
����������
�������

Citation: Samatas, G.G.; Papakostas,

G.A. Biometrics: Going 3D. Sensors

2022, 22, 6364. https://doi.org/

10.3390/s22176364

Academic Editors: Dan Istrate, Imad

Rida and Lunke Fei

Received: 3 July 2022

Accepted: 20 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Biometrics: Going 3D

Gerasimos G. Samatas and George A. Papakostas *

MLV Research Group, Department of Computer Science, International Hellenic University, 65404 Kavala, Greece
* Correspondence: gpapak@cs.ihu.gr; Tel.: +30-2510-462-321

Abstract: Biometrics have been used to identify humans since the 19th century. Over time, these
biometrics became 3D. The main reason for this was the growing need for more features in the
images to create more reliable identification models. This work is a comprehensive review of 3D
biometrics since 2011 and presents the related work, the hardware used and the datasets available.
The first taxonomy of 3D biometrics is also presented. The research was conducted using the Scopus
database. Three main categories of 3D biometrics were identified. These were face, hand and gait.
The corresponding percentages for these categories were 74.07%, 20.37% and 5.56%, respectively. The
face is further categorized into facial, ear, iris and skull, while the hand is divided into fingerprint,
finger vein and palm. In each category, facial and fingerprint were predominant, and their respective
percentages were 80% and 54.55%. The use of the 3D reconstruction algorithms was also determined.
These were stereo vision, structure-from-silhouette (SfS), structure-from-motion (SfM), structured
light, time-of-flight (ToF), photometric stereo and tomography. Stereo vision and SfS were the most
commonly used algorithms with a combined percentage of 51%. The state of the art for each category
and the available datasets are also presented. Finally, multimodal biometrics, generalization of 3D
reconstruction algorithms and anti-spoofing metrics are the three areas that should attract scientific
interest for further research. In addition, the development of devices with 2D/3D capabilities and
more publicly available datasets are suggested for further research.

Keywords: 3D biometrics; computer vision; 3D reconstruction; identity recognition

1. Introduction

Biometrics are unique body characteristics used to identify people. They were first
used at the end of the 19th century with the well-known and globally used fingerprints.
According to Jain et al. [1], the most commonly used biometric methods are DNA, ear, facial,
hand and finger veins, fingerprint, gait, hand geometry, iris, palmprint, retina, signature
and voice. To perform the identification, a device is used to capture the biometric data.
Most often, this device captures images, and the quality of the captured images therefore
affects the performance of the model. The first identifications were completed manually by
experts, but in some cases, the results were controversial due to the human factor. Later, the
use of technology for identification has evolved in the form of image processing methods
and matching techniques, creating tremendous identification models that take advantage
of biometrics. Over the years, these technologies achieved great performance and thus
became more popular. Moreover, biometrics for identifying people is nowadays not only
used in forensics but also to gain access to certain places or to log in to some smart devices.

As technology has advanced, a biometric security problem has emerged. The tech-
nology became very familiar and very vulnerable to malicious acts. This has had a major
impact on various security protocols as biometrics have become a part of our daily lives.
To counter this, a few approaches have been developed in this area. One of them is to
increase the robustness of the selected biometric category. Bear in mind that the traditional
methods are referred to 2D, and some scientific approaches have led to the development of
3D biometrics. Of course, this was not just about the fancy addition of the third dimension
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but mainly about increasing the extracted features and creating more efficient systems.
These additional features are the key to the desired performance improvement.

Computer vision has always been linked to biometrics as it provides the necessary tools
for identification through 3D image analysis. In addition, the technological advancement
of computer vision using state-of-the-art Artificial Intelligence methods to achieve the
above benefits has led to the need to apply it to identification systems. As the demand for
robust models has increased, the transition from 2D to 3D biometric methods has been a
one-way street.

The core element for 3D reconstruction is depth information. Various algorithms have
been developed to extract the relevant information. The first work published for 3D biomet-
rics in general was from David Zhang and Guangming Lu in 2013 [2]. In their book, they
described the image acquisition methods and categorized them into two major categories,
the single and multi-view approaches. Another approach is to categorize them into active
and passive methods. In active methods, the light source is directed to the desired surface
as an essential step for 3D reconstruction and is characterized by low computational cost.
Passive methods, on the other hand, are usually very computationally intensive and use am-
bient light conditions [3]. Furthermore, active methods can be categorized into structured
light, time of flight (ToF), photometric stereo and tomography. Passive methods include
stereo vision, structure-from-silhouette (SfS), structure-from-texture (SfT) and structure-
from-motion (SfM). All of the above methods are presented in the form of a taxonomy in
Figure 1. The taxonomy shows that the two main approaches, active and passive, have
four methods at once. With further approaches, it is possible to create a third category. This
category could be semi-active, semi-passive, or even a combination of passive and active
methods. Such multimodal approaches should lead to new 3D reconstruction algorithms.

Structured light produces a beam from a light source onto the surface of the object.
The wavelength of the light can be in the visible range, the infrared (IR) or even the near
infrared (NIR). The calculations from the reflection of the beam provide depth information.
Secondly, the ToF method takes into account the reflection time between the surface and a
reference point, while the photometric stereo method uses different lights to create different
shades of the object and the model is created by combining these lights. Finally, tomography
can be either optical coherence tomography or computed tomography (CT). In both cases,
the 3D models are created by multiple scans.

In addition, stereo vision creates depth information by comparing image information
of the same spot from two different viewpoints. SfS uses images taken from different angles
to form the silhouette of the object. In addition, the SfT is applied when the surface has a
homogeneous texture and then uses the different orientation of the images to create the
depth details. Finally, the SfM uses a video as input, which is usually consisting of frames
that capture an object from different angles.

An important factor for successful reconstruction is the sensor used. The RGB-D
camera is commonly used in various 3D reconstruction applications. This particular type
can provide color and depth information by combining the three primary colors (red–
green–blue) and calculating the relative distance to the sensor accordingly. According to
an analysis of RGB-D camera technologies for face recognition, Urlich et al. [4] found that
stereoscopy (active and passive), followed by structured light, produced the best results.
The importance of these cameras was also emphasised by Zollhöfer et al. [5]. In the research,
they presented the different approaches and the great performance of these sensors for all
aspects of 3D reconstructions, including biometric elements such as the face, etc.

Furthermore, the above eight different methods are used throughout the literature
without any correlation between the categories of 3D biometrics, as each category has been
studied separately so far. Although some reviews refer to a group of categories, such as
facial and ears, the vast majority refer explicitly to one category. This creates additional
barriers to the extraction of cross-biometric information, such as common methods between
categories or even similarities in the state of the art. Furthermore, there is no literature
review in the field that examines all categories of 3D biometrics at once.
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This review examines 3D biometrics through a literature review of scientific work in
the field, focusing on 3D reconstruction algorithms and methods. Both are essential for
successful identification with 3D images. Furthermore, the contribution of this work is to
provide statistical data on 3D biometrics so that a qualitative and quantitative comparison
of each biometric category and its 3D reconstruction methods is possible. The result is
the first taxonomy of 3D biometrics and a correlation analysis between 3D reconstruction
methods and biometric category. The analysis shows that face as a 3D biometric is over-
saturated with a variety of approaches in this direction. Moreover, stereo vision and SfS are
the most commonly used methods among biometric categories. The analysis also presents
various available datasets and the state of the art in each category. Finally, it highlights the
challenges that have arisen and need to be addressed in the transition to 3D.

The paper is organized as follows: Section 2 contains the related work on reviews about
the 3D biometrics, Section 3 presents the literature search protocol, which is vital prior to
gathering firm results through literature searching. Section 4 presents the 3D reconstruction
approaches for the three main biometric categories of face, hand and gait. The categories
and their subcategories were extracted through the literature search. Section 5 contains the
results of the research with the available datasets, state of the art and statistics. Section 6
contains a discussion of the work, indicating the need for further research and suggestions.
Finally, Section 7 contains the conclusion of the paper, summarizing all the information
provided in the previous sections.

Figure 1. Three-Dimensional (3D) Taxonomy.

2. Related Work

In order to document the related work, a preliminary research was conducted using
the trusted platform Scopus [6]. A customized search query was applied. More specifically,
the word 3D biometric was selected, and the results were limited to certain types of
publications (reviews, survey etc.) The research revealed that the published 3D biometrics
reviews consist of two main categories: the face and fingerprints.

2.1. Face

The first and most popular category was the face recognition, with the facial and ear
being two popular subsections. In some cases, the ear is part of a multimodal approach
or a standalone biometric. In 2011, Yuan et al. [7] studied ear recognition. In the article,
the author had also included the recognition process of 3D images for the first time. The
ear has a unique shape and also shows minor deformations over the years. According
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to the article, the main reconstruction methods are SfS, SfM and Stereo Vision, with the
last method being the most effective. Yaun et al. [7] also conclude that the accuracy and
robustness of the system are greatly improved when ear features are used in combination
with face features.

The first review for facial biometric was by Islam et al. in 2012 [8], which presented
a 3D facial pipeline in four stages. These stages were 3D data acquisition, detection,
representation and recognition. The authors provide some details about the data acquisition
techniques. For face recognition, there are two main categories: the use of 2D or 3D images.
The state of the art for using 2D images was the Support Vector Machine (SVM) with 97.1%
on 313 faces [9] and for 3D images was the Point Distribution Model (PDM), which achieved
99.6% on 827 images [10]. For the representation of the face, the balloon image [11] and
iso-countours [12] were the most advanced models. When used to reconstruct a face, they
achieved 99.6% and 91.4% accuracy in face recognition, respectively. The final step was
the recognition. Since the face often changes during emotional expressions, the author
presented two main categories: rigid and non-rigid, depending on whether the model is
considered rigid or not. Although the percentages for the rigid approach were high (the
Iterative Closest Point (ICP) algorithm [13] reached 98.31%), some samples were rejected
by the algorithm due to different expressions. On the other hand, rigid approaches had
similar performance but increased computational cost. For ear reconstruction, the author
proposed three different approaches. The first was to use landmarks and a 3D mask, but
this approach depends on manual intervention. For the second approach, the use of 3D
template matching was proposed, with an accuracy of 91.5%. This approach had better
performance than the previous one but a higher error rate. The last and most efficient
method was the Ear Shape Model, proposed by Chen and Bhanu [14] in 2005, which
achieved an accuracy of 92.5% with an average processing time of 6.5 s.

The use of ToF methods in 3D face recognition was reviewed by Zhang and Lu in
2013 [2], presenting two main approaches for ToF applications. The first is image capture
with incoherent light, and the second is based on optical shutter technology. Both use the
reflection of NIR light. They also pointed out the disadvantages of these devices, namely
the high error rates due to the generation of low-resolution images by the different devices.
Of course, they also believe that hardware will be able to support a higher resolution
biometric system in the near future. The main advantage of the Tof is that it can provide
real-time results, which are very important for biometrics.

In 2014, Subban and Mankame [15] wrote a review paper focusing on 3D face recogni-
tion methods and proposing two different approaches. The first extracts features from the
different facial attributes (nose, lips, eyes, etc.), and the second assumes the face as a whole
entity. Furthermore, the authors presented the methods that had the best performance
based on recognition rate (RR). In particular, a combination of geometric recognition and
local hybrid matching [16] achieved 98.4%, which was followed by the method of local
shape descriptor with almost the same performance (98.35%) [17]. The remaining methods
3D morphing [18] and multiple nose region [19] were equally efficient with 97% and 96.6%,
respectively. In the same year, Alyuz et al. [20] described the phenomenon of difficulty
in identifying 3D faces in the presence of occlusions. These occlusions can be accessories
such as hats or sunglasses or even a finger in front of the face. However, Alyuz proposed a
method consisting of removing occlusions and then restoring the missing part of the face,
achieving a high identification accuracy (93.18%).

In the following year, Balaban et al. [21] reviewed deep learning approaches for
facial recognition. The author emphasized that as deep learning models evolve, better
datasets are needed. In fact, the state-of-the-art Google FaceNet CNN model [22] had an
accuracy of 99.63% in the Labeled Faces in the Wild (LFW) dataset [23]. This very high
accuracy somehow shows that the scientific community should create datasets with a
lot of additional images. Balaban also believes that such a dataset will be revolutionary
and compares it to the transition from Caltech 101 to Imagenet datasets. The next year,
in 2016, Liu et al. [24] presented the weaknesses of facial recognition systems when the
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input images are multimodal. These can be IR, 3D, low-resolution or thermal images,
which are also known as heterogeneous data. Liu also suggested that future recognition
algorithms should be robust to multimodal scenarios in order to be successfully used in live
recognition scenarios. The authors also highlight the fact that humans can easily perform
face recognition with multimodal images. In order to mimic this behaviour, one approach
is to make the different models exposed to long-term learning procedures.

Furthermore, Bagga et al. introduced a review of anti-spoofing methods in face
recognition, including 3D approaches [25]. In face spoofing, the “attacker” creates fake
evidence to trick a biometric system. In 3D, these proofs are fake masks created from
real faces. Four techniques are proposed: motion, texture, vital sign and optical flow-
based analysis. Motion-based analysis involves analyzing the movement of different
parts of the face, such as the chin or forehead, so that any attempt at forgery can be
detected. The best approach is a calculation estimate based on illumination invariance
by Klaus Kollreider et al. [26]. The second technique extracts the texture and frequency
information using Local Binary Pattern (LBP), which is followed by histogram generation.
Finally, an SVM classifier classifies whether the face is real or fake. The third method is
vital sign recognition analysis. This can be performed either by user interaction such as
following some simple commands (e.g., head movements, etc.) or in a passive way, i.e., by
detecting mouth and/or eye movements. Lastly, the optical flow-based analysis, proposed
by Wei et al. [27], is primarily used to distinguish a fake 2D image from a 3D face.

In 2017, Mahmood et al. [28] presented the state of the art in face recognition, using
3D images as input. According to their review, five recognition algorithms stood out for
their high performance. These are ICP [29], Adaptively Selected Model Based (ASMB) [30],
Iterative Closest Normal Point (ICNP) [31], Portrait Image Pairs (PIP) [32] and Perceived
Facial Images (PFI) [33] with 97%, 95.04%, 99.6%, 98.75% and 98%, respectively. The authors
concluded that despite the high accuracy achieved by applying state-of-the-art algorithms,
the models are not yet reliable enough to process data in real-time. Furthermore, they
underlined that the performance varies greatly on different datasets, and further research
should be conducted in this direction.

Later, in 2019, Albakri and Alghowinem [34] reviewed various anti-spoofing methods.
According to their study, pulse estimation, image quality and texture analysis are the
most efficient methods. Meanwhile, they proposed a proof-of-concept study in which the
fake input is detected by computing the depth data. Using four different types of attacks
(flat image, 3D mask, on-screen image and video) on three different devices, iFace 800,
iPhone X and Kinect, they managed to detect the fake attack with very high accuracy (92%,
100% and 100%, respectively). The last two reviews were also related to anti-spoofing
approaches. Wu et al. [35] focused on applications in China and also presented three
trends for protecting against facial forgery. The first was a full 3D reconstruction of the face,
whose main drawback is low performance. The next was a multimodal fusion approach
consisting of a combination of visible and IR light generated by binocular cameras. Finally,
the generative model with a proposed new noise model [36] was the state of the art. Finally,
Liu et al. [37] reviewed the results of the Chalearn Face Anti-Spoofing Attack Detection
Challenge at CVPR2020. Eleven teams participated using the metric ACER standardized
on ISO and achieved great performance with the best percentages of 36.62% and 2.71% for
single and multimodal approaches, respectively.

2.2. Fingerprint

The 3D fingerprint was first reviewed in 2013 by Zhang and Lu [2]. First, they present
the general flowchart of 3D fingerprint reconstruction from images acquired by touchless
devices. The first step is to calibrate the camera, which is a very common procedure for
reconstruction applications. The next step is to determine the three different correspon-
dences. These are based on the SIFT feature, the ridge map and the minutiae. After these
correspondences, the coordinates are created based on the generated matching points.
The final step is to produce an estimation of the shape of the human finger. The author



Sensors 2022, 22, 6364 6 of 29

concludes that the most difficult process in the whole reconstruction is the establishment of
the different correspondences.

In 2014, Labati et al. [38] presented a review on contactless fingerprinting as a biometric.
The paper described the advantages of capturing the corresponding images without contact
between the finger and the capture device. The author presented three main approaches
to reconstruct the fingerprint: a multiview technique, followed by structured light and
stereophotometry. In the multiview technique, several cameras are used to obtain the
images. More specifically, two, three and five cameras have been proposed. It should
be noted here that although a large number of cameras means higher accuracy, it also
increases the computational cost. Therefore, the optimal way to design a system is to find a
compromise between accuracy and computational cost. Using a structured light provides
an estimate of the ridges and valleys of the fingerprint in addition to texture estimation.
The light is projected onto the finger several times in the form of a wave to capture the
corresponding image. The last method was photometric stereo imaging. Using a single
camera and several LED lights as illuminators, the fingerprint was reconstructed using
the photometric stereo technique. The above approaches were promising and opened up
new scientific fields. The author also emphasized that there is no work yet on the 3D
reconstruction of fingerprints that can be used as a biometric.

Later, Jung et al. [39] suggested ultrasonic transducers as a possible way to find depth
information. More specifically, the author reviewed the various ultrasonic sensors used
in microelectromechanical systems (MEMS) and their applications. One of them was to
acquire appropriate depth information of a fingerprint and its use as a biometric. With the
improvement of MEMS technology, ultrasonic sensors are improving in terms of accuracy
and robustness. Moreover, this type of sensor outperforms the more traditional ones, such
as optical or capacitive, achieving better performance. For this reason, Jung underlined that
the above sensors have great scientific potential for 3D biometrics. The use of ultrasound
devices was further highlighted in 2019 by Lula et al. [40]. The article described the use of
ultrasound devices as a suitable method for capturing 3D fingerprints that can be used in
biometric systems. The main problem with this approach was the long acquisition time of
the images. This was overcome by using additional probes, which are usually arranged
cylindrically. It should also be noted that the frequency bandwidth varies between 7.5 and
50 MHz and depends on the probe model and circumference chosen. A high ultrasound
frequency offers high skin penetration but low resolution, while a lower frequency has the
opposite effect.

Finally, Yu et al. [41] presented a literature review on 3D fingerprints as a biometric
using optical coherence tomography (OCT) as an acquisition device. To calculate the depth
information, the light beam was directed at the subject and a mirror. The light penetrated
the finger and the system correlated the reflection of the finger’s and the mirror’s beam.
Through this process, the system calculated the depth information and then reconstructed
the 3D representation. The light penetration also provided the inner fingerprint, which is
unaffected by environmental influences. Sweat pores and glands are also visible through
this approach. These additional elements provide more features, and the biometric system
has become more robust as a result. Despite the fact that OCT has the above advantages,
there are also some disadvantages. These include latency, cost, mounting limitations and
low resolution

Related work shows that only two 3D biometric categories have been reviewed: the
face and the fingerprint. This is probably because these biometrics are very common as 2D
biometrics, especially facial. This led to the fact that the other biometric categories such as
iris or finger vein were not reviewed. In order to present their state of the art, additional
reviews about them should be conducted. In this paper, the taxonomy of 3D biometrics is
first created, and then, its applications are examined. As a result, the state of the art and
common 3D reconstruction methods between the categories can be presented.
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3. Literature Search

In order to obtain additional information on further advances in 3D biometrics, a
literature analysis was conducted. This section contains that analysis with two subsections:
the search protocol and the initial statistical results. It should be mentioned here that the
search was conducted according to strictly defined criteria so that everyone can reproduce
the methodology used and obtain the same results.

3.1. Search Protocol

In order to obtain usable results, a search query was carefully designed and also
applied to Scopus. The following query was applied simultaneously to the abstract, title
and keywords of the publication:

3D* W/2 reconstruction*

AND

biometric*

AND

Publication Year > 2011

The term “W/2” was inserted to ensure that the “3D” and the “reconstruction” were
close in the paragraph (two words). The “*” ensures the singular or plural form of the
words “biometric” and “reconstruction”. The total number of articles researched was 96.
The first problem that arose early on was correspondence with biometrics in general. More
specifically, many medical publications did not refer to biometrics despite references to
3D reconstruction algorithms. This was due to the misleading double meaning of the
word “biometric”. To counteract this, a quality criterion was applied that excluded the
above-mentioned publications. As a result, 31 papers were removed. In addition, 11 articles
could not be found or the language was not English, and one article was a duplicate entry.
The total number of papers that were thoroughly reviewed was finally 53.

3.2. Statistical Results

At first, the most important result extracted was the 3D biometrics categories. Three
main categories were extracted: face, hand and gait. The first two had further subcat-
egories. More specifically, for the face, there was the facial, ear, iris and skull, and for
the hand, the categories were fingerprints, finger veins and palm. Considering that one
paper experimented with two different biometrics, the total number of approaches was
54. The following Figure 2 shows a tree diagram with the number of applications of all
the categories of 3D biometrics described above, while Table 1 shows the main category,
percentage and corresponding citations for each biometric feature. In addition, Figure 3
shows a pie chart with the number of applications of the three main categories. Two other
pie charts (Figures 4 and 5) also contain the number of applications for the face and hand
category, respectively.

Table 1. Literature Table.

Biometric Major Category Percentage (%) References

Facial Face 59.26 [42–55,55–58,58–71]
Fingerprint Hand 11.11 [72–77]
Finger Vein Hand 7.41 [78–81]
Ear Face 5.56 [45,82,83]
Iris Face 5.56 [84–86]
Gait Gait 5.56 [87–89]
Skull Face 3.70 [43,90]
Palm Hand 1.85 [91]



Sensors 2022, 22, 6364 8 of 29

Figure 2. 3D Biometric Treemap.

Figure 3. Three-Dimensional (3D) Biometrics Major Categories.

Figure 4. Three-Dimensional (3D) Face Categories.
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Figure 5. Three-Dimensional (3D) Hand Categories.

4. Three-Dimensional (3D) Reconstruction

This section presents the applications obtained from the literature analysis, focusing on
the 3D reconstruction approaches for each 3D biometric category. Since the face subcategory
contains the most applications and is saturated and over-described as 3D biometric, it is not
presented in as much detail as the other categories (relative to the number of applications)
in this paper. As mentioned earlier, there are three main categories of 3D biometrics: the
face, the hand and the gait. Figure 6 shows the taxonomy of these categories with their
subcategories. The taxonomy, which is the first attempt at 3D biometrics, shows that not
all biometrics are 3D. Some other biometrics such as voice, heartbeat or DNA should be
further explored to determine if they benefit from becoming 3D. A general flowchart of 3D
biometrics is proposed in Figure 7. The selection of the appropriate biometric is followed
by image acquisition. This is followed by 3D reconstruction using one of the available
methods. The system compares the 3D model with the data in the database and decides
whether the identification of the person is valid or not.

Figure 6. Three-Dimensional (3D) Biometrics Categories.
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Figure 7. Three-Dimensional (3D) Biometrics General Flowchart.

4.1. Face

Face is the first and most popular category. Its subcategories are the facial, the ear, the
iris and the skull.

4.1.1. Facial

Facial recognition is the predominant method for 3D biometric applications according
to the above research. To be used as a biometric, a 3D model must first be created, which is
followed by feature extraction. This can be completed using computer vision techniques.
The way the images are captured determines the reconstruction method. Of the total
32 papers, more than half (18) used an active method. This corresponds to 56.25%. The
remaining 14 are divided as follows: 10 of them (31.25%) used passive methods, three
had used a public dataset (9.38%), and one did not refer to the method used at all. Ana-
lyzing the passive methods further, the results show that three subcategories are related
to facial recognition: stereo vision, SfS and SfM. The percentages were almost equal as
seven applications used SfS, six used stereo vision and five used SfM. The majority of
active approaches (9) used reflection from a light source, and only one used transmissive
computerized tomography. In addition, the reflective methods can be further divided into
two subcategories: structured light and time-of-flight. These percentages were also similar,
with five using structured light and the rest (four) using time-of-flight.

Another feature of 3D reconstruction is the way in which depth information is repre-
sented. The vast majority of applications used a 3D Morphable Model (3DMM) or point
clouds. The total percentage was 78.1% for both, which was split into 40.6% and 37.5% for
the point cloud and 3DMM, respectively. The remaining 25% were distributed as follows.
Four used third-party software, two used unique approaches, and one was without any
information. The approach using the 3DMM used a pre-created 3D model, specifically a
face, which is very common in the scientific community. A very robust and effective model
is the 3DMM proposed by Chu et al. [92]. These models were created by averaging values
of different facial features. In most cases, these values were manually inserted, while the
final 3D model is created by fine-tuning the above values. The third party software was
thatsMyFace.com [42], Amira version 5.2.2, Visage Imaging, San Diego, CA, USA [43] and
MeshLAb [59].
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In addition, Dou et al. [52] have proposed Deep Recurrent 3D FAce Reconstruction
(DRFAR). The network combines a set of Deep Convolutional Neural Network (DCNN)
and Recurrent Neural Network (RNN). Prior to the training, the authors transferred the
weights of the pre-trained VGG-Face [93]. This neural network architecture was able to
achieve good results after experiments in different databases with three to six face images.
In addition, Kneis et al. [67] in 2020 presented an alternative method to synthesize a
3D image from four different images of the same subject with different illumination and
achieved excellent performance.

Finally, Crispim et al. [59] used a state-of-the-art approach to verify kinship between
two faces. They used the SfM approach. Video input was captured with a smartphone
camera in an uncontrolled environment. Then, the images were aligned and cropped to
64 × 64 pixels. Feature detection and extraction were followed by feature matching and
geometric verification, and finally, projection of the model into a point cloud. The final part
was classification, which relied on a two-layer CNN with the ReLU activation function.
The highest score achieved with the comparison between the daughter and mother with
the accuracy was 95%. To make the dataset more robust, the authors synthesized non-
relative faces through generative adversarial networks by combining two different faces.
As mentioned in the previous sections, facial is overused. Due to the high number of
applications, a lot of effort was put into it using new approaches. CNNs are already used
for classification purposes. This makes it necessary to modify the quality criteria of the
proposed datasets, as this type of model is usually designed to perform by using a large
number of images.

4.1.2. Ear

The next subcategory is the ear. This category shares characteristics with facial recog-
nition. Although ear recognition is strong enough to be used as a stand-alone biometric,
some researchers use ears as a complement to facial recognition [94]. One such approach is
by Raghavendra et al. [45], who used facial recognition along with features extracted from
the ear. Actually, the authors used the SfM approach prior to the entire face reconstruction.
Then, the ear is detected from the reconstructed model and used for identification. The
authors also proposed an ear detector using OpenCV 2.4. For training the model, they used
2000 positive and 300 negative samples from existing databases. The results show that the
identification rate with the facial as a standalone biometric was 82.35%, which decreases
slightly to 80% when fused with the 3D ear. The 3D ear as a stand-alone biometric had a
rate of 62.5%, which increased to 80% after fusion.

Furthermore, Siu-Yeung Cho proposed a recognition approach using 3D ear models
under different illumination parameters in his paper [82]. More specifically, by applying
a generalized neural reflectance (GNR) model, they managed to synthesize ear images.
Twenty photographs of each ear were taken from 85 different individuals, and after apply-
ing the GNR, 40 additional images were created from each individual image. In this way, a
3D ear database was created. The algorithm chosen was SfS, as the models were created
from a single image (synthetic or real). A total of 12 experiments were conducted, and the
performance proves that Cho’s GNR model performs significantly better when GNR is
applied. Finally, the author suggested the use of principal component analysis (PCA) [95]
and Fisher’s discriminant analysis (FDA) [96,97] for classification.

The state of the art is considered to be the approach of Chen Li et al. [98], in which
they proposed a novel method for 3D ear reconstruction. First, a 3D Ear Morphable Model
(3DEMM) was developed based on the general morphable model [99] containing 180 different
ear images. Then, 179 of them were used for training and the last one was used for fitting. In
addition, they proposed a novel method for feature correspondence, the Triangle Mesh Hier-
archical Growth, which is based on physical features common to each ear. The constructed
ear had 10,000 points, which is a higher point density than the SfM and SfS algorithms. The
point density as mentioned above can be compared to the use of a laser scanner. It is quite old
work, and the lack of modern approaches means that 3D ear biometrics is likely to become
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extinct in the near future. To avoid this, a new application with new methods and data sets
should be carried out. This will certainly bring the ear again in the field.

4.1.3. Iris

The next subcategory is the iris. It owes its biometric properties to the unique surface
made of two muscular fibers [100]. In general, there is a lot of scientific research in the
field of the iris as a biometric but in two dimensions. Bastias et al. [84] claim that their
work is the first approach to create a 3D iris model. In their work, they propose the use of
near-infrared (NIR) images taken with a Raspberry Pi v2.1 camera. In addition, infrared
light was generated from four NIR LED. To keep the pupil relatively small, two white
LED were used simultaneously to create a bright environment around the pupil. This is
important because prior to the 3D reconstruction, the pupil is removed, and the depth
information is extracted from the rest of the eye. The Raspberry Pi 3 Model B single-board
computer was used to control the camera and store the images temporally. All the above
components were mounted on a VR glass set. The camera was also on a proposed mount
that allowed it to move along an arc of 40◦. The system was designed to capture a total
of 17 iris images, with an angular difference of 2.5◦ between the two images. In addition,
the authors used the Python photogrammetry toolbox [101] to create the 3D model. The
toolbox is open-source and creates the model using various images from different angles. It
is also noted that it was difficult to evaluate the results and methods of the work due to the
lack of reports on metrics and results.

In contrast to the previous approach, Benalcazta et al. [85,86] chose visible light as the
light source. They have developed a novel system that illuminates the iris with lateral and
frontal visible light (LFVL). The light is produced by six LEDs in the front and two more on
the side of each eye. This different angle of the light source creates the shadows and depth
information of the iris. The dataset was created from 120 different subjects by recording
each eye for three seconds. The total number of images was 26,520. In addition, the authors
synthesized an iris dataset consisting of 100 virtual models. To do this, they used Blender,
which is an open-source application for creating various 3D shapes. They also augmented
the models by generating 720 images per virtual iris, bringing the total number of synthetic
images to 72,000. To capture the depth information, they trained a neural network to predict
the depth information based on the shadows. More specifically, they proposed irisDepth,
which is a combination of the T2Net [102] and DenseDepth [103] networks.

The above model has performed excellently compared to other CNN or SfM ap-
proaches and is considered state of the art. In fact, the reconstruction accuracy was as high
as the reconstruction using OCT. More specifically, when used the irisDepth, they managed
to achieve an accuracy of 99.78%. Despite the fact that 3D iris can achieve high accuracy,
there are not many applications in this field. This is probably due to the difficult nature of
image acquisition. It is not convenient enough to have someone look through a capture
device for several seconds to gain access to a location. In the near future, new devices
should be developed that allow for easier and more user-friendly image capture so that a
3D iris can be used in real-world problems for recognition.

4.1.4. Skull

The skull, in a biometric sense, refers to cranio facial reconstruction. It has a slightly
different scope from the previous one, because it usually involves cadavers, which are
difficult to recognize. To aid recognition, a reconstruction of the face is done based on
the skull. These algorithms are known as CFR (cranio facial reconstruction), and forensic
science is the science that deals with them. A crucial point for successful reconstruction is
the facial features introduced by Whitaker and Linton [104]. Their application to cranial
reconstruction is used to reconstruct the face of the deceased by combining skull and
tissue reconstruction to identify it. Data acquisition also presents some challenges. Early
applications used 3D laser scanners, but their performance was limited [105]. Nowadays,
therefore, computed tomography (CT) is used. This method gives tremendous results,
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and the disadvantages are limited to the increased radiation. Therefore, it is preferably
applied to non-living organisms [106]. In addition, Vezzetti et al. [107] report that the above
landmarks were always set manually.

First, Lorkiewicz-Muszyńska et al. [90] introduced a procedure to identify an unknown
deceased person. One way of post-mortem identification is to examine DNA for a match or
possible relationship. Another is to examine the dental status of the person. In the case of
the paper, neither of the above methods could provide reliable results. More specifically,
the DNA examination did not reveal a match with a possible brother of the person, and
there were no dental records, either. An identification using a reconstructed skull was
chosen to match the person with a photo of a missing person. The SOMATOM Sensation 64
from Siemens was chosen. The In Space software was used for the reconstruction, and the
evaluation was done manually by applying the image of the missing person as a surface
layer on the 3D reconstructed skull. Finally, the deceased was matched with a missing
person photo through the procedure described above. Furthermore, it later turned out that
the possible brother had a different father, which is why the DNA examination could not
link the deceased to his brother.

The state of the art is indeed skull reconstruction from living humans [43]. Experi-
ments were performed on three volunteers who had not had facial plastic surgery, dental
transplantation or general facial deformity. A cone beam computed tomography (CBCT)
scanner was used to take several images of the volunteers’ skulls. The model was the
Alphard Vega from Asahi Roentgen Co., Kyoto, Japan. Reconstruction was performed
using third-party software, FreeForm Modelling Plus TM , based on a pre-model database
consisting of facial muscles and parotid glands. Finally, model evaluation was performed
using deviation maps generated using Geomagic Qualify (Geomagic™ Qualify Version
10; Geomagic, Morrisville, NC) and Rapidform (Rapidform, Seoul, Korea) software. In
terms of performance of the proposed method, it achieved the best score on subject B with
an average error of 0.31 mm. The other two had 0.46 mm and 0.49 mm for the A and C
subjects, accordingly.

The 3D skull biometric is not a very common recognition method. Its uniqueness
creates a lot of obstacles. It is used for specific purposes, mostly on cadavers and with
an auxiliary function. There is a possibility of creating a framework for skull recognition
as a complementary method in forensics in the near future. However, this is not possible
today, as more experiments should be conducted to create models specifically for skull
reconstruction. Moreover, there is no available dataset, and therefore, future research
should be accompanied by the creation of a dataset.

4.2. Hand

The second category is the hand, which contains the fingerprint, finger vein and palm.

4.2.1. Fingerprint

Second in order is the most commonly used biometric method in general, the finger-
print. As fingerprints became a biometric identification method used on a daily basis, the
need arose to increase the features. This was achieved by replicating the shape of the finger
and using the fingerprint as a surface imprint. The 3D fingerprinting methods are also
referred to as non-contact methods in the literature [108]. This is very important, because
the 2D version of the fingerprint was correlated with the mandatory contact between the
finger and the capture device. It is also noted here that much of the problem with 2D
fingerprint recognition is related to contact with the device, as there is often dirt, moisture,
etc. on the surface of a finger, making identification difficult. A total of six works were
found during the research. To obtain the appropriate depth information, four of them
used the stereo vision method and the other two used photometric stereo methods and
structured light.

Chaterjee et al. [76] proposed a method to reconstruct the fingerprint using a structured
light technique. An LED as a light source is projected onto the finger, while a CCD camera
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records the reflection. More specifically, the projection unit generates sinusoidal fringe
patterns, and the frequency selective (FTM) algorithm [109] was selected to obtain the
depth information. In order to create a more reliable system, the authors also incorporated
biospeckle analysis as an anti-spoofing method. This was achieved by implementing
the visual speckle-based MSF algorithm [110] using a laser as the light source. For the
experiments, the laser and the LED were mounted in the same device so that both processes
(reconstruction and anti-spoofing) could be performed simultaneously. The authors also
found that 3D reconstruction outperformed other techniques, and anti-spoofing via blood
flow was successful. Consequently, their proposal was simple, fast, cost-effective, and
ready to be used as a commercial product.

Another approach to 3D fingerprinting came from Kumar and Kwong [72]. Their
approach focused on creating a cost-effective and accurate system. The need to reduce
cost stems from the fact that some approaches use multiple or extremely accurate cameras.
To overcome this hurdle, the authors used the photometric stereo technique and a digital
camera. The finger was placed 10 cm from the camera, and seven LEDs were symmetrically
placed. After acquisition, the images were resized from 2592 × 1944 to 500 × 350 pixels. A
total of 10,080 2D images of 240 subjects were captured. Seven 2D images were used for
each 3D image. In addition, six fingers were reconstructed from each subject. The results
show that the 3D approach outperforms 2D finger recognition. The authors also noted that
a multimodal approach, combining 2D and 3D features, could provide even better results.

Liu et al. [74] used three JAI CA-A50 cameras along with four blue LEDs. The three
cameras were placed below the finger: one in the middle and the other two on each side.
The finger was placed on a fixed base in order to be stable throughout the image acquisition
process. The reconstruction process was based on stereo vision. In addition, only the two
side cameras were used for reconstruction. The central camera is only used for reference
and the texture of the fingerprint. Furthermore, the appropriate fingerprint features are
based on SIFT [111], ridge maps, and minutiae. SIFT is a popular approach that is robust to
deformation variations and low-quality images. The ridge map is an image where the ridge
has a value of 1 and the background has a value of 0. Three steps are required to create
the ridge map. These are preprocessing, enhancement and post-processing. Preprocessing
involves extracting the region of interest (ROI) and normalizing the image. In addition,
the author used Gabor filtering, orientation estimation, and ridge frequency estimation
to enhance the images. Finally, binarization and thinning of the image are applied as
post-process procedures before the ridge map is created. Minutiae, the most common
feature of fingerprints, were extracted from the ridge map.

The final result of all the above methods was finalized by the random sample consensus
(RANSAC) algorithm [112]. In addition, the author proposed a precomputed 3D finger
model. In the absence of ready-made 3D finger shapes, they designed a new model
using the active structured light method to create it. Four hundred and forty images of
220 different fingers were collected. According to Liu, the best performance was achieved
when all of the above feature extraction methods were used, which also highlights the
importance of making the fingerprint 3D.

Labati et al. [73] proposed a 3D reconstruction approach that is also based on the stereo
vision technique. Two charge-coupled device (CCD ) cameras were placed underneath
the finger. An LED array emitting green light was placed between the finger and the
camera. The system also had a photocell that triggers the light to reduce the blurring effect.
The system was designed to be unaffected by the rotation of the finger. In addition, the
prepossessing procedure also included enhancement and 2D mapping. The device was
used in 30 volunteers aged 10 to 64 years. The authors created five different databases. Each
database had its own unique characteristics and purpose. In addition, after calculating
the depth value using the triangulation method, the 3D point cloud was created. The final
step of the process was to apply the fingerprint as a texture to the 3D shape. Finally, Labati
used the Neurotechnology Verifinger software and obtained similar results compared to



Sensors 2022, 22, 6364 15 of 29

touch-based approaches. As a result, the author stated that more effort for non-contact
systems will soon give better results.

Furthermore, two other approaches [75,77] also used stereo vision. The first is by Xu
and Hu, who proposed a 3D reconstruction of minutiae using a differential evolution algo-
rithm [113,114]. The authors believe that SIFT is not powerful enough for 3D fingerprints.
They also used the Verifinger software to extract the minutiae features. The experiment
was conducted with 150 volunteers (10 fingers per volunteer). Three cameras were also
used to take pictures from the left, front and right. Although Xu proved from images that
their approach found more corresponding points compared to SIFT, the reconstructed 3D
minutiae are far from reliable, and further research should be conducted.

The second approach of Yin et al. [77] is the state of the art. In their work, they
proposed a very robust system that also had better accuracy and shorter processing times
than other modern approaches. The reconstruction was based on the ridge–valley contrast.
First, the depth information was extracted using stereo vision. Then, the fingertip regions
were extracted using a pre-trained CNN [115], and the images were subsequently rectified.
The SIFT method [116] was applied to the images, which was followed by the creation
of the ridge maps. Using the disparity map, the 3D depth information was calculated to
reconstruct the fingerprint. The authors also proposed feature extraction from the minutiae
and 3D topology polymer (TTP), which is a novel method. For their experiment, they
used 60 samples from 24 different fingers. To evaluate the performance of the model,
they conducted several experiments with different databases and methods, and the model
of Yin et al. [77] still achieved better results. More specifically, the average accuracy on
both databases, DB1 and DB2, was 98.05%. This result was the best compared to other
approaches. In summary, 3D fingerprinting appears to be prosperous, with databases
already available to train new models. Future researchers will take advantage of the
already existing datasets and implement modern methods, and algorithms and will surely
achieve great results. A big advantage of fingerprints is that they are already known to
users. Once the hardware improves for better processing time and the accuracy is better
than 2D, 3D fingerprints will prevail over 2D.

4.2.2. Finger Vein

The finger vein is an alternative biometric method and has some unique features. First
of all, it is robust to spoofing attacks due to the obligatory existence of an IR light source.
The difference between the hemoglobin and the skin’s absorption of the IR light creates the
shape of the veins, and their unique shape provides the information for identification [117].
Two-dimensional (2D) finger vein identification provides promising results, such as the
approach of Zhang and Wang [118], which achieved a recognition rate of over 99% for the
USM database [119]. Despite the very high accuracy of 2D recognition, some researchers
have already moved to 3D finger vein recognition, taking advantage of the additional
features of the third dimension. In contrast to the numerous research papers for 2D finger
veins, there is not much related work for 3D finger veins.

First, Ma et al. [79] used the stereo vision method for 3D reconstruction. Two simple
CCD cameras, sensitive to IR light, were mounted in opposite directions from an array of
NIR LEDs. Then, the captured images were processed using the contrast-limited adaptive
histogram equalization (CLAHE) [120], a 5 × 5 denoising median filter and a linear gray
transformation. Sequentially, the finger veins and contours were extracted by applying
masks and an adaptive threshold algorithm. The stereo vision algorithm generated the
appropriate 3D cloud points, and the ICP algorithm was used for matching. An error
threshold generated by the least mean square error was made adjustable for different
sensitivity requirements. The computational cost depended on the number of iterations
before identification. As the authors pointed out, more iterations meant more computational
time and more effort could be put into this.

Veldhuis et al. [80] also used the stereo vision approach for reconstruction. In their pre-
liminary study on 3D finger veins, they also used three cameras. In contrast to the approach
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of Kang et al., the cameras were placed under the finger. Several NIR LED strips used
for IR illumination were positioned in the opposite direction to the cameras. A Raspberry
Pi single-board computer was also installed to control the different illumination options.
Their research focused mainly on 2D finger veins, which is not covered in this article.

Kang et al. [78], reconstructed the finger vein along with the shape of the finger. First,
they proposed a prototype acquisition device. Three simple USB cameras were mounted
symmetrically to form an equilateral triangle. There were also three NIR LEDs (850 nm
wavelength) between the cameras. The function of these cameras was controlled by a Light
Control Unit (LCU). The author proposed a 3D reconstruction of the finger shape and used
the vein information as texture. The reconstruction was based on a novel 3D finger model
(3DFM) developed by the research team. Furthermore, the features were extracted from
the vein texture and finger geometry by a specially developed CNN, and after a fusion
process, the model generated a matching score. Despite the promising accuracy of the
model, the authors emphasized that future research should be conducted to reduce the
high processing time and create a more robust model.

Their research continued in 2022; they proposed a state-of-the-art approach to the
same problem [81]. The hardware was the same: three cameras next to NIR LEDs to create a
finger and apply the veins as texture. The main difference was the reconstruction algorithm,
as SfS was used instead of a stereo vision approach. This approach proved to be more
efficient and requires less computation time, so the model is able to solve problems in
real-time. They also proposed a new detection method called 3DFVSNet. The experiments
were conducted with 905 different fingers. Fourteen images were taken of each finger,
combining three different rotations. The total number of different images was thus 12,670.
The results show that the 3DFVSNet performs better compared to other known approaches,
achieving higher accuracy and lower computational costs. The metrics ER and HR were
used by the authors. On both databases, the model manages to achieve on both metrics
the best result: 2.61% (ER) and 5.07% (HR) for the SCUT-3DFV-V1 and 2.81% (ER) and
4.49% (HR) for the LFMB-3DPVFV. Finger veins have just started to become 3D. The great
advantage of this category will become apparent as more research is conducted. Machine
learning is already being used. Three-dimensional (3D) finger veins will be evolved when
a variety of publicly available datasets and new devices are created that are accurate and
fast enough to be used for real-world problems.

4.2.3. Palm

The last biometric hand category is the palm. Svoboda et al. [91] used a not so common
2D biometric, the palm. They also explored the identification performance of the palm (as
a biometric) after it became 3D. The structured light technique was used to capture the
biometric information from the surface of three palms. The light source was four 10 mW
lasers with a wavelength of 532 nm, each of which could produce a single line beam. There
were also three green lenses for illumination. Images were captured by two webcams
(Microsoft Lifecam HD 3000) mounted on each side. All the above components were
controlled by a microcontroller (MC9S08JS16CWJ). In addition, the system was designed
to use only a single image from each laser reflection. The depth information was also
generated by the triangulation principle, and the root mean square error (RMSE) was used
to evaluate the reconstruction, achieving a merged score of 0.0018 on models 2 and 3. The
authors emphasize that the best performance was obtained when the information from
all four lasers was combined. Finally, they are reluctant to conduct further experiments
in this direction to create a more stable model with better accuracy—this further research
may or may not reveal the importance of this biometric, because it mainly depends on the
convenience of the hardware and the performance.
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4.3. Gait

Although gait is often used to describe a person’s condition (psychological or physical),
it is also used as a unique biometric [121]. As a category, it has no subcategory because it
is unique.

Fernandez et al. [87] proposed an approach to 3D gait identification. For their ex-
periments, they used two databases, each with six and 16 cameras. The silhouettes were
obtained using the Horprasert algorithm [122], and then, the 3D model was reconstructed
using the SfS algorithm. Furthermore, the models were further processed to reduce the
features by applying PCA and linear discriminant analysis (LDA). For classification, the
authors used SVM. The method gave promising results because a majority-based voting
system was applied to achieve perfect accuracy, so further research should be conducted.

The same team [88] proposed a new method a year later to solve the same problem.
The main difference between the two approaches was the type of 3D reconstruction. Al-
though the algorithms were the same (Horprasert and SfS), the model was represented as
a stack of voxels simulating the person’s gait. The size of the voxels was 0.27 × 10−4 m3

and was considered by the authors to be sufficient for 3D gait reconstruction. Three gait
morphological descriptors were also proposed: cover by rectangles (CR), cover by rectan-
gles projection (CRP) and cover by cubes (CC). The combination of the aforementioned
innovations provided more accuracy and robustness for all metrics in both databases.

Finally, Imote et al. [89] presented a state-of-the-art method for 3D gait reconstruction
based on the height–constraint assumption, which assumes that the height of body points
changes slightly during walking/running. For the experiments, 14 cameras were used
with various resolutions (from 960 × 540 to 350 × 240); two of them were controlled by a
Raspberry Pi single board computer, while the remaining 12 were controlled by three CCTV
recorders. The model had great performance compared to various datasets. The model
achieved a better identification rate of almost 95% on the KY 4D database, which was better
than other approaches. Moreover, the authors noted the relationship between the number
of height points (Np) and the normalized square errors. The greater the number of Np,
the fewer the number of errors, with the optimum number of Np being 240. Despite the
great performance of the model, the authors mentioned that future 3D gait reconstruction
should be conducted on three axes. The first is to make a greater comparison with various
approaches, the second is to expand the applicability of the method, making the process
more automated, and the third is to make the model more capable of supporting new
human activities. Three-dimensional (3D) gait reconstruction will soon be more popular.
The great advantage is the simple acquisition method. A few frames are enough to proceed
to recognition. The transition to 3D is probably essential because the models should be
very robust and benefit from the additional features of the third dimension.

5. Results

After reviewing the above papers, a lot of useful information was obtained. The first
statistics extracted after the initial literature review were the 3D biometric categories. The
most predominant category is facial, which includes 59.28% of the applications. The second
category, fingerprint, has a share of 11% and a finger vein of 7.41%. Ear, iris and gait
have 5.56%, while skull and palm account for 3.7% and 1.85%, respectively. There are
some additional data to the three main categories and Figures 3–5. More specifically, the
percentages of the three main categories are as follows: face →74.07%, hand →20.37% and
gait →5.56%. In the face category, the percentages are as follows: facial →80%, ear →7.50%,
iris →7.50% and skull →5%. Correspondingly, for the hand category: fingerprint →54.55%,
finger vein →36.36% and palm →9.09%.

Moreover, all datasets used for the above 3D biometrics applications were compiled
in Table 2. It consists of 26 different databases grouped according to their biometric
category, also indicating the year of publication, the number of images included, and the
corresponding citation. It should be noted that the number of images for gait biometric
and the Youtube Faces database refers to videos and not images. Table 2 shows that there
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is an abundance of facial datasets, with the most recent being from 2019, so it is fairly
recent. Ear datasets appear to be older. The most recent is from 2012, showing that 3D ears
are becoming less common. Although the gait is not very common, there are already five
databases. The rather simple way to create such a database has probably led to this high
number of databases (related to the number of applications). For the others finger vein, iris
and fingerprint, there is one dataset each, but the 3D iris dataset is quite old (2007), and
new databases should be created for further development.

In addition, after combining the results of the above literature review in each category,
according to the impact on each field alongside citation score and year of publication, a
state-of-the-art table is presented as Table 3 grouped by biometric category. It contains also
information on the year of publication, biometric category, and correspondence reference.

Additional information on 3D capture methods was also extracted. Forty-nine appli-
cations referred to the selected method for 3D reconstruction. In summary, the results show
that 65.3% used the passive method and the remaining 34.7% used the active method, as
shown in Figure 8. Further analysis of the percentages per biometric feature is shown in
Figure 9. Accordingly, for the facial and fingerprint biometrics, both methods were used,
with a slight preference for the passive method. In contrast, only passive methods were
used for finger vein, ear, and gait, and active methods were used for iris, skull, and palm.

More interesting data can be obtained from further analysis of the methods. Figure 10
shows the percentages of each method in the number of applications. Here, it can be seen
that stereo vision and SfS are the dominant methods with 27% and 25%, respectively. The
combination of these two methods exceeds 50%. These two methods were used for facial,
fingerprint, finger vein, ear and gait approaches. The exact number of applications is shown
in Figure 11. The diagram shows that the facial uses both methods, as does the finger
vein. In contrast, the gait and ear use SfS and fingerprints use stereo vision accordingly. To
explore the relationship between the methods and each biometrics, a diagram is presented
in Figure 12. Accordingly, gait, iris, skull and palm are associated with a method as follows:
gait →SfS, iris →photometric stereo, skull →tomography, and palm →structured light.
The most complicated of all is the facial, because the percentages are almost equal. To
illustrate this, Figure 13 shows only the 3D facial biometric methods. According to the pie
chart, although stereo vision and SfS predominate with a combined percentage of 48%, the
other structured light, SfM, and ToF methods have similar numbers (19%, 18%, and 15%,
respectively), and it is difficult to describe a pattern.

Table 2. Three-Dimensional (3D) Biometrics Dataset Table.

Dataset Biometric Number of Images Classes Year Reference

AFLW Facial 21,997 25,993 2011 [123]
3D-MAD Facial 76,500 17 2013 [124]
Bosphorus Facial 4666 105 2008 [125]
BU-3DFE Facial 2500 100 2006 [126]
BU-4DFE Facial 60,600 101 2013 [127]
Feret Facial 14,126 1199 2000 [128]
FRGC Facial 50,000 12,500 2004 [129]
Morpho Facial 200 20 2013 [130]
The Photoface Database Facial 7356 261 2011 [131]
LFW Facial 13,233 5749 2019 [132]
Youtube Faces Facial 3245 (videos) 1595 2011 [133]
Pie Facial 75,000 337 2002 [134]
UHDB11 Facial 1656 23 2013 [135]



Sensors 2022, 22, 6364 19 of 29

Table 2. Cont.

Dataset Biometric Number of Images Classes Year Reference

IIT-Kanpur Ear 465 125 2012 [136]
AMI Ear 700 100 2008 [137]
UCR Ear 902 155 2007 [138]
UND Ear 1686 415 2007 [139]
XM2VTS Ear 1180 (videos) 295 2013 [140]
AVAMVG Gait 200 (videos) 20 2014 [141]
KY4D Gait 168 (videos) 42 2014 [142]
i3DPost Gait 768 (videos) 8 2009 [143]
MuHAVi Gait 136 (videos) 14 2010 [144]
IXMAS Gait 550 (videos) 10 2006 [145]
SCUT LFMB-3DPVFV Finger Vein 16,848 702 2022 [81]
IIT Iris Database Iris 1120 224 2007 [146]
Hong Kong Polytechnic 3D Fingerprint 1560 260 2016 [147]

Table 3. Three-Dimensional (3D) Biometrics State of the Art.

Title Biometric Score Dataset Year Reference

Verifying kinship from rgb-d face data Facial 95% (accuracy) Kin3D 2020 [59]

A novel 3D ear
reconstruction method
using a single image

Ear manual UND 2012 [98]

A 3D iris scanner from a single image
using convolutional neural networks Iris 99.8% (accuracy) 98,520 iris 2020 [85]

An accuracy assessment of forensic
computerized facial reconstruction
employing cone-beam computed
tomography from live subjects

Skull 0.31 mm (error) 3 humans 2012 [43]

3D fingerprint recognition
based on ridge–valley
guided 3D reconstruction
and 3D topology polymer
feature extraction

Fingerprint 98% (accuracy) DB1, DB2 2019 [77]

Endowing rotation invariancefor 3D
finger shape and vein verification Finger Vein 2.61 (ER%) 3DPVFV 2022 [81]

Biometric recognition of people by 3D
hand geometry Palm 0.0018 (RMSE) 3 palms 2013 [91]

Model-based interpolation
for continuous human
silhouette images by
height-constraint assumption

Gait 95% KY 4D 2020 [89]
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Figure 8. Three-Dimensional (3D) Acquisition Method.

Figure 9. Three-Dimensional (3D) Acquisition Method per Biometric.

Figure 10. Three-Dimensional (3D) Reconstruction Methods.
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Figure 11. Applications with Stereo Vision and SfS by Biometric Category.

Figure 12. 3D Reconstruction Methods per Biometric.

Figure 13. Facial Biometric Methods.
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6. Discussion

This research has explored many aspects of 3D biometrics. First of all, facial recognition
was by far the dominant 3D biometric. The percentage was 59.26% far enough from
the others. New approaches are applied with different methods, from some traditional
computer vision algorithms to state-of-the-art machine/deep learning methods. This
particular biometric is almost saturated, and many experiments are being conducted. The
percentages are already high, and the models are reliable and robust. On the other hand,
there are also some weak points. The most recent one was exploited with COVID-19, where
the face mask was an incomparable barrier. Any device with a built-in face recognition
mechanism could not identify the correct person when the test subjects were wearing a
mask. These types of reasons led to the need for alternative biometric methods. Such
an example is the recent software upgrade of Apple’s Face ID, which is a built-in face
recognition biometric mechanism. The user selects the option to activate the face recognition
with a mask, and the software achieves it by focusing on different face parts such as the
eyes and the area around them.

In addition, fusion techniques were proposed in some publications. More specifically,
the performance was better when fusion was applied. Fusion can be applied in several
ways. It can be applied between 2D and 3D images and has been shown to provide better
results. In addition, it can be combined with different biometric features and opens a wide
field for further research. There are a variety of combinations of biometric features that are
practically limited to the capabilities of the capturing device that should capture the data
simultaneously. Fusion can also be used for primary or supplemental use. The additional
option can be activated when the results exceed a certain threshold. Such an addition to
further research will provide a great framework for robust 3D biometrics.

In addition, the appropriate hardware plays an important role in achieving effective
fusion. This literature analysis shows that some biometrics lack datasets, and to overcome
this hurdle, researchers need to manufacture new experimental devices to capture the
images. The choice of hardware depends on the choice of biometric. This causes additional
effort if the experiment needs to combine several different biometrics. Another issue
that needs to be pointed out is the lack of performance comparison between 2D and 3D
biometrics under the same experimental conditions in the reviewed publications. Despite
the potentially better performance of 3D biometrics models due to the larger number of
features, they need to be compared to their 2D counterparts to confirm the need for the
3D transition.

To achieve this, future researchers should consider making their own hardware to al-
low for the simultaneous acquisition of 2D and 3D images. This will ensure that the images
produced were created under the same conditions, allowing for a more reliable accuracy
comparison. This multi-dimensional capability of the proposed device, in addition to the
ability to compare, also provides the ability to merge 2D and 3D images. As mentioned
earlier, this will lead to better results. There is another area that could benefit from this
capability, which is the anti-spoofing.

The research area of anti-spoofing has a great impact on biometrics. This is another
reason why researchers are moving biometrics to 3D, expanding its capabilities. According
to the above analysis, some publications are choosing a 3D approach to defend against
these types of attacks. Adding a 3D biometric module to a 2D device, or vice versa, offers
the possibility of using that module as protection against spoofing. Further research could
be conducted here to investigate how vulnerable each 3D biometric category is to spoofing
and how each category can help protect against spoofing.

In summary, facial and fingerprints are the categories that benefit most from going
3D. Three-dimensional (3D) facial recognition is already being used on several devices
for real-time 3D recognition. It has been proven that the additional features generated
from depth information add robustness to the system. Its use in everyday devices, such as
smartphones, shows that hardware development is on the cutting edge to support these
technologies. On the other hand, despite the fact that there are many approaches to 3D
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fingerprinting and the additional data have led to great results, the 3D fingerprint system
is still far from being used commercially. There are limitations in the capture devices,
as fingerprints are already captured with small devices. However, the development of
contactless methods is likely to solve this problem. Although it is not obvious that going
3D will automatically give better results than 2D approaches, advanced 3D reconstruction
algorithms and hardware should be used to achieve great performance. Therefore, it is
worth investing in new algorithms and improving hardware so that the other biometric
(other than facial and fingerprint) also provide reliable recognition systems.

Finally, as mentioned earlier, there are datasets for some 3D biometrics and not for
others, as there are some ethical issues regarding the release of these data. These data
are very sensitive, and in some countries, their publication is prohibited by local laws.
Some research teams have developed a dataset but have not shared it with the scientific
community. This is an obstacle for prospective research, which needs to create the dataset
to conduct the desired experiments. To overcome this hurdle, more efforts should be made
to publish the appropriate datasets. Finally, there has not been enough research effort to
generalize the 3D reconstruction algorithms, and more research should be conducted to
share the state-of-the-art algorithms among different 3D biometrics.

7. Conclusions

This paper is a literature review of 53 papers that attempt to present the various aspects
of the transition to 3D biometrics. The papers were selected based on strict criteria, which
are described in Section 3. The search targeted 3D biometrics under 3D reconstruction
since 2011.

After a comprehensive review of the selected publications, the initial statistical results
showed that facial recognition was the most commonly used 3D biometric in this particular
research area. The other seven categories were fingerprint, finger vein, ear, iris, gait, skull
and palm. These can be classified into three main categories: face, hand and gait. Related
work was also presented in Section 2, showing that some of the biometrics have not yet
been reviewed, and further research needs to be conducted.

Then, in Section 5, the results of the conducted analysis are presented. The available
3D biometrics databases and the state of the art per category are presented in Tables 2 and 3,
respectively. Summarizing the results, it becomes clear in which area more research should
be conducted. This is the creation of multimodal biometrics that combine 2D with 3D and
mixing the different categories such as the Tharewal et al. multimodal approach with face
and ear [148]. In addition, further research should be conducted on how resistant each
category is to spoofing and how they offer new methods to deal with it. Finally, further
research should be conducted on how the 3D reconstruction algorithms can be generalized
to 3D biometrics.

As for future work, a framework should be described in which each new 3D biometric
research should include metrics about the corresponding 2D images. To this end, devices
should include 2D capabilities. In addition, more datasets for less common biometric
features should be created to make it easier for future researchers to conduct experiments.
These points are crucial and will be the key factor for further improvements so that the
necessity for going 3D can be proven.
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