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Abstract: Real-time tracking welding with the assistance of structured light vision enhances the
intelligence of robotic welding, which significantly shortens teaching time and guarantees accuracy
for user-customized product welding. However, the robustness of most image processing algorithms
is deficient during welding practice, and the security regime for tracking welding is not considered
in most trajectory recognition and control algorithms. For these two problems, an adaptive feature
extraction algorithm was proposed, which can accurately extract the seam center from the continuous,
discontinuous or fluctuating laser stripes identified and located by the CNN model, while the
prior model can quickly remove a large amount of noise and interference except the stripes, greatly
improving the extraction accuracy and processing speed of the algorithm. Additionally, the embedded
Pauta criterion was used to segmentally process the center point data stream and to cyclically
eliminate outliers and further ensure the accuracy of the welding reference point. Experimental
results showed that under the guarantee of the above-mentioned seam center point extraction and
correction algorithms, the tracking average error was 0.1 mm, and even if abnormal trajectory points
existed, they did not cause welding torch shaking, system interruption or other accidents.

Keywords: structured light vision; adaptive feature extraction; embedded Pauta criterion; robotic welding

1. Introduction

The recognition and control of welding trajectory is a major problem in intelligent
welding, and structured light vision is an efficient way to deal with it. With the assistance
of structured light vision sensors, teaching-playback robots are capable of intelligently
realizing the automatic planning of welding trajectory by laser multi-point positioning [1,2],
pre-welding trajectory fitting [3] and real-time tracking [4], of which real-time tracking
is the most important technical means. A highly robust image processing algorithm for
feature point extraction is a technical prerequisite for the tracking system, but it brings
reservations in time-consuming practical welding, where the tracking reference points
are not extracted 100% correctly due to external dynamic interference and the number of
outliers increases with the welding time. Therefore, a stable image processing algorithm, as
well as a flexible outlier tracking point removal algorithm, must be incorporated into the
tracking regime at the same time.

The robot’s motion control model based on coordinate points is relatively robust and
mature, but the extraction of the seam center would be strongly disturbed by arc, splash,
light, etc. The extraction of the center point is mainly divided into two steps: automatically
locating the laser stripe region of interest (ROI) and detecting feature points from ROI. In
order to be able to shorten the image processing cycle and improve the accuracy of feature
point extraction, a target tracking algorithm is used to acquire ROI. There are two main
forms of regions of interest: large pixel regions containing joint information with high
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adaptability and flexibility and tiny pixel regions containing single feature points with high
specificity and personalization. For thick plates with large bevels, the strong arc splash
across the bevel gap causes violent reflected light at the bevel inflection point, and the
algorithm aiming at tracking the node (bevel inflection point) has a certain feature point
extraction error, generally within 10 pixels, but the actual error can be up to 1 mm (the
magnification factor in the camera vision middle area is 1 pixel ≈ 0.1 mm). Therefore, the
algorithm that tracks the bevel was used in this study to further reduce the error of feature
point extraction by the complete laser stripe curve. A weighted local cosine similarity
algorithm was adopted to detect seam laser area [5]. Zou et al. [6] used the spatiotemporal
context (STC) object tracking algorithm to obtain the processing object of feature point
extraction. The recurrent neural network (RNN) was used to learn the temporal context
information of convolutional features to accurately detect the seam region [7]. Zou et al. [8]
proposed a continuous convolution operator tracker (CCOT) object-tracking algorithm to
get the object of image processing. Li et al. [9] searched the profile of the welding seam in
a small area by using a Kalman filter. The location of welding points in the presence of
large distractions from ambient illumination, metal dust, splash and strong arc needs to
be rapidly and accurately determined to improve the robustness of laser stripe centerline
extraction and seam center extraction algorithms. Appropriate target-tracking algorithms
can significantly improve the robustness of the welding system with auxiliary light sources.
Some target detection algorithms, such as KCF [10], SVM [11], and ERFNet [12], have
complicated training processes; therefore, a real-time object detection algorithm based
on CNN [13] was used in this research to rapidly and accurately determine the region of
interest, including bevel laser stripes.

These ROI tracking and prediction algorithms are highly robust, but many of the
algorithms for detecting feature points from the joint region need to be optimized to meet
the requirements of actual welding conditions. Zhang et al. [14,15] detected the laser stripe
based on the connected region theory, but the largest connected region did not always
represent the laser stripe during welding (as outlined in Figure 1), and the theory easily
removed important information. Wu et al. [16] used the Hough linear detection method
to obtain the laser stripe centerline equation. Jawad et al. [17] improved the Otus and
line detection algorithms to extract feature points. A precise Hough transform algorithm
was designed by Fan et al. [18] to extract the seam center. Furthermore, Xiao et al. [19]
extracted the seam center based on the inflection point theory after detecting the laser stripe
by the Steger algorithm. However, the feature extraction algorithm based on the theoretical
laser stripe model (Figure 2a) was prone to failure when there were holes, jumping points,
missing feature points and other defects in the laser stripe, as shown in Figure 2b–d.
For these reasons, an adaptive feature extraction algorithm was investigated in order to
extract the seam center from the bevel laser stripe with various defect characteristics under
actual welding.
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Although seam area prediction models and seam center extraction algorithms pro-
posed by Zhang et al. [20–22] could extract the motion reference point to a large extent, the
accuracy of these models and algorithms was not 100%. Due to the irresistible, dynamic,
irregular and uncertain interference in the acquisition of accurate feature points, there
was a high probability that the original laser image lacked valid information, and thus the
authentic seam feature points were not obtained, which would lead to the chaos of motion
program and was why the technology suddenly failed during the welding process. Factors
such as strong arc spatter, sensor contamination and ambient light could cause the target
tracking model and feature point extraction algorithm to extract the wrong seam center
point, so the center point data stream obtained through image processing should not be
directly transmitted to the tracking welding controller, for which the security or robustness
guarantee mechanism for analyzing the authenticity and accuracy of feature points needs
to be put forward.

Taking the V-shaped seam as the research object, it was proposed to use the CNN
model to automatically locate the ROI of laser stripes. An adaptive feature extraction algo-
rithm based on row and column scanning extracted the seam center point. The prior model
further improved the extraction accuracy of feature points at the pixel level. Subsequently,
the embedded Pauta criterion [23] processed the center point data stream to ensure the
authenticity and accuracy of tracking reference points by eliminating outliers. Finally, the
adaptability of these algorithms was discussed. Experiments were conducted in a real-time
tracking welding system to verify the robustness and accuracy of the algorithms.

2. Structured Light Vision Welding System

A structured light vision welding system was independently developed, which
consisted of a six-DOF welding robot (Yaskawa, AR1440, Liaoning Dazheng Intelligent
Robot Co. Ltd., Liaoning, China), a structured light vision sensor [24], a robot control cabi-
net (YRC1000, Liaoning Dazheng Intelligent Robot Co. Ltd., Liaoning, China), an arc welder
(RD350S, Liaoning Dazheng Intelligent Robot Co. Ltd., Liaoning, China), an industrial PC
and a console, as shown in Figure 3. The structured light vision sensor was based on the cou-
pling of the camera (MV-CA050-20UM, Hangzhou Hikvision Digital Technology Co., Ltd.,
Hangzhou, China), an infrared laser (HD650AB100-16GD-WLD, Shenzhen Infrared Laser
Technology Co., Ltd., Shenzhen, China) and a bandpass filter (FU-650LGP-Y34, Shenzhen
Infrared Laser Technology Co., Ltd., Shenzhen, China) attached to the camera lens. The
camera and the torch are coaxial, and the laser forms an angle of 25◦ with the axis of the
camera. The intersection of the laser’s optical axis and the camera’s axis was positioned at
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170.33 mm from the camera lens. In addition, the look-ahead distance between the laser
line and welding arc was 50.5 mm when real-time tracking welding.
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Figure 3. Diagram of a structured light vision welding system.

Figure 4 is a schematic of robot automatic welding, which illustrates the relationship
between the pixel coordinate system OPXPYP, the tool coordinate system OHXHYHZH
and the robot base coordinate system OBXBYBZB. On the basis of the structured light
perspective projection imaging model, the image coordinate system OIXIYI existed on the
OPXPYP plane, and the coordinate origin was located at the pixel center; in addition, the
camera coordinate system OCXCYCZC was located at a distance f (focal length) directly
above the image coordinate system. When P was assumed as a point on this laser line, then
its coordinates in the OIXIYI coordinate system, OPXPYP coordinate system and OCXCYCZC
coordinate system were (u, v), (c, r) and (xc, yc, zc), respectively.
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The transformation between (xc, yc, zc) and (u, v) was established via the trigonometry
principle as follows: u
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Under non-ideal conditions, the real coordinates (ud, vd) of the P point in the image
coordinate system OIXIYI were geometrically distorted from the theoretical coordinates
(u, v) [25], and they were related as follows:[

ud
vd

]
=

2
1 +

√
1− 4k(u2 + v2)

[
u
v

]
(2)

where k is the distortion coefficient.
For obtaining the coordinates of the P point, the camera coordinate system OCXCYCZC,

the transformation between the pixel coordinate system OPXPYP and the image coordinate
system OIXIYI needed to be established as follows [26]:c

r
1

 =

1/Sx 0 u0
0 1/Sy v0
0 0 1

ud
vd
1

 (3)

where Sx, and Sy represent the imaging magnification coefficients in the horizontal and
vertical directions, respectively. (u0, v0) represents the pixel coordinates of the intersection
of the optical axis and photosensitive chip.

To determine the exact mapping relationship between 2D pixel coordinates (c, r) and
3D camera coordinates (xc, yc, zc), a constraint equation needed to be established by light
plane calibration, as follows:

A ∗ xC + B ∗ yC + C ∗ zC − D = 0 (4)

The transformation between (xc, yc, zc) and (c, r) can be derived using Equations (1)–(4):

xC =
D(Sxc− u0Sx)

A(Sxc− u0Sx) + B
(
Syr− v0Sy

)
+ C f δ

yC =
D
(
kyr− v0ky

)
A(Sxc− u0Sx) + B

(
Syc− v0Sy

)
+ C f δ

zC =
D f

A(Sxc− u0Sx) + B
(
Syr− v0Sy

)
+ C f δ

(5)

where δ = ku2
0S2

x − 2ku0S2
xc + kv2

0S2
y − 2kv0S2

yr + kS2
xc2 + kS2

yr2 + 1, (Sx, Sy, k, u0, v0) are
collectively referred to as camera internal parameters, which were determined by the
HALCON machine vision library calibration and (A, B, C, D) are laser line parameters,
which were obtained by optical plane calibration.

The mapping relationship between the coordinates of the P point in the world coordi-
nate system OBXBYBZB and the coordinates in the camera coordinate system OCXCYCZC is
shown in Equation (6). 

xB
yB
zB
1

 =

[
R T
0 1

]
XS


xC
yC
zC
1

 (6)

where XS is the hand-eye transformation matrix (i.e., the transformation matrix of the
camera coordinate system OCXCYCZC to the tool coordinate system OHXHYHZH) obtained
from the hand-eye calibration. The expressions of R and T are as follows:

R = R3·R2·R1 (7)

T = [X Y Z]T (8)

R1 =

1
0
0

0
cos RX
sin RX

0
− sin RX
cos RX

 (9)
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R2 =

 cos RY
0

− sin RY

0
1
0

sin RY
0

cos RY

 (10)

R3 =

cos RZ
sin RZ

0

− sin RZ
cos RZ

0

0
0
1

 (11)

where (X, Y, Z, RX, RY, RZ) are the six parameters of the robot’s motion in the Cartesian
coordinate system, which were read out by the trainer.

The pixel coordinates (c, r) of the feature points obtained from image processing
and the real-time robot motion parameters (X, Y, Z, RX, RY, RZ) were brought into
Equations (5) and (6) to obtain the dynamic 3D coordinates of the seam feature points
in the robot base coordinate system.

Classical deviation control structures (e.g., PID, Fuzzy, Fuzzy-PID) could also be used
to adjust the welding gun to the correct welding position after obtaining the real-time
deviation of the welding gun through the image processing algorithm, but the traditional
deviation control structures were more complex and suitable for lower welding speeds.
For this reason, this research utilized the structured light vision sensor to scan the joint,
obtained the three-dimensional coordinate data stream of center points in real-time during
welding, and enabled the gun to track these actual welding points; this tracking welding
control [27] method was not only simple in structure, but also had a fast response time.

Figure 5 shows the butt joint workpiece with a V-shaped seam. The 3D point cloud
data in OBXBYBZB can be obtained with Equations (5) and (6) by scanning the groove, as
shown in Figure 5b.
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3. Tracking and Identification of the Seam Area

The CNN model for the typical V-shaped seam was established, as outlined in Figure 6.
In order to improve the accuracy of locating the ROI from a strong noise image, this paper
adopted the following flow:

1. Resized the original image to 224 × 224 from 2592 × 2048;
2. Multiple convolutions based on the kernel of size 3 × 3, after that, the output of the

picture was changed to a one-dimensional vector;
3. Softmax layer completed the identification and localization of the target area through

the processing of the full connection.
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Figure 6. Schematic diagram of the CNN model.

The sample set for the training in the study consisted of 4134 laser images with varying
degrees of interference. The ROI object tracking test on 472 images from actual welding
showed that the predictive validation accuracy of the model was about 97.0%, as presented
in Figure 7. From laser stripe images, it was seen that metal soot and a large amount of
splatter were present in the joint bevel area, especially at the corners and bottom of the
joint, where there was a large amount of reflected light. It is worth noting that the light
intensity of some splatters was even greater than that of the laser streak itself, and when
they swept across the bottom of the bevel and the edges on both sides, the target tracking
algorithm that directly acquires bevel feature points by locating tiny pixel areas was likely
to extract target points with large errors.
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4. Laser Stripe Feature Points Extraction

The points ed-l, ed-r, Te_l, Te_r, Te_b and Te_c were specified as the feature points of
the V-shaped seam, among which Te_c was the seam center point as the reference point for
the welding trajectory, as shown in Figure 8.
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4.1. Laser Stripe Centerline Extraction

The gray barycentric algorithm [28] was utilized to quickly and efficiently extract the
stripe centerline. The “centroid” in the pixel area was considered the pixel center in the
area, and the calculation formula of the area centroid is expressed as follows:

c =
∑(c,r)∈Ω c· f (c, r)

∑(c,r)∈Ω f (c, r)

r =
∑(c,r)∈Ω r· f (c, r)

∑(c,r)∈Ω f (c, r)

(12)

where f (c, r) represents the gray value of the pixel point with coordinates (c, r), Ω denotes
the set of target regions, and (c, r) is the gray barycentric coordinate of the region.

The skeleton of the laser stripes obtained by the algorithm scanning along the c-
direction is equal to the set of the grayscale center of gravity points in each column region
of the image. For the laser stripe image covered by a strong arc splash, the interference
should be removed by the image preprocessing algorithm before the skeleton of the stripe
was extracted by the gray barycentric method, as illustrated in Figure 9. It is seen in
Figure 9d that the extracted centerline in the search area could accurately map the spatial
coordinate information of the seam. Furthermore, with the column of the pixel as an
independent variable and the row of the pixel as a dependent variable, there was a one-to-
one mapping functional relationship between the independent variable and the dependent
variable for the skeleton.
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4.2. Seam Center Point Recognition

When the laser skeleton possessed discontinuous characteristics such as jumping
points, holes and missing points (prone to occur in weak arc splash welding, as shown
in Figure 2b,c) or fluctuating characteristics (prone to occur in strong arc splash welding,
as shown in Figure 2d), traditional feature point extraction methods, such as inflection
point method, slope analysis method and Hough straight line detection method, were
likely to fail. In this study, an adaptive feature extraction algorithm based on row scanning
and column scanning was adopted to solve this problem. The design idea of the adaptive
feature extraction algorithm is shown in Figure 10.
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Figure 10. The design idea of adaptive feature extraction algorithm.

The steps involved in the algorithm are as follows:
Step 1: Shield holes on the skeleton (as illustrated in Figure 11). After that, the

horizontal coordinate set p_col and vertical coordinate set p_row to be processed can
be obtained.
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Step 2: Remove the jumping points. If the point (p_col[a], p_row[a]) satisfies Equation (13),
this point is treated as a jumping point and removed; otherwise, this point will be used as
the comparison point of the next point to be determined. Through Equation (13), the new
abscissa set p_c and ordinate collections p_r are obtained.

∆p = |p_row[a]− p_row[b]|
∆p > |(p_col[a]− p_col[b]) ∗ kα/2 ∗ ϑ| = pa

(13)

where kα/2 and ϑ are the slope of the groove surface and correction factor, respectively;
(p_col[b], p_row[b]) is the nearest normal point in front of (p_col[a], p_row[a]); a and b are
integers, and a > b.

Step 3: Perform the least-squares fitting method on the first n1 points and the last n4
points in Ω respectively, and obtain the straight-line equations v = f1(u) and v = f4(u).

Step 4: Utilizing row scanning, ∆v rows of data at the bottom of the skeleton are
isolated to eliminate the influence of reflected light in the valley.

Step 5: Scanning from the point (p_col[n1], p_row[n1]) to the valley bottom and from
the valley bottom to the point (p_col[n− n4], p_row[n− n4]), the least-squares fitting is per-
formed on the points satisfying Equation (14) to obtain equations v = f2(u) and v = f3(u).

|a ∗ p_c[s]− p_r[s] + b|√
a2 + 1

= ∆d > da (14)

where da is set to 10; When calculating f2, a and b represent the slope and intercept of
f 1, respectively, and when calculating f3, a and b represent the slope and intercept of
f4, respectively.

Step 6: Calculate the coordinate values of Te_c according to Equation (15).uTe_c =
uTe_l + uTe_r

4
+

uTe_b

2
vTe_c =

vTe_l + vTe_r

2

(15)

where Te_l, Te_r and Te_b are obtained by intersecting the lines calculated above.
The laser image with a strong arc splash was taken as an example. It can be found

from Figure 12 that the algorithm above has a high anti-interference ability to arc splash,
and the extracted feature point Te_c could truly represent the actual location of the seam
center. At the same time, even in the case of holes, bulges, concaves and jumping points in
the laser centerline or in the case of fluctuations in the laser centerline, the algorithm also
has a good extraction effect.
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4.3. Improving Te_c Accuracy

Strong arc and strong splash made the laser stripe centerline deviate from the ideal
position, but the slope and width of the stripe were almost unchanged in adjacent frames.
Thence, the noise of the next frame image was effectively filtered according to the
context information.

The determination of the slope and width of each stripe was defined in a prior algo-
rithm, as Equation (16). Only the points that satisfied the algorithm were retained. The
process of the prior model is illustrated in Figure 13.

Stripe i :
{

width = [ymin ymax]
θ = [θmin θmax]

}
(16)

where i is the sequence number of the stripe image; width represents the width range of the
stripe. θ represents the angle range of the stripe.
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Figure 13. The prior model.

According to the stripe feature points of the previous frame, the current frame image
was divided into four segments. Based on the centerline angle of the connected region
in each segment and the stripe centerline equation of the previous frame, the main stripe
information was separated from the background noise by the angle criterion and width
criterion of the prior algorithm. The effect of improving the accuracy of Te_c (Figure 14)
showed that the prior algorithm overcame the strong arc and splash interference, ensured
that the stripe centerline was more consistent with the theoretical attitude and position
(stripe centerline defect characteristics were removed) and further reduced the error of
center point extraction at the pixel level.
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In order to improve the stability and accuracy of the feature point extraction algorithm,
in this study, the CNN model was used to locate and track the bevel region of interest in
real-time, followed by the prior model to remove the image interference information, and
finally, the adaptive feature extraction algorithm was able to extract the seam center quickly.
Since the above algorithms were discussed under conventional welding conditions, it was
necessary to perform tests under extreme environments to explore the adaptability of the
algorithms to the welding environment.

An extreme welding environment should meet the following two conditions: (1) cam-
era exposure values higher than normal (15,000 EV) and (2) thicker laser line (>1 mm).
Under such welding conditions, tests a and b were performed, where in test a, the welding
current was 100 A, the camera exposure value was 20,000 EV and the laser line was 1.5 mm;
in test b, the welding current was 160 A, the camera exposure value was 40,000 EV and
the laser line was 2.0 mm, as shown in Figure 15. As the welding current, exposure value
and excitation line width increased, the noise (strong arc splash) in the laser streak image
interfered more and more with the bevel laser lines; for example, some laser lines could no
longer effectively characterize the bevel morphology (Figure 15(b2)). However, the pose
and position of the stripe centerline extracted from the CNN model and prior model are
more realistic representations of the 3D shape of the joint bevel (Figure 15(a4,b4)), while the
adaptive feature extraction algorithm was able to extract the seam center more accurately
based on the curve characteristics of the laser stripe centerline within the ROI. It can be
concluded that the seam center extraction scheme proposed above was highly practical and
adaptable for various complex welding environments.
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5. Outliers Filtering

When tracking welding, under the action of real-time correction function, the coordi-
nates of the seam center point in the image coordinate system OIXIYI were theoretically
constant. However, due to the response period of correction motion lagging behind the
extraction period of feature points, the image coordinate value of the seam center point will
fluctuate around the actual center point with varying amplitude (i.e., tracking deviation).
In the actual welding process, the coordinates of the seam center point extracted from
some frame images are likely to deviate abnormally from the fluctuating center, which is
caused by strong arc splash interference and ROI extraction error. Figure 16 shows the
real-time tracking welding results based on the above algorithm. It can be seen that in the
welding process, outliers inevitably appeared, and the probability of outliers occurring
at the moment of arc occurrence was much higher than that of other welding periods.
The pixel coordinates of the outlier deviated from the theoretical amplitude center within
10 pixels.
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Figure 16. Extraction results of Te_c during tracking welding.

Using the singular seam center point as the tracking reference point and transmitting it
to the motion control system caused the welding actuator to violently vibrate and even led
to safety accidents. In fact, the working environment of the optical sensor was extremely
demanding, and it was difficult for us to adopt a powerful algorithm to ensure that every
center point extracted by the sensor was absolutely correct. However, the position of the
high-frequency image collected by the sensor was before the welding point, and the time
difference brought by this “advance” made it possible to remove outliers. So an embedded
Pauta criterion will be proposed in this study. The Pauta criterion was written as follows:

|vi| > 2σ = 2

√
∑n

i=1(xi − x)2

n− 1
(17)

where vi is the residual, and σ is the standard deviation.
As shown in Figure 17, it is the flowchart of the embedded Pauta criterion used for

filtering outliers. A detailed description of the process is as follows:

(1) The data stream of Te_c was formed by the ROI determination algorithm and tracking
reference point acquisition algorithm.

(2) Sequentially read 20 coordinate values from the data stream as sample data.
(3) The sample data were repeatedly processed based on the Pauta criterion (Equation (17))

until there were no outliers in the sample.
(4) Read the next sample data and repeat (2) and (3) to form the data stream of accurate

tracking reference points.

Of 870 Te_c points from the image processing system, 41 outliers were removed
(Figure 18). The Pauta criterion embedded into the real-time tracking welding system by
piecewise processing eliminated the dangerous trajectory points caused by unavoidable
dynamic interference and improved the robustness of tracking welding.
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Figure 18. Piecewise processing results of embedded Pauta criterion.

6. Experiment and Analysis

In order to verify the accuracy of the CNN model, the prior model, the adaptive
feature extraction algorithm, and the embedded Pauta criterion proposed in this paper,
in the actual operating environment, a series of real-time tracking welding experiments
based on the welding system (Figure 3) were conducted. The butt-jointed specimen with
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a groove angle of 60◦ and a plate thickness of 5 mm was used as the experimental object
(Figure 5). Three groups of real-time tracking welding experiments were conducted at 80,
120 and 160 A welding current parameters. The welding speed for each group of tests was
15 cm/min, the gas flow rate was 15 L/min and the wire feed speed and welding voltage
were automatically matched by the arc welder, as shown in Figures 19–22.
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The tracking welding experiment was completed under the coordinated control of the
YASKAWA robot and the structured light vision sensor. From the recognition trajectory
obtained by the sensor through image processing and coordinate transformation (Figure 19),
it can be seen that there are 5, 7 and 15 outliers in the recognition trajectory when the
welding current is 80, 120 and 160 A, respectively. The number of these outliers, which
significantly deviated from the central curve of the recognition trajectory increased with the
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increase of welding current. If these outliers were transmitted to the tracking control system,
they certainly led to the reduction of welding accuracy and even caused safety accidents.
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Figure 21. The real-time tracking accuracy.
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In this experiment, the processing time of a single image was about 0.08 s (the process-
ing period of the CNN model was about 0.03 s, the processing period of the adaptive feature
extraction algorithm was about 0.04 s, and the processing period of the prior algorithm was
about 0.01 s) and the processing period of the embedded Pauta criterion for 20 coordinate
points was about 0.005 s. In order to be able to ease the running capacity of the tracking
software, the frame rate of the camera shot could not be too high and was set to 10 fps.
Since the acquisition of the real coordinate data stream preceded the execution of the robot
trajectory, the communication period of the robot was slightly higher than the period of
coordinate point acquisition, which was about 12 Hz.
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Figure 20 shows the relationship between the welding torch tracking trajectory and the
seam centerline in the tracking system with the embedded Pautu algorithm. The tracking
trajectory could be obtained by recording the 3D coordinates of the robot torch endpoint
at high frequency during the welding process, while the seam centerline was obtained by
fitting the seam center points by least squares, which were obtained by the sensor scanning
the seam before welding. When the welding current was 80, 120 and 160 A, the deviation
of the endpoint of the taught trajectory from the seam was 42, 28 and 75 mm respectively.
The tracked trajectory obtained by the embedded Pauta criterion had a smooth curve
characteristic and no more singularities inside. Three experiments showed that the tracked
trajectory was basically consistent with the seam centerline, and the algorithms mentioned
above can rectify the welding torch in real time to the actual seam center.

The real-time measurement error between tracked trajectory and the seam centerline is
shown in Figure 21. The measured deviation oscillated near zero with a varying amplitude
throughout the welding process. The graph shows that under the same algorithmic condi-
tions, the welding current was the key influencing parameter for singularity generation
(Figure 19), but its effect on the tracking error is relatively minor. This is due to the fact
that under the effect of the embedded Pauta criterion, the welding torch runs smoothly,
and the deviation is maintained in a stable range without singular deviation values. The
experimental results show that the maximum errors of three tracking welding experiments
were −0.25, −0.23 and −0.24 mm, respectively, and the average errors were 0.1, 0.11 and
0.09 mm, respectively, which proved the overall high robustness of the proposed algorithm.
The result of real-time tracking welding is shown in Figure 22. The welding position was
accurate and seam metal forming was good, thereby indicating the proposed seam tracking
system had outstanding performance.

7. Conclusions

The laser stripe, which inevitably presents different types of defect features due to
intense arc and splash interference, reduced the robustness of weld tracking. Therefore, the
adaptive feature point extraction algorithm and the correction algorithm were proposed in
this study. Specifically, the following conclusions were drawn:

(1) Based on the principle of structured light vision, a real-time seam-tracking welding
system was independently designed, which provided an important reference model
for the industrial application of tracking welding technology.

(2) With a recognition rate of 97.0%, the CNN model accurately obtained the target area
of image processing in real time under the different intensities of arc splash.

(3) The adaptive feature extraction algorithm based on row scanning and column scan-
ning had strong anti-interference ability and adaptability to defects (such as holes,
bulges, concaves, jumping points, etc.), welding arc and splashes in laser stripe, and
accurately extracted the seam center from different types of laser stripe. The algorithm
had good applicability for various types of laser stripes in real complex environments
and provided a reliable solution for extracting feature points.

(4) The prior algorithm accurately and quickly located the contour of the laser stripe
centerline, effectively removed other image interference and noise and improved the
adaptive feature extraction algorithm to higher accuracy at the pixel level.

(5) Using the function of eliminating outliers with the embedded Pauta criterion, the
structured light vision sensor, which captured high-frequency laser stripe images
at the front of the welding torch, accurately obtained a smooth and gentle tracking
trajectory, improved the stability of the system and avoided welding torch shaking
and safety accidents. This embedded Pauta criterion provided a new idea for the
safety mechanism of tracking welding, which guaranteed the stability of the system
operation from the algorithmic mechanism.

(6) The accuracy verification experiment demonstrated that the tracking error was mainly
controlled within ±0.2 mm, and the average error was 0.1 mm. The results confirmed
that the adaptive feature extraction algorithm and the outlier removal algorithm were
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sufficient to ensure the accurate and reliable robot’s real-time tracking welding and
provide a stable welding regime. Our future research will focus on optimizing the
matching relationship between the robot control cycle and the image processing cycle
to the extent that a highly robust welding application can be achieved.
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