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Abstract: Quantifying cognitive workload, i.e., the level of mental effort put forth by an individual in
response to a cognitive task, is relevant for healthcare, training and gaming applications. However,
there is currently no technology available that can readily and reliably quantify the cognitive workload
of an individual in a real-world environment at a seamless way and affordable price. In this work,
we overcome these limitations and demonstrate the feasibility of a magnetocardiography (MCG)
sensor to reliably classify high vs. low cognitive workload while being non-contact, fully passive
and low-cost, with the potential to have a wearable form factor. The operating principle relies on
measuring the naturally emanated magnetic fields from the heart and subsequently analyzing the
heart rate variability (HRV) matrix in three time-domain parameters: standard deviation of RR
intervals (SDRR); root mean square of successive differences between heartbeats (RMSSD); and mean
values of adjacent R-peaks in the cardiac signals (MeanRR). A total of 13 participants were recruited,
two of whom were excluded due to low signal quality. The results show that SDRR and RMSSD
achieve a 100% success rate in classifying high vs. low cognitive workload, while MeanRR achieves a
91% success rate. Tests for the same individual yield an intra-subject classification accuracy of 100%
for all three HRV parameters. Future studies should leverage machine learning and advanced digital
signal processing to achieve automated classification of cognitive workload and reliable operation in
a natural environment.

Keywords: cognitive workload classification; wearable and non-shielded sensor; magnetocardiography;
heart rate variability

1. Introduction

Cognitive workload is defined as the level of mental effort put forth by an individual
in response to a cognitive task [1]. For example, when considerable mental effort is exerted
or the cognitive workload is high, the individual’s information-processing abilities may
be slowed [2]. Quantifying the level of cognitive workload in real-time has real-world
applications across several domains, such as preventing distracted driving [3], rating
pilots’ performance [4] and providing individualized return-to-learn guidelines following
mild traumatic brain injury [5]. Though questionnaire surveys and observation of human
behavior can be used to estimate cognitive workload, such estimates are subjective (hence,
subject to bias) and are not available on a continuous, real-time basis [6–8].

Extensive research in recent years has addressed the development of objective mea-
sures to quantify cognitive workload. These refer to measurements of various physiological
signals from the human body that objectively reflect cognitive workload changes. For
example, electroencephalography (EEG) has emerged as a promising technology in this
regard, where brain oscillations in the alpha and theta bands are sensitive to the mental
task difficulty level [9]. Specifically, as the task difficulty increases, the cognitive workload
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increases, so that alpha power decreases whereas theta power increases [10]. However,
EEG devices are obtrusive, consisting of tens of electrodes placed around the scalp as well
as heavy amplifiers and cable connections to recording devices [11]. As such, they are
unsuitable for monitoring an individual’s cognitive workload in a natural environment.
Though portable EEG headsets with a small number of channels have been used to combat
this issue [12], the noise level prohibits highly accurate monitoring of cognitive workload
in real-world scenarios. Furthermore, placing electrodes on the scalp takes time, and gel
dehydration on the skin provides no guarantee for acceptable signal quality over long
periods of time. As an alternative, previous research has explored pupillometry as a means
of seamlessly quantifying cognitive workload via “smart” glasses that monitor pupil dila-
tion [13]. However, ambient light and ambient noise act as a contaminating component
that influences pupil dilation, and there are very few approaches available to reduce these
factors [14,15]. In addition, given the abovementioned “smart” glasses are costly, they are
unsuitable for day-to-day use by the general population. Facial thermography is another
measure of cognitive workload that is non-invasive and non-intrusive [16]. However,
the approach is restricted to constrained environments and requires line-of-sight with
the participants’ faces. This limits the application of facial thermography in real-world
environments as well as the participants’ degrees of freedom.

More recently, electrocardiography (ECG) has been shown to accurately classify work-
load based on cardiac measures and, specifically, heart rate variability (HRV) [17]. HRV
quantifies the variation in the time interval between consecutive heartbeats and corre-
lates to activities of both the autonomic nervous system (ANS) and the cardiovascular
system [18,19]. Notably, HRV has been demonstrated to exhibit sensitivity to task load,
conditions of event rate and task duration. For example, in [20,21], authors show that
HRV extracted from ECG can successfully differentiate between different flight and driving
phases. In [22], HRV achieved a classification accuracy of 93.4% in detecting high cognitive
load and >90% in detecting real-life stress. In [23], both HRV and EEG were used to mea-
sure the effect of neurofeedback training in the sports domain based on their association
with cognition. However, ECG sensors require direct electrode contact with the skin; this
makes them cumbersome for daily wear, have low signal/contact quality when employed
outside the clinical environment and prone to errors with underlying sweat and hair, possi-
bly causing skin irritation and allergies (which, in turn, degrade signal quality). Though
commercial wearables claim to derive HRV (e.g., smartwatches and fitness trackers), these
metrics are known to be greatly inaccurate, particularly under dynamic conditions [24,25].

In this paper, we take a major step forward and demonstrate the feasibility of a
magnetocardiography (MCG) sensor to accurately quantify cognitive workload while
overcoming limitations in the state-of-the-art. MCG is the magnetic field equivalent of ECG:
It measures the magnetic flux induced by the current flowing through the heart. Our recent
work has demonstrated that an MCG sensor can capture the R-peaks of cardiac activity in
real-time and in a non-contact manner, i.e., without any skin contact [26]. In brief, the sensor
consists of an array of miniaturized coils that couple to the magnetic field of the heart when
placed in proximity (e.g., upon the chest). Following extensive post-processing to denoise
the collected signals (including averaging across the coils, filtering, etc.), the R-peaks can
be retrieved. Our MCG sensor has no skin-contact-related issues described earlier for ECG
and can be comfortably worn as part of a garment, making it a highly promising solution
for real-world monitoring of cognitive workload [27]. An added advantage is that MCG
signals are transparent to underlying tissues (tissues are non-magnetic), providing promise
for an even higher level of accuracy as compared to ECG-based metrics. (Tissues are
dielectric materials impacting the electric field.) Here, we report a proof-of-concept study
to confirm our MCG sensor’s feasibility in this regard. We monitored the MCG-derived
HRV parameters among 11 healthy adults of ages 20 to 35 as they performed low and high
cognitive activities and demonstrated successful classification of the cognitive workload
level at 91% to 100% accuracy for different HRV metrics and 100% accuracy for multiple
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repetitions on the same subject. To our knowledge, this is the first time that an MCG sensor
is used for cognitive workload classification.

2. Methods
2.1. Study Participants

For this study, 13 healthy adults (6 females and 7 males) between the ages of 20 and
35 (M = 25.69 years; SD = 4.517 years) were recruited, as shown in Table 1. Data on sex
were collected to confirm the sensor performance regardless of the presence of breast tissue.
Height and weight data were collected, and the Body Mass Index (BMI) was calculated
to serve as an indicator of the distance between the MCG sensor and the heart. Two
participants (subject 12 and subject 13) were eliminated from subsequent processing due
to low signal quality, i.e., clear R-peaks could not be identified in the MCG recordings of
these two participants. We note that both eliminated subjects were female with thicker
breast tissue, which may have contributed to the total absence of the R-peaks given the:
(a) increased distance between the heart and the sensor and (b) the difficulty in identifying
the optimal placement location. Other reasons include, but are not limited to, higher
background noise being present during those times/days. The study and test protocol
received Institutional Review Board (IRB) approval at The Ohio State University (IRB study
#2019H0259). Our IRB protocol has an explicit inclusion criterion related to healthy BMI, so
we excluded participants with high BMI to reduce the risk of poor signal quality due to the
weak strength of the MCG signal reaching the sensor.

Table 1. Participant details recruited for this study.

ID Age Sex Height (m) Weight (kg) BMI (kg/m2)

Subject 1 28 Female 1.63 48.5 18.3
Subject 2 24 Male 1.70 55 19.0
Subject 3 24 Male 1.65 56 20.6
Subject 4 25 Male 1.75 80 26.1
Subject 5 23 Male 1.78 65 20.5
Subject 6 35 Female 1.67 56.5 20.3
Subject 7 30 Male 1.76 81 26.1
Subject 8 23 Male 1.92 82 22.2
Subject 9 25 Male 1.79 64 20.0

Subject 10 20 Female 1.75 50 17.3
Subject 11 23 Female 1.63 52.6 19.8
Subject 12 20 Female 1.75 50 17.3
Subject 13 23 Female 1.63 52.6 19.8

2.2. Experimental Setup

Our experimental setup is shown in Figure 1. Each participant was asked to sit on
a zero-gravity chair with an MCG sensor wrapped around his/her chest. The chair was
selected to provide comfort across the duration of the experiment and to reduce motion
artifacts for this proof-of-concept study. The MCG sensor was designed based on our
previous work [26,27] and consisted of an array of seven coils (each 11 mm in height and
15 mm in diameter), embedded within a circular 3D-printed fixture of 60 mm in diameter.
The fixture with the embedded coils is shown in Figure 1 and was embedded in an elastic
chest belt that wrapped around the participant’s torso. We counted from the clavicle
and down to the space between the third and fourth ribs to identify the location of the
heart and aligned the MCG sensor with this location [28]. Misplacement of the sensor can
possibly reduce the MCG signal accuracy (to the extent of complete absence of R-peaks
in the retrieved signal) but not the cognitive workload detection accuracy (as long as R-
peaks are visible). However, this can only happen under extreme misplacement scenarios:
Misalignment by a few centimeters does not affect the sensor’s ability to detect R-peaks. As
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long as the sensor is placed upon the breast area, research has shown that R-peaks can be
still detected as MCG activity is present throughout the chest area [29]. Raw MCG signals
were captured by the human heart, bandpass filtered, amplified, digitized via an Analog
to Digital Converter (ADC) and sent to a laptop computer for post-processing. To collect
“gold-standard” cardiac measures for comparison, a three-lead ECG sensor was attached to
the participant’s skin. The ECG electrodes were placed on the abdominal area, left wrist,
and right wrist, respectively. ECG data traveled from the leads to an acquisition circuit
board and then eventually to the ADC and the laptop computer. The ADC sampling rate
for both MCG and ECG was set to 5 kHz. To induce low and high cognitive workload, two
screens were placed in front of the participant, as will be described in detail in Section 2.3.
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2.3. Low and High Cognitive Workload Test Conditions

To mimic different levels of cognitive workload, two conditions (viz. high and low
load) were carried out for each participant. The high workload task was designed as a
dual task where the participants were instructed to (1) watch a relaxing video, depicting
underwater sea life, on the screen placed in front of them and (2) provide answers to simple
math problems of 2 digits ± 2 digits (i.e., addition or subtraction of 2-digit numbers). The
low workload task was designed as a single task where the participants were instructed
to only watch the relaxing video on the screen. Literature has indicated that the tasks of
watching a relaxing video and answering math problems each induce a certain level of
cognitive workload on the participant [30,31]. Literature has also shown that dual-task
scenarios (i.e., combining tasks) increase the processing demands as compared to single-
task scenarios, hence further increasing the cognitive workload [32]. Along these lines,
the dual-task (math + video) scenario described here serves to induce an increased level
of cognitive workload or high cognitive workload as compared to the single-task (video)
scenario or low cognitive workload. The cognitive workload we aim to quantify entails
the general level of mental effort at a time, hence the exact type of workload resources is
relevant to this study. With the above in mind, we selected the video and math problem
tasks as they: (a) are valid measures and easy to implement using just a personal computer
and (b) can be completed with minimal body movement as needed to ensure success for
the MCG data collection.

The math problems along with an answer were shown on a computer screen ~6 feet
away from the participants to reduce possible large electronic interference, and a cell phone
that was on airplane mode was placed in front of the participants to record the answer.
The participants were instructed to tap “1” on a cell phone if they believed the answer was
correct and “0” if it was incorrect. All math problems were machine-based and appeared
automatically on the screen of a tablet one by one with an interval of 1.5 s. We purposely
selected a short (1.5 s) interval to keep the participants truly engaged, noting that cognitive
workload may increase not only due to the dual-task but also due to the potential time
pressure. The participants’ responses were recorded in parallel to their MCG and ECG
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signal activity to confirm their level of engagement. In summary, a mental arithmetic task
was used to differentiate between low and high cognitive workload, as based on the sensory
intake/rejection hypothesis previously reported in the literature [33]. Each scenario, i.e.,
low cognitive workload or high cognitive workload, lasted for 5 min according to previous
studies for ECG-based workload classification [34]. At the end of each test session, we
asked each participant to report their perceived difficulty level of the math problems as
difficult, not difficult nor easy, or easy to measure their efforts in completing high cognitive
workload tasks.

2.4. Heart Rate Variability (HRV) Parameters

By monitoring the time intervals between consecutive R-peaks of the MCG and ECG
signals, HRV parameters can be retrieved. As mentioned in Section 1, cardiovascular
activity is known to relate to human cognitive function, and ECG-derived HRV parameters
have previously been used to quantify the cognitive workload of drivers and pilots. In
general, HRV can be analyzed either in the time domain or the frequency domain [35,36].
In this study, we pursued time domain analysis as it (1) facilitates translation from the
ECG-derived metrics to the MCG-derived ones, (2) empowers evaluation with limited
recording time and (3) has been widely used in prior works [37]. ECG-based frequency
domain analysis [38] has found correlations between the oscillatory components within
different ECG frequency bands and different levels of cognitive workload. However, these
findings cannot be directly translated into the MCG-derived frequency domain parameters
as MCG (estimated as the derivative of the corresponding ECG) is expected to have an
added jω factor in each band of the frequency domain index. In addition, frequency domain
analysis is strictly restricted by the duration of the recording time. Typically, recordings
captured with less than 24 h of time duration cannot reliably access lower frequency
components [39,40].

Based on the above, we pursued time-domain analysis and evaluated the follow-
ing three metrics: (a) standard deviation of RR intervals (SDRR), (b) root mean square
of successive RR interval differences (RMSSD) and (c) mean of RR intervals (MeanRR).
To do so, Matlab was deployed to process both the recorded MCG and ECG data. Our
R-peak detection algorithm entailed the use of the “findpeak” function in Matlab, with
defined minimal distance between two neighboring peaks and defined minimal R peak
level/strength. This algorithm was first used to detect the location (time) of all R peaks
throughout the whole 5 min of recording time for both ECG and MCG. The distances
between two neighboring R-peaks were then calculated and referred to as the RR inter-
vals. In case of missing/duplicated R-peaks (large/small RR intervals)—typically due
to motional artifacts in the recorded signal—those R-peaks and associated RR intervals
were eliminated. As would be expected, missing or duplicate R-peaks will increase or
decrease the RR intervals beyond the allowable values. Hence, we first calculated all the RR
intervals based on the visible R-peaks and then excluded those intervals that were beyond
the clinically allowable values. This process reduced the duration of all available MCG and
ECG data to ~3 min (out of the 5-min test) to ensure consistency among all tests. The RR
intervals were finally used to derive the HRV metrics, ensuring that they lay within the
anticipated ranges as a sanity check for our algorithm (i.e., healthy ECG derived SDRR
should be 15.39 to 93 ms; mean RR should be 800 to 1300 ms; and RMSSD should be 15 to
75 ms [41–44]).

3. Results
3.1. Validation of MCG Sensor Performance

As a first step, we validated the performance of the MCG sensor and its ability to
accurately derive the target HRV parameters. We recruited one participant and collected
synchronized MCG and ECG data for a total of ~5 min per Section 2.1, without specifically
inducing low or high cognitive workload conditions. To ensure repeatability, we repeated
this test seven different times. An example plot of MCG and ECG data is shown in Figure 2,
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confirming the intended correlation between the two plots. Here, the Matlab built-in
bandpass filter (zero-phase) was used to correct the phase distortion due to filtering. We
note that the two signals were not expected to be in perfect synchronization given that
MCG is the derivative of ECG, but the number of R-peaks and, hence, the number of QRS
complexes should be the same [45]. Using our R-peak detection algorithm, we identified
the R-peaks and calculated the SDRR, RMSSD and MeanRR as summarized in Table 2.
Notably, all HRV values were within the anticipated ranges outlined in Section 2.4, while
the MCG-derived SDRR and MeanRR metrics were very close to those derived by “gold-
standard” ECG [46]. The MCG-derived RMSSD metric aligned well with the ECG-derived
value for most trials but was different as encountered in the last three trials. This might
be due to noise and/or RMSSD being known to be more sensitive to the parasympathetic
nervous system (PNS) as compared to SDRR and MeanRR. [47].
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Figure 2. Comparison of MCG and ECG signals recorded on a human participant for the same
time duration.

Table 2. MCG- and ECG-derived HRV parameters for a human participant across 7 trials.

Trial Number Signal Type SDRR (ms) RMSSD (ms) MeanRR (ms)

1
MCG 34.4007 22.5954 806.0518
ECG 33.9442 21.0884 806.051

2
MCG 35.2044 27.6404 841.4077
ECG 36.1201 26.0375 842.4552

3
MCG 30.5217 31.3984 877.2591
ECG 34.794 30.7943 877.2374

4
MCG 32.2313 32.9698 863.9058
ECG 36.202 31.8829 863.9223

5
MCG 39.0674 39.0887 848.5608
ECG 39.9489 29.8374 848.5273

6
MCG 41.3109 44.9424 782.5284
ECG 37.9880 31.5640 783.4569

7
MCG 42.4284 42.5028 868.6371
ECG 44.8875 28.6951 868.6302
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3.2. Confirmation of Engagement during the High Cognitive Workload Testing Conditions

We proceeded to record MCG and ECG data for the 11 participants presented in
Table 3 during the low and high cognitive workload activities outlined in Section 2.3.
Table 3 summarizes: (a) the difficulty level of the math problems as self-reported by the
participants and (b) the participants’ performance to the math problems (i.e., percentage
of the answers they got correct). As seen, all 11 subjects self-reported that the problems
were “Difficult”, hence confirming that the participants’ efforts in completing these high
cognitive workload tasks were at a relative high level. It is noted that the high cognitive
workload in this study was not induced via the difficulty of the math problems but rather
by adding a set of math problems as an additional task while watching a relaxing video.
Also, all subjects achieved ≥90% accuracy (accuracy = [number of correct answers to math
problems]/[total number of math problems] × 100(%)) in answering the math problems,
hence confirming that they truly engaged throughout the high cognitive workload task.

Table 3. Summary of the participants’ self-reported level of difficulty as well as math performance.

ID Self-Reported Difficulty Level Math Performance

Subject 1 Difficult 92.4%
Subject 2 Difficult 92.4%
Subject 3 Difficult 91.67%
Subject 4 Difficult 91.4%
Subject 5 Difficult 98.33%
Subject 6 Difficult 93.67%
Subject 7 Difficult 91.139%
Subject 8 Difficult 96.25%
Subject 9 Difficult 98.33%

Subject 10 Difficult 93.44%
Subject 11 Difficult 90.00%

3.3. Inter-Subject Classification Performance

HRV parameters derived using the MCG and ECG sensors are shown in Figure 3.
Specifically, Figure 3a shows the SDRR metric; Figure 3b shows the RMSSD metric; and
Figure 3c shows the MeanRR metric. The blue dashed line corresponds to the low cognitive
workload condition, while the black solid line corresponds to the high cognitive workload
condition. Referring to Figure 3, excellent performance was observed in distinguishing
between high and low cognitive workload for the MCG and ECG sensors. Notably, the
classification accuracy of MCG was identical to “gold standard” ECG, confirming once
again its reliability to monitor HRV [48,49]. Specifically, SDRR achieved a 100% success rate
in discerning low from high cognitive workload across the 11 subjects; RMSSD achieved a
100% success rate; and MeanRR achieved a 91% success rate (where success rate = [number
of correctly classified high and low workload tests]/[total number of tests] × 100(%)). The
non-optimal accuracy for the MeanRR metric was due to Subject 5 who showed a higher
instead of lower MeanRR value for the high cognitive workload case as compared to the
low cognitive workload case.

3.4. Intra-Subject Classification Performance

To confirm the intra-subject classification accuracy of the sensor, Subject 2 of Table 1
repeated the testing protocol eight times on eight different days. The participant assessed
the difficulty level of the high-cognitive workload task as “difficult” for all eight trials.
HRV results are summarized in Figure 4 for the MCG- and ECG-derived metrics under low
(blue-dashed) and high (black-solid) workload conditions. Figure 4 once again validates
the performance of MCG as compared to “gold-standard” ECG and shows a 100% success
rate of workload classification for this single participant. By observing Figure 4, the
signal appears to increase when the experiment is repeated. Nevertheless, all trials were
performed on different times and days, meaning that they are independent from each other,
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and hence such a “trend” may just be a coincidence. More extensive studies will be pursued
in this regard in the future. Despite such trend, a distinctive threshold can still be defined
for all HRV parameters listed using the reported eight trials.
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metrics are shown to the left, and ECG-derived metrics are shown to the right.
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dashed) and high (black-solid) cognitive workload conditions: (a) SDRR, (b) RMSSD and (c) MeanRR.

4. Discussion

In this work, we evaluated the feasibility of a novel MCG sensor to classify high
vs. low cognitive workload among healthy adult participants. Our results confirmed
excellent agreement of HRV metrics (SDRR, RMSSD, MeanRR) derived using the MCG
sensor as compared to “gold-standard” ECG. Our results also confirmed the sensor’s ability
to distinguish between high and low cognitive workload using these HRV metrics.
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The reported MCG sensor operates in non-shielded environments, requires no skin
contact and is low-cost, hence overcoming limitations of state-of-the-art technologies used
to classify cognitive workload. Though the electronics associated with the MCG sensor are
currently bulky, these can be readily miniaturized in the future to empower a wearable
sensor form factor for operation in real-world environments.

Our in vivo studies demonstrated a 100% success rate in classifying high vs. low
cognitive workload for the SDRR and RMSSD metrics and a 91% success rate for the
MeanRR metric across 11 adult participants. One of the participants had an inconsistent
trend in MeanRR value. Though environmental noise and respiratory frequency influences
might have led to this erroneous result, the exact reason was unknown at this stage. An
additional two participants were recruited (both female) but demonstrated high noise
in the collected MCG data, likely due to the presence of breast tissue that increased the
distance between the heart and the sensor. They were hence excluded from the analysis.
As is well known, the PNS is a division of the ANS that directly influences the increasing
and decreasing HRV parameters. The PNS will inhibit cardiac activities in response to
increasing workload [50], hence it is expected that SDRR, RMSSD and MeanRR will drop
when people have higher attentional workload demands. This was indeed confirmed by
our results in Figures 3 and 4.

Repeatability results for a single participant showed 100% classification accuracy of
high vs. low cognitive workload for all three HRV metrics under consideration. Though
not generalizable, these results also showed a clear threshold level for each of the HRV
metrics for the participant. This suggests that a personalized threshold likely exists for each
individual, though subject to change over the course of time.

In summary, the proposed MCG sensor shows high promise for cognitive workload
classification in numerous applications, both inside and outside laboratory settings. Future
work should focus on expanding upon additional HRV metrics, enhancing the participant
pool, improving the sensor performance regardless of the presence of breast tissue, automat-
ing cognitive workload classification using artificial intelligence and quantifying more than
two cognitive workload levels via the addition of math problems of varying difficulty. To
our knowledge, this is the first study in which MCG is explored for quantifying cognitive
workload in vivo. Our preliminary results could serve as a proof-of-concept, aiming to
ultimately open a path forward towards future studies in the field. Specifically, our work
quantified two distinct cognitive workload conditions, though, continuous cognitive work-
load assessment of multiple levels is needed in the future. To this end, future work should
focus on refining the task design, exploring the specific type of workload elicited and
adding more levels of workload conditions. Our study pool was also limited: We recruited
13 subjects with healthy BMIs and recorded acceptable MCG data from 11 of the 13 sub-
jects recruited. Future studies with a larger study sample and broader demographics are
needed to confirm our findings. The sensor hardware and software (algorithms) will also
be optimized to ensure high accuracy across all participants. Finally, the study is conducted
in a laboratory environment with minimum to no movement allowed by the participants.
In the future, the system will be refined for operation in real-world environments where
subjects move in a dynamic manner.
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