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Abstract: Pork accounts for an important proportion of livestock products. For pig farming, a lot
of manpower, material resources and time are required to monitor pig health and welfare. As the
number of pigs in farming increases, the continued use of traditional monitoring methods may
cause stress and harm to pigs and farmers and affect pig health and welfare as well as farming
economic output. In addition, the application of artificial intelligence has become a core part of smart
pig farming. The precision pig farming system uses sensors such as cameras and radio frequency
identification to monitor biometric information such as pig sound and pig behavior in real-time
and convert them into key indicators of pig health and welfare. By analyzing the key indicators,
problems in pig health and welfare can be detected early, and timely intervention and treatment can
be provided, which helps to improve the production and economic efficiency of pig farming. This
paper studies more than 150 papers on precision pig farming and summarizes and evaluates the
application of artificial intelligence technologies to pig detection, tracking, behavior recognition and
sound recognition. Finally, we summarize and discuss the opportunities and challenges of precision
pig farming.

Keywords: precision pig farming; livestock farming; artificial intelligence; pig detection and tracking;
behavior recognition; sound recognition

1. Introduction

As the world’s population continues to increase, the global demand for sustainable
animal products is increasing [1]. According to the latest data from the “China Statistical
Yearbook-2021” [2], China’s large livestock population is 102.651 million, and the total
output of pork is 41.133 million tons, which is the largest proportion of all meat, accounting
for about 53.00% of the total meat. Moreover, pork accounts for a large proportion of
livestock products in many countries [3]. Therefore, the impact of pork as a sustainable
livestock product is critical to global food security.

While the global economy grows and people become more aware of healthy food,
there is a greater concern for pig health and welfare [4,5]. Specifically, the influence of
COVID-19 in the last two years has made animal health, welfare, livestock product quality
and smart livestock farming become a central topic among consumers and farmers [6,7].
In Europe, with the development of market strategies, animal welfare standards have
been continuously improved, and minimum welfare standards have been formulated in
the process of pig farming, transportation and slaughtering [8–10]. Animal welfare can
currently be assessed in three areas: natural life, emotional state and basic health and
function [11]. In terms of pig health and welfare, it can be assessed from some factors
such as appearance phenotype (e.g., body size, weight), behavioral performance or sound
recognition [12]. In tradition, pig welfare and health were judged by farmers based on
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personal experience observations [13]. However, human observation can not satisfy the
requirements of real-time monitoring in pig farming [14]. To improve the efficiency and
sustainability of pig farming, new technologies such as smart sensors, internet of things
(IoT) and artificial intelligence (AI) have been gradually used in the pig industry [15,16].

Precision livestock farming (PLF) technology enables the management of livestock
herds using technologies such as AI and IoT [17–20]. The PLF combines sensors and
devices with intelligent software to extract key farming information and then provides
management strategies that enable famers to monitor animals automatically to improve
animal health, welfare, yields and environmental impacts. In the framework of PLF,
sensors (e.g., microphones, cameras) are used to monitor the animal appearance prototypes
and then utilize engineering techniques to automatically recognize animal behavior or
growth situation for the final decision-making of livestock farming [21]. In the modern
smart livestock industry, PLF is becoming increasingly important because it is difficult to
achieve intensive agriculture and single animal care without the help of technology [22,23].
AI has increased the usability of sensors and electronic devices in the smart livestock
industry, which significantly facilitates the development of pig and other domesticated
animals’ farming.

Driven by information technology, the pig farming model is undergoing an unprece-
dented great change. The combination of AI and pig farming can realize intelligent percep-
tion, accurately understand the pig behavior (e.g., estrus, feeding, walking and standing),
accurately monitor physiological conditions of pigs through their sound signals and carry
out fine and personalized feeding management, to make the pig farming process more
scientific, intelligent and modern [24].

This paper summarizes the current research progress of AI in pig farming, which
includes the application of AI systems in pig farming, AI-based pig detection and tracking,
AI-based pig behavior recognition and pig sound recognition. Then we summarize and
discuss the challenges and limitations. Finally, this paper expounds on the opportunities of
smart pig farming.

2. The Framework of Precision Pig Farming

Precision pig farming aims to improve the ability of farmers to manage large pig
herds and enhance the effective monitoring and management of each pig’s health and
welfare [17,22,25–27]. A typical precision pig farming system is composed of four key
modules (Figure 1): IoT equipment module, data module, AI-based decision and analysis
module and visualization module [11,27]. In recent years, with the development of big
data, AI and IoT, precision pig farming has made significant developments [28].

• The IoT equipment module contains data collection sensors, environment monitoring
and control devices, connection and network transmission devices and other related
facilities. The IoT system should be operated properly in a harsh environment to
ensure data and information can meet pig farming’s needs [29].

• The data module consists of data collection, data processing, data storage and an
equipment failure warning system [30]. The data collection and processing are mainly
responsible for processing data collected by IoT equipment, which generates usable
data and information. The equipment failure warning system mainly monitors sensors,
automatic feeders, pumps and other physical equipment to collect data normally.

• The AI-based decision and analysis module contains pig health and welfare evaluation,
disease diagnosis, environment control, nutrition and production management and a
pig farm decision-making system. The pig’s welfare is usually expressed by the pig’s
behavior [31], and the pig’s health, welfare and disease diagnosis can be evaluated
through a decision making-system using vision and sound signals. On the other hand,
an AI-based decision-making system controls the operation of physical equipment
involving environmental control and nutrition management to increase pig health and
welfare, mainly based on the results of the above analysis [28,32].



Sensors 2022, 22, 6541 3 of 23

• The visualization module provides farmers with visual information and displays valid
information output from other modules.

Figure 1. Precision pig farming framework.

Precision pig farming uses technologies such as IoT and AI to continuously monitor
pig health and welfare with the following main functions [33]: (1) The IoT is mainly used
in the design and layout of temperature, humidity and other sensors, as well as associated
networking equipment and data collection. The industrial Internet is mainly used to
transmit the data to the server; AI and cloud computing are mainly applied to feature
extraction, data analysis, modeling and decision-making [34–36]. Here reliability is one of
the keys to the early success of the deployment of precision pig systems [37,38]. (2) The
intelligent analysis system transforms the data of animal response characteristics measured
by cameras and microphones into key indicator information and analyzes them through AI
and machine learning methods for the final decision of pig management [39]. (3) Optimize
the production/reproduction process to avoid over-feeding, reduce farming waste and
costs and make livestock farming more sustainable in economic, social and environmental
aspects [17,40,41]. The AI, IoT and smart sensors continue to drive the development and
application of precision pig farming systems. A vision of precision pig farming technology
implementation can be seeb in Figure 2 [17,37,42].
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Figure 2. Implementation of precision pig farming technology.

3. AI-Based Intelligent Equipment for Precision Pig Farming

AI-based intelligent equipment occupies an important position in the precision pig
farming system and is the material prerequisite for the realization of farming applica-
tions [17,37,42]. In the modern pig farming industry, equipment is a channel for obtaining
and transferring data, and intelligent equipment with edge AI can process and analyze data
on-site, which is helpful for making fast management decisions. The intelligent device has
an effective execution function and can issue corresponding execution instructions to itself
or other intelligent devices with the current monitoring conclusion so that the breeding
environment can reach the best state of scientific breeding and thus reduce epidemic and
increase income.

AI-based intelligent equipment for precision pig farming is currently implemented
in product traceability, behavior monitoring and sound monitoring [35,43–45]. In terms
of traceability, various processes such as production, processing, storage, distribution and
retail have been improved by capturing information using IoT and various sensors (radio
frequency identification (RFID)) [35]. When people find that food has quality or safety
problems, they can locate the problem according to the product’s traceability system and
then locate the cause.

Studies have shown that existing precision pig farming monitoring systems use a
variety of sensor technologies to monitor multiple aspects of a pig’s life [27]. Among them,
the ground weighing scales collect the weight of the pig, the microphone is used to monitor
the pig’s sound, the thermal camera monitors the pig’s body temperature distribution and
the infrared thermometer measure the pig’s temperature [11]. Moreover, each pig could be
accurately and effectively monitored through RFID technology, and the temperature of the
pig ear roots could be obtained by using the DS1992 iButton temperature sensor [46]. To
study the relationship between feed intake and pig growth rate, RFID technology was used
to identify pigs, load cells and feed through load cells collecting weight data and pig feed
intake data, and transmitted the collected data to the server through the network [47]. To
solve the problems of low automation and high cost of artificial pig feeding, researchers
have designed an intelligent automatic feeding system for live pigs based on embedded
advanced devices and RFID [45], RN30, RN31, RN32, RN33. The system is composed of a
control system, sensors and other mechanical equipment. The control system is used for
precise batching, and the mechanical equipment is used to realize automatic mixing and
precise feeding.

With the development of visual AI, the use of pig sounds and images combined with
deep learning models are more favorable in precision pig farming. There are two main
ways to collect data using surveillance cameras. The first way is to fix surveillance cameras
on top of the pigsty, which uses the top-view method to cover the entire pigsty (Figure 3a)
and collect more information on pig backs [48–52]. The second approach collects pig
videos from the side-view, which records more information on pig legs and trucks [53–55].
Similarly, the sound acquisition equipment is used to obtain the sound of pigs, and the
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characteristic images of pig sounds are extracted by mel frequency cepstral coefficients and
other methods [56–63], which are combined with vision-based AI algorithms to realize the
monitoring of pig sounds [56,57,59,62,64].

For pig behavior monitoring, the eYeNamic system is used both in pigs and poultry
farming to monitor pig behavior [39]. The system acquires image data of pigs through
cameras and uses analysis software to convert the acquired images into indicators for
measuring animal position, movement and behavior. It can monitor pigs in real time to
detect abnormal pig behavior and take corresponding rescue measures to reduce farming
economic loss. Chen et al. deployed a novel spatial-aware temporal response filtering
model to a counting robot with a monocular fisheye camera and monitored the pig’s health
and safety through real-time counting and analysis of the pig number in the video [65]. In
addition, GlassUp F4 smart glasses for augmented reality have the advantages of clear and
fast data readability and data abundance in remote assistance to support field farmers [66].
Overall, the PLF system mainly includes data collection and processing, information
analysis and decision-making and visualization display.

In terms of sound monitoring, the porcine cough monitor continuously and automat-
ically measures pig respiratory health through sound analysis [43,67]. The SOMO® res-
piratory distress monitor, developed by SoundTalks NV, automatically and continuously
calculates the Respiratory Distress Index and provides an alert when there is a breathing
problem in the barn [68]. In 2020, to monitor the respiratory diseases of pigs, the sound
was collected by a MAX4466 electret microphone and a LIQI LM 320E Cardioid electret
microphone [60,69]. The research showed that the combination of AI technology and sound
collection equipment can realize the recognition of pig coughing sounds and effectively
provide technical guidance for pig breeding.

In addition, the researchers studied the relationship between images of sick pigs and
heart rate and respiratory rate associated with respiratory disease or other diseases [70,71].
In 2020, Jorquera-Chavez et al. studied computer-based techniques to measure changes in
temperature, heart rate and respiration rate in pigs from thermal infrared and conventional
images [70]. The study showed that computer vision techniques can provide important and
usable data about physiological changes that may help in disease management. In 2021,
Jorquera-Chavez et al. constructed and evaluated the usefulness of a system constructed
based on techniques such as RGB (red, green and blue) and thermal imaging cameras,
computerized tracking techniques and the photoplethysmography principle for remote
monitoring of heart rate and respiration rate in pigs [71]. The experiment showed significant
differences between sick and healthy pigs, with significant changes in their respiratory
rate mainly released in the later stages of the disease; however, the technique still needs
further study.

In pig weight prediction, 3D cameras are more beneficial than 2D cameras for esti-
mating pig weight due to the extra depth information [72]. Kongsro et al. obtained the
depth map and point cloud map (Figure 3b) of pigs using a Kinect 3D camera, which
was then combined with machine learning technology to improve pig weight estimation
accuracy [73]. Experiments have shown that the error of this method is estimated to be
4–5% of the average weight.

(a) (b)

Figure 3. Camera top-view image and its corresponding 3D point cloud. (a) RGB image; (b) 3D
point cloud.
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4. AI-Based Vision for Pig Detection And Tracking

Vision-based detection and tracking, as a non-contact approach, is a prerequisite for
continuous access to information about pig behavior and welfare [74]. In pig monitoring
applications, individual pig detection and tracking are the keys to moving away from group
therapy to individual pig care and activity measurement [75,76]. The detection and tracking
of all major parts of the pig’s body can help analyze the pig’s behavior [75,77]. AI-based
vision makes automatic real-time detection (Figure 4) and tracking of pigs possible, which
could monitor changes in individual pigs’ behavioral activity over time and use this as
an indicator for health and welfare [78,79]. In addition, AI-based vision aids in the early
detection of pig diseases, which leads to earlier, more effective interventions and reduces
mortality [75]. Table 1 shows some works of AI-based pig detection and tracking based on
visual data.

4.1. Pig Detection

Pig detection is the premise of tracking pig activities, monitoring pig behavior and
continuously obtaining information [74]. Indeed, the accuracy of pig detection will directly
affect the performance of animal tracking and behavior recognition [80]. In traditional
machine learning, researchers used a combination of image differences with a median
background and a Laplacian operator, pseudo-wavelet coefficients, ellipse fitting algorithm,
Gaussian mixture model and other machine learning methods to detect and locate pig posi-
tion [50,81–84]. However, these methods lack robustness in the complex farming scenario.

Figure 4. Examples of pig postures’ detection results.

With the development of AI, especially the progress of convolutional neural net-
work (CNN), varieties of AI-based approaches have been proposed for pig detection [75].
YOLOv3 and Faster R-CNN are two popular CNN models that have been used to detect pig
position and demonstrated good detection performance [75,76,85,86]. Another method—
The single shot multibox detector (SSD) algorithm, not only ensures pig detection accuracy
but also accelerates the detection speed. Zhang et al. used the SSD and residual network
(ResNet) to detect online multi-pig detection under sunlight and infrared (night) lighting
conditions [74]. The results showed that the method achieved 94.72% detection accuracy.

More recently, in order to further improve pig detect location performance and fa-
cilitate tracking, researchers have proposed new methods to collect data and construct
detection features. Sha et al. used a phase-sensitive Optical Time-Domain Reflectometer
to collect real field vibration data and further processed the data into a spatiotemporal
map to feed into the YOLOv3 network for pig detection [87]. This experiment initially
validated the effectiveness of combining a Fiber Optic Distributed Vibration Sensor with an
object detection scheme. In addition, Kim et al. proposed a more lightweight LightYOLOv4
model based on TinyYOLOv4 and pruning techniques (filter clustering), achieving 99.44%
detection accuracy and a real-time detection speed of 30 frames per second on an embedded
circuit board [88].
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Since pigs are herd animals, there is a lot of occlusion and overlapping noise in
the image data with captive pigs as the acquisition object [65,89]. In 2020, Chen et al.
proposed a keypoint detection method based on a deep convolutional encoder–decoder
network [65]. The approach determines the keypoints of each pig by keypoint heat map
and offset vector field. This experiment showed that the keypoint-based detection method
solved the occlusion and overlap problems more effectively than the bounding box-based
detection method and achieved 84.7% mAP in the pig detection task. In 2021, Huang et
al. evaluated the detection performance of Faster R-CNN and YOLOv4 models in object
detection tasks [89]. The performance of Faster R-CNN and YOLOv4 models was 87% and
86% for mAP, respectively, in datasets with less occlusion noise. The performance of Faster
R-CNN and YOLOv4 models decreased by 11.6% and 9.5%, respectively, in datasets with
more occlusion noise. The experiments show that the Faster R-CNN is more affected by
the occlusion compared with YOLOv4. In the same year, Hanse et al. used the YOLOv4
model trained into two models based on the original data and the enhanced data with
reduced overexposure effects, respectively, and integrated the two models to improve their
detection accuracy from 79.93–94.33% [90]. However, this integration method increases the
execution method and model size. In 2022, to avoid image noise caused by impurities such
as insect secretions, Zhao et al. proposed a noise image preprocessing method based on
U-net and generative adversarial network (GAN) models to improve the accuracy of noise
image detection [91]. The experiment showed that the method was able to improve the
average detection accuracy of pigs from 76.6–90.6%.

Table 1. Main research work on pig image detection and tracking.

Authors, Year Dataset Size
(Images Number) Method Breed Result

Zhao et al., 2022 [91] 18,000 Mask R-CNN and GAN - Average Precision = 90.6%
Lei et al., 2022 [92] 416,873 U-Net and UNet-Attention Yorkshire pig Average Precision = 94.80%

Ocepek et al., 2022 [93] 583 Mask R-CNN and YOLOv4
Crossbred Norsvin Land-race ×

York-shire sow in-seminated
with Duroc boar semen

Precision = 96.00%

Ding et al., 2022 [94] 5000 YOLOv5 and FD-CNN Pregnant Large White sow Precision = 93.60%
Wutke et al., 2021 [95] 12,285 CNN and KF - MOTA = 94.40%

Sun and Li., 2021 [96] -
A multi-object tracking algorithm,
which based on joint probability

data association and particle
- Correct tracking rate = 99.00%

Van Der Zande et al., 2021 [76] 4000 YOLOv3 and SORT Crossbred pig mAP = 99.70%
Sha et al., 2021 [87] 5988 YOLOv3 - -
Liu et al., 2021 [97] 5000 ResNet-50 and DLC-KPCA Weaned Yorkshire piglets Accuracy = 96.88%

Jung et al., 2021 [85] 2182 Faster R-CNN and OCTA - Accuracy = 77.00%
He et al., 2021 [98] 1400 Mask R-CNN and Track R-CNN - MOTSA = 94.90%

Gan et al., 2021 [86] 100 video clips Faster R-CNN and OPTN Meihua sow MOTA = 97.04%
Zhang et al., 2020 [99] 425 GB CamTracor-PG - The average overlap rate = 91.00%

Liu et al., 2020 [100] 320 SSD + ResNet-50 and MTU (Landrace × Large White) ×
Piétrain crossbreds Precision = 96.38%

Chen et al., 2020 [65] 51 video clips Bottom-up keypoints detection
CNN architecture and STRF - mAP = 84.30%

Chen et al., 2020 [77] 15,000 YOLACT Landrace × Yorshire crossbred pig Accuracy = 90.00%
Zhang et al., 2019 [74] 18,000 SSD and Correlation Filter Large White × Landrace breed Precision = 94.72%

Cowton et al., 2019 [75] 3292 Faster R-CNN, SORT and Deep SORT - mAP = 90.10%

Notes: GAN means generative adversarial network; FD-CNN means frame differences in combination with
convolutional neural network; KF means kKalman filter algorithm; SORT means simple online real-time tracking;
CNN means convolutional neural networks; ResNet means residual nets; DLC-KPCA means deepLabcut-kernel
principal component analysis; OCTA means object center-point tracking algorithm; R-CNN means region-
convolutional neural network; Mask R-CNN means mask region-convolutional neural network; OPTN means
online piglet tracking network; CamTracor-PG means camshift tracking approach based on correlation probability
graph; SSD means single shot multibox detector; MTU means minimum tracking unit; STRF means spatial-
aware temporal response filtering; mAP means mean average precision; MOTSA means multi-object tracking
and segmentation accuracy; MOTA means multi-object tracking accuracy; YOLACT means you only look at
coefficients; Deep SORT means deep simple online real-time tracking; - means that the authors did not state
specific data or did not mention this property in the text.
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4.2. Pig Tracking

The pig tracking algorithm can measure individual activity, which was negatively
correlated with environmental factors such as temperature, relative humidity and ammo-
nia [76,101]. In traditional image analysis methods, color features and contour features
were used to capture all kinds of motion information of pigs [102]. Gao et al. segmented
the pig’s head and tail, and used Hough clustering and roundness recognition algorithms
to locate the trajectory of each pig [103]. Although this method could effectively segment
adherent pigs, it still needs to be further optimized to improve the tracking accuracy.

In recent years, AI has achieved great success in visual tracking, including navigation,
robotics, traffic control, etc. [104]. A variety of AI-based vision approaches have been pro-
posed to realize real-time pig tracking and monitoring. The obtained movement trajectory
and time of pigs could reflect each pig’s health status, increase the pig’s welfare and reduce
the farming economic losses [65,99]. The main factors affecting object tracking are data
processing, feature selection and detection model [80,105,106].

The consistency, integrity and quality of data are crucial to improving the tracking
performance of AI models [106]. However, the collected data often has the problems such
as occlusion and motion blur caused by rapid object movement [107]. In order to reduce the
false positives caused by pig or camera movement or tracking failures, Chen et al. encoded
each detected pig in the previous and subsequent frames uniquely associated the key points
of the two frames with the energy maximization method based on bipartite graph matching
and predicted the number of pigs with the novel spatial awareness temporary response
filtering method [65]. Experiments showed that this method significantly avoided the
false alarm of pig counts due to tracking failure. Liu et al. established a high-dimensional
spatiotemporal feature model based on kernel principal component analysis and established
an abnormal trajectory correction model from the five dimensions of semantics, space, angle,
time and speed to avoid trajectory loss and drift [97]. The method mainly achieves optimal
clustering of nonlinear trajectories by building a high-dimensional spatiotemporal feature
model to enhance the accuracy of model tracking. Experiments showed that the method
achieved 96.88% of trajectory tracking accuracy.

On the other hand, researchers studied the extraction of different features to improve
the accuracy of tracking algorithms [105]. From the perspective of template matching,
Chen et al. used 15 key points to divide a single pig into 10 parts, generated a series of
prototype templates and selected an oriented fast and rotated brief algorithm to extract and
describe key points of pig body parts and Hamming distance algorithm to match feature
points, realizing real-time pig detection and tracking [77]. This experiment provides a
new reference for keypoint-based detection and tracking. Wutke et al. used the Kalman
filter algorithm to estimate the position of the pig shoulder key point in the current and
previous frame. Thus the movement trajectory of the pig in a period of time could be
tracked [95]. Experiments showed that this method achieved a MOTA score of 94.40%.
Gan et al. formed a central feature vector from the central location of piglets and fed it into a
CNN-based affinity estimation network to obtain the affinity prediction matrix while using
the Hungarian algorithm to optimize the affinity prediction matrix, as well as designing a
distance-based tracking state adjustment strategy to correct erroneous state predictions [86].
Experiments showed that the multiple object tracking accuracy (MOTA) of this method was
97.04%, the inference frame rate was 6.89 fps and its tracking performance and inference
speed were better than the SORT model [108] and other methods.
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In addition, the accuracy of the pig detection algorithm also has a direct impact on the
accuracy of pig tracking [80]. In 2020, Zhang et al. constructed the object inverse probability
projection map, then multiplied the Inverse Projection probability value of the pixel by the
addition of surrounding pixels to obtain the object projection gray image to locate and track
the pig [99]. Experiments showed that the average overlap rate of this method for tracking
objects is 91.00%. Liu et al. simplified the pig tracking task to a detection problem for
every two frames, which used the minimum tracking unit achieved 92.71% pig localization
accuracy [100]. In terms of multi-object tracking, MOTS networks have been successful, but
there was a key problem when it is used in pig farming applications; that is, the predicted
masks do not fit objects (pigs) well [85,98]. The reason for this is the low resolution of
feature maps in the mask branch.

For the accuracy of tacking models, online real-time continuous object tracking plays
a key role [75]. The hierarchical data association algorithm combined a CNN detector,
and a correlation filter-based tracker achieved efficient tracking of each pig online [74].
Cowton et al. used a deep simple online real-time tracking based on distance and vision to
improve the automation of the model and online real-time pig tracking [75]. The experiment
achieved 92% MOTA and online real-time tracking of multiple objects. In 2021, using the
detection results as the input data of the SORT algorithm, continuous object tracking
could be achieved [76]. The experiment showed that the method had an average tracking
time of 57.8 min in a good environment. In 2022, Chen et al. built a semi-supervised
pipeline to track pig activity over time, which does not require any pre-labeled videos [109].
Experiments showed that the rapid deployment of this system provided a reliable and easy
solution for pig behavior monitoring.

4.3. Summary

AI-based detection and tracking algorithms overcome the difficulties of data pro-
cessing and complexity of data feature extraction faced by traditional machine learning.
Some state-of-the-art networks such as Faster R-CNN, Mask R-CNN and YOLO have been
widely used in pig detection and tracking, which have demonstrated favorable perfor-
mance in pig farming applications because of their strong automatic feature extraction
capability [76,85,94].

However, the detection and tracking algorithms still face many challenges in practical
applications: (1) The existence of complex environments such as lighting changes and
pig occlusion in the actual application scenarios will affect the accuracy of AI models’
judgments [65,97]; (2) Using consumer-grade cameras to capture fast-moving pigs may
present problems such as track fragmentation and track drift, and complex tracks may
produce distorted data about the pigs, causing current tracking algorithms to potentially
lose detection capability [74].

5. AI-Based Vision Pig Behavior Recognition

Pig behavior is one of the important factors for diagnosing their productivity, health
and welfare [31]. A good understanding of natural and abnormal behavior changes in pigs
can improve pig welfare, such as housing and diet [110]. In today’s trend of industrialized
intensive pig farming, real-time tracking of pig behavior and analysis of pig behavior are
critical for pig welfare, labor impact and corporate competitive advantage [111].

Pigs have different behaviors based on their living conditions. In most situations
(normal environmental conditions), pigs perform daily behaviors, including drinking
(Figure 5a), mounting (Figure 5b), aggression (Figure 5c) and laying (Figure 5d). These daily
behaviors are important characteristics for judging a healthy diet and disease in pigs [112].
Table 2 shows the application statistics of AI vision-based pig behavior recognition. The
following is a brief review of the different AI techniques used to identify pig behaviors.
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(a) (b)

(c) (d)

Figure 5. Examples of pig’s four different behaviors (i.e., drinking, mounting, aggressive and
lying), (a) Pig drinking behavior; (b) Pig mounting behavior; (c) Pig aggressive behavior; (d) Pig
lying behavior.

5.1. Recognition of Pig Drinking Behavior

In the daily life of a pig, water is an essential part of the pig’s diet [113]. The amount of
water consumed by each pig is not only related to pig feed intake but also could be used as
a predictor of diseases [54,114]. To record a pig’s drinking behavior, the currently popular
way is based on RFID tags (one sender placed on the pig’s ear and receivers installed next to
the drinking fountains) [112]. Then, the correlation analysis between pig drinking behavior
and their health could be established using a linear regression model [115–118]. However,
RFID technology requires electronic tags punched into the livestock’s ears [119], and this
invasive method of data collection can cause harm to the pigs [112].

In recent years, a camera combined with machine vision technology has been used
to recognize pig drinking behavior. Kashiha et al. binarized the pig image and used the
distance between the key points of the pig outline and the center of mass to judge the occur-
rence of pig drinking behavior [120]. In 2018, Yang et al. used the image occupation index
to improve the accuracy of pig drinking behavior recognition [121]. In addition, Tan et al.
used the similarity between two pig contour feature vectors to improve the recognition
accuracy of pig drinking behavior [48]. However, these methods can not performe well in
complex environments (e.g., illumination changing, occlusion) [48,120,121].

To improve the accuracy of pig drinking behavior recognition, Ji et al. used an image
occupation index of the eating and drinking area and pig residence time in the area to judge
the pig eating and drinking behaviors [54]. Chen et al. extracted spatial features based on
the ResNet-50 model and used long short-term memory (LSTM) to identify pig drinking
behavior [114]. The results showed that this method could detect pig drinking behavior
under conditions of exposure and overlap.
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Table 2. The main research work of pig behavior recognition.

Authors, Year Data Type Behavior Method Breed Accuracy

Riekert et al., 2021 [55] 2D Lying Faster R-CNN, NASNet Pig (GermanHybrid × German Piétrain) 84.00%

Gan et al., 2021 [122] 2D

Snout-snout and
snout-body social nosing,

snout-snout and
snout-body aggressive/

playing behavior

ResNet-101 Meihua sow 93.09%

D’Eath et al., 2021 [123] 3D Scratched tails Linear mixed models Grower/finisher pig -
Gan et al., 2021 [124] 3D Nursing ResNet-50, FlowNet2.0 Meihua sow 97.63%

Ji et al., 2020 [54] 2D Eating and drinking YOLOv2 Yorkshi sow 94.59%
Chen et al., 2020 [114] 2D Drinking ResNet-50 + LSTM Mixed nursery pig 92.50%
Wang et al., 2020 [125] 2D Estrus MFO-LSTM Landrace pig 98.02%

Zhuang et al., 2020 [126] 3D Estrus AlexNet Large white sow 93.33%
Chen et al., 2020 [127] 2D Aggressive VGG16 + LSTM Mixed nursery pig 98.40%

Zheng et al., 2020 [128] 3D

Walking,
keep standing,

keep sitting,
keep ventral recumbency

behavior et al.

Fast R-CNN and HMM Small-ears spotted pig 92.70%

Riekert et al., 2020 [53] 2D Lying Faster R-CNN + NAS Fattening pig 80.20%

Li et al., 2020 [129] 3D
Feeding, lying,

motoring, scratching
and mounting behavior

PMB-SCN Fragrance pig 97.63%

Zhang et al., 2020 [130] 3D
Feeding, lying,

walking, scratching
and mounting behavior

TSCNM Fragrance pig 98.99%

Alameer et al., 2020 [131] 2D Nursing SVM Sow pig 96.40%
Chen et al., 2020 [132] 2D Feeding Xception + LSTM Mixed nursery pig 98.40%

Li et al., 2019 [49] 2D Mounting Mask R-CNN and KELM Minipigs pig 91.47%
Li et al., 2019 [133] 2D Mounting Mask R-CNN and ResNet-FPN - 94.50%

gao et al., 2019 [134] 3D Aggressive 3D CONVNet - 96.78%
Tan et al., 2018 [48] 2D Drinking Douglas-Peukcer - 93.75%

Yang et al., 2018 [121] 2D Drinking Google Lenet - 92.11%

Xue et al., 2018 [135] 3D
Standing, sitting,

prone and
side lying behavior

Faster R-CNN, ZF-D2R Sow 96.73%

Notes: NAS means neural architecture search; ResNet means residual nets; LSTM means long short-term memory;
MFO means moth-flame optimization; HMM means hidden Markov model; PMB-SCN means a SlowFast network-
based spatiotemporal convolutional network for the pig’s multi-behavior recognition; Xception means Extreme
version of Inception; KELM means kernel extreme learning machine; NAS means neural architecture search;
TSCNM means two-stream convolutional network models; SVM means support vector machine; Mask R-CNN
means mask region-convolutional neural network; ResNet-FPN means residual net feature pyramid networks;
ZF-D2R means ZF model with deeper layers and two residual learning frameworks; keep standing means
maintaining a standing position continuously for a certain period of time without making any other movements;
keep sitting means maintaining a sitting position continuously for a certain period of time without making any
other movements; keep ventral recumbency means maintaining a ventral recumbency position continuously for a
certain period of time without making any other movements; - means that the authors did not state specific data
or did not mention this property in the text.

5.2. Recognition of Pig Mounting and Estrus Behaviors

Pigs’ mounting behaviors often appear in overcrowded environments, and mounting
behavior between pigs increases the risk of injury [136]. Moreover, improving the repro-
ductive efficiency of sows can reduce management costs and feed costs per pig [137]. In
natural mating, sows mate at least three times to increase the likelihood of fertilization [138].
However, the boar will produce behavior such as climbing and straddling when it is in
estrus [139]. Therefore, accurate identification of mounting and estrus behaviors is essential
to ensure sow fertilization and pig health and welfare [49].

In the early stage of pig mounting and estrus recognition, background subtraction
and ellipse fitting techniques are often used to locate pigs in the image. The Euclidean
distance between the head and the tail and the lengths of the major and minor axes of the
fitted ellipse between the head and the side were used as the characteristics of mounting
behavior, and pig mounting behavior was identified based on this [136].
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For image-based automatic detection of pig mounting behavior, Li et al. used ResNet
feature pyramid networks model to segment pig images, then realized the recognition
of mounting behavior according to the mask pixel area [133]. At the same time, the
mask region-convolutional neural network (Mask R-CNN) segmentation network and
the kernel extreme learning machine were used to improve the accuracy of mounting
behavior recognition [49]. This model could effectively solve the segmentation problem
of pig occlusion. In terms of pig estrus behavior recognition, Zhuang et al. followed the
obvious characteristics of pig ears during estrus, collected pig ear image data during estrus
and non-estrus, and simplified the Alexnet network structure to improve the speed of pig
estrus behavior recognition [126].

Compared with images, temporal sequence information in videos contains more de-
tailed features, which could further enhance the recognition performance of pig mounting
behavior [129]. For video data, spatiotemporal features are more effective for mounting be-
havior in video sequences than only extracting spatial features of images [139]. Wang et al.
used the moth-flame optimization-based LSTM classification model to identify pig estrus
behavior [125]. Experiments showed that this method could effectively identify the pig
estrous behavior. In the same year, Li et al. proposed a spatiotemporal convolution behavior
recognition model based on the SlowFast model, which achieved an accuracy of over 97%.
The model was compared with the single stream 3D convolution network (SlowFast-50,
R3D-18), and experiments showed that the accuracy and generalization ability of the model
in pig mounting behavior recognition had been improved [129]. In addition, Yang et al.
selected the distance, overlapping area and the intersection angle of two pigs in a single
frame as spatial features, used the change rate of these features in adjacent frames as tem-
poral features, then built a classifier based on XGBoost to recognize the mounting behavior
in pig video [139]. Experimental results showed that the detection accuracy of pigs was
97%, and the average accuracy of pig mounting behavior detection was 95.15%.

5.3. Recognition of Aggressive Pig Behavior

Pigs are more likely to exhibit aggressive behavior in intensive closed farming [140].
Aggressive behavior in pigs can cause problems such as uneven food distribution, skin
injury, wound infection, etc., resulting in reduced pig welfare and economic losses [141].
Therefore, there has been great interest in using computer vision and AI technology to
recognize aggressive pig behavior [127].

Traditional feature extraction-based machine learning models have problems such
as too few feature types, complex artificial feature selection and weak generalization
ability [140–144]. In recent years, with the development of deep learning in the field of
machine vision, the AI method effectively avoids the complex problems of feature selection
and data processing in traditional machine learning, which significantly increases the
accuracy and generalization ability with its strong feature learning ability [134].

In AI-based approaches, 2D or 3D convolution, multi-scale fusion and spatiotemporal
feature extraction are used to extract advanced features of images so as to improve the
recognition accuracy of aggressive behavior [122,127,134]. Gao et al. added multi-scale
feature fusion, Dropout, and Batch Normalization to the convolutional 3D (C3D) network
structure, achieving 95.70% accuracy for aggressive pig behavior recognition models in a
complex environment [134]. Chen et al. proposed VGG-16 and LSTM-based approaches
to directly extract the spatial features and feed these features into a LSTM model for
extracting the spatiotemporal features, which obtained 98.4% accuracy for aggressive
behavior recognition [127].

In addition, in order to achieve high-precision and complex social behavior recognition,
Gan et al. used key points of a pig’s body to represent the motion decomposition of
pigs and extracted high-quality spatiotemporal features (linear motion intensity, angular
motion intensity and spatial affinity) using convolution networks and adaptive spatial
affinity kernel functions to identify social behavior containing aggressive behavior [122].
Studies have shown that this method could effectively detect and identify behavior, such
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as aggression in pigs, providing key indicators for improving pig health and welfare.
D’Eath et al. used 3D point cloud data and a series of linear mixed effect models to study
the relationship between the posture of a pig’s tail and other factors, such as the pig’s
aggressive behavior [123]. The experimental results showed that in commercial farming,
the tail posture disturbance in normal time was related to tail biting and other adverse
health/welfare signs, which formed the basis of a decision support system.

5.4. Recognition of Pig Nursing, Lying Down and Other Behaviors

Productivity in commercial piglets’ production is largely dependent on the number of
weaned piglets per sow. However, one of the main reasons for high pre-weaning mortality
in piglets is starvation [145]. In addition, pig lying and other behaviors are also important
characteristics in judging the healthy diet and pig disease [112]. In the early stage, Yuan et al.
used the Zernike moment and support vector machine to recognize four poses of pigs [146].
However, facing complex pose and behavior recognition problems, traditional machine
learning algorithms often cannot perform well. With the development of AI algorithms,
a variety of deep learning-based approaches have been proposed to detect pig behavior
to maximize the welfare and economic benefit of pigs [111]. The deep learning-based pig
feeding behavior, posture and other behavior recognition often train models using images,
video and 3D data [124,129,135].

Regarding image data-based approaches, Xue et al. proposed the ZF model with
deeper layers and two residual learning frameworks to realize the effective recognition
of the behavior of lactating sows, which achieved an average accuracy of the methods
of 96.73%, 94.62%, 86.28%, 89.57% and 99.04% for five postures of lactating sows (e.g.,
standing, sitting, lying down, lying on the stomach and lying on the side, respectively) [135].
However, this model is large, and it is difficult to migrate and deploy into the embedded
systems. Riekert et al. regarded the pig lying posture as an object detection problem that
used NASNet and Faster R-CNN to achieve 80.20% mAP for the detection of pig position
and postures [53].

From the perspective of video data, Li et al. proposed a spatiotemporal convolution
network for pig multi-behavior recognition based on the slowfast-two path structure and
3D ResNet (R3D) model [129]. The experimental results showed that the model still had
significant generalization ability in the subsequent pig detection tasks. Similarly, consider-
ing the motion information of pig behavior in the video data, a dual-stream convolutional
network model based on deep learning was proposed to recognize pig behavior [130].
In the same year, Alameer et al. mapped the breast area to the optical flow frame corre-
sponding to the lactation behavior and extracted the temporal characteristics of the sows’
exercise intensity and occupancy index to extract temporal and spatial characteristics for
distinguishing breastfeeding and similar behavior [131]. In 2021, Gan et al. located the
sows lactation area through the spatial positioning network composed of sow detectors
and key point detectors, and used spatiotemporal feature information of sow’s to identify a
sow lactation behavior classifier [124].

In terms of 3D data (e.g., RGB-D images), based on RGB-D images of the pigs,
Zheng et al. used the improved Fast R-CNN architecture as a sow frame-level pose detector,
which achieved 92.70% mAP for the detection of four postures (standing, sitting, ventral
lying and lateral lying) [128]. Experimental results showed that this method could monitor
pig postures in real time and provide effective reference information for farming.

5.5. Summary

Pig behavior is one of the important factors in productivity, health and welfare [31].
At present, AI algorithms apply deep learning models with images or videos for rec-
ognizing pig behaviors. In terms of images, researchers mainly applied Faster R-CNN,
Mask R-CNN, YOLO, ResNet, VGG and other algorithms to identify pig behavior recog-
nition [53–55,114,124,127,133]. For video-based approaches, LSTM, R3D, C3D, etc., are
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often used to extract spatial-temporal features, which often achieve better recognition
performance than that of image-based approaches [114,125,127,129,132,134].

However, there are still many challenges in pig behavior recognition: (1) Recognition
accuracy of similar and multi-behaviors in complex environments need to be further
improved [122]; (2) How to solve the problem of crowding and confinement among pigs
resulting in the loss of many key behavioral traits is a challenge [114,139]; (3) The high-
speed movement of pigs causes deformation and drift of pig bodies, which increases the
difficulty of behavior recognition [114].

6. AI-Based Sound for Pig Disease and Estrus Diagnosis

In the process of pig farming, in addition to vision for monitoring abnormal pig
behaviors, sound is also the most obvious external manifestation for pig diseases [12]. In
some pig farms, the pig mortality rate due to respiratory diseases is as high as 15.00%,
which has caused huge farming economic losses [147,148]. Pig’s coughing sounds could
be used as a feature to identify pig respiratory diseases [149–151]. For monitoring and
recognition of pig coughs and estrus sounds, data preprocessing and sound recognition
models are two important aspects.

In terms of data preprocessing, as the pig cough sound spectrum illustrated in
(Figure 6a), the environmental noise frequency band of pig farming is usually below 5 KHz,
which overlaps with the pig cough sound frequency band [57–59,152]. In order to better
remove fan noises in pig farming, Dong et al. proposed a Discrete Cosine Transform-based
enhancement algorithm for pig cough sound signal denoising [153]. Yan et al. used the log
energy entropy quadratic wavelet packet denoising method to remove piglets and pink
noise; meanwhile, filters and wavelet thresholds were used to remove mechanical running
noise [154,155]. Ma et al. used 150 order FIR filter band-pass filtering to effectively remove
the noise outside the frequency band of pig cough sounds [156]. Additionally, Butterworth
band-pass filter and multi-window spectrum-based psychoacoustic speech enhancement
algorithms are also used to remove the noise [56–59,152].

On the other hand, sound recognition models such as support vector machine model,
decision tree, double threshold algorithm, dynamic time warping, the sparse representation
classifier and fuzzy c-means clustering also play an important role in the recognition of pig
cough sounds [157–161]. Here, some common sound features such as power [155], Multidi-
mensional Short-Term Energy, mel frequency cepstral coefficients (Figure 6b) [56–63] and
short-term zero-crossing rate [156] are often used for model training. However, the above
methods lack robustness in the complex farming environment.

With the development of AI technology, in order to improve the monitoring of pig
cough sounds in a complex environment, different deep learning models for data feature
extraction and sound recognition have been proposed recently [63,69,152]. Table 3 shows
the application statistics of AI algorithms in pig sound recognition.

Researchers combined the deep belief network model, backpropagation neural net-
work, bidirectional long short-term memory model and deep neural network hidden
Markov model to detect and recognize pig cough sounds [56,57,59,62,64]. Similarly, the
sound feature image extracted based on the fast Fourier transform algorithm was input into
the MobileNetV2 network model line, which could realize the recognition of various pig
sounds well [152]. In addition, Chen et al. used the deep transfer learning and CNN model
to recognize the estrous sound of pigs [63]. The results showed that the deep learning-based
approach could distinguish sow estrus sounds and boar estrus sounds very well. In the
same year, Yin et al. proposed an Alexnet-based model using spectrum features, which
used the advantages of a convolutional neural network to improve the recognition accuracy
of pig cough sound [69].
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Table 3. The main research work of pig sound recognition.

Authors, Year Sound Category Method Breed Result

Yin et al., 2021 [69] Cough AlexNet - Accuracy = 95.40%
Chen et al., 2021 [63] Estrus sound VGG16, DTL-CNN Sow Accuracy = 96.62%
Zhao et al., 2020 [62] Cough DNN-HMM Landrace pig Average WER = 8.03%
Shen et al., 2020 [61] Cough MFCC-CNN - Accuracy = 97.72%
Hong et al., 2020 [64] Cough, grunt, scream MnasNet Pig (Yorkshire, Landrace, and Duroc) Accuracy = 94.70%

Li et al., 2020 [60] Cough SVDD - Accuracy = 93.70%

Cang et al., 2020 [152]
Cough, sneeze,

hunger, choking,
and screams

MobileNetV2 Three-way sow Accuracy = 97.30%

Zhang et al., 2019 [59]
Cough, sneeze,

hunger, choking,
and screams

SVDD, BPNN - Accuracy = 95.40%

Wang et al., 2019 [58] Cough PCA, SVM Landrace weaners Accuracy = 95.00%
Li et al., 2019 [57] Cough BLSTM-CTC Landrace Accuracy = 93.77%

Cordeiro et al., 2018 [161] Pig vocalization decision-tree Sow Accuracy = 81.92%
Li et al., 2018 [56] Cough PCA, DBN Landrace Accuracy = 94.29%

Dong et al., 2017 [153] Cough, wind noise DCT - -
Hui et al., 2016 [156] Cough - - Accuracy = 96.00%

Yan et al., 2016 [155]
Nursing grunt,

drinking, feeding
and sham chewing

The sub-band
clustering method
based on skewness

and SVM

- Accuracy = 95.17%

Notes: DTL-CNN means deep transfer learning and convolutional neural network; DNN-HMM means deep
neural network hidden Markov model; MFCC means mel frequency cepstral coefficient; MnasNet means Neural
Architecture Search for Mobile; SVDD means support vector data description; MobileNetV2 means mobile
networks; BPNN means back-propagation neural network; PCA means principal component analysis; SVM
means support vector machine; BLSTM-CTC means birectional long short-term memory-connectionist temporal
classification; DBN means deep nelief network; DCT means discrete cosine transform; WER means word error
rate; - means that the authors did not state specific data or did not mention this property in the text.

(a) (b)

Figure 6. Spectrogram and mel frequency cepstral coefficients of pig cough sound. Hertz (Hz) is the
unit of frequency. Second (s) is the unit of time. (a) Spectrogram of pig cough sound; (b) Pig cough
sound mel frequency cepstral coefficients diagram.

7. Challenges And Development Opportunities

This paper reviews the application of AI in precision pig farming. Although AI-based
vision and sound have demonstrated good performance in pig detection and behavior
recognition, there are still many challenges and opportunities for the systematic application
of precision pig farming due to the size of the farming, the education level of the farming
personnel, the standard of intelligent equipment and farming data.

7.1. Key Challenges in the Pig Monitoring System

The main challenges facing the pig industry are as follows.

• The reliability, ease of maintenance and use of intelligent devices are important chal-
lenges. In terms of reliability, the sensor or devices may need to be installed on the
roof of the pig house or another unfriendly environment (e.g., high temperature,
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humidity, dust and unstable electricity), which will cause some erosion and damage
to the hardware (such as the sensor) [34,162]. On the other hand, livestock farming is
often located in remote rural areas, which causes inconvenience to personnel mainte-
nance [34]. Meanwhile, the high-technology devices or systems need skilled farming
staff to operate; how to develop precision pig devices or systems that are not limited
by the level of education and ease of use for farmers is an important challenge [163].

• In terms of pig farming data, there are also problems such as a lack of extensive high-
quality datasets and data standards. As the commercial or bio-security restrictions
of pig farming increase, so do the difficulty of data collection and publication [164].
With the wide usage of 3D sensors, data storage or compressed standards are also
demanded. Take the realsense D455 3D camera as an example; with 15 fps acquisition
frequency and 848 × 480 image resolution, the storage capacity is about 50 G for one
hour per day, and the hard disk capacity is about 1.2 T for one day. Therefore, data
collection and data storage are important challenges in establishing a PLF system [165].

• Pig’s digital growth model is urgently demanded. The growth cycle of pigs usually
lasts 5 or 8 months. Along with pigs’ body characteristics and weight changes, the
nutritional requirements of pigs at different growth stages are different [166–168].
Therefore, a good pig growth model not only can monitor the weight change of pigs
but could also guide the feeding nutrition management for the pig industry to achieve
low-cost and sustainable farming [33].

7.2. Development Opportunities for the Pig Industry

With the development of related technologies, such as smart sensors and AI, precision
pig farming continues to develop in the direction of knowledge-based, technology-based
and modern smart livestock farming [169]. The main opportunities for the pig industry
development are as follows.

• Intelligent sensing technology, IoT and AI technology are integrated with different
sensor modes and expert knowledge [35,170] to develop towards standardization,
larger scale and intelligence [171].

• Continue to develop automatic recognition approaches for pig’s external appearance
phenotype and inner physiology status in the complex farming environment [10,31];
Establish multi-modal methods that could utilize vision and sound signals to de-
tect behavior and diagnosis diseases at different growth stages, further quantify the
identification results [25,172].

• Improve the automatic pig farming level: The automation of machinery and real-
time monitoring devices can be further developed to reduce labor requirements [37].
In addition, a digital pig growth model, and health and welfare evaluation system
should be established to increase product traceability and promote automatic pig
management levels [55,132].

8. Conclusions

The paper systematically summarizes the current research progress of the main sensor
devices used in pig farming and the AI-based vision and sound for detection and tracking,
behavior, etc. In modern farming, temperature sensors, weight sensors and RFID sensors
are used to obtain data about the pigsty environment or pig, and 2D and 3D cameras are
used to obtain data about the pigs. On this basis, combined with AI techniques, the deep
learning algorithms for pig detection and tracking, pig drinking, mounting, aggression,
lactation, lying down and other behaviors are expounded. In addition, the deep learning
algorithm for recognizing respiratory diseases through pig sound is described. Much has
been achieved so far in the real-time monitoring of pigs, but further improvements to the
practicality and stability of the farming systems for automatic and sustainable pig industry
development are needed.
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