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Abstract: Drones have attracted extensive attention for their environmental, civil, and military ap-
plications. Because of their low cost and flexibility in deployment, drones with communication
capabilities are expected to play key important roles in Fifth Generation (5G), Sixth Generation
(6G) mobile networks, and beyond. 6G and 5G are intended to be a full-coverage network capable
of providing ubiquitous connections for space, air, ground, and underwater applications. Drones
can provide airborne communication in a variety of cases, including as Aerial Base Stations (ABSs)
for ground users, relays to link isolated nodes, and mobile users in wireless networks. However,
variables such as the drone’s free-space propagation behavior at high altitudes and its exposure to
antenna sidelobes can contribute to radio environment alterations. These differences may render
existing mobility models and techniques as inefficient for connected drone applications. Therefore,
drone connections may experience significant issues due to limited power, packet loss, high network
congestion, and/or high movement speeds. More issues, such as frequent handovers, may emerge
due to erroneous transmissions from limited coverage areas in drone networks. Therefore, the de-
ployments of drones in future mobile networks, including 5G and 6G networks, will face a critical
technical issue related to mobility and handover processes due to the main differences in drones’
characterizations. Therefore, drone networks require more efficient mobility and handover tech-
niques to continuously maintain stable and reliable connection. More advanced mobility techniques
and system reconfiguration are essential, in addition to an alternative framework to handle data
transmission. This paper reviews numerous studies on handover management for connected drones
in mobile communication networks. The work contributes to providing a more focused review of
drone networks, mobility management for drones, and related works in the literature. The main
challenges facing the implementation of connected drones are highlighted, especially those related to
mobility management, in more detail. The analysis and discussion of this study indicates that, by
adopting intelligent handover schemes that utilizing machine learning, deep learning, and automatic
robust processes, the handover problems and related issues can be reduced significantly as compared
to traditional techniques.

Keywords: drone; drone network; connected drone; Unmanned Aerial Vehicle (UAV); handover
decision algorithm; handover management; mobility management; Fifth Generation (5G); Sixth
Generation (6G); mobile networks; mobile ad hoc networks
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1. Introduction

The drone, also known as an Unmanned Aerial Vehicle (UAV), is an autonomously
flying aircraft controlled by an individual. In this paper, the terms drone and UAV are used
interchangeably. Drones offer benefits such as low-cost access, effortless data collection,
high efficiency, fewer hazards to humans, and logistical support. Based on their potential
applications, drones can be classified as civil, environmental, or military. Drones have
a wide range of civil applications, including search and rescue operations for missing
people, aerial photography, construction, recreation, inspection of electric power lines,
manufacturing, transportation, logistic deliveries, crowd monitoring, surveillance, mining,
and archaeology. One important application of drones is the delivery of medical supplies
and medications in emergency cases. Drones are also useful in environmental sectors
such as wildlife protection, crop monitoring, pollution control, mountain inspection, and
land and water surveillance [1,2]. Drones are also used in scientific investigations, such as
oceanic and cyclone monitoring in areas that are unreachable to humans. Drones were first
used for military activities such as intelligence gathering, spying, military surveillance, and
object tracking, but they have since also been used for civilian and environmental purposes.
In the military sector, drones are applied in war zones, to combat aircraft, spying, border
surveillance, attack and missile launching, and other use cases. There are numerous drone
applications with diverse needs and goals, making it difficult to categorize aerial networks
into specific application domains. Further detailed discussions on practical applications
and case studies of drones can be found in [3–11]. Moreover, numerous Fifth Generation
(5G)-related applications are emerging with the development of the new cellular technology,
as indicated by 3GPP [12–14].

Drones have been recently included as User Equipment (UE) in the cellular architec-
ture. The control link contains two major components: a point-to-point connection between
the drone and the person maneuvering it, and a link that establishes a cellular network
connection between the drone terminal and the Ground Control Station (GCS). Drones can
also serve as ABSs in the sky to serve UE at specific locations. When drones are used as
ABSs, they can support the connectivity of genuine terrestrial wireless networks such as
broadband and cellular networks. The advantage of using drones as ABSs compared to
conventional ground stations is their capability to alter their height, avoid obstacles, and
improve the probability of creating Line-of-Sight (LoS) communication links for terrestrial
users. Due to their unique properties such as flexibility, mobility, and adaptive altitude,
Drone Base Stations (DBSs), can efficiently complement current cellular systems by provid-
ing supplementary capacity for hotspot locations. They can also offer network coverage in
unreachable rural areas. Multiple linked drones can be used in certain situations where a
single drone is incapable of delivering services provided by the drone network.

Another significant application of drones is their integration with the Internet of
Things (IoT) [14–19]. IoT devices typically have low transmit power and may not be
able to communicate over long ranges. Drones can also be used in surveillance scenarios,
which is a key requirement for IoT. In cities or countries where towers and complete
cellular infrastructure are expensive, drone deployment will become extremely beneficial
since it eliminates the need for such costs. The conventional cellular architecture may be
significantly altered to enable the application of drones in different service scenarios.

Various field tests have been conducted by several communication companies such
as AT&T, China Mobile, Ericsson, ZTE, LG, Nokia, and Qualcomm [20–24]. Due to spec-
trum availability concerns, current investigations are underway using Wi-Fi, 802.15.4, and
remote-control channels [10,25,26]. Other existing technologies have also been analyzed
for wireless drone support such as 802.11, 802.15.4, Third Generation (3G)/Long-Term Evo-
lution (LTE), and infrared. The authors in [27] examined the issue of drone interference in
the context of adopting drone communications in the cellular infrastructure. Cell coverage
and drone support have also been explored in the literature. However, extensive studies
are still required.
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Despite the potential prospects of drones, a range of practical challenges must be
overcome to effectively apply them in each networking application. For instance, when
using drone BSs, the most critical aspects to consider are performance characterization,
drone implementation in optimal Three-Dimensional (3D) environments, wireless and
computational resource management, flight time, trajectory optimization, and network
planning. Handling channel modeling, low-latency control, 3D localization, and interfer-
ence management are also key challenges in the connected drone concept. Among these
challenges, efficient mobility (handover) management is a significant factor that must
be addressed for drone BSs and drone UE scenarios [28]. To ensure smooth and reliable
connection services while users are mobile, a secure connection must be established in
addition to an efficient handover process.

Handover technology is the method of maintaining a continuous connection when
a user moves from one cell to another without disrupting service. Serving signal level
reduction, load balancing, and high error rates are among the factors that lead to the
formation of handover actions. When one or more of the aforementioned factors reach
an undesirable level, the connection must transfer to a suitable alternative cell for more
reliable, stable, and seamless service. Although this process regularly occurs, it creates
many challenges when the UE is a drone.

Several challenges must be overcome to manage handovers in mobile networks. Sys-
tem complexity increases with drone implementation due to their unique features. The
drone’s flight may be controlled via LoS paths, even though the interference scale is greater
than that in conventional terrestrial networks. Compared to the ground UE, the drone
UE has a lower coverage probability since its antenna is tilted downward and the drone’s
interference is overpowered by LoS [29,30]. Due to the higher speed of drones compared to
that of the ground UE, the handover rate is comparatively higher. Since drones are sup-
ported by the sidelobe of the terrestrial antenna, many handovers will probably occur [31].
Consequently, the Quality of Service (QoS) will noticeably degrade [32].

Handover of drones must be professionally and expertly managed in terms of the
techniques used to address handover challenges compared to current handover manage-
ment in terrestrial UEs. Techniques and algorithms employed in terrestrial UEs may not be
suitable for drone network applications due to their distinctive features. The key objective
for using such methods is to deliver high-quality service and reliable communication while
maintaining seamless handover between drones. Solutions have been investigated in
several related works, but many challenges still remain. The provided algorithms are for
both scenarios: drones acting as BSs and drones serving as UEs. The former scenario is
under examination using the previously suggested algorithms. Drone BSs are assessed in
two separate movement scenarios: drone BSs travelling in random directions at the same
constant speed and drone BSs moving at various constant speeds.

In future mobile networks, node movement prediction is a key recommended tech-
nique for enhancing drone network service. Many contemporary methods are based on
distance measurements and projections. Machine learning-assisted studies have been
developed to support drone networks in acquiring certain patterns. This will enhance the
performance of handover management, such as in [32,33].

This survey paper contributes to the target of providing a comprehensive and deep-
focus review of handover management for connected drones in future mobile networks.
The work provides a more focused review on drone networks, mobility management for
drones, and related works in the literature. To illustrate how conventional technology
functions in cellular-connected drones, the LTE system, common mobile ad hoc networks
(MANETs), vehicular ad hoc networks (VANETs), and IEEE 802.11 standards are employed.
Since drone networks are susceptible to frequent handovers, a variety of different handover
strategies are extensively addressed to further proceed in making drones a viable alterna-
tive to ground BSs or UEs. These strategies address underlying issues without jeopardizing
the performance of communication systems. Due to their mobility and flexibility, drones
are preferred in a wide variety of applications. This review addresses methods for devel-
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oping such applications while maintaining seamless handover management. The main
contributions of this article are as follows:

1. Providing a brief introduction to drone networks and connectivity requirements for
drones and, more specifically, handover management in drone networks.

2. Highlighting and discussing the main challenges facing the implementation of con-
nected drones. The main focus is on the handover challenges that influence the
mobility of connected drones in mobile networks, including the discussion of 6G and
beyond in further detail.

3. Summarizing and discussing the previous conducted research that has mostly focused
on mobility management for connected drone networks, including performance,
network operation, and connectivity issues.

4. Discussing the key significant future research directions for connected drones. This
includes mobility management, energy efficiency, machine learning, deep learning,
IoT, MANETs applications, VANETs applications, new cellular technologies, security,
and Mobile Edge Computing (MEC) with drones.

The analysis and discussion of this survey study indicates that, by implementing
intelligent handover schemes that are based on machine learning, deep learning, and
automatic robust processes, the handover problems and related issues may be reduced
significantly as compared to traditional techniques.

The rest of this paper is organized as follows. Section 2 presents a brief description of
the drone network. Section 3 discussing the connectivity requirements for drones. Section 4
reviews the handover management for efficient drone networks. Section 5 discusses
the current handover challenges that must be addressed. Section 6 examines previous
research regarding drone networks, mostly related to mobility management, performance,
network operations, and connectivity issues. Section 7 highlights the most significant future
directions. Section 8 presents the conclusion of this work. Table 1 lists and describes the
abbreviations used in the text.

Table 1. List of abbreviations.

Item Descriptions Item Descriptions

2D Two Dimensional OWC Optical Wireless Communication
3D Three-Dimensional RRC Real-Time Control
3G Third Generation mm-wave Millimeter Wave
4G Fourth Generation MR Mixed Reality
5G Fifth Generation m-Wave Micrometer-Wave
6G Sixth Generation NCHO Network-Controlled Handoff
ABSs Aerial Base Stations NEMO Network Mobility
AI Artificial Intelligence NLoS Non-Line-Of-Sight
AMF Access And Mobility Management PCI Physical Cell Identity
API Application Programming Interface PGW Packet Data Network Gateway
AR Augmented Reality PMIP Proxy Mobile IP
AuC Authentication Center PPP Poisson Point Process
BSs Base Stations PPs Ping-Pongs
CoA Centroid Of Area QoS Quality Of Service
CoMP Coordinated Multi-Point REHO Reduced Early
D2D Device-to-Device RL Reinforcement-Learning
DBS Drone Base Stations RLFs Radio Link Failures
DRL Deep Reinforcement Learning RNN Recurrent Neural Network
DSM Different Speed Model RSRP Reference Signal Received Power
FAA Federal Aviation Administration RSS Received Signal Strength
FMIPv6 Fast Mobile Ipv6 RSSI Received Signal Strength Indicator
GCS Ground Control Station RWP Random Waypoint
GPS Global Positioning System S-BS Serving Base Station
GPUs Graphical Processing Units SDN Software-Defined Network
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Table 1. Cont.

Item Descriptions Item Descriptions

HD-SOHP Handover Detection Self-Organizing
Handover Parameters SGW Serving Gateway

HetNets Heterogeneous Networks SINR Signal-to-Interference-Plus-Noise Ratio
HMIPV6 Hierarchical Mobile IPv6 SRSs Sounding Reference Signals
HOF Handover Failure SSM Same Speed Model
HOs Handovers STRAW Street Random Waypoint
HOM Handover Margin T-BS Target Base Station
H-RRM HO And Radio Resource Management TCP Transmission Control Protocol
HSS Home Subscriber Server TTT Time-to-Trigger
IDT Internet of Drone Things U2I UAV-to-Infrastructure
IIoT Industrial IoT U2U UAV-to-UAV
IoE Internet of Everything UAVDRONEs Unmanned Aerial Vehicles
IoT Internet of Things UCB Unit Control Block
KPIs Key Performance Indicators UEs User Equipment

LAANC Low Altitude Authorization and
Notification Capability UPF User Plane Function

LAN Local Area Network URLLC Ultrareliable Low-Latency
Communication

LoS Line-of-Sight UTM Unmanned Aircraft Systems Traffic
Management

LTE-A Long-Term Evolution V2V Vehicle-to-Vehicle
MAHO Mobile-Assisted Handoff V2X Vehicle-to-Everything
MANETs Mobile Ad Hoc Networks VANETs Vehicular Ad Hoc Networks

mcMTC Mission-Critical Machine-Type
Communication VIP Vehicular IP

MEC Mobile Edge Computing VR Virtual Reality
MIH Media Independent HO Wi-Fi Wireless Fidelity
MIMO Multiple-Input Multiple-Output WLAN Wireless Local Area Network
MIPv4 Mobile IP Version 4 WMNs Wireless Mesh Networks
MME Mobility Management Entity XR Extended Reality

2. Drone Networks

Drones connected to mobile networks play a key role in enabling a wide range of
services throughout various fields. The necessity for steady communication links while
moving is a major challenge that must be thoroughly investigated. Therefore, this section
provides a brief background on drone networks connected to mobile networks.

2.1. Drones Applications in Mobile Networks

Drone usage has dramatically risen in recent years due to their contribution to a wide
range of solutions in a variety of fields, as illustrated in Figure 1. Drones have unique
characteristics such as high mobility in 3D space, autonomous operation, and flexible
distribution. This makes them attractive solutions for numerous applications including
civilian, general safety, Industrial IoT (IIoT) platforms, protection, defense sections, cyber-
physical systems, and atmospheric and ecological observation [10,34,35]. Drones can be
extremely useful in a variety of civic and business applications when combined with 6G
communication service, as illustrated later.

Drones can effectively provide wireless communication services by acting as BSs or
as UEs in the sky. Drones can establish multiple connections, such as, Drone-to-Drone
Networks, Drone-to-Ground mobile serving networks, Drone-to-Ground mobile users, and
Drone-to-Satellite Networks. Ref. [36] examined drones serving as BSs in HetNets. The
study focused on a solution for improving the wireless coverage of terrestrial UEs. This
enables drones to be used in areas where communication is unavailable. Moreover, they
can assist networks by acting as data relays between UEs and BSs. Drones are flying plat-
forms that support adaptive height. Most emerging applications demand safe and reliable
wireless communication systems with highly low-latency and well-organized information
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exchanges with the BS [5]. In current applications, drones are often equipped with special-
ized communication equipment or sensors to provide various services such as low-altitude
surveillance, logistical applications, post-disaster rescue, and communication support.
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Figure 1. Drone system architecture, solutions, and integration in future mobile networks.

Two primary work directions are thoroughly examined: the integration of drones in
an appropriate cellular network scheme for smooth service, and universal connectivity for
specific use cases. As seen in Figure 2, this integration allows drones to serve in three broad
directions. The systemic and technical issues that arise as a result of this integration must
also be analyzed.
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Figure 2. Drones and cellular network integration opportunities.

2.2. Drones’ Connectivity

Ensuring smooth, reliable, and continuous connectivity for drones is one of the major
challenges that faces the implementation of drones over mobile wireless networks. To
provide reliable connectivity of connected drones, numerous solutions have been proposed
for connectivity and networks’ management. For example, the authors in [37,38] proposed
a machine learning method and massive Multiple-Input Multiple-Output (MIMO) design
to enhance connectivity and security of connected drones, respectively. Ericsson has
also introduced a control scheme, as demonstrated in Figure 3. The system manages
drone flight administration while simultaneously coordinating with a manned aircraft
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management scheme. Additional information such as weather forecasts is fed to the
drone’s control system.
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A drone identification mechanism is implemented to identify, track, command, and
control drones and drone fleet operators. Authentication and authorization processes are
crucial for providing a secure communication. The system enables vehicle-to-vehicle (V2V)
communication while avoiding collision. Wireless connection is necessary to establish the
V2V communication and simultaneously provide network management. Connectivity can
be accomplished over licensed or unlicensed spectrums. The former can be established
via satellite communication or by utilizing ground cellular networks, which is generally
more preferable.

The authors in [39] introduced a massive MIMO based on conjugate beamforming to
provide more reliable connectivity to cellular networks. In [40], a system was designed
with directional antennas for the drone BS to lessen the aerial UE’s LoS path. However, the
works of [39,40] only assumed static hovering drones without considering the integration of
cooperative communication, even though it leads to reduced levels of inter-cell interference.
The framework presented in [29] utilized the Coordinated Multi-Point (CoMP) of maximum
ratio transmission to enhance the Signal-to-Noise Ratio (SNR), thereby improving the
cellular connectivity of aerial UEs. The network consists of several separate clusters
in which BSs collectively provide services to one of the aerial UEs by utilizing CoMP
communication. Two different situations are present: hovering and mobile drones.

2.3. Drones in 4G/5G Networks

Current Fourth Generation (4G) and 5G New Radio (NR) technologies used in au-
tonomous vehicles for Vehicle-to-Everything (V2X) communication may be suitable for
drones’ communication. The 5G NR can connect autonomous vehicles and infrastructures
via side links [41], enabling Non-Line-of-Sight (NLoS) visibility and predictability for fur-
ther traffic control and autonomous driving improvements. Since wireless networks are
designed especially for ground mobile users, the usage of 4G and 5G NR may provide net-
work connections such as UAV-to-UAV (U2U) (Drone-to-Drone) and UAV-to-Infrastructure
(U2I); however, these do not guarantee full network coverage. Drones can also be used as
BSs to provide 4G and 5G services in remote environments with limited coverage caused
by natural disasters [42]. Existing 4G and 5G NR terrestrial networks are fixed at a specific
location and can support ground users or vehicles traveling along predetermined routes.
Fourth and Fifth Generation-NR systems can be utilized to provide communication for
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ultra-low-altitude drone networks using U2U and U2I modes. However, they may have
coverage and other mobility issues, as discussed in the challenges section.

2.4. Drones in 6G Networks

Drones can be extremely useful in variety of civic and business applications when
combined with 6G communication service that allow for smart automation and the integra-
tion of Artificial Intelligence (AI), paving the way for new services such as ultra-smart cities
and Internet of Everything (IoE), Extended Reality (XR) (including Augmented Reality
(AR), Virtual Reality (VR), and Mixed Reality (MR)), autonomous connectivity (such as
autonomous vehicles), Wireless Brain Computer Interaction (WBCI), and AI-based ser-
vices [43]. Sixth Generation is expected to offer 100 times the wireless connectivity and
multiple times the performance of 5G. The most significant innovations that will drive
6G are satellite connectivity, drones, connected intelligence with machine learning, the
terahertz (THz) band, Optical Wireless Communication (OWC), wireless power transfer,
and 3D networking [44,45].

For air communications, 6G can overcome a number of limitations associated with pre-
vious generations of wireless communications [46–53]. Sixth Generation communications
integrates a non-terrestrial network with 3D connectivity and ubiquitous AI-based services
in 3D space, making it suitable for air communications. Sixth Generation technologies
will provide seamless connectivity, high-accuracy positioning, ultra-high bandwidth, and
real-time remotely controlled features in high-density aerial vehicle scenarios. Although
drones may be affected by the utilization of terahertz (THz) bands due to high path loss
and small coverage, the integration with satellite networks may solve the issue.

2.5. IoT-Equipped Drone Networks

The IoT network is the system of connecting everything around us to the Internet. The
focus has recently shifted to drones. IoT supports numerous applications that drones can
provide in addition to additional services. However, hindrances are present in turning
drones into “flying IoT”, such as the large amounts of data needed for some applications
and the communication mode selection in both LoS and NLoS. A trade-off exists between
cost and efficiency since wireless communication has bounded accessibility while satellite
communication, by comparison, is more expensive.

The Internet of Drone Things (IDT) is an emerging technological innovation with
the potential to revolutionize AI computing and big data analytics. Ref. [54] presented
a novel approach to detecting contagious disease pandemics based on AI-enabled IDT
infrastructure and blockchain technology. The proposed system captures real-time geo-
located data from various sensors on each drone and creates a unified IDT database for
combined computational processing, storage, and retrieval. Algorithms are then employed
for the identification of disease outbreak hotspots based on multi-source surveillance
data collected from drones by combining visual meaningful images extracted from video
streams with deep learning approaches. The combination of AI and Blockchain provides
an efficient way to obtain authentic, reliable, and secure information about the contagion
situation. As the IoT evolves, there is a growing need for new approaches to addressing
IoT security, privacy, and scalability challenges. The authors in [55] introduced a federated
learning-based Blockchain-embedded data accumulation scheme for remote areas where
IoT devices encounter network supply shortages and potential cyberattacks. The proposed
model consisted of a two-authentication process that validates requests first with a cuckoo
filter, then with a timestamp nonce. Hampel filters and loss checks are used to ensure
secure accumulation. Finally, model training is carried out in a suitable environment, and
the results validate the possibility of the introduced model.

3. Connectivity Requirements for Drones

Drone implementation confronts a number of challenges; one of the most significant
is the connectivity. Drones’ connectivity is more complicated than that of terrestrial UEs
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because of their characteristics. Drones, for example, have a higher mobility than UEs,
resulting in a huge variance in the Reference Signal Received Power (RSRP). Connected
drones may continue switching the connection link from one cell to another. As a result,
connection between drones and the serving network may be quickly lost. To address this
issue, several studies have been conducted throughout the literature, in which several key
requirements for drones’ communication have been discussed. Thus, in this paper, the
key requirements for drones’ communication, and its capabilities and 6G expectations, are
discussed in the following.

3.1. High-Accuracy Positioning and Seamless Connectivity

Drones flying in multiple levels of airspace require precise localization and seamless
connectivity, which are both required for network planning and implementation. A secure
connection and extensive network coverage ensure seamless connectivity while the drones
are flying autonomously. Covering a wide range of altitudes and maintaining reliable
communication is a significant challenge for 4G/5G cellular networks. Sixth Generation
integrates radar technology for high-accuracy localization and positioning. The develop-
ment of dynamic maps and 3D positioning in the sky using a variety of high-tech sensors
allows for high-accuracy positioning of drones. Multi-Level Networks (3D) composed of
ultra-dense heterogeneous networks in 6G can boost the number of connected drones in
high-density ecosystems by roughly 107 devices/km2, which is 10 times higher than the
connection density in 5G. A standardized, high-quality, and reliable cellular connection
with extensive 6G coverage provides robust, cost-effective, and seamless connectivity be-
yond visible LoS. The high-capacity backhaul connectivity provided by the high-speed
OWC system allows for the transmission of massive amount of drone traffic data.

3.2. Remote and Real-Time Control (RRC)

RRC depends on real-time flight progress reports from drones, including geo-coordinates
and devices status. RRC enables a remote controller to release real-time command and
control instructions. To allow remote control and tracking of the drones, specific data rates
and latency criteria must be satisfied. With 6G, several drones can operate autonomously
(i.e., autonomously in beyond-visible LoS). Sixth Generation connections integrated with
satellites can provide communication over unlimited distances and provide near-instant
control with a latency of less than 1 millisecond. If drones have 6G connectivity, they
can be controlled from anywhere in the world using the Drones Traffic Management
(UTM) system.

3.3. Multimedia Transmission

Some UAV-based systems handover data to ground stations, such as live multime-
dia/video streaming or data analysis, in order to save time. Advanced multimedia services
such as truly immersive XR, 3D holograms, and 360-degree ultra-high image/video quality
shoots (4K and 8K videos) must be eventually realized in the future. Furthermore, XR expe-
riences such as AR, VR, and MR services necessitate higher data rates at higher Gbps levels.
The 6G network can meet a high-bandwidth data connection requirement in the UTM. A
sufficient bandwidth must be ensured for the improved data transmission capabilities that
come with 6G technology, so that the drones do not constantly drop the connection and can
transmit high-quality live videos. Sixth Generation is expected to deliver a data rate of up
to 10 Gbps to support multimedia transmission [56].

3.4. Identification and Control of Aircraft

Due to the high volume of drones, the use of automatic dependent surveillance
broadcast (ADS-B) for recognizing commercial aircraft may overload its frequencies in the
future. As a result, a new identification technique is required. The remote identification
data can be used in conjunction with 6G, and act as license plates in the same way as
license plates in vehicles. Radio waves are used to transmit the remote identification.
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Aircraft registration, identification, tracking, and regulation all necessitate reliable cellular
network connectivity. Drones’ traffic conditions can be detected and measured by actively
monitoring drone locations and route details, and early recognition of geo-fencing and
potential attacks can be identified accordingly. The UTM ecosystem provides Low Altitude
Authorization And Notification Capability (LAANC) for drones, allowing drone operators
to access controlled airspace near airports via real-time verification of airspace authorization
below authorized altitudes and management of dynamic geofencing [57].

4. Handover Management for Drone Networks

Drones will serve various environments and be a significant part of future mobile
networks. However, handover management will be a critical matter that must be ad-
dressed in future networks. Accordingly, this section highlights handover management in
drone networks.

4.1. Handover in Drone Networks

The handover performance is a common assessment in cellular networks since it is a
good indicator for demonstrating the efficient mobility techniques. Handover, or handoff,
is a key technique in mobile networks that allows a UE to switch its connection across
BSs while on the move. Handover with drone networks has become a more significant
matter because the connected drones move in the sky faster with different characterizations.
Depending on the functionality of drones within the network, one or several drones may
be needed to provide network access services to specific terrestrial users. Drones may
also serve as UEs and receive service from ground BSs or from satellite networks. Since
a drone’s operation is restricted by its power, coverage, mobility characterizations, and
serving network traffic, handover will be increasingly required. The handover (handoff)
process is crucial for the continuation of a connection, imposing only a short delay [58].
Furthermore, the drone network remains highly dynamic since mobile aerial vehicles and
the radio environment are different compared to ground users due to several factors, such
as high altitude [26,59]. The traditional handover control systems in MANETs and VANETs
must be altered to be suitable for drone networks. In MANETs, the commonly utilized
handover techniques lead to constantly separating or merging network nodes [60]. Several
architectures for drone traffic control systems have been proposed. For instance, NASA and
the Federal Aviation Administration (FAA) proposed the UTM scheme [61]. The European
Union is also developing U-space, which contains a set of guidelines and services [62].

4.2. Handover Decision Algorithms

A variety of handover decision-making algorithms are used in cellular networks, such
as RSRP, Received Signal Strength Indicator (RSSI) of the Serving Base Station (S-BS), the
Signal-to-Interference-Plus-Noise Ratio (SINR), mobile movement speed, distance between
the UE and BS, limited capacity of BSs, weight functions, cost functions, fuzzy logic control,
and machine with deep learning technology. The same handover decision algorithms can
be used with drones, but the performance will differ due to the different characterization of
drones [63–70]. Moreover, the requirements of 6G technology will be ultra-high compared
to those of the previous mobile systems. This also creates the need for more robust, efficient,
dynamic, and smart handover decision algorithms for drones’ networks. Several studies
have been conducted in the literature that deal with this matter.

For example, the authors in [67] created a method for establishing drone connectivity
with IoT. The model architecture consists of two main nodes: the sensor node and the
data processing node. Two different modes of communication are utilized: Wi-Fi and
satellite communication. The handoff was performed based on several parameters: network
accessibility, RSSI, QoS, cost of data transmission, and network performance. If one of
the previous criteria indicated that the Wi-Fi interface is not the optimal choice, vertical
handover is performed to switch to the satellite communication mode. If neither of the
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interfaces correctly operate, buffering is then performed to avoid packet loss until one of
the interfaces becomes available.

The authors in [23] investigated a method that analyzes the impact of heterogeneous
movement Device-to-Device (D2D) drone-supported Mission-Critical Machine-Type Com-
munication (mcMTC) in 5G. Due to the rapid increase in the use of IoT systems, mcMTC’s
role has become extremely significant. Therefore, fulfilling these extensive requirements is
necessary. The paper examined the influence of various movement patterns on heteroge-
neous users. The study verified that, as long as alternative connectivity options are in use,
availability will increase. The WINTERsim simulator was applied for the evaluation.

The impact of a heterogeneous device’s movement is based on the multi-connectivity
options, which introduce three measured cases: vehicular connection, manufacturing
automation, and city communications. The UEs included in the multi-connectivity system
can utilize D2D, cellular, and drone-supported connections. Ref. [68] proved that low and
limited mobility of the device has no effect on the connection availability and reliability.
Since the packet sizes are diverse, the use of D2D-assisted communications and drones
greatly enhances reliability and data rates. In contrast, performance degradation was
detected for cases where movement was high.

4.3. Handover Types

Handover in cellular networks can be classified into different types, based on tech-
nique, network type, network management, operating frequency, and scenario. For exam-
ple, handover can be classified into two main handover technique types: hard and soft
handover techniques. The hard handover requires the UE to terminate the connection from
the serving BS before it switches to the target BS. The soft handover imposes a more gradual
connection termination, simultaneously maintaining a connection with two or more BSs
for a short period of time [69]. The drones’ network can apply two different handover
techniques depending on the mobile communication technology.

Handover also can be classified into different types based on the technology of the
serving and target networks. The two main types are horizontal handover and vertical
handover. In the horizontal handover, the access points use the same technology and the
network interface remains unchanged. In vertical handover, the access technologies are
different from each other, and multiple network interfaces are employed. For instance, the
user switches from the terrestrial cellular network to satellite technology, as illustrated in
Figure 4.

Furthermore, handover in cellular networks can be classified into three methods
depending on the network management system: (i) Network-Controlled Handoff (NCHO),
(ii) Mobile-Assisted Handoff (MAHO), or (iii) Mobile-Controlled Handoff (MCHO) [70,71].
The handover control system is extensively described in [72]. For example, if the recipient
signal is the mechanism triggering parameter, two handover scenarios will occur: absolute
or relative. The former occurs when the serving BS signal strength becomes lower than
a pre-defined threshold value, whereas the latter occurs when the serving RSRP is lower
than that of the target BS. The relative handover technique may cause handover to occur
earlier than needed yet provides higher quality. Absolute handover, however, causes what
is referred to as the “ping-pong” effect. This phenomenon occurs from frequent variations
in the RSRP value, prompting frequent handovers. These various handover types can also
be applied with drones’ networks.
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Figure 4. Handover scenarios with connected drones in future mobile networks.

4.4. Handover Procedure in 5G

The handover procedure is a significant process that consists of different steps, algo-
rithms, and techniques to enable UEs to switch connections from one cell to another. The
procedural steps differ from one technology to another. The same procedure used for the
terrestrial UE can work with drones; however, it does not guarantee efficient handover
performance since the characterization of drones is different. This subsection provides a
brief description of the handover procedure for one handover system scenario that may
occur, as illustrated in Figure 5 (as an example).
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The 5G handover process is closely similar to LTE-Advanced system with some
further enhancements. The Access and Mobility Management Function (AMF) conducts
the responsibility of the Mobility Management Entity (MME) [73]. The User Plane Function
(UPF) is the same as the Serving Gateway (SGW). The handover procedures are listed
as follows:

1. The UE periodically sends the measurement report to the S-BS.
2. The S-BS configures the measurement procedure of the UE.
3. Based on the measurement report, the S-BS makes the switch decision, and the

handover request is then received by the Target Base Station (T-BS).
4. The T-BS replies with an acknowledgment to the S-BS based on its resources.
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5. The handover is initiated, and the T-BS supplies the UE with the necessary information,
connecting it to the target cell.

6. The UE receives uplink allocation and timing info sent from the T-BS.
7. The T-BS updates the AMF for UE cell alteration, the UPF is updated by the AMF for

the UE, the path of the UE is updated by the UPF, then the AMF notifies the T-BS for
path update.

8. The S-BS is updated by the T-BS for the completion of the handover.

Another way of categorizing handover is based on whether the UE controls or assists
in the process. A handover in which both the network and the UE are involved is known as
a hybrid handover. These categories have been investigated for mobile Internet Protocol (IP)
networks and VANETs, but only a few studies are currently available for drone networks.

5. Handover Challenges in Drone Networks

Drones connected to cellular networks will be a vital infrastructure that offers a wide
range of services in various environments. The necessity for stable communication during
their movement is a major challenge that must be emphasized. Several challenges arise
with the implementation of connected drones due to tier connectivity and movement char-
acterizations. Handover issues would result in high handover rates [74–76], which would
lead to a large ping-pong effect [77], or a high rate of Radio Link Failures (RLFs) [78] or
Handover Failures (HOFs) [30,79–85]. RLFs and HOFs are both significant key performance
indicators in mobile networks. Both may increase due to the high speed of mobile users,
the suboptimal settings of handover control parameters, inefficient handover decisions,
and other related factors.

5.1. Drones’ Connectivity

Ensuring smooth, reliable, and continuous connectivity for drones is one of the major
challenges faced in the implementation of drones over mobile wireless networks. Drones
flying in multiple levels of airspace require seamless connectivity, which is required for
network planning and implementation. An extensive network coverage ensures seam-
less connectivity while the drones are flying autonomously. However, covering a wide
range of altitudes and maintaining reliable communication is a significant challenge for
4G/5G cellular networks. This is due to different factors, such as the fast movements of
drones, the different trajectories, high levels of interference due to the LoS connections,
and movement in 3D. Moreover, drones move in the sky faster than UEs, resulting in a
large variance in the RSRP. This will lead the connected drones to continue switching the
connection link from one cell to another much more than in the terrestrial UEs. Moreover,
this large variance in the RSRP may lead quickly to connection loss between drones and the
serving network. Moreover, the fast growth in the use of drones will require high-capacity
backhaul connectivity to ensure their reliable and smooth connectivity. Furthermore, the
Multi-Level Networks (3D) composed of ultra-dense heterogeneous networks in 6G can
boost the number of connected drones in high-density ecosystems by roughly 10 times
compared to the connection density in 5G. This also negatively impacts the drone’s connec-
tivity. Furthermore, aircraft registration, identification, tracking, regulation, and control all
necessitate reliable cellular network connectivity. Drone traffic conditions can be detected
and measured by actively monitoring drones’ locations and route details, and early recog-
nition of geofencing and potential attacks can be identified accordingly. In addition, the
massive growth in the use of drones, IoT applications, U2U, V2V, V2X, M2M, D2D, AR,
and all the other connected devices will negatively impact connectivity. Thus, the future
mobile networks will provide high-quality and reliable cellular connection with extensive
coverage, and provide robust, cost-effective, and seamless connectivity beyond visible LoS.

5.2. Drones Challenges with 4G and 5G Networks

The 4G and 5G-NR systems can be utilized to provide communication for ultra-low-
altitude drone networks using U2U and U2I modes. However, they may have coverage
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issues, whereas drones travel in 3D and at much higher altitudes, i.e., from more than
150 m to 2 km, further overcoming mobility challenges. Drones, by comparison, are
able to move randomly and discontinuously in any 3D direction in space at very high
speed. Although 5G can handle the 2D mode, it may have obstruction issues that make
the 3D mode difficult to handle. Due to the use of directional antennas in the BS, 5G has
limited connectivity and necessitates frequent handovers for high-mobility drones. To
cover high-density drones in the sky, additional antennas must be installed throughout the
BS, which may be costly. Fifth Generation connectivity is incapable of handling dynamic
handover management or providing seamless connectivity with path planning in a high-
mobility scenario, such as cellular V2X, both of which are essential for autonomous drones
flying in the airspace [86]. In high-density and city air mobility scenarios, latency, collision
detection, and navigation are crucial, necessitating energy-aware deployment, ultra-High
Speed with Low-Latency Communications (uHSLLC), and effective channel models for
drones’ communication. Considering the opportunities of developing technologies and
services for the next decade, there is a significant need to move beyond 2D infrastructure
coverage to fully 3D native services.

5.3. Interference Probability

At ground level, handover is generally performed on the distance basis in some
cases, indicating that terrestrial UEs receive service from the closest BS. Drones have fewer
barriers that may block the signal due to their elevation as compared to ground UEs. Thus,
the number of LoS links is greater than that available to terrestrial UEs, as illustrated in
Figure 6. The drones may have direct links to non-serving BSs, raising the interference
probability. This will create interference issues in the drone’s network. This may also lead
to the increasing probability of handover execution, especially if the handover decision
algorithm is taken based on the RSRP or SINR level.
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5.4. Sidelobes

The main lobe may not serve drones properly since the antennas are not omnidirec-
tionally vertical, as illustrated in Figure 7. Although research efforts have been made, the
issue remains unresolved. It has been shown in [87] that the effect of sidelobes is mitigated
at high altitudes when drones are exposed to free-space propagation conditions. Sidelobes
are part of the far field pattern of a directional antenna, transmitting undesirable radiation
in directions other than the main one. Since sidelobes have a lower field intensity than the
main lobe, terrestrial users connect to the main lobe by tilting their antennas downwards.
Drones may be prone to unwanted sidelobes since they fly at high altitudes. The sky may
not be fully covered by the sidelobes of BSs, resulting in no sky coverage and subsequent
link failure. This also contributes to further increasing the handover probability.
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5.5. Security and Privacy

Drones’ networks are also at risk to various types of the privacy and security threats.
Therefore, it is essential to protect upright sky networks from any related privacy and
security threats. Various survey and research studies have been conducted and provided a
vital basis for considering the drone threats that need to be addressed [88–91]. However,
no study has provided an optimal solution for the existing issues. More studies related to
the privacy, security, security level, privacy threats, secured architecture, types of attacks,
and more efficient attack mitigation techniques still need to be conducted.

5.6. High Mobility Speeds

Controlling the movement of drones while in flight is one of the most challenging
aspects of drone operation. Drone movement in the atmosphere is extremely complicated
and difficult to control. The high mobility and arbitrary acceleration of a drone, for instance,
causes sudden and instantaneous variations in the obtained signal frequency. The rapid
variation in the received signal also increases the probability of handover and other mobility-
related issues. Therefore, current handover techniques may not be sufficient for drones.

5.7. Handover Self-Optimization Functions

Another issue result from the Handover Self-Optimization Functions that deal with
handover control parameters, such as Mobility Robustness Self-Optimization and Load
Balancing Self-Optimization functions. To date, several handover control techniques have
been developed in the literature to optimize handover control parameters; however, existing
techniques may not be able to work efficiently with drones. The existing techniques were
designed to serve terrestrial users, which have very different mobility, operations, and traffic
features. The key distinctions between drones flying in the sky and terrestrial users produce
significant challenges. Moreover, most of the literature has been developed with the
previous mobile networks, whereas the work on 6G networks is still in its infancy. Existing
handover Self-Optimization functions still pose issues that require further enhancements.

5.8. Handover Decision Algorithm

The handover decision algorithm is another key challenge in drone networks. Numer-
ous types of handover solutions exist for managing handover decisions, such as distance,
RSRP plus distance, RSRP, route information, SINR, loads, mobility speed, cost functions,
and machine learning. The algorithms based on RSRP are generally less complex but are
also less precise. A vital feature of algorithms is that various standards can be applied for
the handover decision-making procedure. This further increase computational complexity
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but enhance efficiency and accuracy. Most existing algorithms are for previous generations,
which are completely different in terms of specifications compared to the current generation.
Drones have distinct characterizations, making existing algorithms inefficient. Further
analysis and enhancements are still required.

5.9. Handover Failures

The HOF may occur due to the fast movements of drones and the delay in the handover
initiation or procedure with connected drones. Several works have been conducted to
address this issue in mobile networks [74,75]. In [74], the authors proposed a distance-
based handover algorithm for femto and macro cells to mitigate the HOFs and unwanted
handover. In [75], the reactive handover method was used to delay the handover process
until the UE loses connection from the previous BS or reaches the most predictable position.
This technique minimized the overall handover performance. However, in the case of
drones, further investigations that include various mobility speeds and system settings
scenarios are still needed.

5.10. Handover Ping-Pong Effect

In connected drones, the handover “ping-pong” effect is more likely to occur than
in the terrestrial case. This is due to various factors such as the fast mobile speeds of
drones, suboptimal use of handover control parameters, the use of an inefficient handover
decision algorithm, and the increase in LoS connection probabilities. The false activation
of the handover process may further be a contributing factor. The combined factors cause
repeated handovers. Moreover, if drones act as UEs, determining the relation between the
drone and BSs will be another issue.

5.11. Radio Link Failures

The RLF is an alternative challenge that may increase with the implementation of
drones as compared to terrestrial UEs. Both drone characterizations and inefficient han-
dover techniques are factors that contribute to the increase in RLF. Handover optimization
algorithms and handover decision techniques play a key role in controlling the occurrence
of RLFs in mobile networks. These factors must be collectively considered. Several opti-
mization algorithms have been proposed for robust distributed movement to mitigate the
RLFs and HOFs by altering the offset parameters, such as Handover Margin (HOM) and
Time-To-Trigger (TTT). However, the issue remains a challenge, especially with 6G mobile
networks that will be characterized with high requirements and specifications.

5.12. Other Mobility Issues

Additional crucial parameters that determine network performance are QoS, band-
width, power levels, coverage, use of high frequency bands, and latency [67]. Due to
the high mobility of drones, drone networks are more vulnerable to frequent handovers.
Conventional handover mechanisms will be ineffective. New techniques must consider the
potential challenges that drone networks will face.

6. Related Works

Several research works were conducted on handover/mobility management in mobile
networks [92–101]. Different classifications for these issues were reported and discussed in
the literature; however, the focus on drones is still limited. Several studies concentrating on
drone networks were undertaken to address various issues such as mobility management
connectivity, IoT applications, and multi-user access control. This section divides the
related works into subsections. The first subsection discusses the different solutions for
handover/mobility management based on various concepts and techniques. The second
subsection presents the proposed solutions for handover/mobility management based on
machine learning technology. The third subsection presents the proposed solutions for
handover/mobility management based on deep learning technology. Then, the fourth
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subsection presents different proposed solutions for various communication issues based
on different proposed solutions.

6.1. Classical Based Techniques for Handover Management

In 2006 [102], the authors demonstrated that PMIPv6 enables two 802.11p systems to
conduct reliable communication between each other. Since nodes require extra time to be
ready to re-receive or re-transmit packets after handoff is performed, MIPv6 is generally
not preferred. In drone networks, the fundamental concept is that the handoff procedure
will include three nodes: the ground mobile UE, the drone that will go out of service, and
the drone to which the UE will be connected to next.

In 2009 [103], Media Independent Handover (MIH) with the IEEE 802.21 standard
was examined to address communication between layer 2 wireless systems and layer 3 IP
networks. It provides handover support between IEEE-802 and non-IEEE-802 systems,
such as mobile communication networks. It can acquire information from lower layers by
utilizing media independent interfaces. This technology enables drones to communicate
in an integrated fashion [104]. Software-Defined Network (SDN) methods that employ
OpenFlow standards were implemented for nodes configuration. MIH mechanisms were
also applied for handoff optimization in non-homogeneous wireless networks.

In 2012 [105], the authors employed the VIP-WAVE (vehicular IP) technology together
with proxy mobile IPv6 (PMIP) to provide more efficient handover support than conven-
tional WAVE systems. Fast mobile IPv6 (FMIPv6) and hierarchical mobile IPv6 (HMIPv6)
were modified to present more advanced MIPv6 schemes that demonstrate better handoff
performance. Mobile IP version 4 (MIPv4) and Mobile IP version 6 (MIPv6) are common
protocols also employed in VANETs. Studies have compared PMIPv6 to MIPv6. The
simulation results reveal that the former is more effective, especially when the 802.11p
standard is employed.

In 2012 [106], the authors studied seamless horizontal and vertical mobility in the
VANET environment. The handoff assessment for the cellular-connected drones’ network
was analyzed, and the LTE-Advanced system was specifically implemented. As previously
mentioned, both secure and reliable communication are crucial in the drone network. The
IEEE 802.11 WLAN module was employed to provide the wireless link and exchange the
control commands and sensor data. Since the drone models were implemented in 3D,
IEEE 802.11 WLAN technology was incapable of supporting all network services while
maintaining reliability and security during connections. Although preceding network
architectures have significant characteristics that are mirrored in the drone network, since
the underlying infrastructures were not designed for aerial vehicles, issues emerged such
as high interference and insufficient coverage [107]. These challenges should be resolved
so that existing cellular systems can be used [103]. Previous studies have indicated that
the number of BSs available to drones increases with altitude; however, the handoff rate
was not computed. The authors in the underlying paper discovered a relationship between
the handover rate and altitude. The antenna was tilted downwards to provide service to
terrestrial users. Not every antenna design is applicable in aerial vehicle networks. To
demonstrate the hindrances that emerge with drone UEs, let us consider the following
situation. Two BSs (BSA and BSB) are present. The drone at position P1 is served by BSB;
however, it is near BSA. When it moves to position P2, it switches to BSA. It then switches
back to BSB when moving to P3. Therefore, frequent handover risks will rise, regardless
of the short distance between movements. This scenario is similar to that presented in
Figure 7. The field measurements are crucial to provide further understanding of the
LTE-connected drone network. An antenna tilt of 5–10 cm and a transmit power of 20 W
was used. The drone maneuvers were either performed manually or autonomously using
the Global Positioning System (GPS). The TCP protocol was also applied. The assessed
parameters included the RSRP, the Physical Cell Identity (PCI), and the RSP quality of the
radio and sensor data. To establish an efficient handover algorithm, one must consider the
outcomes of this algorithm.



Sensors 2022, 22, 6424 18 of 36

In 2015 [108], the authors conducted research on optimal coverage control for net-
drone handover. The authors in this paper proposed a coverage decision algorithm, which
aims to offer seamless handover and complete coverage for the connected drones’ network.
The authors presented an algorithm based on the RSS. The algorithm adjusts the drone’s
altitude and separation distance. The proposed coverage decision algorithm is evaluated
in terms of success and false handover probabilities. The work was conducted by a
simulation study in order to assess the performance of the proposed algorithm. The
presented simulation results illustrated that the proposed algorithm is capable for drone
networks. Regarding simulations, the algorithm performs admirably. However, a more
accurate scenario must also be considered, considering the drone’s payload, BS radio range,
etc. Furthermore, the coverage algorithm considers each drone’s RSS the same, which may
not be readily applicable.

In 2015 [26], the authors highlighted the different technologies and protocols that
can be applied in the drone network, and their corresponding performance. In VANETs,
for instance, no field experimental works are available concerning the mobility issue by
implementing the Wireless Access in Vehicular Environments (WAVE) system. WAVE
communication includes both IEEE 1609.x and IEEE802.11p standards. Nonetheless, these
technologies do not provide any solution to mobility challenges. VANET schemes are
characterized with high dynamism due to the constantly changing system topology and
mobile nodes. Since VANET is a subordinate group of MANET, the latter’s standards can
also be applied to a VANET system [36]. In the RWP structure, the node’s motion is assumed
to be random. Due to the constantly separating or merging topology elements, it is not
possible to maintain existing paths or predetermine the best path. It is therefore necessary
to reconfigure the system, which causes frequent handovers. The model’s performance
and QoS deteriorate due to the delay and errors caused by the handoffs. Therefore, RWP is
rarely used for mobile users or BS scenarios. The implemented network must eliminate the
topographical limitations of nodes. Manhattan and Street Random Waypoint (STRAW) are
two commonly employed systems. An additional challenge is that the density of VANET
nodes must be equal to the number of nodes needed for the corresponding application.
These obstacles hinder researchers from implementing a seamless handover scheme to
provide reliable communication and enhance packet delay [109,110]. Unfortunately, there
is a lack of research regarding handover schemes in VANETs and Wireless Mesh Networks
(WMNs) that apply IEEE 802.11 standards [106].

In 2016 [111], the authors investigated a suitable orientation-based fast handover
method to overcome the ping-pong effect for LTE-Advanced systems. They selected the
T-BS based on the current load and Received Signal Strength (RSS). In [77], a Reduced
Early Handover (REHO) technique was suggested to minimize both the ping-pongs and
RLFs, achieving high energy efficiency while maintaining other performance parameters
within appropriate limits. The finding in [55] also led to the outcomes of [56] where a fuzzy
multiple criteria cell selection technique was used. This scheme considers the UE uplink
conditions, resource block allocation, and selection criteria of the LTE’s conventional cell
selection approach. This provides high reliability and minimizes both the HOF and ping-
pong effect, thereby increasing throughput. The authors in [112] proposed a Handover
Detection Self-Organizing Handover Parameter (HD-SOHP) scheme that relies on the
reinforcement learning (RL) principle. This approach enhances the performance of UE
mobility by maintaining low HOFs, ping-pong, and call drops.

In 2016 [110], the authors presented an effective handover technique for drone network
services based on 3D rather than 2D. This method was used to optimize network services by
adjusting the drone’s height and distance. The optimum coverage decision procedure was
assessed using seamless handover probability (Ps) and false handover initiation probability
(Pf). The altitude of each drone must be modified by considering physical restrictions
to ensure the same coverage for each drone. A smooth handover can then be achieved.
Various scenarios have been provided in terms of Ps and Pf using simulations. The results
indicate that the overlapped area’s vertical distance reduced when Pf increases and Ps
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decreases. Frequent handovers are generally terminated, allowing the system to save the
drone’s battery. This method guarantees a drone’s network optimization by determining
the optimum overlapping area. Interference between drones can be reduced by setting
the same RSRP for each drone. In contrast, several crucial issues are present in terms
of optimum drone coverage. For instance, the minimum threshold level of a drone’s
altitude must be changed if it is unable to fly at a low level. The RSRP level must also
increase to guarantee a seamless handover when drones are affected by a change in climate
such as rain and wind. Further considerations must also include the throughput rate and
system reliability.

In 2017 [101], the authors extensively examined LTE-based drone network elements
and their functionalities. The MME is crucial in managing handovers between the GCSs.
Several MMEs are needed to control the handover process. The SGW and Packet Data
Network Gateway (PGW) elements are used to manage the IP communication between
drones and corresponding control stations. The Home Subscriber Server (HSS) or authen-
tication center (AuC) has similar functionality as in the LTE cellular system. The control
entity in the underlying drone system consists of four fundamental sectors: LTE sector,
Drone-to-GCS link, GCS-LTE link, and Wi-Fi sector.

In 2017 [95], the frequent handovers between small-BSs and the load distribution
were considered. Ref. [96] also presented another algorithm to overcome unnecessary
handovers and signaling overheads for HetNets with massive small cell distribution.
This was achieved by measuring the distance between small cells and the UE. The UE’s
movement angle was considered to generate a short list of candidates that can be used to
reduce signaling overheads and unwanted handovers.

In 2017 [92], the authors conducted research focused on handover management in
software-defined ultra-dense 5G mobile networks. They proposed a Markov chain-based
handover management strategy. This method selects and allocates the next best eNB to
Open-Flow tables of the mobile node (before the real connection) while considering the
available resource and transition probability approximation. Unlike the normal approach,
this method reduces HOFs and delays to 21% and 52%, respectively.

In 2017 [113], the authors proposed an intelligent handoff algorithm for the drone
network. The heart of the algorithm is a fuzzy inference mechanism whose functionality is
based on the comparison of several input parameters. Initially, information collection is es-
tablished in either the devices or BSs. The devices determine whether they prefer to remain
connected to a specific BS or switch to a different one. The parameters that the handoff deci-
sion relies on are classified into two classes. The first class consists of network specifications
such as the RSS, communication coverage, and radius. The second class consists of device
specifications such as the altitude and UE speed. The reception signal and coverage have
an inverse relationship since the coverage increases as the RSS decreases. Alternatively,
the handover rate increases when the drone’s motion is rapid. An optimized algorithm
was built to correlate handover with the drone speed. The reception signal decreases with
the distance between the BS and drones. After information acquisition, the fuzzification
process can then be established. This includes the normalization of input parameters and a
linguistic variable (i.e., high, average, or low are appointed for the coverage, and high or
low are selected for the speed). A pre-defined table consisting of fuzzy inference rules is
the core of the handoff decision-making algorithm. A defuzzification mechanism for the
parameters was then employed, such as Centroid of Area (CoA). The MATLAB fuzzy logic
toolbox was used during simulations, in addition to a system consisting of three BSs and a
single drone. For the drone’s motion, two different models were established: random and
straight movements. A hundred simulations were conducted for several different drone
paths and directions. Table 2 presents the outcomes of the algorithm. As demonstrated in
the table, the number of handovers decreases in both scenarios (i.e., random and straight
motions) when compared to conventional methods.
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Table 2. Outcomes of the algorithms.

Algorithms No. of Handover (Random) No. of Handover (Straight)

Conventional 13.86 5.03

Work done by [113] 0.84 2.37

In 2018 [99,100], the authors addressed handover signaling minimization. A mobility
management technique based on mobile user position tracking was introduced in [99] to ob-
tain practical and smooth handovers. The UE transmits Sounding Reference Signals (SRSs)
used for tracking its position by determining the arrived angle and LoS path. This method
mitigates the handover signaling cost and achieves smooth mobility at the expense of in-
creasing computational complexity. It was found that the anchor-based multi-connectivity
technique supports a low handover rate and cost. With multi-connectivity, proper access
points can be selected as handover anchors to allow the control plane, thus minimizing
the handover rate. A mobility-aware user association mechanism for 5G (millimeter-wave
(mm-wave)) networks has interesting features. It prevents frequent HOs between small-BSs
and considers load distribution as proposed in [59].

In 2018 [114], the authors conducted study on mobility prediction in drone networks.
They proposed a machine learning-based solution for classifying mobility based on pre-
dicted node locations in the near future. This system can be improved further because it
can gain knowledge by itself. If this system is properly combined with routing protocols, it
can assist in the prediction of future network topologies. However, the system ignores the
fact that practical UAV networks have limited tracking resources and computational power.

In 2019 [60], the authors reported on and studied the cell selection and handover
for drones connected to an LTE-A network based on real measurement data collected in
a suburban environment. The presented experiments illustrate the impact of increasing
flight altitude on the handover performance in terms of handover rate. The results showed
that the flying drone at a typical height of 150 m is projected to switch the connection,
i.e., execute handover, five times in each minute (as an average) as compared to only one
handover process for the terrestrial users moving at a similar speed. From this study, it was
concluded that more efficient handover techniques for connected drones are required in
the planning and operation of future mobile networks.

In 2019 [39], the authors evaluated the handover performance in the 3D designed sys-
tem. The simulation outcomes indicate that the altitude of aerial UEs, the distance between
drone UEs, and the serving BSs all play a crucial role in the drone’s performance. Due to
LoS interference and the sidelobes effect, the handover probability’s upper boundary is still
comparable to that of terrestrial UEs. The CoMP transmission improves the performance
of high-altitude drones. A 2D homogeneous PPP was used for locating BSs with the same
transmitting power levels and height. Drones, both static and moving, positioned at higher
altitudes than the BSs, have been considered. Separate clusters of BSs were created, each
with a defined center distance. Two channel models were employed: high and low fading.
The former considers both LoS and NLoS paths. A Nakagamim scheme was utilized for the
low fading case. Down-tilted antennas and a rectangular layout for the antenna gains were
considered so as to closely resemble real-life scenarios. The handover rate was assessed for
both stationary and moving aerial UEs. Cauchy’s inequality and Gamma moment approxi-
mation were employed to compute the lower and upper limits of the handover probability
for both cases. CoMP transmission proved to be quite useful since it is applicable in mobile
drone-mounted BS scenarios.

In 2019 [59], the authors conducted experimental work for HO management investiga-
tion. This research focused on which parameters affect cell selection and HO management
in UAV-UEs and how they affect them. More HOs will occur as altitude increases. When
the altitude of the drone increases, the drone will also connect with more distant cells.
Because of minor changes in RSRP values, cells change frequently. To fully integrate drones
in 4G, 5G, and 6G networks, advanced solutions are required.
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In 2019 [115,116], the authors conducted research on the fundamental analysis of drone
cellular networks under the random waypoint mobility model. The work compared the
performance of an ultra-dense millimeter-wave network architecture having the control
and UE-plane with that of a previous architecture. The analytical framework was used to
reduce the cost of handovers for a specific coverage area requirement. The handover costs
and coverage area possibilities were found to be better than those of conventional schemes.
The handover cost of the conventional scheme can further be decreased by adding more
macro-BSs, which is preferable to increasing the number of small cells for the proposed
scheme. The proposed scheme will be an advantage in the implementation of a 5G platform.
However, further investigations with 6G mobile networks and drones are needed.

In 2019 [117], the authors studied mobility management for drone networks and they
considered a stochastic geometry-based mobility model for drone cellular networks. Drone
BSs were initially distributed according to the PPP and UEs movement based on a Random
Waypoint (RWP) mobility model. The drone BS that serves a typical UE on the ground was
chosen according to the nearby neighbor association rule. First, each drone flew around
for a stable time interval, choosing a regularly random route, and then moving at a fixed
speed for a constant distance. Again, the drone flew for a similar time interval in the new
position until it traveled the same distance but in another random route.

In 2019 [115], a multi-tier 3D drone network was designed to compute the correspond-
ing handover probability. The drone-mounted BSs provide services to terrestrial users. Both
the horizontal position of drones and the terrestrial UEs’ locations are determined using
the PPP models of different densities. The drone BSs have the same values of transmission
power and path loss exponent. The channel power gain of the LoS path was also measured.
The piers were positioned at equal horizontal distances from each other. In the traditional
case, the handover between tiers is performed depending on the receiving power. The UE
obtains services from the drone that offers the highest level of receiving power. The study’s
model presented a different scenario: when all drone positions are of the same altitude, the
horizontal distance of each is measured and the ground user is connected to the drone that
provides the smallest horizontal distance. This represents the association criterion based
on the probability that a terrestrial user is connected to a specific drone BS. The handover
probability of a UE between multiple piers was also computed. Assuming that a user is
connected to Drone-a of horizontal distance dA and another adjacent drone, Drone-b, has a
horizontal distance db, the handover process denoted by HOA,B is initiated if dB < dA. The
handover probability can thus be measured based on the horizontal distance and on the
direction of motion. The association process depends on the drone density. If the density is
low, the association probabilities of tiers are almost the same. However, when the altitude
of tiers is higher, the handover probability drops since the association process does not
maintain equal value for each tier behavior at high altitudes. The handoff process therefore
occurs more frequently. The authors provided significant insight concerning the handover
probability in a drone network. An optimal density value was also presented, which is
crucial to avoid frequent handovers.

In 2019 [118], the authors conducted experimental work for understanding the perfor-
mance of UAV networks. This study conducted experimental works based on successful
and failed HOs, the RLF number, and the rate of ping-pong HOs to analyze changes and
challenges in the radio environment. The results of the experiments show that the HO rate
increases with speed, as expected. Furthermore, because the HO procedure takes time,
RLFs frequently occur when signal strength drops due to nulls between the antennas’ lobes.

In 2019 [119], the authors have conducted study on route-aware handover enhance-
ment for drones in cellular networks. They presented a route-aware algorithm. This
algorithm is based on path information, which is used to optimize the network using flight
path data. The HOF can be reduced by 5 to 24 times for aerial UEs of varying speeds. The
results can be improved further if the radio link quality is presented at a finer granularity
and the estimation accuracy is improved.
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In 2019 [120], the authors studied mobility-driven routing in autonomous drone logis-
tics networks. They proposed novel DTN optimization of packet routing. This algorithm
improves packet routing based on priority, time to live, and power consumption constraints.
The packets are weighted according to their priority, time to live, and power consumption.
If the packet’s time to live runs out, it will be dropped off. Furthermore, the algorithm’s
output is a new path, which is executed if it is shorter than the maximum length that the
drone can fly. When the opposite is true, the path is removed.

In 2019 [121], the authors studied the effects of mobility uncertainties on wireless
communications between flying drones in the mm-wave/THz bands. They examined
the use of mm-waves and THz band communications in drone networks. During the
small-scale mobility, the performance decreased by about 2.5% after 5 s without beam
alignment. In this case, a continuous disconnection is observed. In general, small and large
moves degrade performance by up to 50%.

In 2019 [122], the authors studied the location module for a 5G base station to support
mobility management of drones. They proposed a location module for tracking. This
proposed location module can be integrated in Sensor Gateways and 5G BS to monitor
UAVs and learn about their state while they are moving. Implementing advanced ma-
chine learning can enable additional services such as address discovery, navigation, and
product delivery.

In 2020 [28], the authors proposed a method for estimating the handover probability
for drone-mounted BSs. The handover probability of two different scenarios was assessed:
drone BSs moving with the same constant speed along a straight line of constant height in
random directions, and drone BSs moving in different constant speeds. In the first scenario,
a similarity was present between the spatial distribution of the mobile drone BS and static
UE with that of the static ground BS and mobile UE. It was deduced that the aerial system
resembles a single-tier terrestrial cellular network with static BSs and mobile UEs. The
handover probability of the two cases was then computed. A numerical analysis was used
to investigate the proposed solution based on the Monte Carlo simulation. The Monte Carlo
simulation is a computational algorithm that relies on repeated random sampling. The
simulation outcomes revealed that, for the Same Speed Model (SSM) case, the terrestrial
scenario mirrored the static UEs and mobile drone BSs to resemble static BSs and mobile
UEs. Based on the graphical representation of the results, it can be seen that the SSM and
Different Speed Model (DSM) initially behaved similarly. As time passed, the handover
probability of SSM became higher than that of DSM. It should be noted that this does not
necessarily imply that the handover rate of SSM is higher than that of DSM.

6.2. Machine Learning-Based Technique

Due to the high mobility of drones, it is difficult to accomplish global information
exchange due to unnecessary overheads since the network becomes significantly convo-
luted. With the advancements in machine learning disciplines, the number of applications
throughout various fields has also increased. Several previous studies were conducted
concerning the applications of ML in drone networks.

In 2020 [32], the authors focused on real terrestrial network data for Stockholm. System
models were developed using Key Performance Indicators (KPIs), communication delay,
and interference to simulate the Handover and Radio Resource Management (H-RRM)
optimization problem. This issue was then converted to a machine learning problem,
presenting a reinforcement learning solution that detects the temporal and spatial level
connections to produce seamless handover decision The system model was performed by
the air-to-ground channel where the LoS pathway is predominant. The buffer line was
utilized to identify the upcoming data rate, the specified band, and the interference from
the BSs. The optimization problem was then developed, and the algorithms were used to
execute the decision-making task. The overall handover process was also updated.

In 2021 [123], the authors have addressed the optimal location of multiple DBSs
in a MIMO wireless network setting. They developed a low machine learning-based
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algorithm for optimizing DBS location by minimizing the total wireless RSS occurring
by active terminals. When compared to the Euclidean cost benchmark, the proposed
algorithm decreases the propagation loss in the system and achieves a lower bit error rate.
Nonetheless, energy-related issues have not been fully covered.

6.3. Deep Learning-Based Technique

Deep learning is currently becoming a key solution technology for addressing connec-
tion and mobility challenges for connected drones. Moreover, deep reinforcement learning
utilizes the combination of deep learning techniques and reinforcement learning principles.
Most current research focuses on deep learning/machine learning-based techniques. With
the help of developments in the AI field, handover decision making, and other features
(such as security challenges), these techniques can now ensure further enhancements [37].
Since learning user behavior does not require periodic updates, the predictions’ precision
and efficiency of resource allocation can be improved. Recent years have witnessed over-
whelming developments in deep learning methods. It is now possible to integrate the
underlying methods in drone networks. Accordingly, various studies have been conducted
to address different issues; some of these are summarized below.

In 2017 [33], the authors conducted research on the handover mechanism based on
deep learning for UAV networks. The aim of the work was to obtain seamless handover
by utilizing deep learning mechanisms. The model’s operation is based on trajectory
predictions. The drone altitude was included by measuring the handover rate in 3D and LTE
BSs were used. The assessment method consists of three fundamental steps, as suggested
in [124]: handover establishment, handover employment, and handover culmination.
The BS handoff was determined according to the TTT criterion using a reference power
level. The position of the drones was defined using the trajectory prediction algorithm.
A threshold function was then utilized to decide whether or not the BSs should switch
between drones. The trajectory prediction method was implemented using neural networks
instead of the Gaussian regression method, which is generally employed. For the system
to have memory, the recurrent neural network (RNN) model and a supervised learning
algorithm were applied. The location of the new data was determined by minimizing
the root mean square error (RMSE) of the distance between the output generated by the
method and the target output values obtained from the training data pairs. As previously
mentioned, a threshold function was used based on the TTT values to determine whether
or not handover should be performed. As with conventional handover mechanisms for
ground UEs, the system’s efficiency decreases as the TTT value increases. The RNN
model proved to be more efficient than the traditional handover mechanisms, achieving a
higher success rate and lower overhead assessment in overlapping regions. Table 3 also
summarizes the most recent works on drone connectivity-related issues.

In 2018 [87], the authors conducted research on deep reinforcement learning for user
access control in UAV networks. The authors proposed deep reinforcement learning as a
framework solution to address the access control challenges for the ground users with the
consideration of mobility of UAV-BS. They aimed to enable the user to be able to intelligently
perform access decisions, and maximize users’ data rate and reduce the handover rate
as much as possible. Based on the presented simulation results the authors reported that
the results illustrated the effectiveness of the proposed solution and exposed its gain as
compared to the other selected benchmark solutions from the literature.

In 2019 [63], the authors conducted research on multi-user access control in UAV
networks based on deep learning technology. In this work, a deep reinforcement learning
method was proposed to provide a centralized control of multiple users in order to enhance
the data rate and avoid unnecessary handovers. The proposed method was based on the
concept of enabling each user to make its independent access decisions depending on the
network information. Frequent handovers must be avoided without compromising the op-
eration of the UEs. The sole purpose is to maximize the throughput amount. The algorithm
was implemented using the Markov decision process. The simulations revealed that, by
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utilizing deep reinforcement learning, the throughput is maximized by employing fewer
handovers than the three other commonly used methods, i.e., the RSS-based technique,
Q-learning, and Unit Control Block (UCB) learning.

In 2020 [125], the authors provided a novel DQL model for optimal deployment of
a UAV-BS. Furthermore, the proposed method presents the optimal UAV-BS trajectory
while ground users move without re-learning the method or acquiring ground user path
information. In particular, the model optimizes the trajectory of a UAV-BS by achieving a
maximum Mean Opinion Score (MOS) for ground users who move along various paths.

In 2021 [126], the authors conducted research on a deep learning technique for drone
networks based on THz bands considering handover and beam prediction. The work
target was to investigate the utilization of THz bands for drone networks as this band
can achieve high data rates, which is a main requirement in future mobile networks.
However, the implementation of THz bands faces various technical issues, such as the
high path loss, channel impairments, and blockage affect, which become more critical
issues when counting the mobility challenges of drones. The authors proposed a deep
learning technique that proactively forecasts the candidate-serving base station/RIS and the
candidate-serving beam for each connected drone. The model makes the prediction based
on the previous observations of drone locations/beam trajectories. The proposed technique
relies on a recurrent neural network, which is known as the Gated Recurrent Unit (GRU).
The work utilizes the reconfigurable intelligent surfaces (RISs) for addressing the challenges
of handover and beam selection when the terahertz (THz) frequency is utilized for drone
communication networks. They integrate RISs into THz drone communications because the
RISs offer flexibility to extend communication coverage by adjusting to channel dynamics.
This proposed solution is able to enhance the drone’s coverage further, which leads to
improving the communications reliability of upcoming mobile technologies. Forecasting the
next candidate target beams depending on the drone beam/location trajectory contributes
to significantly decreasing the beam training overhead and its related latency, and thus
appears as a practical solution to serve time-critical use cases. Based on the presented
simulation results, the authors reported that the proposed deep learning technique is a
promising solution for future RIS-assisted THz networks by reaching near-best proactive
handover performance with accuracy exceeding 90% for beam prediction.

In 2022 [127], the authors conducted research on handover decisions based on deep
reinforcement learning technology for UAV networks. This paper presents a new handover
decision technique based on deep reinforcement learning to avoid the occurrence of unnec-
essary handovers as much as possible while upholding reliable and stable communication.
The proposed solution takes the UAV state as an input for a proximal policy optimization
technique and develops a Received Signal Strength Indicator (RSSI) based on a reward
function for the online learning of UAV handover decisions. The proposed technique was
evaluated with various system settings and mobility scenarios, and with the consideration
of UAV movement in 3D. Based on the simulation results and the reported discussion,
the proposed technique provides significant enhancements by decreasing the unnecessary
handovers by up to 73% and 76% as compared to Q-learning and greedy handover decision
techniques, respectively. Moreover, the proposed technique ensures reliable and stable
communication with the UAV by maintaining the RSSI above −75 dBm more than 80% of
the time.

6.4. Other Related Studies

In 2018 [128], the authors conducted a survey study focused on “On-Demand” archi-
tecture for an Ultra-Dense Cloud-Drone Network (UDCDN) architecture. This architecture
can meet the needs of the next generation by addressing interference issues, energy con-
sumption limitations, front and backhauling challenges, etc. System optimization for issues
such as interference, efficiency, and HO performance can be accomplished by integrating
UDCDN with terrestrial networks operating in the sub-6 GHz and mm-wave bands, which
are not covered in this study.
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In 2019 [129], the authors studied the trajectory strategy and power control for multi-
UAV networks. They considered machine learning technology as a key approach. This
study proposed a three-step method based on machine learning techniques to obtain both
the position information of users and the trajectory design of the UAV. However, the UAVs’
energy is limited, and handover between UAVs was not discussed.

In 2019 [130], the authors conducted study on interference modeling for UAV networks
depending on stochastic geometry. They developed stochastic geometry-based models.
The authors developed models of drone cellular networks based on stochastic geometry.
The result shows that the interference becomes more homogeneous as time approaches
infinity. The rate decreases as one’s height increases.

In 2019 [131], the authors conducted research on adapting a modulation and coding
scheme based on deep reinforcement learning in cognitive mobile heterogeneous networks.
The authors addressed the issue of global network information exchanges in drone systems.
Similar to the previously discussed paper in [127], a deep reinforcement learning method
was designed to manage the UE’s access decisions and maximize network throughput
without compromising the handover performance process. The user access model relies on
the recipient power. The channel was designed with consideration of the LoS and NLoS
components. Deep reinforcement learning techniques were employed for two fundamental
features: the training data can be obtained by constant observation of the environment, and
long-term benefits are acquired rather than instantaneous ones [132].

In 2021 [133], the authors studied the tracking of autonomous UAVs in surveillance
use cases. They proposed drone integration in different areas. These studies proposed
integrating drones into the lives of people with special needs, and in telepresence, surveil-
lance, and delivery systems. The proposed systems also have drawbacks, such as being
susceptible to weather conditions. Furthermore, these studies lack simulation modeling
and results that would aid in comparing this concept to other existing solutions.

In 2022 [134], the authors studied the power-efficient wireless coverage using the
minimum number of UAVs. They proposed wireless coverage with the minimum number
of UAVs using less power. This article proposed a method involving multi-UAV 3D de-
ployment with power-efficient planning, which was introduced with the goal of reducing
the number of UAVs used to provide wireless connectivity to all outdoor and indoor users
while significantly reducing the required UAV transmit power and meeting users’ data
rate requirements. This involved high computational complexity, which was manifested in
terms of the algorithm execution time. Moreover, handover between UAVs was missing

In 2022 [135], the authors mainly focused on fast multi-UAV path planning for optimal
area coverage in aerial sensing applications. They proposed fast Coverage Path Planning
(CPP) for multiple UAVs. A software framework and an algorithm were used to solve and
analyze the problem. According to the results, the method obtains optimal UAV paths
to complete the overall mission within the minimum time. The study only tested routes
generated in 2D space at a constant altitude. As a result, there is a higher probability of
handover, in addition to other mobility-related issues.

Table 3. A summary list of related works on drone mobility management and connectivity.

Ref Year Study Focus Proposed Method Solution Target Environment

[59] 2019 Experimental work on
handover

Performance evaluation based on
experimental data

Study the effect of cell selection
on handover LTE-A network

[106] 2012 Mobility Performance evaluation Seamless horizontal and
vertical mobility VANET

[107] 2011 Mobility/handoff Survey study State of the art on mobility Vehicular networks

[108] 2015 Coverage and handover
control

Algorithm based on RSS,
regulates the coverage of each
drone.

Optimal coverage control and
efficient handover Drone networks

[109] 2019 Handover Survey study State of the art on handover Vehicular ad hoc in 5G
mobile networks
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Table 3. Cont.

Ref Year Study Focus Proposed Method Solution Target Environment

[110] 2016 Handover
Handover scheme to adjusts the
height of a drone and the distance
between the drones.

Handover management Drone networks

[111] 2016 Cell-selection optimization
handover

A multiple-criteria
decision-making based on an
integrated fuzzy technique

Cell-selection optimization
handover

Long-Term Evolution
(LTE)

[112] 2017 Handover optimization
Self-optimizing algorithm for
handover detection, execution
and decision parameter

Self-organizing method for
handover performance
optimization

LTE-Advanced network

[113] 2017 Fuzzy interference system Fuzzy inference Intelligent handover scheme Drone network

[114] 2018
Classification of
movements for mobility
Prediction

This paper proposed a
machine-learning-based solution
for classifying mobility based on
predicted node locations in the
near future.

Mobility prediction and object
profiling Drones in UAV networks.

[115] 2019 Handover Probability
Tractable equivalent model and
handover probability through
stochastic geometry analysis

Equivalent model for 3D UAV
networks. UAV networks

[116] 2019 Mobility Performance analysis based on
stochastic geometry

Analysis under random
waypoint mobility model Drone cellular network

[117] 2019 Mobility Model for a Drone Performance evaluation based on
stochastic geometry Mobility analysis 3GPP-drone cellular

network

[118] 2019 Mobility Support Performance analysis Experimental work for mobility Cellular connected UAVs

[119] 2019 Route-aware handover
enhancement

Algorithm based on path
information

- Optimize the network
using flight path data.

- Reducing HOF

Drones in cellular
networks

[120] 2019 Optimization of packet
routing

Algorithm based on priority, time
to live, and power consumption
constraints

Novel DTN mobility algorithm
improves packet driven routing

Autonomous drone
logistics networks

[121] 2019 Mobility in mm-wave/THz
bands Performance analysis Effects of mobility uncertainties

on mm-wave/THz band
Drones in the
mm-wave/THz bands

[122]

Location module for
tracking to support
mobility management of
drones

A location module that can be
integrated in Sensor Gateways
and 5G BS

Location module to monitor
UAVs and learn about their
state while they are moving

Drones in 5G networks

[123] 2021 Location strategy for Drone
base stations

Machine learning
and performance analysis

Address the optimal
positioning of multiple DBSs Heterogeneous networks

[125] 2021
UAV trajectory design
considering mobile ground
users

Deep Q-network (DQN)-based
learning

Optimizes the trajectory of a
UAV-BS by maximizing the
mean opinion score (MOS) for
ground users

5G networks

[126] 2021 Beam and handoff
prediction

Deep learning solution based on a
recurrent neural network, namely
the Gated Recurrent Unit (GRU)

Extend the coverage of drones
and enhance the reliability of
next-generation wireless

Terahertz (THz) drone
networks

[127] 2022 Handover decision Deep reinforcement learning
Avoid unnecessary handovers
upholding reliable and stable
communication

UAV networks

[128] 2018 On-demand on Ultra-Dense
Cloud Drone Networks Survey

Presented an Ultra-Dense
Cloud-Drone Network
(UDCDN) architecture

Ultra-Dense cloud Drone
Networks

[129] 2019 Trajectory design and
power control for UAV Machine learning

Obtain the position information
of users and the trajectory
design of UAV.

UAV-Wireless Networks

[130] 2019 Interference modeling for
UAV networks Stochastic geometry Efficient interference modeling Drone Cellular Networks

[131] 2019 Modulation and coding
scheme selection Deep reinforcement learning Efficient selection for

modulation and coding scheme
Cognitive Heterogeneous
Networks
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Table 3. Cont.

Ref Year Study Focus Proposed Method Solution Target Environment

[132] 2021 Mobility in drone taxi
applications Deep reinforcement learning Compute the optimal

transportation routes UAV mobile network

[133] 2021 Dynamic object tracking on
UAV system A learning-based UAV system Achieving autonomous

surveillance UAV mobile network

[134] 2022 Power-Efficient Wireless
Coverage of UAVs

Multi-UAV 3D deployment
with power-efficient planning

- Reducing the number of
UAVs used to provide
wireless connectivity

- Reducing the transmit
power

- Meeting users’ data rate
requirements.

UAV mobile networks

[135] 2022
Fast Multi-UAV Path
Planning for Optimal Area
Coverage

Software framework and
an algorithm

Obtains optimal UAV paths to
Complete the overall mission at
the minimum time.

UAV mobile networks

[136] 2018 Drone-delivery using
autonomous mobility

Drone-delivery using
autonomous mobility (DDAM)

Solve: (1) high demand of
delivery; (2) short delivery
lead-time; and (3) complex
traffic congestion.

-

[137] 2020
Performance
characterization of mobility
models

Performance analysis

Characterize the performance of
several canonical mobility
models in a drone cellular
network

Drone cellular Networks

[138] 2020 Mobility and
service-oriented modeling Neuro-fuzzy interference system Assist in reliable and efficient

route selection Ad hoc networks

[139] 2021 Optimization for drone
mobility Q-learning

Optimize handover decision
regularly
to provide efficient mobility
support with high data rate in
time-sensitive applications,
tactile Internet, and haptics
communication

5G and Beyond
Ultra-Dense Networks

[140] 2020 Drone mobility support Reinforcement
learning/Q-learning algorithm

Ensure robust wireless
connectivity and mobility
support for drones in the sky

Long-term Evolution
(LTE) and the
Fifth-Generation New
Radio (5G NR)

7. Future Directions

Drones are not yet widely available. It will take time to fully integrate connected drones
into serving communication networks. A number of potential recommendations and major
research directions should be addressed before the wide employment of connected drones
to mobile networks. Accordingly, this section highlights and discusses a number of key
research directions related to mobility management of drones over mobile networks. These
key research directions must be addressed efficiently to enable more efficient connected
drone service over wireless networks.

7.1. Energy Efficiency

As previously mentioned, one of the significant challenges facing drone networks is
the limited power, which may lead to the termination of drone operations in certain cases.
Limited power is a substantial challenge that may also lead to increasing the frequency of
handovers. Connected drones require more power as compared to terrestrial UEs due to
their connections and movement characterizations. For example, when drones move in
3D with high speed, the handover probability will increase. This leads to increasing the
handover signaling, which in turn leads to more power consumption. Therefore, to reduce
the power consumption of drones, more efficient mobility techniques, and energy-efficient
techniques must be used. Renewable energy methods, which are also effective solutions,
should be considered, especially for those remotely controlled from long distance. This
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is a research direction that can be pursued in the future since more effective solutions
are required.

7.2. Mobility Management

In upcoming HetNets, mobility control of drones will be a critical aspect that requires
thorough analysis. A major risk exists since drones rapidly move in three dimensions
with high speed and different characterizations [114,137,138]. This increases the handover
probability and may lead to increasing the handover ping-pong effect and RLFs. Another
significant issue during drone movement is the use of the mm-wave spectrum and terahertz
band; this use in next-generation networks is discussed in [141]. The rapid development
and massive growth of drones and mobile networks will further exacerbate the problem
since load balancing will be a critical factor, necessitating an appropriate solution. The
case becomes more critical if no optimal and efficient handover mechanisms are used.
Therefore, managing the connection during drone mobility must be adequately emphasized
in future networks.

7.3. Machine Learning for Drones

Machine learning technology is a key technique that provides efficient solutions in
wireless networks. The capability of this technology can be a key solution for mobility
management issues of drones but deeper investigations are required. By offering training,
this method provides continuous learning and improvement. The understanding of the
drone’s environmental impact will be enhanced with further research. This will enable
unmanned aircraft systems to improve even further. Thus, this is a potential pathway to
enable drones to become key connected components in future mobile networks.

As an example, machine learning has been examined as a suitable technology for
mobility prediction of drones, as investigated in [129]. Some research has been conducted
in the literature to investigate the efficiency of machine learning for addressing mobility
issues of connected drone networks [139,142,143]. However, to the best of our knowledge,
sufficiently deep and numerous research works have yet to be conducted that can be con-
sidered to be comprehensive and efficient solutions for addressing the existing challenges.
Thus, the work in this direction will be a key research area that needs to be examined in
future research.

7.4. Deep Learning for Drones

Similarly, deep learning technology is a promising solution that can be used to ad-
dress mobility management issues of drones in mobile networks. Research has also been
conducted in the literature to investigate the efficiency of deep learning for addressing
the mobility issue of connected drone networks [140,142]. Further enhancements with
the use of these techniques can be achieved with the latest developments in the AI field,
handover optimization, handover load balancing, handover decision making, and other
aspects [37]. The precision and efficiency of predictions for resource allocation can be
improved. Recent years have witnessed an overwhelming development of deep learning
methods. It is now possible to integrate these fundamental methods in drone networks to
address motility issues.

7.5. IoT and Drones

Since IoT and drones can support low-cost platforms and services, their combination
will certainly be a future component [84]. The increasing growth in IoT and the great need
for higher data rates and low latency will likely necessitate the use of drones. Drones can
contribute to significant solutions in several IoT use cases. Future networks should therefore
incorporate the latest research and enhancements. However, the massive increase in these
technologies will also increase the issues related to mobility. Higher handover probabilities
may occur. Moreover, the need to balance load between the serving cells will increase.
Thus, the implementation of drones in IoT use cases will need to be investigated further.
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7.6. MANETs and VANETs Applications in Drone Networks

In future networks, Flying Ad Hoc Networks (FANETs) will be an active technology in
mobile networks to enable drones to provide various services over a wide communication
range. These drones will need to communicate directly or indirectly depending on the
communication range to secure more reliable communications. This can be directly, if
the two connected drones are located within a close communication range, or indirectly
over a number of drones relay nodes, if they are distant. The concept is similar to that of
previous technologies in the fields of MANETs and VANETs. However, setting up FANETs
will be more challenging as compared to the traditional networks, such as Mobile Ad
hoc Networks (MANETs) and Vehicular Ad hoc Networks (VANETs). The requirements
will be different in terms of node mobility, connectivity, message routing, service quality,
application areas, and other necessities. Therefore, the introduction of FANETs models,
analyzing opportunities, identifying open research issues, and addressing the challenges in
FANETs will comprise a key research direction in future mobile networks. Various mobility
situations and system settings over various deployment scenarios will be more challenging.

7.7. New Cellular Technologies

New challenges have emerged as a result of the latest generation of cellular technology,
leading to an increase in network heterogeneity. For example, the implementation of 5G
and 6G mobile networks will contribute to an increase in mobility issues. This is because
these technologies will mostly operate based on high-frequency bands, which will lead
to reducing the cell coverage. This, in turn, will increase the handover probability. This
will be even greater in the case of drones, because drones move in three dimensions with
high movement speeds and mostly with LoS connections. Thus, the handover probability
will definitely increase further. Moreover, future mobile networks will be characterized
as ultra-dense heterogeneous networks. Various mobile technologies will be deployed as
overlapping with each other’s. This also will increase the handover probability, especially
if drones have the capabilities to be connected to more technologies. Thus, effective and
more intelligent handoff algorithms must be implemented to resolve these challenges. With
the launch of various cellular technologies, drones can be used to enhance 5G spectral
efficiency. Although the application of drones in 5G networks is still at its infancy stage,
interest in such integration is rapidly growing.

7.8. Security

One of the most fundamental issues for any digital system is security. If a drone BS is
interrupted by an attacker, for instance, the UEs served by that drone BS are more likely to
lose connection than the UEs served by ground BSs. If a drone is operated by attackers, the
UEs supplied by terrestrial BSs may face significant interference due to LoS links. When
drones are utilized for cellular communications, it is critical to ensure the security of drone
systems. The security and safety issues will become more critical with small drones, and
the massive growth in drones having fast movements and the capability of long-distance
travel. Drones’ security vulnerabilities and threats are still a challenge that need further
study. Therefore, drone security and privacy concerns with various mobility scenarios must
be highlighted, discussed, and addressed, particularly drone vulnerabilities, threats, and
attacks. Therefore, further research and enhancements must be accomplished in this area.

7.9. Mobile Edge Computing with Drones

Mobile Edge Computing is a new cellular network scheme in which BSs provide
connections to UEs and computing services. This technique essentially brings cloud
services closer to UEs, reducing latency for several compute-dense applications such
as speech recognition and augmented reality. When MEC is supported by drone BSs,
a number of issues arise. Drone BSs must have certain computing platforms, such as
Graphical Processing Units (GPUs), to provide cloud services that will improve drone
energy consumption and payload. Another issue is computing session continuity since
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fast-moving drone BSs may create serious disconnections for the ongoing computational
functions of UEs. Further research should be conducted to address the potential of MEC
and its challenges regarding drones [143]. Different system settings with various mobility
scenarios should be considered.

7.10. Drone Antennas

Drones can travel in three dimensions at various speeds. There is an urgent need to
develop a new tracking antenna that can adapt to drone mobility and enable an ultra-high
data rate transfer between drones and BSs. Since the accelerometer, gyro, and GPS data
are used to track BSs, the antenna is tilted [144]. Another challenge is the limited area
available for antennae on drones, particularly for small drones. Additional research and
development must be prioritized in this regard.

8. Conclusions

This paper mostly focused on studying handover managements in drone networks.
Drones are a popular alternative to ground-based BSs or UEs. Due to limited power
consumption, packet loss, or dense networks, various challenges may emerge during drone
operation, making the handover process critical for effective data transfer. A comprehensive
review of previous research was presented and discussed. Various research challenges were
also highlighted. The proposed solutions from the literature were extensively reviewed.
The main focus, however, is on handover management in future mobile networks. From
this overview, several points can be highlighted. The research trends indicate that in future
mobile networks, the integration of drones in mobile cellular networks, satellite networks,
and other traditional technologies (such as MANETS, VANETs, and IEEE 802.11) will be
part of the main solution. Drones move at higher speeds than ground network UEs and
have different characterizations. Initially, it would seem that the two network behaviors
have several similarities; however, drones possess greater handoff probability. This will
lead to further handover issues, such as high HPPP and RLF. This is a significant challenge
facing the implementation of drones. Existing handover mechanisms may not be efficient
for drone networks. Machine and deep learning-based handover models have higher
success rates and fewer assessment overheads in overlapping regions than traditional
approaches, indicating that this technology may be a successful solution for managing the
handover issue of drones.
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