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Abstract: A significant challenge for a supervised learning approach to inertial human activity
recognition is the heterogeneity of data generated by individual users, resulting in very poor perfor-
mance for some subjects. We present an approach to personalized activity recognition based on deep
feature representation derived from a convolutional neural network (CNN). We experiment with
both categorical cross-entropy loss and triplet loss for training, and describe a novel loss function
based on subject triplets. We evaluate these methods on three publicly available inertial human
activity recognition datasets (MHEALTH, WISDM, and SPAR) comparing classification accuracy,
out-of-distribution activity detection, and generalization to new activity classes. The proposed triplet
algorithm achieved an average 96.7% classification accuracy across tested datasets versus the 87.5%
achieved by the baseline CNN algorithm. We demonstrate that personalized algorithms, and, in
particular, the proposed novel triplet loss algorithms, are more robust to inter-subject variability and
thus exhibit better performance on classification and out-of-distribution detection tasks.

Keywords: human activity recognition; personalized algorithms; machine learning; time series;
triplet neural network; inertial sensors

1. Introduction

Inertial sensors embedded in mobile phones and wearable devices are commonly
employed to classify and characterize human behaviors in a number of applications,
including tracking fitness, elder safety, sleep, and others [1–5]. Sensor-based HAR is,
furthermore, increasingly being used in clinical settings to assist in monitoring and tailoring
rehabilitation and physiotherapy activities of patients [6–8]. Improving the accuracy
and robustness of the algorithms underlying inertial Human Activity Recognition (HAR)
systems is an active field of research.

A significant challenge for a supervised learning approach to inertial human activity
recognition is the heterogeneity of data between individual users. This heterogeneity occurs
in relation to diversity in the hardware on which the inertial data is collected, different
inherent capabilities or attributes relating to the users themselves [9], alterations in the
environment in which the data is collected [10], and inconsistent sensor placement. This is
particularly important in monitoring rehabilitation activities where patient performance is
heavily dependent on clinical condition and level of impairment, resulting in large variance
in capacity to reproduce idealized versions of exercises.

Large datasets incorporating the full spectrum of user, device, and environment het-
erogeneity may be considered in addressing these challenges, however, such an approach
presents significant logistical and financial challenges. Further, the devices and sensors on
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which inertial data is collected continuously evolve over time and it may not be feasible
to train generic supervised algorithms that perform equally well in HAR for all users and
devices. An alternative is to leverage labeled user-specific data for a personalized approach
to HAR.

In this research, we experiment with deep feature representation for personalized
HAR, specifically considering (1) extracted features from a neural network classifier and
(2) an optimized embedding learned using Triplet Neural Networks (TNN) [11,12]. We
compare these to a baseline impersonal neural network classifier, and a personalized
engineered feature representation.

Contributions of this study include:

• Presentation and evaluation of novel personalized embedding approaches to HAR
that enable rapid and computationally efficient user-specific data characterization and
classification.

• Adaptation of the TNN metric learning methodology into this personalized user-
specific HAR classification regime.

• Extension of the proposed approaches to unseen classes and out-of-distribution (OOD)
detection. We illustrate how the personalized methodologies presented in this work
are easily extensible to the preceding tasks and are able to achieve high accuracy on
the experimental datasets.

The remainder of this paper is organized as follows. We provide a brief synopsis of
related work to the topic of personalized approaches to HAR. Section 2 describes the key
methodologies proposed, including personalized feature extraction methods and a detailed
explanation of the personalized TNN approach. We also describe therein the core model
used in the analysis, the preprocessing pipeline, as well as experimental setup inclusive
with evaluated datasets. Section 3 presents experimental results, with discussion of these in
Section 4. Lastly, in summarizing the findings of the preceding analysis, Section 5 highlights
the significance of this work and potential future related research.

Related Work

HAR from inertial time series data has classically been conducted using a supervised
learning approach with non-neural classifiers, after transformation of the data using an
engineered feature representation consisting of statistical, time-domain, and/or frequency-
domain transforms [13–16]. Modern supervised learning approaches using convolutional
and or recurrent neural networks are increasingly utilized and have demonstrated improve-
ments in classification accuracy over non-neural models [1,17–21]. Both non-neural and
neural network supervised learning models have been applied to personalized activity
recognition [22–29].

User-specific supervised learning models can be trained through one of three general
schemes. First, a user-specific model can be trained de novo with user-specific data or
a combination of generic and user-specific data [30]. This is generally not feasible for
neural network approaches that require vast datasets and computational resources for
training, but works well for non-neural approaches with engineered features [22]. Sec-
ond, model updating (online learning, transfer learning) with user-specific data is feasible
for both non-neural [23–25] and neural network supervised learning algorithms [26,29].
Rokni et al. [26] trained a generic convolution neural network architecture and adapted
it to specific users by retraining the classification layer while fixing the weights of the
convolutional layers with excellent results. A third scheme involves using classifier en-
sembles [27,28]. Hong et al. [28] trained non-neural models on subpopulations within the
training set, and selected user-specific classifier ensembles based on testing the pre-trained
classifiers on user-specific data. These personalized methods have all produced favorable
results in comparison to generic models. However, generating, validating, and maintaining
user-specific supervised learning models presents its own logistical challenges in a produc-
tion environment. There are also currently regulatory barriers to such an approach in the
context of software as a medical device [31].
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An alternative approach to personalized activity recognition is to store an embedding
of labeled user-specific data. The embedding process performs a feature extraction trans-
formation of data into a new predetermined feature space. The embedding process can be
specified a priori with engineered features, and/or be learned from the data (e.g., a deep
learning model). The advantage of this methodology is that the embedding method can
be fitted or trained to a large dataset in advance, while user-specific interrogation can be
rapidly accomplished in a de novo fashion via feature extraction through the pre-trained em-
bedder, with the resulting embedding subsequently used to perform classification and/or
characterization. Further benefits of this approach include the capacity to incorporate
novel activity classes without model re-training, and identify out-of-distribution (OOD)
activity classes (i.e., samples drawn from class distributions previously unseen in classifier
training), thereby supporting an open-set activity recognition framework [32–34].

The penultimate feature layer of neural network classifiers in various domains have been
shown to be useful for classification and other tasks (e.g., visualization, clustering) [35,36].
Sani et al. [36] demonstrated that features extracted from a deep convolutional neural net-
work are superior for generic activity recognition in comparison to engineered features with
non-neural models. However, features extracted from deep neural networks are often treated
as a side effect of the classifier training, rather than being explicitly sought. Metric learn-
ing methods, such as Siamese Neural Networks (SNN) [37] and Triplet Neural Networks
(TNN) [11,12,38] optimize an embedding directly for the desired task. Triplet selection strate-
gies have been proposed for domain-specific tasks, which improve performance from the
naive implementation. Khaertidnov et al. proposed triplet batch construction based on sub-
ject and class distance with attention [39]. In the work by He et al. triplets were sampled
based on a hierarchical strategy in the application of fine-grained image classification, where
a convolutional neural network was trained to extract low-level features [40]. Inter-class
subject variability may also be approached as a domain adaptation problem as in the work by
Hao et al. [41], where a domain-invariant deep feature extractor is combined with task-specific
networks for the domains of subjects and devices.

2. Materials and Methods
2.1. Fully Convolutional Neural Network Architecture

The deep learning model architecture adopted in this analysis is the fully convolutional
network (FCN) as proposed by Wang et al. [17]. This architecture is considered a strong
baseline for time series classification even in comparison to deep learning models with
modern architectural features used in computer vision such as skip connections. The
FCN model used in this study consists of 3 1D convolutional layers, with rectified linear
unit (ReLU) activation, and batch normalization after each layer. Regularization of the
model is achieved using dropout applied at each layer. Global average pooling is used
after the last convolutional layer to reduce the model sensitivity to translations along
the temporal axis, as this ensures the receptive field of the features in the penultimate
feature layer includes the entirety of the window segment. The receptive field of filters
in the last convolutional layer prior to global average pooling was 13 samples, which is
equivalent to 260 ms at a sampling rate of 50 Hz. An L2 normalization is applied after
global pooling to constrain the embedding to the surface of a unit hypersphere, which
improves training stability. Gradient norm clipping to 1.0 is used to mitigate exploding
gradients. The impersonal fully-convolutional neural network (FCN), personalized deep
feature (PDF), and personalized triplet network (PTN) models described in subsequent
sections all use this FCN core architecture.

2.2. Feature Embedding Methods
2.2.1. Engineered Features

We use an engineered feature representation to serve as a baseline personalized
classifier model. The representation consists of typical statistical and heuristic features used
for inertial activity recognition [15], including mean, median, absolute energy, standard
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deviation, variance, minimum, maximum, skewness, kurtosis, mean spectral energy, and
mean crossings. The features are individually computed for each of the data channels in
the dataset. All features are individually scaled to unit norm and zero mean across the
training dataset.

2.2.2. Deep Features

In addition to engineered hand-crafted features, we train a model to learn time series
features directly from the data. A deep feature representation model is created by training
an FCN classifier model that consists of the FCN core with a final dense layer with softmax
activation. This model is used to directly classify time series segments at test time, and is
referred to as the “Impersonal FCN” in this study.

Alternatively, the FCN can also be used at test time to create deep features, or embed-
dings, for time series segments. Embeddings are created by taking the normalized output
from the global average pooling layer (before the fully-connected layer) of the FCN for
a given segment. Embeddings are created for a set of reference samples and a set of test
samples from the same patient. Inference is then performed using a k-NN search of the
reference samples closest to the given test sample. When used in this configuration we
refer to the model as a personalized deep feature (PDF) model.

2.2.3. Triplet Network Features

While training an FCN for direct classification can lead to effective feature representa-
tion layers, the distances between samples in that feature space is not explicitly learned.
The role of the triplet neural network is to learn an embedding f (x), for data x into a feature
space Rd such that the Euclidean distance between datum of the same target class (y) is
small and the distance between datum of different target classes is large. With a squared
Euclidean distance metric, triplet loss (LT) is defined by Schroff et al. [11] as:

LT =
T

∑
i
max

{[
‖ f (xa

i )− f (xp
i )‖

2
2 − ‖ f (xa

i )− f (xn
i )‖2

2 + α

]
, 0

}
(1)

where xa
i is a sample from a given class (anchor), xp

i is a different sample of the same
class (positive), and xn

i is a sample of a different class (negative). α is the margin, which
is a hyperparameter of the model defining the distance between class clusters. The same
embedding f (x) is applied to each sample in the triplet, and the objective is optimized over
a training set of triplets with cardinality T. The number of possible triplets (T) that can be
generated from a dataset with cardinality N is O(N3).

In practice, TNNs converge well before a single pass over the full set of triplets [11],
and therefore a subset of triplets must be specifically selected from the full set. First, a naive
strategy is implemented whereby triplets are randomly selected from T, enforcing only no
temporal overlap between anchor and positive samples. Next, a triplet selection strategy
is implemented where triplets derive their samples from a single subject, which yields a
modified triplet loss function:

LS =
S

∑
s

Ts

∑
i
max

{[
‖ f (xa

s,i)− f (xp
s,i)‖

2
2 − ‖ f (xa
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2 + α

]
, 0

}
(2)

where xa
s,i is a segment of a particular activity class for subject s (anchor), xp

s,i a segment
of the same activity class and subject of the anchor (positive), and xa

n,i is a segment of a
different activity class but from the same subject as the anchor (negative). Ts denotes the full
set of triplets that may be drawn from a single subject, and S is the full set of subjects. This
approach reduces the number of possible triplets to O(N). Various other strategies have
been used in the computer vision domain to specifically select hard triplets for improving
the efficiency of the TNN training [11].

We derive the PTN embedding f (x) by training the FCN core with triplet loss. In
our experiments, we evaluate conventional triplet loss with random triplets (PTN† as per
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Equation (1)), and subject triplet loss (PTN as per Equation (2)) with a portion of the triplets
being subject triplets and the remainder randomly selected. We use the same optimizer and
hyperparameters as for training an impersonal FCN, except the learning rate is reduced to
0.0002 when training the FCN core with triplet loss. The hyperparameter α was initially
tuned to a value of 0.3 and kept fixed for all subsequent tests. Despite the greater cardinality
of the triplet set, we consistently define an epoch in this manuscript as having N samples.
At test time, deep features are extracted from reference and test time series segments using
the PTN. Inference is then performed using the k-NN approach described in Section 2.2.2.
This approach is described in Figure 1.

Figure 1. Personalized triplet network (PTN) training and prediction methodology. Beginning from
top left, each dataset is split into 5 groups for 5-fold cross validation, stratifying the groups by subject.
Activity classes are distributed uniformly across groups. Colorization indicates activity classes
or model layer as applicable. Sliding window segmentation is then applied to each fold and the
segmented test fold is held back. PTN training (bottom left) is achieved by drawing two segments xa

and xp from the target activity class and one segment xn from a different class, performing a forward
pass through the triplet neural network (TNN) for each of the three segments, and computing the
triplet loss LT . This procedure is then repeated for the set of triplets Ti for each activity class i. The
model is then evaluated by temporal splitting of the test segments for each class into “reference” and
“test” sets, ensuring no temporal overlap between reference and test segments. Reference segments
from all classes for a given patient are then passed through the TNN and the resulting embeddings are
used to train a k-NN model (bottom right). Finally, inference is performed by passing test segments
though the TNN and performing a k-NN search across the set of reference embeddings.

2.3. Data and Preprocessing

Algorithms are evaluated on three publicly available inertial activity recognition
datasets: MHEALTH [42], WISDM [43], and SPAR [44]. These datasets encompass a
combination of activities of daily living, exercise activity, and physiotherapy activities.
Class balance is approximately equal within each and there is minimal missing data. The
specific attributes of these datasets are summarized in Table 1.

The MHEALTH data was collected with three proprietary inertial sensors on the
subjects’ right wrist, left leg, and chest. The WISDM data was collected from an Android
smart watch worn by the subjects, and a mobile phone in the subjects’ pocket. The SPAR
data was collected from 20 subjects (40 shoulders) using an Apple smart watch.
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Table 1. Experimental inertial datasets.

Dataset Sensors Subjects Classes 1 Sampling Omitted Subjects Domain Sensor Placement

MHEALTH 9-axis IMU2 x3, 2-lead ECG 10 12 100 Hz 0 Exercise Chest, left ankle, right arm
WISDM 6-axis IMU x2 51 18 20 Hz 4 ADL, Exercise Right pant pocket, wrist

SPAR 6-axis IMU x1 40 7 50 Hz 0 Physiotherapy Wrist
1 The following activities were performed in each dataset. MHEALTH: Standing still, sitting, lying down, walking,
climbing stairs, waist bends forward, frontal elevation of arms, knees bending, cycling, jogging, running, jump
front and back. WISDM: Walking, jogging, ascending/descending stairs, sitting, standing, kicking a soccer ball,
dribbling a basketball, catching a tennis ball, typing, writing, clapping, brushing teeth, folding clothes, eating
pasta, eating soup, eating a sandwich, eating chips, drinking from a cup. SPAR: Pendulum, abduction, forward
elevation, internal rotation with resistance band, external rotation with resistance band, lower trapezius row with
resistance band, bent over row with 3 lb dumbell.

The WISDM and MHEALTH data is resampled to 50 Hz, using cubic interpolation,
to provide a consistent basis for evaluating model architecture. The time series data are
then pre-processed with sliding window segmentation to produce fixed length segments
of uniform activity class. A four second sliding window is utilized for the MHEALTH
and SPAR datasets, and a ten second window is utilized for WISDM for consistency
with previous evaluations [43–45]. An overlap ratio of 0.8 is used in the sliding window
segmentation as a data augmentation strategy. Engineered feature extraction resulted in
66 features for the WISDM and SPAR datasets, and 174 features for the MHEALTH dataset.

We use only the smart watch data from the WISDM dataset because the smart watch
and mobile phone data were not synchronized during data collection. We also exclude four
WISDM subjects from the evaluation due to errors in data collection that resulted in absent
or duplicated sensor readings (subjects 1637, 1638, 1639, and 1640).

The keras [46] and seglearn [47] open source python libraries were utilized to imple-
ment the machine learning models described in this work. The scikit-learn library was
used to implement the k-nearest neighbor algorithm.

2.4. Experiments
2.4.1. Activity Classification

Classification accuracy is evaluated using five-fold cross-validation grouping folds
by subject. Subject distribution across folds is randomized but consistent for each algo-
rithm in keeping with best practices for the evaluation of human activity recognition
algorithms [45]. Cross-validated test set performance is summarized for each algorithm
on the three datasets in Table 2. Accuracy statistics (mean and standard deviation) are
aggregated by subject, not by fold. The statistical significance of performance differences
between models is evaluated based on the standard deviation in performance of each
model during cross validation. Models were considered significantly different if their mean
accuracies were more than two standard deviations apart.

Table 2. Activity classification performance 1.

Model MHEALTH WISDM SPAR

FCN 0.925 ± 0.049 0.754 ± 0.012 0.947 ± 0.069
PEF 0.984 ± 0.029 0.852 ± 0.060 0.971 ± 0.038
PDF 0.995 ± 0.016 0.889 ± 0.055 0.980 ± 0.028

PTN † 0.993 ± 0.024 0.909 ± 0.054 0.978 ± 0.035
PTN 0.999 ± 0.003 0.913 ± 0.053 0.990 ± 0.017

1 Classification performance of the fully-convolutional neural network (FCN), personalized engineered feature
model (PEF), personalized deep feature model (PDF), personalized triplet network trained with conventional
triplet loss (PTN†), and the personalized triplet model trained with patient-specific triplet loss (PTN). Scores are
the cross-validated classification accuracy (mean ± standard deviation) aggregated by subject. † The PTN trained
with conventional triplet loss.
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Classification accuracy of the supervised FCN model is tested in addition to three
personalized feature classifiers: personalized engineered features (PEF), personalized deep
features (PDF), and personalized triplet network (PTN). Inference in the FCN is achieved
by taking the direct model prediction for each test segment. The FCN classifier is trained
for 150 epochs using the Adam optimizer, categorical cross entropy loss, and a learning
rate of 0.001. Inference with the personalized models is achieved by comparing a subject’s
embedded test segments to the labeled reference embeddings specific to the subject. For the
test subjects, the time series data for each activity is split along the temporal axis, reserving
the first 50% for reference data and the latter part for inference. This split is performed
prior to sliding window segmentation to ensure there is no temporal overlap of reference
and test samples. This partitioning of the data is depicted in Figure 1. To determine the
activity class in a test segment, we search the reference embeddings for the three-nearest
neighbors (k-NN with k = 3) using a Euclidean distance metric and a uniform weight
decision function.

2.4.2. Embedding Size

A deep feature representation of activity is desirable to minimize the storage and
computational cost of personalized feature inference. We assess the effect of embedding
size on model performance using five-fold cross validation on the SPAR dataset. For the
PDF and PTN models, the embedding size is adjusted at the final dense layer of the FCN
core. For the engineered features, we reduce the embedding size by selecting the most
important features as ranked using Gini importance [48]. The Gini importance is calculated
for the engineered features using an Extremely Randomized Trees classifier [49] with an
ensemble of 250 trees.

2.4.3. Reference Data Size

We evaluate the effect of reference data size on model performance, using 50% of the
test data as the baseline evaluation. The effect of reference sample quantity on personalized
feature classifier accuracy is evaluated using five-fold cross validation on the SPAR dataset.
Reference dataset sizes of 4, 8, 16, and 24 segments are tested. The upper bound of
24 segments is constrained by the length of recordings. In each case, the model is tested on
the same test set.

2.4.4. Out-of-Distribution Detection

We assess model performance for distinguishing activity classes present in the train-
ing distribution from unknown (out-of-distribution) activity classes. This evaluation is
performed by training the models on a subset (70%) of the activity classes, and testing with
the full set of activity classes in a subject group five-fold cross validation scheme. In each
fold, the classes considered out-of-distribution are randomly selected but are consistent
across the algorithms evaluated. Out-of-distribution performance is assessed using the
area under the receiver operating curve (AUROC) for the binary classification task of in- vs.
out-of-distribution.

Out-of-distribution (OOD) classification is implemented for the personalized feature
classifiers using a local outlier factor model trained on the in-distribution embeddings
on a per-subject basis. The mean distance of the three nearest neighbors is used as the
probability output. For the FCN model, we consider the maximum softmax layer output as
a confidence measure for the decision function [50].

2.4.5. Generalization to New Activity Classes

Generalization of personalized features to new activity classes is assessed in a manner
similar to out-of-distribution detection. Rather than a binary in- vs. out- classification
target, each model is trained on data with 30% of the activity classes removed. The model
is then tested by performing multi-class classification on the full set of activity classes in
the test set, where reference samples for the k-NN are inclusive of the new activity classes.



Sensors 2022, 22, 5222 8 of 16

The FCN model is not assessed for this task as generalization to new target classes is not
possible due to the static output size of the softmax classification layer. The multiclass
classification accuracy is used as the metric for this task.

2.4.6. Computational Expense

Experiments are carried out locally on a computer with two NVIDIA Titan V GPUs for
hardware acceleration. Computational expense is evaluated for each model by comparing
the fit time, inference time, model size, and reference embedding size with the SPAR dataset
on a single fold (test size 0.2). Reference size for personalized feature classifiers is based on
single precision 64 feature embeddings, with 16 samples for each of the 7 activity classes.

3. Results
3.1. Activity Classification

Cross-validated test set performance is summarized for each algorithm on the three
datasets in Table 2. Accuracy statistics (mean and standard deviation) are aggregated by
subject, not by fold. Box and whisker plots demonstrating the variation in performance
between individuals are provided in Figure 2.

FCN PEF PDF PTN
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

MHEALTH

FCN PEF PDF PTN

WISDM

FCN PEF PDF PTN

SPAR
Classification Performance

Figure 2. Violin plots showing the distribution of classifier performance by subject using five-fold
cross validation. The distributions are cut-off at the minimum and maximum accuracy values. The
personalized classifiers have better performance and less inter-subject performance variation than
the impersonal FCN (fully convolutional network) model.

Personalized feature classifiers out-performed the impersonal FCN classifier and
reduced the incidence and degree of negative outlier subjects that exhibited poor perfor-
mance in the impersonal model. Personalized models reduced inter-subject variability in
classification performance. Both the personalized deep feature models (PDF and PTN)
outperformed the personalized engineered features (PEF). Specifically, the PTN model
utilizing subject triplet loss had the highest classification performance. However, all of
the personalized feature classifiers are within one standard deviation of one another. Con-
versely, the standard deviation of the PTN model is much more constrained around the
mean as compared to the other personalized models. Personalized algorithms achieved
near 100 percent accuracy for the MHEALTH and SPAR datasets, while the results were
significantly lower for WISDM.
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3.2. Embedding Size

Classifier performance as a function of embedding size is plotted in Figure 3. The
performance of the PEF model appears to degrade at embedding size 16, with embedding
sizes of 8 leading to a significant drop in accuracy.

8 16 32 64 128

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

PEF

8 16 32 64 128
Embedding Size

PDF

8 16 32 64 128

PTN
Effect of Embedding Size (SPAR Data Set)

Figure 3. The effect of embedding size (number of features) on personalized feature classifier accuracy,
evaluated on the SPAR dataset. The performance of the PEF model appears to degrade at embedding
size 16 and below.

3.3. Reference Data Size

Results are plotted in Figure 4. Increasing reference size had a pronounced effect
on performance in the PEF model. Reference sizes of eight or more segments resulted in
similar performance in the PDF and PTN models.

4 8 16 24

0.75

0.80

0.85

0.90

0.95

1.00
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ra
cy

PEF

4 8 16 24
Reference Size [segments]

PDF

4 8 16 24

PTN
Effect of Reference Data Size (SPAR)

Figure 4. The effect of reference data size (number of reference segments per activity class) on
personalized feature classifier accuracy, evaluated on the SPAR dataset. Increasing reference data
size results in improved performance for the PEF model. A reference size of four segments results in
significantly degraded performance in all models.

3.4. Out-of-Distribution Detection

OOD detection performance is plotted in Figure 5. In contrast to the classification
task, the best performing OOD detector appeared to depend on the dataset tested. The
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PDF, PTN, and PEF classifiers had the highest mean AUROC scores for the MHEALTH,
WISDM, and SPAR datasets, respectively. The personalized models achieved AUROCs of
greater than 0.8 on each dataset. FCN softmax thresholding, in particular, fared poorly on
the WISDM dataset.

FCN PEF PDF PTN
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MHEALTH

FCN PEF PDF PTN

WISDM

FCN PEF PDF PTN
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Out-Of-Distribution Detection

Figure 5. Violin plots showing distribution of OOD detection AUROC across subjects, with 30%
of activity classes held back from the training set. The displayed distributions are cut-off at the
minumum and maximum AUROC values for each classifier. The PDF, PTN, and PEF classifiers had
the highest mean AUROC scores for the MHEALTH, WISDM, and SPAR datasets, respectively.

3.5. Generalization to New Activity Classes

Results of generalization to new activity class experiments are plotted in Figure 6.
Results are similar to in-distribution classification tasks, with all three feature classifiers
achieving near perfect performance, with the exception of the WISDM dataset. The PTN
algorithm achieved the highest accuracy across all three datasets, though these results are
again with standard deviation of one another.
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Figure 6. Distribution of activity classification performance when generalizing an embedding to
novel activity classes, with 30% of activity classes held back from the training set. The PTN model
achieved the highest mean accuracy across all three datasets.
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3.6. Computational Expense

The computational cost for each model on the SPAR dataset is reported in Table 3,
detailing training and inference time on our hardware, and storage size for model and
reference data. In our implementation, the inference time for the PDF and PTN classifiers
was split nearly equally between embedding computation and nearest embedding search.
Training the FCN core with triplet loss in the PTN model increased the fit time by approxi-
mately five-fold in comparison to training with categorical cross entropy loss as with the
PDF and FCN models.

Table 3. Computational and storage expense.

Model Fit Time [s] Inference Time
[s] Model Size [kB] Reference Size

[kB]

FCN 137 0.47 4290 0
PEF 3.3 0.39 3.8 112
PDF 129 0.94 1095 112
PTN 667 1.3 1095 112

4. Discussion

This work describes the methodology and use of novel approaches to personalized
human activity recognition of inertial data. A personalized deep feature model (PDF),
a personalized triplet network (PTN), and personalized engineered features (PEF) were
compared to a baseline impersonal fully convolutional network (FCN).

The PTN and PDF models outperformed PEF for activity classification. The three
personalized feature classifiers significantly outperformed the impersonal FCN classifier,
which is considered a strong baseline. In fact, the personalized classifiers were able to
achieve performance approaching training set performance of the impersonal FCN classifier,
nearing 100% mean accuracy in cross-validated classification. However, as the reference and
test sets for the personalized classifier evaluation were obtained by splitting individual time
series (without temporal overlap), our results likely overestimate real-world performance
where the reference and test sets would be derived from separate physical therapy sessions.

Within the spectrum of personalized algorithms evaluated here there are some notable
differences in performance. The PTN with single subject triplet loss as proposed in this
work not only achieves the highest classification accuracy, standard deviation is also much
more constrained around the mean, and is a marked improvement even over the PTN †

algorithm, which implemented a naive splitting strategy. The FCN classifier performed
poorly for some individuals (as low as 50% accuracy), as shown in Figure 2. The three
personalized feature classifiers evaluated all significantly mitigated inter-subject variability
in terms of accuracy of prediction, and exhibited more consistently accurate predictions for
individual subjects within each dataset.

Experimental results of algorithms on the WISDM sets were comparatively poor for
classification tasks versus the MHEALTH and SPAR datasets. While the WISDM dataset
was unique in being segmented with a 10-second time window, we believe that unlikely
to be the source of this discrepancy, as we have previously evaluated window size and
found only a moderate effect on accuracy across several datasets [34]. Instead, this effect is
likely the result of the selection of activities of daily living in the WISDM dataset, which
are confused due to extremely similar patterns in the inertial data from a single wrist IMU
(e.g., eating soup, eating chips, eating pasta, and eating sandwich).

The novel triplet loss function (Equation (2)) and triplet selection strategy described
in this work significantly improved the performance of the PTN model in comparison
to conventional triplet loss. The subject triplets can be considered “hard” triplets in
the context of other strategies for specifically selecting hard triplets to improve TNN
training [11,51–53]. How well our approach compares to other hard triplet selection strate-
gies remains as future work. However, our strategy may be worth considering as it is
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straightforward to implement and computationally inexpensive in comparison to strate-
gies that require embeddings to be computed prior to triplet selection. The benefit of
subject triplets may hold to a greater extent on datasets collected with heterogenous hard-
ware. Certainly, our work demonstrates that the triplet selection method is an important
consideration for maximizing the utility of TNNs in the inertial activity recognition context.

Dependence of model performance on reference dataset size and embedding size were
explored. Performance of PTN and PDF models appear robust to smaller embedding size,
whereas the PEF model experienced a significant drop in accuracy at embedding sizes 16
and below. Twenty-four reference segments were selected as the upper limit for the effect
of the reference data size experiment. This upper bound is constrained by recording length
in the SPAR dataset, but based on these results, additional reference segments may improve
accuracy for longer recordings. The results showed that performance suffered significantly
when using a reference size of four segments. This could partially be an effect of having
fewer reference segments than the number of activity classes, thereby creating a k-NN
training set that may not include any segments from the same class as the test segment.
Based on the results in Figure 4, 16 reference segments (equal to approximately 16 seconds
of data) or more should be used per activity class.

Typically, deep learning classification algorithms implementing a softmax output
layer perform poorly at out-of-distribution activity detection due to overconfidence [54].
Various approaches to improving OOD performance for neural networks have been inves-
tigated in the computer vision fields with mixed results and this remains an active area of
research [33]. An advantage of using personalized features for activity classification is
the built-in capability to use them for OOD activity detection and classification of novel
activities. In the HAR field, OOD detection is particularly important as there exists an
infinite number of possible human actions, and therefore it may be impractical to include
all possible actions in the training set or even all reasonably likely actions. Typically, it is
a desirable property of an HAR system that it can be trained to recognize a select num-
ber of pertinent activities and have the ability to reject anomalous activities not in the
training distribution.

In these experiments, personalized models significantly outperformed the baseline
FCN softmax threshold OOD detection method in the WISDM dataset, unlike for the
MHEALTH or SPAR datasets where performance was roughly equivalent. Superior per-
formance in comparison to a softmax threshold OOD method would be expected, given
existing work on OOD detection in exercise IMU datasets [34]. While the activities included
in MHEALTH and SPAR are exercise and full-body movements, WISDM includes a larger
number (18) of activity classes, including a number of very similar activities of daily living
(as previously noted). OOD detection of WISDM in these experiments is thus a more
challenging problem, particularly when an OOD activity in the test set is nearly identical
in terms of inertial data patterns to the patterns of one or more in-distribution activities
used to train the model. Our results show that the personalized models, in particular the
PTN, significantly outperformed softmax thresholding in these cases. This suggests that the
PTN may be suited to HAR OOD-detection problems where there is greater inter-patient
heterogeneity than inter-activity heterogeneity. Unlike in classification experiments where
personalized algorithms achieved near perfect accuracy, OOD detection accuracy was
significantly lower. In contrast to classification tasks, for OOD, the k-NN of personalized
methods is never trained on reference samples from the selected OOD classes, and depends
rather on a threshold-based distance metric for prediction of untrained classes.

We have demonstrated that mean nearest neighbor distance with personalized features
has good performance for our synthetic OOD evaluation. However, further work is required
to evaluate alternative approaches and build out-of-distribution datasets incorporating
real-world variation with unknown and potentially unsupervised daily activities.

Personalized models have the flexibility to be generalized to new activity classes,
provided that a reference recording from the new class is available from the patient in
question. The PEF, PDF, and PTN models achieved generalization performance similar to



Sensors 2022, 22, 5222 13 of 16

their performance when trained on the full set of exercises in the previous classification
tasks. This demonstrates the ability of these personalized models to effectively generalize
to new activity classes with very little new data.

While the PTN model exhibited competitive performance, a significant disadvantage
of using a triplet neural network to learn the embedding function is the increased computa-
tional cost during training. On our hardware, the PTN approach increases the training time
five-fold and triples the GPU memory requirements in comparison to training an identical
core with categorical cross entropy loss. This is due to the further cost of triplet selection
where each triplet is comprised of three distinct samples that must each be embedded
to compute the triplet loss. Fortunately, once the embedding has been trained, there is
little difference in computational requirements to compute the embedding or classify an
unknown sample.

The FCN core architecture described in this work, with just 278,848 parameters
(∼1 MB), is a relatively compact model. Particularly, in comparison to computer vision
or language models that can exceed tens or hundreds of millions of parameters [55–57].
Given the small size of the model and reference embeddings, implementing a personalized
feature classifier based on the FCN core may be feasible within an edge computing system
where the computations for HAR are performed locally on the user’s hardware (mobile
device). There are various advantages of an edge computing approach, including improved
classification latency, reliability, and network bandwidth usage [58].

The personalized k-NN model used to search reference embeddings for classification of
test samples in the PEF, PDF, and PTN models was found to be effective, but approximately
doubles the inference time in comparison to the FCN model that used a softmax layer for
classification. A disadvantage with k-NN search is that computational time complexity
and data storage requirement scales with the number of reference samples O(N). This
property of k-NN limits its utility as an impersonal classifier, as performing inference
requires searching the entire training dataset. In the context of a personalized algorithm,
however, the k-NN search is limited only to the subject’s reference samples, which we have
demonstrated need only include tens of samples per activity class. Of course, other search
strategies could be implemented to search the reference data. The nearest centroid method,
for instance, could be used which has computational complexityO(1), scaling linearly with
the number of reference classes.

Although there was no temporal overlap in the segments used to derive the reference
and test embeddings, it is a limitation of this work that they were derived from the same
time series. Unfortunately, we are not aware of any currently available public inertial
activity recognition datasets that contain repeated data collections of the same activity
classes by the subjects. Certainly, such a dataset would be worthwhile to collect and would
serve as the best validation of the approaches described in this work. However, these
experimental results illustrate that personalized algorithms are an effective approach to
reducing inter-subject algorithm performance variability, which is one of the key motiva-
tions for this research. As such, we would expect personalized algorithms to exhibit better
performance than impersonal classifiers such as the FCN when tested on a dataset with
repeated data collections of the same activity classes. Similarly, since the PTN appears the
most effective model for reducing inter-subject variability, we believe this provides strong
evidence for the superior performance of the PTN model versus the other personalized
algorithms implemented in these experiments.

5. Conclusions

We have shown that the personalized algorithms presented here are more robust
to inter-subject variability in inertial time series datasets. They significantly outperform
impersonal approaches in more challenging classification tasks where there exists a high
degree of similarity between classes (e.g., WISDM). This is especially apparent for OOD
detection where the OOD data is similar to in-distribution class training data. These
algorithms also have built-in functionality for generalization to new activity classes. We
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have, furthermore, presented a novel single subject triplet loss, which improves subject-
specific prediction performance over both a naive triplet loss implementation as well as the
other personalized algorithms evaluated. This method is also shown to significantly reduce
inter-subject variability in activity classification tasks. These algorithms should be further
evaluated on a dataset containing multi-session performance of exercises by each subject
for validation in a realistic use case scenario. Nevertheless, we believe these results present
strong evidence that the personalized algorithms as presented here, and, in particular,
the PTN improves detection and classification accuracy through focused learning of the
heterogeneous data of individual subjects.
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