflects poor working condition adaptability. For example, in the
600 to 750 s range, the vehicle is in the high-speed range, and the SOC is low. The engine
should be responsible for driving the vehicle and charging the battery. The charging
power of the RB method is too low to supplement the SOC to a reasonable range. Second,
comparing the result proves that EP-ECMS has higher environmental adaptability than the
classical ECMS control strategy. Specifically, for the 200–300 s range, the vehicle is in the
high-speed range. EP-ECMS uses the engine more to drive the vehicle and thus consumes
less battery power; for the 540–600 s range, the vehicle is in the low-speed range. EP-ECMS
uses the motor more to drive the vehicle and thus avoids the engine being in the inefficient
range; for the 900–1060 s range, the vehicle speed is in the low-speed range, EP-ECMS
uses the motor more to drive the vehicle and thus avoids the engine being in the inefficient
range. For the 900–1060 s range, the vehicle speed is in the low-speed range. EP-ECMS
reduces engine inefficiency by controlling the electric motor as the main driving force of
the vehicle.
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Figure 11. The first random working condition test result.

4.2.2. Assessment of the Working Condition of Power Components

To further analyze the control effect of energy management strategy on the working
point of power components, more trajectory data were randomly selected and pre-processed
to obtain a speed curve of length the 1370s, and an energy consumption simulation test was
conducted based on this working condition, which is shown in Figure 12. The trajectory is
shown in the figure. Specifically, EP-ECMS improves by 25.73% compared to RB and 7.25%
compared to ECMS, which again shows that EP-ECMS can effectively improve the fuel
economy of the whole vehicle.

Figure 12. The second random working condition test result.
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Figure 13 shows the distribution of engine operating points in different energy strate-
gies. Comparing the rule-based energy management strategy with the classical ECMS,
the engine operating points of the proposed EP-ECMS are more concentrated in the low fuel
consumption rate part. Under the rule-based energy management strategy, the torque and
speed of the engine are more distributed in the low-value range, indicating that the engine
drives the vehicle more in low-speed operating conditions, and the engine cannot give full
play to its performance in the high-speed operating conditions. The fixed equivalence factor
ECMS is more distributed in the high-efficiency interval compared with the rule-based
method. However, it has some operating points distributed on the outer characteristic
curve, which affects the overall operating point efficiency. In addition, the engine efficiency
worsens due to some low-torque operating points of the engine. For EP-ECMS, the con-
trolled engine operating points are more concentrated in the high-efficiency part than the
fixed-factor ECMS, specifically, less distributed in the outer characteristic curve and the
low-torque part.

Figure 13. The engine working point in the efficiency map.

Figure 14 shows the distribution of motor operating points for different energy man-
agement strategies. The integrated distribution of efficiency intervals over torque reveals
that EP-ECMS has a stronger balance. For the efficiency interval distribution, the work of
EP-ECMS and ECMS based on fixed equivalence factor is distributed in the high-efficiency
interval. At the same time, the rule-based control strategy has some points with an effi-
ciency below 80%. For the distribution of torque intervals, the distribution of EP-ECMS is
more concentrated in the low-torque area than that of fixed-equivalent factor ECMS above
2500 rpm, which means that the electric motor is more involved in the vehicle driver as
an auxiliary to ensure the engine works in the appropriate range in the corresponding
high-speed range.
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Figure 14. The motor working point in the efficiency map.

The above paper compares the simulation test results of EP-ECMS with the baseline
from multiple perspectives, which are the SOC optimization curve, engine operating point,
and motor operating point distribution, respectively. The results show that EP-ECMS is
very effective at optimizing the energy consumption control of PHEVs. PHEVs can adjust
the equivalence factor according to the perceived traffic conditions, thus showing excellent
power component operating point distributions.

5. Conclusions

In this paper, an energy management control architecture based on environmental
perception is proposed to optimize the management of the P2 parallel PHEV energy system
by combining the working condition categories identified by the environmental perception
with ECMS to improve the environmental adaptability of PHEV and, thus, fully utilize
the energy-saving potential. The overall control is divided into offline optimization and
online testing. The offline process includes training the environment perception based on
GCN and attention mechanism and optimizing the equivalence factors under different
environmental grades. In the online test, the table look-up of the equivalence factor is
completed by the environment level identified by the environment perception, and the
energy management control is completed based on the optimized equivalence factor. This
paper compares the simulation results using MATLAB/Simulink, and the improvement is
7.25% compared to the conventional ECMS economic model.

However, the current state of the formulated environment does not accurately reflect
the real environment the vehicle is in, and the potential of the control strategy needs to
be further developed. In future research, more accurate perception criteria for the single-
vehicle environment should be considered to improve the economy of PHEVs further.
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SOC state of charge
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