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Abstract: Cooperative perception, as a critical technology of intelligent connected vehicles, aims to
use wireless communication technology to interact and fuse environmental information obtained
by edge nodes with local perception information, which can improve vehicle perception accuracy,
reduce latency, and eliminate perception blind spots. It has become a current research hotspot. Based
on the analysis of the related literature on the Internet of vehicles (IoV), this paper summarizes
the multi-sensor information fusion method, information sharing strategy, and communication
technology of autonomous driving cooperative perception technology in the IoV environment.
Firstly, cooperative perception information fusion methods, such as image fusion, point cloud fusion,
and image–point cloud fusion, are summarized and compared according to the approaches of
sensor information fusion. Secondly, recent research on communication technology and the sharing
strategies of cooperative perception technology is summarized and analyzed in detail. Simultaneously,
combined with the practical application of V2X, the influence of network communication performance
on cooperative perception is analyzed, considering factors such as latency, packet loss rate, and
channel congestion, and the existing research methods are discussed. Finally, based on the summary
and analysis of the above studies, future research issues on cooperative perception are proposed, and
the development trend of cooperative perception technology is forecast to help researchers in this field
quickly understand the research status, hotspots, and prospects of cooperative perception technology.

Keywords: IoV; autonomous driving; cooperative perception; multi-sensor information fusion; DSRC;
C-V2X; congestion control

1. Introduction

Autonomous driving technology means that the vehicle utilizes sensors to collect
information about its surroundings and process it in real-time to gain a better understanding
of it. At the same time, the combination of location and mapping, path planning, decision-
making, and vehicle control modules enables autonomous vehicles to drive on the road
safely and efficiently without anyone taking over [1]. The implementation of autonomous
driving will significantly mitigate the driver’s driving burden, improve energy efficiency,
and reduce road safety traffic accidents.

The Society of Automotive Engineers (SAE) introduced the J3016 “Levels of Driving
Automation” standard for consumers. The J3016 standard defines the six distinct levels of
driving automation, including level 0 (no driving automation), level 1 (driver assistance),
level 2 (partial driving automation), level 3 (conditional driving automation), level 4
(high driving automation), and level 5 (full driving automation) [2]. With the continuous
development of autonomous vehicle sensor technology, it now plays a critical role in
improving the sensing range and accuracy of autonomous vehicles, as well as ensuring
that essential information required by autonomous vehicles while driving, including traffic
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signs, road information, obstacle information, and so on, is available [3,4]. However,
autonomous vehicles above level 3 require continuous, real-time situational awareness
of the surrounding environment [5], which is difficult to achieve by only relying on the
perceptual ability of the vehicle itself for the following reasons:

• Insufficient environmental perception information. The perception module of au-
tonomous vehicles primarily relies on numerous onboard sensors, such as LiDAR,
cameras, millimeter-wave radar, etc. [6]. However, affected by various factors, such as
sensor characteristics, obstacle occlusion, illumination, and bad weather, the vehicle’s
perception range is limited, resulting in blind spots in the field of view and making
it difficult to provide a full range of perception information for autonomous driving,
which will cause autonomous vehicles to fail to detect imminent danger in a timely
manner. For example, a Tesla Model X perception system mistakenly identified the
white side of a tractor turning left in front of it as the sky, resulting in an accident in
2016 [7]. In 2019, a Tesla Model 3 Autopilot system driving at high speed failed to
accurately identify the vehicle in front and perpendicular to itself and make braking
decisions, resulting in a serious traffic accident [8].

• It is difficult for in-vehicle computing systems to process a large amount of multisource
heterogeneous sensor data in real-time. There is no unified format for various sensor
data types, and the fusion processing is complicated. In addition, for the object
recognition network of an RGB camera, if the image resolution is 320 × 320 KB and
the frequency of generating data is 50 Hz, the amount of data, in this case, will reach
14 MB/S [9]. The current method of processing massive amounts of data, usually
equipped with high-performance computers for autonomous driving, will greatly
increase the cost of autonomous vehicles. In addition, the diversity of multisource and
heterogeneous sensor data formats will also increase the difficulty of data processing.

In order to make up for the insufficiency of autonomous driving perception capability
and data calculation above level 3, advanced sensing technology, edge computing, com-
munication, and other technologies need to be combined to build an autonomous driving
cooperative perception system in the IoV environment, enhancing perception accuracy,
improving the perception range, and reducing delay. Furthermore, this will provide more
accurate and rich environmental information for autonomous vehicles in real-time and lay
the foundation for the realization of autonomous driving above level 3 [10,11]. Simultane-
ously, cooperative perception in the IoV environment can reduce the number of onboard
sensors, lower the cost of autonomous vehicles, and speed up the commercialization of
high-level autonomous driving. Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
cooperative perception are the two main implementation methods, and the perception
effect is also affected by various factors such as weather, obstacle occlusion, and computing
power. At the same time, a large amount of multisource, heterogeneous sensor data must
put forward higher requirements for communication performance.

In the entire IoV cooperative perception system, this mainly includes the fusion,
processing, and sharing of cooperative perception data. Among these, the multi-sensor
information fusion method, information sharing strategies, and communication technology
are the keys to realizing the cooperative perception of autonomous driving in the IoV
environment. Multi-sensor information fusion is a prerequisite for cooperative perception.
Compared to single-vehicle information fusion, cooperative perception multi-sensor fusion
in the IoV environment has more abundant information sources, wider viewing angles,
stronger adaptability, and can achieve higher perception accuracy and range [5,12]. Ma-
chine learning, as the mainstream technology of target detection, predicts and improves
the perceptibility of the target by training the model, realizing the selective transmission
of target perception information with the vehicle–road coordination device [9,13]. How-
ever, the existing research on cooperative perception information fusion methods is still
in the stage of rapid development, and there are still deficiencies in real environment test
applications and target detection research. Wireless communication networks play a bridge
role in cooperative perception in the IoV environment, which is an important guaran-
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tee for information sharing. The quality of communication will directly affect the effect
of cooperative perception. In addition, the cooperative perception information sharing
strategy is also crucial to ensure the accuracy and timeliness of perception. Usually, the
strategy of only broadcasting the target information that the autonomous vehicle cannot
perceive is used to reduce the communication load, avoid the redundancy of perception
information, and better optimize the balance point of perception–fusion–communication
for autonomous driving cooperative perception in the IoV environment. Perception ac-
curacy and end-to-end latency are two essential indicators for evaluating cooperative
perception technology. Some researchers concluded that deploying a multiaccess edge
computing (MEC) infrastructure could improve the effectiveness of cooperative perception
and greatly reduce end-to-end communication delays by comparing the perception effect
and transmission delay with a single intelligent vehicle and cloud-based computing [14,15].
Figure 1 provides an overall diagram of the critical review on cooperative perception in the
IoV environment.
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Figure 1. An overall diagram of the critical review on cooperative perception in the Internet of
vehicles environment.

The paper is organized as follows. Section 1 introduces the background, significance,
and related research status of autonomous driving cooperative perception technology in
the IoV environment and points out that cooperative perception technology plays a key
role in autonomous driving. Section 2 summarizes and analyzes the cooperative perception
information fusion methods from three aspects, including image fusion, point cloud fusion,
and image–point cloud fusion. Section 3 discusses the cooperative perception information
sharing network, sharing strategy, and application-level communication performance
indicators, and it analyzes and summarizes the impact of delay, packet loss rate (PLR), and
channel congestion on cooperative perception during data transmission. Section 4 outlines
the current challenges faced by cooperative perception by analyzing existing research
and proposes recommendations for future cooperative perception in the IoV environment.
Section 5 is the summary and outlook.

2. Cooperative Perception Information Fusion

Some breakthroughs have been made in the research of autonomous vehicle multi-
sensor fusion methods, including image fusion, point cloud fusion, and image–point cloud
fusion [3,16–18]. Although a multi-sensor redundant combination design can make up for
the insufficiency of a single sensor in perception, reduce the uncertainty of target detection,
and enhance the vehicle’s effective perception of surrounding environmental information,
the test results in real scenarios are not ideal. For example, the fusion of camera and LiDAR
can provide high-resolution image information and reduce the impact of lighting conditions,
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but the perception effect is still lacking in bad weather and obstacle occlusion. Furthermore,
there are still many other problems to be overcome, such as imperfect information fusion
methods, large amounts of data, limited network bandwidth, and spatiotemporal alignment
problems. Figure 2 depicts the research trends of cooperative perception based on multi-
sensor information fusion from 2010 to 2021. The data are from Google Scholar advanced
searches of cooperative perception and different sensor fusion methods.
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Figure 2. The increasing amount of research on cooperative perception multi-sensor information
fusion in the Internet of vehicles environment.

From the perspective of vehicle–road cooperative perception information fusion,
this section summarizes the existing research on image fusion, point cloud fusion, and
image–point cloud information fusion at different locations and from multiple perspectives.
This section also briefly summarizes its existing challenges. Table 1, below, qualitatively
summarizes the strengths and weaknesses of the commonly utilized perception-based
sensors in AV based on their technical characteristics and other external factors, such as
weather and illumination conditions. At the same time, it compares the perception effect of
using only multi-sensor fusion and V2X fusion.

Table 1. A comparison of the commonly employed sensors in self-driving cars, only sensors fusion,
and combined V2X. The “

√
” symbol indicates that the sensor operates competently under the specific

factor. The “~” indicates that the sensor performs reasonably well under the specific factor. The “×”
indicates that the sensor does not operate well under specific factors relative to the other sensors.

Factor Camera LiDAR Radar Only Fusion Fusion and V2X

Range ~ ~
√

~
√

Resolution
√

~ ×
√ √

Distance Accuracy ~
√ √

~
√

Velocity ~ ×
√ √ √

Color Perception
(e.g., traffic lights)

√
× ×

√ √

Object Detection ~
√ √

~
√

Object Classification
√

~ ×
√ √

Lane Detection
√

× ×
√ √

Obstacle Edge Detection
√ √

×
√ √

Illumination Conditions ×
√ √

~
√

Weather Conditions × ~
√

~
√
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2.1. Image Fusion

Research on cooperative perception based on image information in the IoV environ-
ment started early and is relatively mature because the images have the advantages of high
resolution and a good target classification effect, the research and applications of visual
sensors are older, and the price is cheap. Image data is a common type of shared data
between autonomous vehicles and other perception nodes.

The amount of raw video data collected by the camera is large among all kinds of
environmental perception information, and the transmission of each video frame will cause
the network to be overloaded, increase the transmission latency, and affect the timeliness of
cooperative perception. In order to reduce the heavy network load caused by the amount
of data, traditional image compression [19], deep learning [20], and other methods reduce
the size of the transmitted image data to ensure the timeliness of cooperative perception.
Löhdefink et al. [21] adopted image compression to reduce the size of data transmission.
Combined with a lossy learning image compression method, the overall bit rate is reduced
by an auto-encoder with an adversarial loss function [22], which effectively relieves pressure
on the wireless communication channel. Different from traditional methods, Lv et al. [23]
used the principle of separating static background and dynamic foreground, as well as
the technique of video frame background removal and noise reduction calculated by
pixel value, to quickly extract dynamic foreground from video frames. By using the
generative adversarial network technique, reintegrating the static background and dynamic
foreground into a new video frame, the correct driving decisions can be made based on
the static background and dynamic foreground. According to the real dataset test, the
method can reduce the transmission load of the video image data by more than 85 percent
and decrease the processing time of perception information to 27.7% of the original on
the premise of ensuring that important environmental perception information is not lost,
effectively realizing the cooperative environment perception of autonomous vehicles and
roadside infrastructure.

In addition, many scholars have studied the existing image fusion strategies for
limitations and blind spots in the perceived field of view and range. Xiao et al. [24] used
a deep learning method to extract key information from the vision system and expanded
the perception range of the host vehicle by fusing the bird’s-eye view generated by the
perception information of other vehicles in the vehicle network. This approach deepened
the self-driving vehicle’s ability to understand its environment. Sridhar et al. [25] used
cooperative relative positioning and map merging [26] to realize the cooperative perception
of vehicles with a common field of view by sharing the image perception information of
adjacent vehicles with the host vehicle. Liu et al. [27] used V2V communication technology,
based on a 3D inter-vehicle projection model and selected feature point matching to estimate
the geometric transformation parameters to achieve inter-vehicle image information fusion
through deep-affine transformation. It effectively overcomes the problem of perceived blind
spots in traffic jams, but it overlooks the impact of viewing angles, and, in some cases, there
will be size deviations. If the perspective issue is taken into account, the scalable 5G multi-
access edge computing-driven vehicle infrastructure cooperative system has a broader
prospect. Through the distributed data fusion method, the environmental information
detected by RSU cameras in multiple areas is interactively and perceptually fused. A global
semantic description of the surrounding environment is formed, which greatly improves
the perception range and accuracy of the vehicle [15], as shown in Figure 3. At the same
time, the system introduces the high concurrency and low latency characteristics of 5G
communication technology, which can effectively alleviate the communication load but
lacks the evaluation of pose (such as position and direction). Table 2 summarizes the
research status of image fusion in cooperative perception.
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Table 2. Summary and analysis of image fusion research methods.

Authors, Year Key Research Points Findings Remarks

Lian et al. 2020 [15]

Multiple roadside camera
perception data mapping to

form a global semantic
description.

The detection time was
increased by about 45%, and
the detection accuracy was

increased by about 10%.

Distributed interactive fusion
deployment of sensors for a
wider range of cooperative

perception without increasing
the time cost of computing.

Löhdefifink et al. 2020 [21]

Used a lossy learning method
for image compression to

relieve the pressure on
wireless communication

channels.

Image compression
requirements were high, and

late fusion results of
segmentation mask cascades

were optimal.

The transmission of processed
data can effectively reduce the
load on the wireless channel.

Lv et al. 2021 [23]

Based on the separation
principle of static background
and dynamic foreground, the

dynamic foreground was
extracted, and the static

background and dynamic
foreground were re-fused by a

generative adversarial
network.

The processing time of
perceptual information was

reduced to 27.7% of the
original.

Xiao et al. 2018 [24]

A bird’s-eye view generated
by integrating the perception
information of other vehicles

expanded the perception
range, shared the processed

image information, and
reduced the network burden.

Solved the problem of obstacle
occlusion and reduced the

transmission of data volume.

Perception range will be
affected by communication

distance.

Sridhar1 et al. 2018 [25]

Utilized image feature point
matching for data fusion to

form vehicle cooperative
perception with a common

field of view.

Fusion of perception
information from other

vehicles and conversion to its
own coordinate system.

Cooperative perception can
effectively expand the

perception range of vehicles.

Liu et al. 2018 [27]

Used feature point matching
to estimate geometric

transformation parameters to
solve perception blind spots

in congestion.

The intersection over union
value was increased by

2~3 times.

Effectively solved the obstacle
occlusion, but ignored the
problem of viewing angle.

2.2. Point Cloud Fusion

The fusion of point cloud data from various angles and viewpoints has distinct ad-
vantages over the fusion of picture data in terms of the perception of the surrounding
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environment. LiDAR has the advantages of high spatial resolution, a wide detection range,
and little influence from light. It plays an important role in the application of target recog-
nition, ranging, and positioning in autonomous driving. This subsection describes and
evaluates the available research in accordance with data-level, feature-level, and decision-
level fusion categories [28] and focuses on the impact of abundant point cloud data and
constrained network bandwidth on the efficacy of cooperative perception.

Data-level fusion research started early, with high precision but a large amount of data.
This fusion method does not require any preprocessing of the data, and the heterogeneity
of different data processing algorithms will not affect the accuracy of data being shared
between vehicles. Chen et al. [29] were the first to suggest employing shared raw point
cloud data to achieve cooperative perception, and they referenced a neural network for
spare point-cloud object detection to detect objects in low-density point cloud data. This
method effectively improves the perception range and detection accuracy of the vehicle.
Simultaneously, it proves that existing DSRC communication technology can meet the data
transmission requirements of point cloud fusion in the region of interest (ROI). Similarly,
Ye et al. [30] introduced a state estimation framework for multivehicle LiDAR localization
and sensor data fusion that utilized raw sensor data between different vehicles and achieved
ground truth generation in an offline manner. At the same time, the registration method
better matches point cloud data from diverse views, demonstrating that using perceptual
data from multiple perspectives has a better auxiliary effect on cooperative perception, but
that this increases the detection time.

Feature-level fusion refers to extracting feature information from original data and
then performing fusion, which is currently the most studied and widely used fusion
method, considering that the original point cloud data sharing will be limited by the band-
width and delay of the wireless communication network. Based on a previous study [29],
Chen et al. [31] innovatively proposed a point cloud feature-based cooperative percep-
tual fusion scheme, including a combined voxel feature fusion and spatial feature fusion
method. This scheme can effectively improve the accuracy of perception while meeting the
requirements of time delay and limited communication bandwidth. The results show that
the detection effect at a range of 20 m is improved by about 10%, and the further distance
is improved by about 30%. Wei et al. [32] used a multi-target tracking method [33] based
on vehicle-mounted LiDAR and a voxel clustering algorithm to obtain the state of the
surrounding environment. This method fuses the preliminary tracking results with the
perception information of the RSU and other vehicles to generate the motion trajectory of
the target vehicle. By using point cloud data from multiple objects, it can continuously
operate under the condition of limited LiDAR perception or V2V communication failure,
perceive the position of surrounding vehicles, ensure the stability of cooperative perception,
and improve the accuracy of target tracking.

Decision-level fusion refers to extracting the detected objects from each individual
sensor and fusing the detection results. The fusion speed is fast and it is more suitable
for data sharing, but there are few studies on it at present. Arnold et al. [34] proposed an
early fusion (data-level fusion) and late fusion (decision-level fusion) 3D object detection
cooperative perception scheme. This scheme adjusts the tradeoff between different fusion
methods according to the sensor visibility and detection distance, selecting early fusion for
high sensor visibility and short-range detection to ensure the detection effect and reduce
the communication cost. On the contrary, if the visibility is poor and the point cloud
data at the far position is small, late fusion is selected, and, finally, the two detected 3D
bounding boxes are fused and shared, as shown in Figure 4. Experiments show that by
fusing LiDAR data from different stages and positions of roadside units, spatial diversity
with overlapping fields of view can be fully utilized to increase the density of point clouds,
reduce false negative detection, more accurately estimate the bounding boxes of detected
objects, and improve object detection accuracy.
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In short, the multi-sensor data fusion method has a great impact on the timeliness and
accuracy of cooperative perception. For example, sharing the original point cloud data has
high sensing accuracy, but it will increase the detection time and transmission load, which
cannot meet the low-latency requirements of cooperative perception. However, sharing
the processed point cloud data can reduce the data transmission time, but the perceived
accuracy will be reduced. Therefore, balancing the accuracy and real-time performance
of perception is crucial to the effectiveness of cooperative perception. Table 3, below,
summarizes the point cloud fusion methods classified by different fusion levels.

Table 3. Summary of recent studies on point cloud fusion methods.

Authors, Year Key Research Points Findings Remarks

Chen et al. 2019 [29]

Shared the original point
cloud data for the first time,
and analyzed the impact of
communication cost and the

robustness of positioning
errors on cooperative

perception.

Sparse point cloud negatively
affects perception. Data-level fusion.

Ye et al. 2020 [30]

Fusion of raw sensor data
from multiple vehicles to
overcome occlusion and

sensor resolution degradation
with distance.

Fusing sensor data from
multiple viewpoints

improved perception accuracy
and range.

Data-level fusion.

Chen et al. 2019 [31]

A feature-level fusion scheme
was proposed, and the

tradeoffs between processing
time, bandwidth usage, and
detection performance were

analyzed.

The detection accuracy within
20 m was improved by about

10%.
Feature-level fusion.

Wei et al. 2019 [32]

Integrated the point cloud
data of multiple objects,

continuously perceiving the
position of surrounding

vehicles in cases of limited
LiDAR perception and V2V

communication failure.

Cooperative perception object
detection was more stable

than LiDAR-only and
V2V-only methods.

Feature-level fusion.

Arnold et al. 2020 [34]

Proposed early fusion and late
fusion schemes of

single-modal point cloud data
to more accurately estimate

the bounding box of the
detection target.

The recall rate of cooperative
perception target detection

was as high as 95%.

The detection performance of
data-level fusion was better
than that of decision-level

fusion, but the communication
quality was poor.
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2.3. Image–Point Fusion

Single-modal multi-sensor data fusion is always limited by intrinsic and extrinsic con-
ditions. For example, the camera has a difficult time detecting the target depth information
and is greatly affected by adverse weather and light. LiDAR has poor perception effects,
low resolution, and a high cost for long-distance small targets. Millimeter-wave radars
have strong antijamming capabilities but low resolution and a limited field of view. This
subsection summarizes and analyzes the current sensor data fusion methods and chal-
lenges for single-vehicle autonomous driving [35,36] and points out that multimodal and
multilevel sensor information fusion can greatly improve the effectiveness of cooperative
perception. Figure 5 shows a comparison between image and LiDAR data characteristics.
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Image–point cloud information fusion is the mainstream method of autonomous
driving cooperative perception in the current IoV environment. Common fusion methods
include data fusion estimation methods, based on the Kalman filter; the Bayesian-based
distributed fusion method; and the neural network-based method [37]. Jiang et al. [38]
proposed a robust target recognition algorithm based on the fusion of millimeter-wave
radar and a camera based on the antijamming capability of millimeter-wave radar for foggy
weather. The captured target is filtered by millimeter-wave radar and mapped onto the
image to obtain an ROI. The detection results identified by the camera vision network are
fused with the radar target estimation value using the weighted technique, resulting in
perception results with greater detection accuracy. However, the method of fusing the per-
ceptual information of radar and camera using convolutional neural networks has proved
to be more promising. Ji et al. [39] used radar detection to create ROIs on images and
utilized neural networks to classify the ROI, and similar object detection methods are also
represented in the literature [40–43]. By fusing the results of the separate detection of the
camera and the radar, Jha et al. [44] realized an effective correlation between the distance
measurement of the radar and the image information. Deep learning methods based on gen-
erative adversarial networks used to achieve the fusion of camera and radar data have been
widely studied [45]. Wang et al. [46] designed a radar and camera cooperative detection
algorithm, projecting the radar signal to the image coordinate system through coordinate
transformation and using the symmetry of the vehicle to identify the target vehicle, and
they achieved good detection results. With the continuous deepening of research, some
scholars have tried to deploy radar and camera perception equipment on the roadside to
perceive the surrounding environment and provide more complete perception information
for autonomous vehicles through wireless communication technology. Fu et al. [47] utilized
edge computing to localize the environmental perception data to effectively reduce latency.
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Meanwhile, the YOLOv3 [48] and DBSCAN clustering algorithms [49], often deployed in
roadside equipment, are used to preprocess camera and radar data, respectively, to obtain
information such as the position, speed, and category of targets. Then, the method of joint
calibration and direct update is used to synchronize the two types of sensors in space and
time, and the Munkres algorithm and Kalman filter are used to achieve the association and
tracking of multiple targets, which effectively improves the horizontal and vertical detec-
tion performance of the sensing system but lacks real-world verification. Wang et al. [50]
realized the fusion perception of radar–camera sensors in a real road environment, which
reduced the delay of actively perceiving the target and accelerated the actual deployment
of cooperative perception technology.

In addition, some studies have compared the perception effects of different sensor
combinations and found that the data fusion of cameras and LiDARs has richer environ-
mental information and better target detection performance. However, due to the difference
in the number of wire bundles and the detection distance, the amount of environmental
information data collected by LiDAR is very different, which will have a certain negative
impact on the timeliness of cooperative perception and the accuracy of target recognition.
Satio et al. [51] proposed a LiDAR–camera sensor fusion method for long-distance point
cloud sparse problems. Duan et al. [4] proposed an image–point cloud-based coopera-
tive perception system, which mainly solves the problem of blind spot perception with
intelligent sensors of AV at intersections. The roadside terminal is used to send the global
map of the laser point cloud to the autonomous vehicle. In turn, the vehicle sends its
position to the RSU. Finally, the RSU sends the perception result of the intersection to the
vehicle. The experimental results show that the method improves the perception range and
accuracy of vehicles at intersections. However, the real-time performance of perception is
poor. References [52,53] utilize image and point cloud fusion algorithms for better environ-
mental perception. The final decision is made by the telecommunication control unit by
extracting objects from the environment that affect the multi-channel V2X communication
system. In addition, an attempt is made to solve the problem of communication perfor-
mance degradation due to the surrounding environment of V2X communication vehicles
to improve the stability of multi-channel telecommunication control units. Gu et al. [54]
achieved a breakthrough in the camera–LiDAR fusion strategy to cope with different scene
changes. By cascading point clouds and images to generate fusion networks, including
single-modality modes of laser point clouds only and multimodality modes of laser point
clouds and camera images, it dynamically responds to more environmental changes and
achieves higher perceived accuracy. Table 4 presents the existing research on image–point
cloud fusion methods.

In addition, the spatial and temporal alignment of sensors is a prerequisite for infor-
mation fusion in the sensor information fusion process. Spatial alignment considers the
coordinate transformation of the targets of sensor data from different sources. In contrast,
temporal alignment mainly focuses on how to solve the problem of the time difference
between sensing information collected from edge nodes and received by other vehicles.
Spatial alignment is often based on a constant turn rate and acceleration motion model.
Temporal alignment typically transforms object coordinates using unscented transforma-
tions. Based on these two key problems, research on spatial and temporal alignment in
multi-sensor fusion is equally important [55–57]. Allig et al. [55] summarized and ana-
lyzed the existing alignment methods, proposed using the unpredicted sender state for
transformation, and compared it with the existing coordinate transformation method using
the compensated sender motion prediction. Experiments show that the former has more
obvious advantages, which not only reduces the computational complexity but also has
more accurate state estimation. In multi-sensor perception data fusion in advanced fusion
architecture, each sensor and each vehicle will preprocess their raw data, and the temporal
alignment and spatial alignment in the post-data fusion process are essential factors to
ensure the accuracy of the results [58].
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Table 4. Summary and classification of research on image–point cloud fusion methods.

Authors, Year Key Research Points Findings Remarks

Jiang et al. 2019 [35]

Used millimeter-wave radar
to filter the target and map it

to the image to obtain the
region of interest, weighted

the detection value and
estimated value of the two,

and improved the perception
accuracy.

Effectively detected small
targets in foggy weather.

Strong anti-interference ability.
However, the detection

frequency was low and cannot
meet the real-time

requirements.

Fu et al. 2020 [43]

A fusion perception method
of roadside camera

millimeter-wave radar was
proposed, and the Kalman

filter was used to evaluate the
pros and cons of the
perception results.

Both horizontal and vertical
had better detection results. No actual deployment.

Wang et al. 2020 [46]

Combined with real road
scenes, filtered background
objects detected by radar to

achieve the automatic
calibration of multiple

sensors.

Fast and automatic acquisition
of roadside perception fusion

information.

Attempt to combine depth
information to display

detection results in 3D boxes.

Saito et al. 2021 [51]

Projected the point cloud data
to the pixel coordinate system
of the next frame of the point

cloud, performed 3D
reconstruction, and improved

the accuracy of target
detection.

Improved target shape
recovery rate and discernible

distance.

Further adjustments to
real-time models and

panoramic cameras to expand
the fusion range.

Duan et al. 2021 [4]

An image–point cloud
cooperative perception system

was proposed, which sends
the detected objects within the

perception range to the
vehicle.

Effectively extended the
detection range.

A large amount of calculation
and poor real-time

performance.

Gu et al. 2021 [54]

Utilized point cloud and
image concatenation to form a
point cloud single-modality

mode and a point
cloud–image multimodal

mode fusion network.

Multimodality for more
environmental changes.

Improved the detection
accuracy of the road and had
good real-time performance.

2.4. Summary

Based on the existing literature, this section summarizes the current research status
of cooperative perception technology for autonomous driving in the IoV environment
from the perspective of cooperative perception information fusion methods, focusing on
summarizing image fusion, point cloud fusion, and image–point cloud fusion methods.
By comparison, we found that the fusion of image point clouds under multimodality and
multi-view perspectives is the best method for cooperative perception (as shown in Table 3).
Compared to single-vehicle multi-sensor fusion, cooperative perception information fusion
has more advantages in terms of sensing range, accuracy, and reliability. Comparing
the information fusion at different stages, the fusion and sharing of the processed data
can not only reduce the amount of data transmitted but also significantly reduce the
network communication load. The fusion and sharing of the original data are better for
cooperative perception, but they will increase the communication burden and have a certain
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negative impact on the cooperative perception results. In the future, direct and effective
cooperative perception fusion algorithms, and the interactive fusion of distributed sensor
data, will become research trends. At the same time, the dataset construction of vehicle–
road cooperation will be a key factor in ensuing research on and evaluation of vehicle–road
cooperation algorithms. Table 5 shows a comparison of different sensor fusion methods.

Table 5. Comparison of the advantages and disadvantages of three different fusion methods.

Methodology Advantages Disadvantages Conclusion

Image fusion
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3. Cooperative Perception Information-Sharing

Vehicle-to-everything is an important guarantee for realizing the cooperative per-
ception of automatic driving in the IoV environment. Information interaction between
autonomous vehicles and edge nodes is the basis for realizing cooperative perception.
The transmission of cooperative perception messages (CPMs) between vehicles and edge
nodes requires a certain bandwidth and has strict delay constraints, which sets higher
requirements for network performance. Vehicle mobility and market penetration have
a great negative impact on cooperative perception effectiveness and network communi-
cation quality. In addition, a reasonable CPM-sharing strategy is also very important,
which defines how often vehicles share perception data and which perception data to
share. Therefore, reasonable network communication technology and sharing strategies are
necessary. Usually, it is necessary to select an appropriate communication network and set
a reasonable sharing strategy according to different communication and traffic scenarios.

3.1. Cooperative Perception Information-Sharing Network

Currently, there are two main V2X communication technologies, including dedi-
cated short-range communication (DSRC) and cellular vehicle-to-everything (C-V2X) [59].
Among them, DSRC [60] is specifically used for V2V and V2I communication. It has the
advantages of a high transmission rate, low latency, and support for point-to-point and
point-to-multipoint communication. C-V2X communication, represented by 5G, has the
advantages of wide coverage, high reliability, and large data capacity. It is suitable for
vehicle–road coordination and communication between edge servers. These two communi-
cation modes jointly support the diverse application requirements of the IoV environment.

3.1.1. DSRC

One of the keys to enabling wireless communication technology standards designed
specifically for vehicular communication is DSRC [61]. The DSRC communication protocol
in the United States is based on the IEEE 802.11p and the IEEE 1609 series standards, which
are collectively known as wireless access in vehicular environments (WAVE) standards [62].
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Similarly, the European Telecommunications Standards Institute (ETSI) has developed
the ITS-G5 protocol based on the IEEE802.11p standard to support the high quality of
service requirements of autonomous driving applications [63]. Wei et al. [64] compared and
analyzed the characteristics of wireless local area networks, WAVE, and 4G networks and
proposed using a neural network model to select an appropriate communication method
automatically and dynamically according to a vehicle’s density, speed, and data volume
before data transmission. However, in recent years, studies have found that DSRC is not
enough to support reliable and efficient V2X applications, especially in the case of high
vehicle density and highspeed vehicle movement, the communication performance will be
significantly reduced [65]. To improve its scalability and quality of service and to make up
for the lack of performance in high-mobility environments, a new study group called IEEE
802.11 Next Generation V2X was formed in March 2018 [66]. This resulted in the formation
of the IEEE Task Group 802.11bd in January 2019.

3.1.2. C-V2X

C-V2X was standardized by the 3rd Generation Partnership Project (3GPP), which
includes long-term evolution (LTE)-V2X and 5G-V2X (NR) technologies and is gradually
enhanced through the evolution stages shown in Figure 6 [67,68]. In addition, C-V2X
defines a PC5 interface that enables direct V2X communication through the sidelink and a
Uu interface that realizes communication between the terminal and base station utilizing
the uplink/downlink. It has high network capacity and wide coverage and can better
support autonomous driving cooperative perception in the IoV environment, improve the
reliability of data transmission, decrease transmission delay, and reduce frequent horizontal
switching in the network. C-V2X offers performance advantages over DSRC in terms of its
additional link budget, higher resilience to interference, and better non-line-of-sight (NLoS)
capabilities [69]. Based on [65], Choi et al. [70] further analyzed this concept based on DSRC
and 4G cellular networks, which are not enough to support the large-scale sharing of raw
sensor data. Three types of vehicle networks, including 5G cellular, a modified version of
IEEE 802.11ad, and a dedicated new standard, were proposed. In addition, it was pointed
out that these three communication methods can effectively avoid the channel congestion
problem caused by a large amount of data transmission. On the other hand, they can
improve the real-time performance of the vehicle networking perception system. At present,
C-V2X is in the actual deployment and application test stage, and the system is gradually
improving. The latest release of New Radio (NR) V2X was specified in Release 16 (Rel-16)
as a complementary access technology defined to better serve sophisticated applications
and use cases with more stringent requirements (e.g., platooning, advanced driving, etc.).
Meanwhile, the standardization and testing work of Rel-17 is actively promoted [71].
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3.1.3. Hybrid Architecture

At present, there are obvious limitations for a single V2X technology to achieve
efficient and reliable cooperative perception in the IoV environment, such as the insufficient
penetration rate of smart devices, network switching caused by vehicle mobility, and
limited network bandwidth. To this end, some researchers have proposed that a hybrid
solution using DSRC and C-V2X technology is more feasible for actual deployment at this
stage, as shown in Figure 7 [72]. This hybrid architecture enables the cellular network
to back up vehicle data when the V2V multi-hop connection in the sparse network is
interrupted. Meanwhile, it can choose the communication mode independently according
to the driving scene requirements and performance requirements, which is more in line
with economic development and accelerates the commercial application of autonomous
driving. Liu et al. [73] conducted an in-depth analysis of the potential of DSRC and cellular
network hybrid architecture [74,75], which fully considered the limitations of the two
current mainstream V2X communication technologies in supporting V2X applications and
the challenges brought by vehicle mobility to wireless communication. It concluded that
the hybrid architecture of DSRC and cellular networks is promising for realizing V2X
applications with low latency and high-reliability requirements.
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In practical application scenarios, to solve the problems of high network transmission
latency and reduced reliability in cases of highspeed vehicle driving, Zhu et al. [76] pro-
posed a 5G C-V2X intelligent fusion network technology based on MEC, and they discussed
and summarized the network architecture, deployment schemes, and application scenarios.
As shown in Figure 8, according to the needs of vehicle–infrastructure collaboration, the
application scenarios of the intelligent fusion network are divided into four categories:
interaction between a single vehicle and the MEC; interaction between multiple vehicles
and the MEC; interaction between a single vehicle and the MEC or roadside intelligent
facilities; and multivehicle interaction with the MEC or roadside smart facilities. In ad-
dition, the integrated network architecture of MEC and C-V2X effectively shortens the
transmission path of data services in the IoV environment with localized services and
realizes the information exchange delay to meet the service requirements of ultra-high
reliability and low latency in the C-V2X scenario. In addition, the differences in the driv-
ing speeds of autonomous vehicles also require different performance requirements for
network communication. When the vehicle speed is too high, it will pose higher chal-
lenges to edge node sensing data, computing resource allocation, and task scheduling.
Fukatsu et al. [77] pointed out the importance of using millimeter-wave communication in
cooperative perception in combination with the requirements of autonomous vehicles for
network data transmission at different driving speeds. As the speed of the vehicle increases,
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the data rate generated by the sensor increases exponentially, and they pointed out that,
when using V2V millimeter wave communication on the 60 GHz band, the cooperative
perception of overtaking scenarios can still be achieved when the speed exceeds 51 km/h.
Fukatsu et al. [78] studied the sensor rate required for cooperative perception to achieve
specific application functions for urban road scenes, and they found that millimeter-wave
communication showed better performance in realizing the cooperative perception of edge
nodes. It was verified that, when vehicle speeds are 56 km/h and 47 km/h, the required
data rates are 12 GHz and 6 GHz, respectively.
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At present, the penetration rate of intelligent networked vehicles is low, and the
deployment of intelligent equipment and infrastructure construction still need continuous
efforts. Therefore, market penetration is an important factor that cannot be ignored for
synergistic perception effects and communication quality. When the penetration rate is
too low, the communication link supporting data transmission may be unstable due to the
distance, and it may even be difficult to match a suitable edge node. Radovan et al. [79]
analyzed different combinations of vehicle V2X and sensors and pointed out that, in the case
of a low penetration rate of smart vehicle market deployment in the early stages, different
sensor and communication equipment deployment schemes will effectively improve the
ability of cooperative perception. As shown in Figure 9, each vehicle is equipped with
different configurations and quantities of communication equipment and sensors. Using
cooperative perception information interaction, the impact of the low penetration rate can
be effectively reduced and the range of perception can be improved. Li et al. [80] studied the
accurate estimation and prediction of traffic system microstates based on the particle filter
cooperative perception framework and found that the market penetration of connected
autonomous vehicles has a great influence on the estimated values and predictions. When
the market penetration rate is 50%, the estimated accuracy of vehicle positioning and speed
is 80–90%.

Wang et al. [81] analyzed the demand for V2V and V2I network capacity to realize
cooperative perception under different traffic densities and penetration rates. When the
proportion of autonomous vehicles to the total number of vehicles is too low, it is difficult
to find V2V links that support data because of the distance between autonomous vehicles.
Under the conditions of limited penetration and reliability requirements, V2I communi-
cation can be used for data transmission. Then, the V2I flux from the CPM exchange
was analyzed to be highest at medium permeability (0.5). Table 6, below, summarizes
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the existing research on cooperative perception information-sharing and communication
technology.
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Table 6. Summary of the existing research on cooperative perception information-sharing communi-
cation technology according to market penetration rate and vehicle mobility.

Factors Authors, Year Key Research Points Findings

Vehicle Mobility

Zhu et al. 2021 [76]

The network architecture of
MEC and C-V2X fusion was
proposed, which reduces the
network transmission delay

and improves the reliability of
the perception system.

Distributed computing
deployment can effectively

reduce interaction delay.

Fukatsu et al. 2019 [77]
Explored the requirements of
different driving speeds for
network data transmission.

The larger the bandwidth, the
better the cooperative

perception effect.

Fukatsu et al. 2021 [78]

Analyzed the data rate
required to achieve

cooperative perception at
different driving speeds.

Derived the transmission data
rate for safe driving at

different driving speeds.

Traffic Density and Market
Penetration

Radovan et al. 2018 [79]

Different sensor and
communication equipment
deployment schemes will

effectively improve the scope
of cooperative perception.

Different sensor combinations
can make up for the lack of

low permeability.

Li et al. 2021 [80]

Analyzed the impact of
market penetration on
location and velocity

estimates and forecasts.

When the market penetration
rate is 50%, the estimated

accuracy of vehicle
positioning and speed is

80%-90%.

Wang et al. 2018 [81]

Discussed the capacity
requirements for vehicle

communication for
cooperative perception under
different traffic densities and

market penetration rates.

V2I traffic from the CPM
exchange is highest at about

50% penetration.

To sum up, the cooperative perception sharing network is crucial for improving the
perception capability of intelligent connected vehicles. The deployment and application
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testing of wireless communication technology at this stage have achieved preliminary
results. Vehicle mobility and market penetration have a great impact on the effectiveness of
cooperative perception and the quality of network communication at this stage. When the
penetration rate is too low, the communication link supporting data transmission may be
unstable due to the distance, and it may even be difficult to match a suitable edge node. At
the same time, the problems of high network transmission delay and reduced reliability
caused by highspeed vehicles are also the focus of our attention.

3.2. Cooperative Perception Information-Sharing Strategy

The cooperative perception information-sharing strategy plays a key role in alleviating
network load and enhancing the cooperative perception effect. If the cooperative sensing
information is shared too frequently, the wireless channel will be overburdened, resulting
in channel congestion. It will lead to the perception information age being too old, reducing
the accuracy of perception. Similarly, sharing all sensory data will result in information
redundancy, leading to wasted computing and communication resources. If part of the
perception information is shared, the perception will be incomplete, and the accuracy and
integrity of the perception will be reduced. Therefore, a reasonable sharing strategy is
particularly important for autonomous driving cooperative perception, including how
often vehicles share perception data, which perception data to share, and the format of the
shared data.

For research on perception information-sharing strategy, the ETSI recently approved a
technical report, which is the first proposal to standardize the CPM and the CPM generation
rules [82]. The CPM generation rules define the frequency of vehicle generation and the
transmission of CPM as well as the content of CPM, including onboard sensors (detection
range, field of view, etc.) and detection targets (position, speed, size, etc.) [83]. The current
ETSI CPM generation rules establish that a vehicle has to check every T_GenCpm if a
new CPM should be generated and transmitted, with 0.1 s ≤ T_GenCpm ≤ 1 s (100 ms
by default). However, these generation rules are preliminary and only a first proposal
(hence subject to possible changes). A vehicle should generate a new CPM if it has detected
a new object or if any of the following conditions are satisfied for any of the previously
detected objects:

1. Its absolute position has changed by more than 4 m since the last time its information
was included in a CPM.

2. Its absolute speed has changed by more than 0.5 m/s since the last time its information
was included in a CPM.

3. The last time the detected object was included in a CPM was one or more seconds ago.

Thandavarayan et al. [84,85] compared the dynamic CPM generation strategy formu-
lated by ETSI with the periodic generation strategy (the periodic generation strategy is
that the vehicle periodically broadcasts the information from all detected objects). The
results show that the dynamic CPM generation strategy is more flexible than the systematic
generation strategy, which effectively reduces the transmission of low-value data. Further-
more, on this basis, the dynamic generation CPM strategy is optimized. In the proposed
optimization strategy, when CAV receives updated information about an object from other
vehicles, the vehicle does not repeat the broadcast of the object’s information, further
reducing information redundancy and decreasing communication overhead.

To undertake cooperative perception comparisons and investigate the relationship
between communication bandwidth and the amount of transmitted data, Kim et al. [26]
used raw sensor data, processed sensory data, and compressed data. The results reveal that
as the amount of data communicated increases, so does the communication latency. Instead
of exchanging raw sensor data, Rauch et al. [86] analyzed the influence of communication
delay and transmission range on cooperative perception and proposed that the shared
detected object data strategy is more time-effective. The majority of data transmission
methods are now provided to the target vehicle via broadcasts. If an appropriate coordi-
nation mechanism is not in place throughout the transmission process, it will cause data
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transmission confusion, raise the likelihood of data retransmission, diminish transmission
efficiency, and increase the likelihood of packet loss, all while raising network channel
load. Baldomero et al. [87] addressed the problem of [86] by using a context-based message
acknowledgment method. The mechanism takes advantage of the fact that the transmitting
vehicle can request the confirmation of certain or crucial broadcast information and retrans-
mit anomalous broadcasts on a selective basis. The approach lowers data transmission
interference and collisions while also increasing data transmission accuracy.

Furthermore, many scholars define CPM-sharing strategies according to the value of
CPM [88,89]. Higuchi et al. [90] proposed deciding whether to send the CPM policy by
predicting the importance of the CPM to the receiver. If the detected object information is
included in the cooperative perception information, it is transmitted only when the sender
evaluates the object to be valuable to the receiver. This method reduces the information
transmission rate of low-value objects and realizes the effective control of channel con-
gestion. However, the difficulty is how to obtain an accurate estimate of the information
value. This problem was partially solved by [91], who proposed selectively transferring
higher-valued data of perceived demand using reinforcement learning. Reference [92]
proposed enhancing the timeliness and accuracy of cooperative perception information by
improving the freshness of sensing information. Talak et al. [93] defined the coverage of
the ROI of the vehicle and the update rate of perceived information. When communication
resources are limited, they choose to maximize the perceptual data of the ROI of the shared
vehicle. At the same time, based on the premise of ensuring the most appropriate CPM
update frequency, the information of interest is selectively transmitted. This can expand the
perception range, reduce the information age, and achieve real-time situational awareness
of the surrounding environment.

With the continuous development of intelligent roadside equipment, the interaction
of information between the vehicle and the roadside is equally important to enhance the
cooperative perception effect. The RSU is usually located in a fixed location and supports
the deployment of edge computing devices, so it can better support the perception data
processing capability of autonomous driving. By analyzing the advantages and applications
of existing V2I communication systems, Malik et al. [94] pointed out the important role of
V2I communication in realizing autonomous driving cooperative perception. Noh et al. [95]
proposed a cooperative system utilizing V2I communication. It can combine its perception
data with a high-precision map to assist the self-driving vehicle in better understanding
the driving environment and provide driving suggestions when the vehicle enters the
service range of the roadside equipment. The performance of the proposed cooperative
system was tested in two traffic scenarios of road icing and construction, which proved the
effectiveness of the cooperative perception of the system. Perceptual information-sharing
strategies are summarized in Table 7 according to the type of shared information.

3.3. The Effect of Network Performance on Cooperative Perception

The realization of cooperative perception relies on the interaction between V2X com-
munication and the perception information of the surrounding environment, which will
significantly increase the amount of information exchanged by vehicles. At the same time,
problems such as unstable communication quality and channel congestion are prone to
occur in the process of information exchange, resulting in a series of negative effects such
as high transmission latency and packet loss, which reduce the effectiveness of cooperative
perception. In fact, the loss and latency of data packets in the real driving environment
are inevitable, and cooperative perception also often uses latency and PLR as evaluation
indicators for the application of cooperative perception technology. We compare the im-
pact of PLR, latency, and channel congestion on cooperative perception in this subsection,
summarizing and analyzing relevant research in recent years.
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Table 7. Summary of the perceptual information-sharing strategies by type of shared information.

Sharing Strategy Authors, Year Purposes Findings Remarks

CPM generation rules Thandavarayan et al.
2020 [84,85]

Optimized the CPM
generation strategy

formulated by ETSI to
reduce redundant

information.

Dynamic CPM
generation strategy.

Optimizing the CPM
generation strategy can

effectively reduce
redundant information.

CPM value and
freshness

Baldomero et al.
2020 [87]

Designed a
context-based
confirmation

mechanism through
which the transmitting
vehicle can selectively

request the
confirmation of

specified or critical
broadcast information

to reduce
communication load.

Realized the correct
reception of

information through
message response.

Transmitted critical
sensory data, reducing
communication load.

Higuchi et al. 2020 [90]

Decided whether to
send the CPM policy by

predicting the
importance of the CPM

to the receiver,
reducing the

communication load.

Leveraged value
prediction networks

and assessed the
validity of information.

Shared perceptual
information based on

information
importance and

freshness.

Aoki et al. 2020 [91]

Leveraged deep
reinforcement learning

to select data to
transfer.

The detection accuracy
was increased by 12%,

and the packet
reception rate was
increased by 27%.

Rahal et al. 2020 [92]

Proposed enhancing
the freshness of

perceptual information
to enhance the

timeliness and accuracy
of cooperative

perception information.

Optimized information
update rate.

3.3.1. Latency

Latency in V2X cooperative perception includes task offloading latency, data fusion
calculation latency, and result feedback latency. The size of the computing task, the band-
width of the wireless channel, and the computing power of the edge server or mobile
device all have a certain impact on latency.

3.3.2. Packet Loss Rate

The PLR is the ratio of the data packets lost by the target node to the data packets
sent by the application layer of the source node. Data integrity is very important for
the effectiveness of cooperative perception in the process of data transmission. In fact,
under the interference of multiple factors, such as unfavorable weather, illumination,
and communication quality, it is difficult to avoid the loss of perception data during
transmission. If the data loss is serious, it will reduce the reliability of perception results
and even lead to the failure of cooperative perception.
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3.3.3. Congestion Control

The decentralized congestion control (DCC) mainly focuses on solving the problem
of channel congestion in cooperative perception information sharing and improving the
timeliness and accuracy of cooperative perception information. Currently, DCC technology
mainly reduces the congestion of the communication channel by adjusting the generation
strategy of cooperative sensing information and controlling the transmission parameters.
Among these, adjusting the generation strategy of cooperative perception information
mainly reduces the redundancy of cooperative perception information by optimizing the
message generation rules. The most common control parameters are transmission rate
control, transmission power, and transmission data rate control [96].

The safety-critical application of autonomous driving has strict constraints on the
delay, and the time interval delay between the generation and transmission of cooperative
perception cannot exceed 100 ms [82]. The pros and cons of communication performance
have a direct impact on the effectiveness of cooperative perception, which, in turn, interferes
with the execution of decision-making and control modules [97,98]. When the communica-
tion delay and data PLR in the communication process reach a certain level, it will have
a great negative impact on the use of V2X information in autonomous driving, resulting
in a poor cooperative perception effect, which, in turn, reduces the safety of autonomous
driving. In order to analyze and reduce the negative impact of delay and PLR on network
performance, and, thus, improve the effectiveness of cooperative perception, domestic and
foreign scholars have carried out much research on this. Liu et al. [99] constructed several
typical IoV application scenarios in a closed test field environment for the needs of DSRC
test evaluation. The experiment used PLR and delay as evaluation indicators and tests and
analyzed the effects of speed, distance, shelter, and other factors on the performance of
DSRC. The test results show that communication distance and obstacle occlusion are the
main factors that cause the degradation of DSRC communication performance. Obstacle
occlusion increases the PLR of communication, resulting in security information not being
fully transmitted under NLoS conditions, reducing the effectiveness of cooperative per-
ception. Similarly, Bae et al. [100] designed and implemented a performance evaluation
of DSRC communication in both Line-of-sight (LoS) and NLoS scenarios in real scenarios.
When the transmission power is 5 dBm and the packet reception rate exceeds 90%, the
communication distances in the LoS and NLoS test scenarios are 720 m and 175 m. When
the transmission power is 11 dBm and the packet reception rate exceeds 90%, the com-
munication distances in the LoS and NLoS test scenarios are 1035 m and 515 m. Through
comparative analysis, communication distance and occlusion can have a certain impact on
the packet reception rate, which, in turn, affects the effectiveness of perception.

Xu et al. [101] used performance indicators such as PLR, latency, and throughput to
evaluate the performance of communication devices under high channel occupancy in
dense traffic scenarios. They proposed that a high channel occupancy rate will obviously
lead to a decline in vehicle communication capabilities and cannot fully guarantee the
effective transmission of cooperative sensing data. Lee et al. [102] comprehensively con-
sidered the impact of packet loss and delay on V2X data fusion, implemented automotive
augmented reality by integrating V2X communication and information from the vehicle
itself, and evaluated the impact of sensor fusion with packet loss and delay [103]. In the
experiment, when the packet loss in the lossy network was set to 5% and the delay was
1 s, the accuracy of data fusion was nearly doubled compared to normal. When the data
packet loss in the communication network reached 5%, broadcasting and receiving mes-
sages one time per second, the accuracy of data fusion was about 37% lower than normal.
Xiong et al. [104] analyzed the impact of packet loss and delay on the blind-spot pedestrian
collision system. Under a certain initial longitudinal distance, the higher the PLR, the lower
the security, and the higher the initial speed, and the smaller the limit delay.

In addition, the performance of V2X communication is highly affected by the com-
munication load, and high channel load levels increase the risk of packet collisions. The
vehicle network integrates congestion control algorithms to control the channel load and
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avoid congestion, mainly including reactive and adaptive methods [105]. These protocols
can modify the rate or power of information transmission or even drop packets, changing
the transmission of V2X messages, which, in turn, affects the effectiveness of cooperative
perception. Günther et al. [106] analyzed the impact of the ETSI ITS G5 network on cooper-
ative perception, including the generation rules of cooperative perception information [84]
and the influence of broadcast frequency on communication channels. They evaluated
the impact of DCC on cooperative perception by defining a constrained environment for
hundreds of vehicles. That is to say, the amount of data generated by cooperative percep-
tion can easily lead to the congestion of communication channels, resulting in too much
old perception information and reducing the accuracy of perception information [107,108].
Delooz et al. [108] adjusted the network load and optimized the transmission of perceptual
objects by filtering the number of objects in the message, including the information about
the object itself and low-dynamic objects. However, at the same time, there will be a
negative impact on the accuracy of cooperative perception. Thandavarayan et al. [109]
demonstrated for the first time that incorporating congestion control functions at the access
and facility layers can improve perception through cooperative perception and ensure
the timely transmission of information. The combination of the DCC access layer and
the facility layer in the simulation scene with a market penetration rate of 100% and high
traffic density (180 veh/km), whether using the reactive method or the adaptive method,
has significantly improved the object perception rate. Günther et al. [110] evaluated the
impact of DCC on cooperative perception in dense scenes and compared the two methods
of transmitting environmental CPM using only cooperative awareness messages. They
pointed out that a high channel load increases the risk of data packet collision, resulting in
low data packet transmission efficiency, increased communication delay, and the reduced
accuracy and timeliness of vehicle cooperative perception. Furukawa et al. [111] improved
the method of dynamically adjusting the sensor transmission data rate based on the vehicle
position relationship and road structure [112]. By autonomously selecting high-probability
vehicles to broadcast sensor data, the data of other vehicles’ blind spots covered by sensors
can be preferentially transmitted. The method reduces radio traffic and enhances real-time
situational awareness of other vehicles. Research on transmission power control has a
great effect on the improvement of communication performance. Table 8 describes the
possible impact of network performance (delay, packet loss, channel congestion, etc.) on
cooperative perception.

Table 8. Summary of the possible impact of network performance on cooperative perception.

Authors, Year Key Research Points Remarks

Liu et al. 2020 [99] Analyzed the impact of the analysis of
factors affecting DSRC performance.

Communication distance and shelter are
the main factors that cause the

degradation of DSRC communication
performance, and selective deployment
of roadside equipment can effectively

improve DSRC communication
performance.

Bae et al. 2021 [100]
Analyzed the impact of communication
distance on packet reception rates in LoS

and NLoS test scenarios.

Communication distance has a great
influence on the reception rate of data

packets. The greater the communication
distance, the more serious the loss of

packet reception rate.

Lee et al. 2020 [102] Analyzed the impact of PLR and delay on
V2X data fusion.

By predicting data changes and using
historical data, the accuracy of data

fusion can be improved, and the
detection accuracy is nearly 50% higher

than that of lossy networks.
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Table 8. Cont.

Authors, Year Key Research Points Remarks

Xiong et al. 2018 [104]
Evaluated the impact of latency and

packet loss on the security of Internet of
vehicles applications.

The higher the PLR, the lower the
security. The smaller the initial speed, the

lower the limit latency.

Thandavarayan et al. 2020 [109]
The study investigated the impact of

congestion control on cooperative
perception using the DCC framework.

The combination of congestion control
functions at the access and facility layers

can improve the perception achieved
with cooperative perception, ensure the
timely transmission of the information,

and significantly improve the object
perception rate.

Günther et al. 2016 [110]
Selected the best DCC variant and format

of messages to maximize vehicle
awareness.

The amount of data generated by
cooperative perception can easily lead to
channel congestion, resulting in too much
old sensing information and reducing the

accuracy of sensing information.

Furukawa et al. 2019 [111]

Improved the vehicle position
relationship and road structure to

dynamically adjust the sensor data
transmission rate method to improve the
transmission rate of useful information.

Selecting high-probability vehicles to
broadcast data and prioritizing data from
other vehicles’ blind spots reduces radio

traffic and enhances the real-time
situational awareness of other vehicles.

Sepulcre et al. 2020 [113]

Selected high-probability vehicles to
broadcast and prioritize data from other

vehicles’ blind spots, reducing radio
traffic and enhancing real-time

situational awareness of other vehicles.

Controlling the way the vehicle drops
packets can reduce the flow of packets
transmitted to the wireless channel, but
the dropped packets are not transmitted,
resulting in the lower performance of the

application.

Sepulcre et al. [113] first explored the impact of packet rate-degraded congestion
control protocols on the application-level performance of vehicular networks. The results
show that the method of controlling vehicle packet loss can reduce the flow of data packets
transmitted to the wireless channel and improve communication performance. However,
dropped packets are not transmitted, resulting in the reduced performance of the appli-
cation and a negative impact on the co-awareness effect. As shown in Figures 10 and 11,
the radio performance and application-level performance are analyzed for the PLR at
traffic densities of 120 veh/km and 180 veh/km, respectively. If the DCC mechanism is
not used, both reactive and adaptive methods can improve radio performance, but the
application-level performance decreases. The main reason is that application-level packets
are not discarded by DCC, as shown in Figure 10. At a traffic density of 120 veh/km, the
radio performance is hardly affected, and the application-level performance still drops a
large number of packets due to the reactive method, resulting in application-level perfor-
mance degradation. Furthermore, there is no benefit to using DCC for the application-level
evaluation of the packet delivery ratio (PDR) at medium and low traffic densities, as shown
in Figure 11.

3.4. Summary

To sum up, the share network and information-sharing strategies are key elements in
realizing the cooperative perception of autonomous driving in the environment of the IoV.
In terms of network communication, DSRC and C-V2X are the key communication methods
to realize the cooperative perception of the IoV environment. At this stage, the hybrid
network architecture of DSRC and C-V2X can be used to support the diversified needs
of IoV applications. Advanced vehicle applications requiring high reliability, low latency,
and high throughput will be better supported as communication technology continues
to enhance. For the cooperative perception information-sharing strategy, the generation
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and design of cooperative perception information are further optimized according to the
importance and relevance of CPM through the analysis and improvement of standard CPM
rules. In addition, factors such as traffic flow, market penetration, communication distance,
etc. may cause a series of negative effects, such as long transmission times of cooperative
perception information, packet loss, and channel congestion, reducing the effectiveness
of cooperative perception. At present, the evaluation indicators of the effectiveness of
communication technology and sharing strategies for cooperative perception have not
been perfected. In the future, the impact of vehicle mobility and market penetration on
communication performance should be fully considered, and a more reasonable CPM-
sharing strategy and a more complete evaluation system should be designed.
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4. Discussion

Autonomous driving cooperative perception technology in the IoV environment
greatly solves the current problems of single autonomous vehicles, such as limited per-
ception range and the perception of blind spots. At the same time, the transmission delay
is reduced through a new generation of wireless communication technology to ensure
the end-to-end timeliness of autonomous driving, from perception to decision-making.
However, the particularities of autonomous driving and the maturity of communication
technology still pose many problems for cooperative perception. Combined with the ex-
isting research and analysis on cooperative perception technology and communication
technology, this section further proposes research trends and problems to be solved in V2X
and autonomous driving cooperative perception.
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4.1. Cooperative Perception Information Fusion

The existing image–image, point cloud–point cloud, and image–point cloud perception
information fusion methods coexist, and it has been found that multimodal and multi-
view image–point cloud fusion cooperative perception is best. The stages of information
fusion and sharing are different, which have an important impact on computing speed and
perception accuracy. The fusion of processed data can reduce the amount of transmitted
data and significantly reduce the network communication load while the fusion of raw
sensor data has a better cooperative perception effect, but it will increase the communication
burden and has a certain negative impact on the cooperative perception results. Therefore,
under the premise of ensuring the performance of target detection, the transmission of
low-value data should be reduced as much as possible, and the accuracy and real-time
performance of cooperative perception results should be improved. In addition, the dataset
construction of vehicle–road collaboration will be a key factor to ensure the research and
evaluation of vehicle–road cooperation algorithms.

4.2. Efficient and Reliable Information-Sharing Strategy

Most of the existing cooperative perception information-sharing strategies are imple-
mented in the form of broadcasting [86]. As opposed to unicast and multicast, broadcast
messages do not have an acknowledgement mechanism, which not only increases the
burden on wireless channels but also makes it difficult to ensure the reliability of perception
information transmission when the channel is congested. Perceptual information-sharing
is carried out in the form of broadcasting, and the information about the same object may
be shared with the autonomous vehicle multiple times, as shown in Figure 12. Vehicle C
receives two pieces of information about vehicle X from vehicle A and vehicle B. At this
time, vehicle C will perform target matching on the received objects to determine whether
they are the same object, which will not only occupy more communication resources but
also increase computational tasks for autonomous vehicles. In addition, vehicle C may
not need to pay attention to the information of vehicle X so that the path planning and
decision-making can be carried out normally. Therefore, proper redundant data sharing
helps improve the accuracy of perception, but too much redundant information is obviously
not beneficial.
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The communication resources of the vehicle network are very precious, so it is nec-
essary to carry out reasonable task scheduling and resource allocation to the edge nodes.
Through the reasonable optimization of the CPM-sharing strategy, the information in the
area of interest of the vehicle is selectively shared, and the redundancy of data is minimized
under the requirements of timeliness and accuracy. At the same time, the deployment of rea-
sonable network technology will effectively reduce the waste of communication resources
and realize the sharing of perception information between autonomous vehicles under the
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constraints of limited communication resources according to different traffic flow, envi-
ronmental complexity, and vehicle dynamics. Therefore, a reasonable information-sharing
strategy will be the focus of future research on cooperative perception.

4.3. Vehicle Mobility

The mobility of vehicles is a major problem in the cooperative perception between
edge nodes and autonomous vehicles. The highspeed movement of vehicles will lead to
the fast movement of communication nodes, frequent changes in network topology, and
unstable communication link times, resulting in the frequent connection and disconnection
of communication links. Eventually, the link established between V2I and V2V fails,
causing the transmission of communication and computing tasks to fail. Secondly, the rapid
movement of vehicles will cause rapid changes in the surrounding environment, resulting in
varying degrees of interference in the communication between edge nodes and autonomous
vehicles. This leads to changes in data transmission efficiency and transmission quality, the
degradation of communication quality, and difficulty in ensuring data integrity. In addition,
the mission will fail if the vehicle is out of communication range while data uploading or
message reception is in progress. At present, the communication quality problem caused
by vehicle mobility cannot be effectively avoided. However, the interference of vehicle
mobility on communication quality should be minimized to ensure the effectiveness and
timeliness of cooperative perception. Zhu et al. [114] considered the frequent changes
in the network topology caused by the mobility of vehicles and proposed using regional
base stations to uniformly coordinate and manage vehicles within the communication
range. When the vehicle with the computing task leaves the communication range, the
task scheduling is performed again, which effectively improves the minimum service delay
level and service quality. The disadvantage is that additional switching time overhead
is required. Zhou et al. [115] utilized a vehicle’s MEC network architecture to seamlessly
switch computing tasks through the MEC network routing instead of simply offloading
them to edge servers when the vehicle’s communication range changed. This ensures
the effective execution of computing tasks and effectively improves the scalability of
computing and services. As in [114], it will also increase the time overhead. By introducing
a penalty term for the failed tasks in the optimization objective, the task failures caused
by vehicle movement can be effectively reduced, but the failures cannot be completely
avoided [116,117]. Based on the above research and analysis, it is concluded that the
problems caused by vehicle mobility, such as mission failure, poor communication links,
and unstable transmission quality, should still be the focus of future research.

4.4. Security

The mobility of edge nodes and the dynamics of network topology bring new chal-
lenges to the security and confidentiality of vehicle networks. Cooperative perception in
the IoV environment mainly solves the information interaction between edge nodes and
autonomous vehicles. However, edge nodes, including vehicles, RSUs, and edge servers,
are deployed in a distributed manner, resulting in low single-point protection capabili-
ties and attacks by malicious users. When a malicious node sends false environmental
information to other vehicles, it sends a large number of computing tasks to the RSU to
occupy computing resources and network bandwidth, and the autonomous vehicle that
receives the computing tasks will not execute them. The reliability of network services will
be destroyed, and the safety of autonomous vehicles will be greatly threatened. Therefore,
the realization of autonomous driving cooperative perception in the IoV environment not
only needs to consider the trust issue between nodes but also needs to pay attention to
the security of the system network. For example, Zhang et al. [118] used elliptic curve
cryptography and other security strategies to verify the authenticity of the IoV user access
to ensure the security of network communication between vehicles. However, because the
IoV is a network without a central node and has no corresponding architecture, coupled
with the limited computing resources of the vehicle itself, it is difficult to apply mature
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traditional network defense solutions to the IoV [119]. The study found that the application
of blockchain technology [120,121] can effectively solve the security and privacy protection
issues of cooperation between autonomous vehicles and edge nodes under decentralized
conditions. Therefore, in the future, it can take advantage of its decentralization, anonymity,
and the non-tampering of data to establish a corresponding trust mechanism between edge
nodes and autonomous vehicles to solve the trust problem of node data and to reduce
network interference.

5. Conclusions and Outlook

Cooperative perception technology in the IoV environment plays a crucial role in
solving the problems of limited perception range and insufficient computing resources
for autonomous vehicles, and through wireless communication technology, it further
guarantees the real-time requirements of autonomous driving. This paper introduces the
current cooperative perception information fusion methods and cooperative perception
information-sharing strategies and sorts out the research methods of cooperative perception
information in the process of data transmission under unstable communication conditions.
Combined with existing research results, we found that future research on cooperative
perception technology should focus on more complex fusion algorithm designs, lightweight
models, and V2X applications supported by 5G communication technology. In addition,
there are still severe challenges to grasping the balance point of perception–communication–
fusion, improving the perception performance of autonomous driving by cooperative
perception, and realizing the optimization and balance between V2I and V2V. This paper
summarizes the research ideas and analysis methods through a review of the research on
autonomous driving cooperative perception in the IoV environment, helping researchers
in this field quickly understand the research status of autonomous driving cooperative
perception technology in the IoV environment and providing future research directions.
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The following abbreviations are used in this manuscript:
IoV Internet of vehicles
V2V Vehicle-to-vehicle
V2I Vehicle-to-infrastructure
MEC Multiaccess edge computing
ROI Region of interest
CPM Cooperative perception message
C-V2X Cellular–vehicle-to-everything
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DSRC Dedicated short range communication
WAVE Wireless access in vehicular environments
3GPP Third generation partnership project
ETSI European Telecommunications Standard Institute
LoS Line-of-sight
NLoS Non-line-of-sight
PDR Packet delivery ratio
DCC Decentralized congestion control
PLR Packet loss rate
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