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Abstract: Economic and environmental sustainability is becoming increasingly important in today’s
world. Electronic waste (e-waste) is on the rise and options to reuse parts should be explored. Hence,
this paper presents the development of vision-based methods for the detection and classification
of used electronics parts. In particular, the problem of classifying commonly used and relatively
expensive electronic project parts such as capacitors, potentiometers, and voltage regulator ICs is
investigated. A multiple object workspace scenario with an overhead camera is investigated. A
customized object detection algorithm determines regions of interest and extracts data for classifi-
cation. Three classification methods are explored: (a) shallow neural networks (SNNs), (b) support
vector machines (SVMs), and (c) deep learning with convolutional neural networks (CNNs). All
three methods utilize 30 × 30-pixel grayscale image inputs. Shallow neural networks achieved the
lowest overall accuracy of 85.6%. The SVM implementation produced its best results using a cubic
kernel and principal component analysis (PCA) with 20 features. An overall accuracy of 95.2% was
achieved with this setting. The deep learning CNN model has three convolution layers, two pooling
layers, one fully connected layer, softmax, and a classification layer. The convolution layer filter size
was set to four and adjusting the number of filters produced little variation in accuracy. An overall
accuracy of 98.1% was achieved with the CNN model.

Keywords: vision system; object detection; object classification; shallow neural networks (SNNs);
support vector machines (SVMs); deep learning; convolutional neural networks (CNNs)

1. Introduction

One of the key principles of a circular economy [1] is the elimination of waste and
pollution. This facilitates a robust system that is beneficial for businesses, humans, and the
environment. Recycling and reusing products should be emphasized in every part of the
economy. In educational environments where resourcing can be constrained, equipment
and consumables used in projects can be recycled or reused [2].

Higher education institutions that provide training for engineers often place high
emphasis on practical activities and assessments. Courses in fields such as electrical and
electronic engineering often rely on hardware components such as resistors, capacitors,
inductors, voltage regulators, and diodes for project work. As an example, students
are required to construct an electrotechnology product in the Electrical and Electronics
Applications course at Waikato Institute of Technology [3]. The construction could be on a
printed circuit board (PCB), Veroboard, or breadboard. After project work, the constructed
PCBs are left in storage or thrown away (Figure 1). Used components are often discarded
instead of being reused. In the circular economy concept, components on these circuit
boards could be removed as part of soldering practice lessons. Since sorting parts manually
is mundane, this could be achieved using an intelligent automated sorting system. Thus,
this research proposes that a vision-based system be used to detect and classify parts.
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Figure 1. Circuit boards discarded after project work.

According to Mathworks [4], identifying objects in images or videos is a computer
vision technique known as object recognition. A variety of artificial intelligence methods
can be used for object recognition. Techniques in machine learning and deep learning have
become popular recently [5–7]. Object detection is similar to object recognition but varies
in execution. In objection detection, instances of objects are identified and also located in
an image. This enables many objects to be located and identified in an image.

Machine learning [8] is a sub-class of artificial intelligence and deep learning [9] is
a sub-class of machine learning. Traditional machine learning approaches have intercon-
nected steps such as segmentation, feature extraction and classification. Conventional
traditional machine learning classification methods for object recognition include shallow
neural networks (SNNs) and support vector machines (SVMs) [10,11]. Deep learning
primarily utilizes deep neural networks that consist of multiple hidden layers. Feature
extraction and classification is learned by the deep neural network. This provides superior
flexibility because the framework can be re-trained using a custom dataset for transfer
learning. Deep learning can also achieve better classification than traditional machine
learning. However, it achieves this at the expense of requiring high-end computing power,
larger training datasets, and longer training time. A comparison of traditional machine
learning and deep learning applied to image recognition showed an increase in accuracy of
less than 5% [12].

A common application of vision-based detection of electronic components is inspecting
the integrity and quality of PCBs [13–15]. Image classification techniques based on deep
neural networks have been used to detect integrated circuit (IC) components and verify
their correct placement on the finished PCB product in [13]. Verification is similar to
classification and a best accuracy of 92.31% was achieved. Machine learning is used to
inspect components prior to assembly in [14]. The purpose of prior inspection is to reduce
the number of defective components mounted and reduce falsely rejected components.
Scale-invariant feature transform (SIFT) parameters are extracted from raw images and
used with an artificial neural network (ANN) or an SVM for classification. Classification
accuracies of up to approximately 97% were achieved. Tiny surface mount electronic
components on PCBs are recognized using machine learning and deep learning in [15].
Machine learning with SVM+ principal component analysis (PCA) achieved an overall true
positive rate (TPR) of 93.29%. The TPR was further improved to 99.999% with the deep
learning-based Faster SqueezeNet.

Some recent methods to classify loose electrical and electronic components are based
on deep learning models [16–18]. In [16], a customized CNN architecture is developed
to classify three types of components: resistors, diodes, and capacitors. The developed
system’s performance is benchmarked against pre-trained AlexNet, GoogleNet, ShuffleNet,
and SqueezeNet deep learning architectures. While the accuracy of the pre-trained models
ranged from 92.95% to 96.67%, the proposed CNN model achieved 98.99% accuracy. Post-
training evaluation in a real-world setting was not conducted. In [17] and [18], variations
of the ‘you only look once’ (YOLO) deep learning model [19] are utilized. The speed
and accuracy of real-time object detection makes YOLO a popular choice. It is capable
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of directly outputting the position and category of an object through its neural network.
Four electronic components (three types of capacitors and an inductor) are classified using
YOLO-V3 and Mobilenet in [18]. A mean average precision (mAP) of 0.9521 was achieved.
The YOLOv4-tiny network is combined with a multiscale attention module (MAM) and
used to classify twenty types of electronic components in [17]. This improves the accuracy
of the original algorithm from 93.74% to 98.6%. A potential deep learning model for
detecting and classifying parts is Faster R-CNN [20]. However, the drawback of using
Faster R-CNN for classifying electronic parts is explained in [13]. It achieves very poor
results and according to the authors Faster R-CNN is not designed for small, relatively
featureless objects such as ICs.

A non-deep learning based machine learning method for classifying electrical and
electronic parts is presented in [21]. In this implementation, a K nearest neighbor (KNN)
classification algorithm is used to classify capacitors, diodes, resistors, and transistors.
Classification is performed based on physical appearances such as length, width, number
of legs, shape (roundness of objects), and correlation of input images with standard database
images. Full results and analysis are not presented, and accuracy is not quantified. While
KNNs are simple and easy to implement, they can become significantly slower as the
volume of data increases.

Recently, weakly supervised learning (WSL) has become popular in the computer
vision community. A survey of various methods for object localization and detection is pro-
vided in [22]. An advantage of WSL is that it can perform object localization and detection
at image level speeds of conventional fully supervised learning tasks. Typically, weakly
labelled training images can be input to either machine learning methods (e.g, SVMs), or
off-the-shelf deep models (e.g., AlexNet or R-CNN), or novel deep WSL frameworks. WSL
is applied to video salient object detection in [23]. Co-salient object detection distinguishes
common and salient objects in a group of relevant images. A summarize and search method
that employs dynamic convolution to distinguish salient objects is presented in [24]. The
current literature search did not determine any suitable implementations of WSL and video
salient object detection for sorting electronic parts.

A machine learning method that utilizes an SNN classifier to identify capacitors
within a scene of scattered electronic components is presented in [25]. A feature extraction
algorithm detects objects and converts them to a 20 × 20-pixel grayscale image for the
SNN. An overall accuracy of 82.7% is achieved. This method is further extended to a three
class problem for classifying capacitors, potentiometers, and voltage regulators in [26]. By
increasing the size of the grayscale image to 30 × 30 pixels and correspondingly adjusting
the size of the hidden neuron layer, an overall accuracy of 85.6% is achieved. Capacitor
classification achieves an accuracy of 91.4%.

Unlike the other reviewed methods [25,26], utilize lower resolution grayscale images
for classification. This reduces the complexity of the classifier and requires lower computa-
tional power (processor and memory use). However, the accuracy is also reduced. Hence,
this paper investigates the use of alternative methods based on SVM and CNN to improve
classification using the low-resolution grayscale images.

2. Materials and Methods
2.1. Conceptual Framework

Figure 2 shows a visualization of the object sorting system. An overhead camera
coupled with a Niryo Ned robotic arm [27] is used to detect, classify, and shift objects within
a pre-defined workspace. This workspace has a size of 194 mm horizontally (h, x) by 194 mm
vertically (v, y) and its boundaries are marked by one origin marker, top left (TL), and three
edge markers, top right (TR), bottom left (BL), and bottom right (BR). The Niryo Ned robotic
system has been selected because it features the open-source Robot Operating System (ROS)
platform [28] and supports Matlab integration via the ROS Toolbox [29]. A graphical user
interface (GUI)-based controller has been developed in Matlab to communicate commands
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to the robot and perform image acquisition [30]. Another feature is the relatively low cost
of the hardware which is approximately US $3299 [30].
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Figure 2. Visualization of object sorting system.

A Logitech HD C270 web camera is mounted in the center of the workspace. It is posi-
tioned at a height of approximately 0.37 m. Using a camera resolution of 960 × 720 pixels,
the four boundary markers are clearly visible near the limits of the camera image at this
height. Figure 3 illustrates a sample camera image at the height of 0.37 m. The camera
height is adjustable since the four boundary markers are also used to automatically calibrate
pixel distances (1), (2). The TL marker is the origin marker and is used to compute pixel and
physical distances in the workspace. It also translates workspace distances to the robot’s
reference frame.

xcal = 194/(0.5(hTR − hTL + hBR − hBL)), (1)

ycal = 194/(0.5(vBL − vTL + vBR − vTR)), (2)

where

xcal is the x-axis calibrated pixel distance scale factor in mm/pixel,
ycal is the y-axis calibrated pixel distance scale factor in mm/pixel.
H and v are horizontal and vertical pixel numbers, respectively.
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The overall general framework of the vision-based classification system designed in
this paper is illustrated in Figure 4. First, an image of the workspace is captured using the
web camera via Matlab. Following this, the acquired image is processed for object detection.
Bounding boxes are placed around detected objects and the center of the bounding boxes
represents the location (position) of the objects. After determining the bounding boxes,
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the partial image inside each bounding box is considered a region of interest (ROI) for the
classifier and is resized according to the classifier requirements. Once the ROI is resized,
the classifier uses it to match the image to an object class it has been trained to recognize.
The classified object can then be moved by the robotic arm to a target location.
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2.2. Object (Component) Detection

The major parts of the object (component) detection process are highlighted in Figure 5.
Various image processing algorithms are applied to extract ROIs containing unclassified
objects. Figure 6 shows representative images of the various stages of the object detec-
tion process.

To reduce the complexity of the object detection and classification process, grayscale
images are used. Hence, the first part of the process is to convert the RGB color image to
grayscale using the weighted method (3). Following this, edge detection algorithms can
be applied to determine the boundaries (outlines) of objects within images [31]. Of the
available algorithms in Matlab (Sobel, Canny, Prewitt, and Roberts), Canny performed the
best in detecting shape outlines (Figure 6a). Canny uses two thresholds which makes it less
likely to be fooled by noise and more likely to detect true weak edges. The values for the
high and low thresholds are 0.1 and 0.04, respectively.

gray = 0.299R + 0.587G + 0.114B. (3)

The output of the Canny edge detection algorithm is a binary image which is then
dilated to further improve connectivity between the edges. This is achieved by applying
a rectangular structuring element that enlarges the edges of the binary image (Figure 6b).
Edge connectivity is important as the next stage involves flood-filling the binary image to
form filled (solid) shapes representing the detected objects (Figure 6c). After flood-filling,
the binary image is further processed by measuring the properties of the image regions.
The “BoundingBox” property argument returns a set of positions and sizes of the smallest
boxes, i, containing each detected object (Figure 6d) (4). This represents the ROIs. The
green crosses in Figure 6d mark the bounding box centers (BBC) that represent the location
of the objects in the workspace (5) and (6).

BBi = [hoi, voi, hwi, vhi], (4)

where

BBi is the ith bounding box,
hoi is the horizontal pixel number of the top left corner,
voi is the the vertical pixel number of the top left corner,
hwi is the horizontal width in pixels,
vhi is the vertical height in pixels.

BBC(hi,vi) = (hoi + 0.5 × hwi, voi, + 0.5 × vhi), (5)
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BBC(xi,yi) = ((hoi + 0.5 × hwi − hTL) × xcal, (voi,+ 0.5 × vhi − vTL) × ycal). (6)
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Figure 6. Sample images of various stages of the object detection process. (a) Canny edge detection
binary image; (b) Binary image dilation; (c) Filled binary image; (d) Grayscale image with bounding
boxes and center point coordinates.

After detecting bounding boxes (ROIs), the size of each bounding box is checked
against an estimated size threshold representing the dimensions of the smallest component
to be detected. This eliminates small boxes that may have been erroneously detected due
to noise or tiny holes in components such as voltage regulators. The pick and place task
assumes that objects are physically separated and do not overlap.

The final stage before input to the component classifier involves standardizing the size
of the ROI images. The ROIs of the grayscale image inside the bounding boxes are rescaled
to 30 × 30 pixels. This has been arbitrarily selected to reduce complexity of the classifier
and represents 900 inputs.

2.3. Component Classification

Component classification determines which class or category the detected component
belongs to. Several methods of doing this are outlined in Section 1. Three techniques
utilized in this research are described below.



Sensors 2022, 22, 9079 7 of 17

2.3.1. Shallow Neural Network (SNN)

The SNN classifier has 900 inputs, one hidden layer, and three outputs representing the
components (capacitor, potentiometer, and regulator) as shown in Figure 7. It is designed
and implemented using the Neural Pattern Recognition tool (nprtool) in Matlab 2021a.
The classifier is a feedforward neural network that is backpropagation trained using the
scaled conjugate gradient method [32]. The performance function is the Cross-Entropy
method (7) which generates batches of episodes and removes bad episodes in a batch
to train the network on better ones. The tansig function is utilized in the hidden layer
while the softmax function is employed in the output layer. These are the default settings
of the nprtool. The main variable adjusted in the SNN is the number of neurons in the
hidden layer.

J = − 1
M ∑M

m=1 ∑K
i=1 ti

m ln
(

yi
m

)
(7)

where

J is the cost,
M is the number of training data,
K is the number of output classes,
y is the output (contains K values, one for each class).
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2.3.2. Support Vector Machine (SVM) and Principal Component Analysis (PCA)

The SVM classifier also has 900 inputs and three outputs. It is designed using the
Matlab Classification Learner App. Error-correcting output codes (ECOC) [33] are used to
train the classifier which works by solving for a hyperplane that separates two class data
with maximal margin [34]. The support vectors are the points which lie near the separating
hyperplane. The SVM is trained for a 3-class problem on a one vs all approach. Since
the original training data is not linearly separable, four different kernel functions K(xi,x)
(linear (8), quadratic (9), cubic (10), and Gaussian (11)) are applied to the classifier. These
transform the original input space into vectors of a highly dimensional feature space for
the SVM to classify. The general structure of the SVM is shown in Figure 8.

K(xi, x) = (xi.x) (8)

K(xi, x) = (xi.x + 1)2 (9)

K(xi, x) = (xi.x + 1)3, (10)

K(xi, x) = e− ||xi − x||2/2σ2
. (11)
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Using 900 predictors in the input space can impair computational time. Hence,
PCA [35] is used to determine the principal components for feature optimization [36,37].
This singular value decomposition reduces the data dimensionality and projects it to a
lower dimensional environment for the SVM. This naturally comes at the expense of accu-
racy. Hence, it is important to compare the SVM + PCA classifier accuracy with the SVM
only classifier.

2.3.3. Convolutional Neural Network (CNN)

Like the SNN, the CNN classifier is also a feedforward neural network with 900 inputs
(30 × 30-pixel image). It can extract features from the two-dimensional image and optimize
parameters using backpropagation. The high performance of CNNs makes them a preferred
deep learning architecture as outlined in Section 1 and in [38]. The basic structure of a CNN
is shown in Figure 9. The hidden layers consist of a series of convolution, rectified linear unit
(ReLU), and pooling layers. In the convolution layer, the image is examined by applying
a filter smaller than the original image to determine its properties. Following this, the
ReLU layer removes negative values from the output of the convolution layer. The pooling
layer reduces the original size of the image by retaining important features and ignoring
unnecessary features in the image. The fully connected (FC) layer converts the matrix
image into a flat vector for the SoftMax function to determine the output classification.
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Figure 9. Basic structure of a CNN.

The architecture of the proposed CNN inspired by [39] has three convolution layers,
two pooling layers, one fully connected layer, softmax, and an output classification layer
as shown in Figure 10. The filter size for all three convolution layers is set to 4 × 4 with a
stride of 1. A filter size of 3 × 3 is utilized for the two pooling layers and the stride is set
to 3.
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3. Results
3.1. Datasets and Configuration

The dataset used in this research consisted of a total of 1734 images extracted via the
object detection process described in Section 2.2. Each class (capacitor, potentiometer, and
regulator) had 578 images. A sample of the dataset images derived from object detection
process is shown in Figure 11. Further details of the dataset are available in [40]. The
dataset was randomly divided into 70% training (1214 images), 15% validation (260 images)
and 15% test (260 images). Five-fold cross-validation was used in the training process.
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A Windows 10 HP ProBook 450 G7 laptop running Matlab 2021a was used to imple-
ment the various classifiers. The hardware configuration had an Intel i7-10510U processor
and 16 GB RAM.

After training the classifiers and testing them on the dataset, the best classifiers
for SNN, SVM, and CNN were put to test in the real world. This was done with new
independent data generated from the evaluation of ten multi-object scenes with a total of
104 objects.

3.2. SNN Classifier Accuracy

The SNN classifier model was tested with a variety of hidden layer neurons ranging
from 10 to 120. When the number of hidden neurons was below 40 (10, 20, or 30) the test
accuracies were all below 90%. Details of the test accuracies when the number of hidden
layer neurons varied between 40 and 120 is shown in Table 1. Good classification is possible
with any of the classifiers with 40, 60, 80, or 100 neurons. The model with 80 hidden
neurons was selected since it had the best overall accuracy. Figure 12 illustrates the test
confusion matrix and the confusion matrix of the real-world test with 104 new objects.
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Table 1. Accuracies of the tested SNN models.

Hidden Neurons Test Accuracy %

40 93.1
60 92.3
80 93.5

100 92.3
120 87.8
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3.3. SVM + PCA Classifier Accuracy

In the SVM + PCA classifier experiments, the number of components in PCA was
varied between 10 and 50. Four kernel functions (linear, quadratic, cubic, and medium
Gaussian) were also tested. The results of the various combinations tested are summarized
in Figure 13. The horizontal lines without markers in Figure 13 represent the accuracy of
SVM classifiers using the various kernel functions without PCA. Without PCA, the SVM
classifiers achieved accuracies of 78.2%, 93.9%, 94.9%, and 92.4% with the linear, quadratic,
cubic, and medium Gaussian kernels, respectively. Using PCA with the linear and medium
Gaussian kernels degraded accuracies to below 70%. The quadratic and cubic kernels
achieved low reduction in accuracy when the number of PCA components was between
20 and 30. The SVMs with cubic kernel function were the best overall achieving accuracies
of 94.9% without PCA and 94.6% with 20 component PCA. Figure 14 illustrates the test
confusion matrix and the confusion matrix of the real-world test with 104 new objects for
the SVM classifiers with cubic kernel function. The real-word test achieved the same results
with the SVM and SVM + PCA with 20-component classifiers.

3.4. CNN Classifier Accuracy

The CNN classifier model was tested with a 4 × 4 filter size for all convolution layers
and a 3 × 3 filter size for the pooling layers. The stride in the convolution and pooling
layers was set to one and three, respectively. The number of filters in the convolution layers
was varied as shown in Table 2. Table 3 shows the CNN model training parameters. As
shown in Figure 15, there was little change in overall accuracy when the number of filters
in the convolution layers varied. Hence, Configuration 1 was selected since it has the least
number of filters. Figure 16 illustrates the test confusion matrix and the confusion matrix
of the real-world test with 104 new objects for the CNN classifiers using Configuration 1.
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Table 2. Filter numbers in convolution layers.

Configuration Number Value [Conv-1 Conv-2 Conv-3]

1 [10 20 40]
2 [12 24 48]
3 [15 30 60]

Table 3. CNN model training parameters.

Parameters Value

Optimize method stochastic gradient descent with momentum
(sgdm)

Initial learning rate 0.02
Maximum epochs 7

Validation frequency 20
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4. Discussion
4.1. Overall Comparison of the Three Classifiers

The receiver operating characteristic (ROC) curves for the SNN with 80-hidden neuron
classifier, SVM with cubic kernel and 20 PCA-component classifier, and CNN Configuration
1 classifier are shown in Figure 17. It is clearly visible that the CNN classifier has a
superior ROC curve and performs the best for all object classes. Figure 18 compares the
key performance criteria metrics of the classifiers based on the real-world test with 104 new
objects. The CNN classifier has the best sensitivity and precision across all component
classes. It also achieved the best accuracy of 98.1%. The SVM + PCA classifier can produce
good results which are close to the CNN.
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4.2. Comparison with Accuracy of Other Classifiers

The classifiers developed in this paper utilize low-resolution grayscale images. Other
methods reviewed in Section 1 use higher resolution and color images. Therefore, these
other classifiers are inherently more complex and require heavier computational power.
Table 4 compares the CNN classifier presented in this paper with the properties of other
representative deep learning models from Section 1. Model complexity excludes the ReLU
layers for all models. A direct comparison of computation volume and speed is not
possible due to variations such as image resolution and object class numbers. Therefore, an
approximate comparison based on image input size and network complexity is made in
Table 4. The key feature of our method is that it can perform on a standard laptop computer.
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The accuracy level of the developed CNN classifier is comparable with the other methods
despite it using low resolution (30 × 30-pixel) grayscale images. However, the classifiers
developed in [15,17] are capable of detecting a much wider range of electronic components.
The training dataset employed in this research is small but sufficient for the three types of
parts as there is not a large variation in physical properties of the items in each class. This is
validated based on the classification results. The dataset can be expanded to include a larger
variety of project parts if needed. For example, if ceramic and electrolytic capacitors need
to be classified, then a new or expanded dataset can be utilized. The method presented in
this paper is like YOLO as it has the ability to detect and classify electronic components
with a single image of the entire workspace.
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Table 4. Comparison of the proposed CNN classifier with other deep learning methods.

Reference Dataset Properties Classes Model Complexity Accuracy

Atik (2022) [16] Color, 227 × 227 × 3
pixels, 5332 images 3 Custom CNN with

13 layers 98.99%

Xu et al. (2020) [15] Color, 112 × 112 × 3
pixels, 40000 images 22 Faster SqueezeNet with

23 layers 99.999% TPR when FPR = 10−6

Huang et al. (2019) [18] Color, 416 × 416 × 3
pixels, 43,160 images 4 YOLO-V3-Mobilenet with

30 layers 95.21% mAP

Guo et al. (2021) [17] Color, 608 × 608 × 3
pixels, 12,000 images 20 YOLOv4-tiny + MAM with

24 layers 98.6% mAP

Proposed CNN classifier Grayscale, 30 × 30
pixels, 1734 images 3 Custom CNN with 7 layers 98.4% test, 98.1% real world

test

5. Conclusions

This paper presented the development of vision-based methods for the detection
and classification of used electronic parts. Three classes of components were considered:
capacitors, potentiometers, and voltage regulator ICs. A customized method for detecting
multiple objects in a workspace and extracting data for classifier input was developed. Low
resolution (30 × 30-pixel) grayscale images are input into the classifiers. This reduces the
complexity of the classifiers and inherently requires lower computational power (processor
and memory use). Three types of classifiers were investigated: SNN, SVM + PCA, and
CNN. After training and testing the classifiers on the dataset, the best classifiers were put
to test in the real world. As expected, the SNN classifier achieved lowest overall accuracy
(93.5% in dataset and 85.6% in real word). This was followed by the SVM + PCA classifier
with 20 components (94.6% in dataset and 95.2% in real world). The best accuracy was
achieved with the CNN classifier (98.4% in dataset and 98.1% in real world). The accuracy
of the CNN classifier is comparable to other relevant deep learning models.

Future work will involve extending this detection and classification method to other
electronic parts. This will require increasing the dataset size for each component. The
size of the input image to the classifier is currently limited by the resolution of the cam-
era (960 × 720 pixels). In addition to this, the pick and place of objects detected via the
developed object detection algorithm is being implemented.
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