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Abstract: This survey article is concerned with the emergence of vision augmentation AI tools for
enhancing the situational awareness of first responders (FRs) in rescue operations. More specifically,
the article surveys three families of image restoration methods serving the purpose of vision aug-
mentation under adverse weather conditions. These image restoration methods are: (a) deraining;
(b) desnowing; (c) dehazing ones. The contribution of this article is a survey of the recent literature
on these three problem families, focusing on the utilization of deep learning (DL) models and meeting
the requirements of their application in rescue operations. A faceted taxonomy is introduced in
past and recent literature including various DL architectures, loss functions and datasets. Although
there are multiple surveys on recovering images degraded by natural phenomena, the literature
lacks a comprehensive survey focused explicitly on assisting FRs. This paper aims to fill this gap
by presenting existing methods in the literature, assessing their suitability for FR applications, and
providing insights for future research directions.

Keywords: deraining; dehazing; desnowing; deep learning; deep neural networks

1. Introduction

First responders (FRs) are trained professionals that provide aid in case of emergency
and include medics, firefighters, law enforcement and civil protection officials. During op-
erations, FRs often come across many stressful situations, experience extreme safety risks
and may meet an additional inevitable obstacle—adverse weather conditions. Weather
conditions that reduce visibility, such as rain, snow or haze, prevent FRs from exhibiting
expected performance under normal conditions while they simultaneously increase the
risk of injury. Moreover, adverse weather conditions may become an obstacle on the perfor-
mance of any computer vision (CV) tool employed by FRs during operations. Typically,
one would observe a degraded performance in these tools that handle raw visual data
that is itself degraded by artifacts caused by the utilization of the tools under adverse
weather conditions.

In recent years, thanks to deep learning (DL), CV algorithms have been proposed for
solving various vision tasks which, in the real world, are either difficult, time consuming or
impossible for a human to carry out. In such tasks, DL-based CV algorithms have shown
impressive results. Due to their great performance, recent works have concentrated on
developing them further and making them more accurate and possibly faster. To make
a DL model more accurate, many researchers have focused on designing sophisticated
architectures. This led to the requirement of training large models that can achieve perfor-
mance close to that of humans, but with such a computational complexity that would be
impossible to be implemented in devices with constrained resources or in applications in
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which CV algorithms need to perform in real time. This challenge led many scientists to
research ways to achieve outstanding performance with models that contain a considerably
low number of parameters. At the same time, evolution in hardware has given us the ability
to use numerous sensors, processors and energy sources in small and lightweight gadgets.
As a consequence, portable devices have paved the way for extending CV applications in
numerous domains that require the existence of light equipment and quick response from
the model. These devices can serve the enhancement of the FRs’ vision.

On the other hand, the development and deployment of CV systems for facilitating
the FRs’ vision under adverse weather conditions (herein, we focus on rain, snow and haze)
pose several challenges that need to be addressed. First, there is a lack of assortment in
the imagery provided by datasets which are focused on a specific task. Although there are
several tasks directly related to the enhancement of visual recognition under adverse condi-
tions (such as deraining, desnowing and dehazing), virtually none of them contains scenes
representative of the FRs’ working environment. Additionally, even in the design of the
existing datasets, it is impossible for the designer to simultaneously capture the same image
with and without the visual artifacts caused by the adverse weather conditions. However,
being able to do so is a requirement in standard supervised end-to-end approaches that
receive pairs of clear and noisy images. In such models, the noisy image is fed at one end
of the model and the clean image is output at the other end. Thus the models proposed in
the literature are either trained in an unsupervised manner having only the noisy images,
or they use pairs of synthetic noisy images with their ground truth (clear) images. A direct
drawback when training models on synthetic data, however, is that there is a domain gap
among the real and the synthetic datasets. That is, in such a case, it may be difficult for
image denoising models to generalize well on real-world data.

Another important issue in the application of CV systems for the facilitation of the
FRs’ vision, is the required processing time. When employing a DL model to enhance the
situational awareness of FRs, the model should process visual data in near real-time and
often in infrastructure-less environments (e.g., environments with an absence of network
connectivity and with power constraints). In the related literature, only a small number
of research works propose deep neural network models that are lightweight architectures
able to operate well in power-constrained infrastructures. Under these conditions, there is
a requirement for the DL-based augmented vision tools to simultaneously be lightweight
and adequately accurate.

Owing to the constraint on real-time processing and the requirement for lightweight
models, there is an urgent need for solutions that can handle more than one task simultane-
ously. These solutions are often called unified solutions, and we will be using this term in
our article. So far, there has been a great amount of research works on image restoration
techniques focusing on only one specific adverse weather condition. In the real world,
however, during a rescue operation (e.g., one taking more than one day to complete) the
FRs could meet any weather condition. This means that the CV tool that could help the
FRs’ vision should be able to adapt to the visibility changes of the scene, or it should be
able to switch between modes of operation specific to one particular weather condition.
Importantly, the unification of such models has already been addressed in the literature (at
least regarding the three problems that this article is concerned with). Hence, to the best of
our knowledge, there are a few models that suggest unified solutions.

In ideal weather conditions, CV tools can offer the means for FRs to keep themselves
safe and at the same time locate and save victims robustly and reliably. However, rain,
snow and haze can degrade the performance of such CV systems. Consequently, these
systems do not provide optimal assistance to FRs. In this survey article, we explore the
use of DL-based image denoising methods tailored towards the removal of atmospheric
artifacts in captured images. These DL models could be applied for the augmentation of
the FRs’ vision. We specifically require these inferences to be better possible under rain,
snow and haze conditions.
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Clear vision can improve disaster response in multiple ways, including damage detection [1],
traffic management [2,3], UAV-driven reconnaissance [4,5] and flood detection [6]. Object
detection is a computer vision task which is usually impeded by adverse weather condi-
tions; for instance, see the works of Rothmeier and Huber [7], Pfeuffer and Dietmayer [8],
Hasirlioglu and Riener [9], Chaturvedi et al. [10] among many research papers on this topic.
Morrison et al. [11] conducted a user study on the requirements of first responders in terms
of communication systems. Although this study focuses on communication infrastructure
requirements, nevertheless it points out a need for robust technological solutions that may
improve the capabilities of first responders in adverse weather conditions. However, first
responders often need to operate in adverse weather conditions, which can degrade both
vision and the efficacy of vision-based algorithms. These can include rain, snow, haze,
darkness, smoke, dust and others. From a visual computing point of view, these can be
divided in two broad categories:

• Conditions which degrade vision without fully obstructing it: such as rain, snow
and haze. As objects or people are visible through such conditions both to the naked
eye and RGB camera sensors, visual computing algorithms can be used to restore such
images and improve visibility.

• Conditions which fully obstruct some or all parts of the field of view: such are total
darkness, heavy smoke or dense dust. Such conditions beyond the capabilities of RGB
sensors and computer vision algorithms to restore, necessitating other modalities and
approaches, such as infrared sensors.

The present survey focuses specifically on the first category, that of conditions that
only partially obscure vision, examining in particular the cases of rain, snow and haze.
To that end, it presents and categorizes such image restoration methods that can improve
clarity of vision in such adverse conditions, both for the responders themselves and for any
computer algorithms that they may employ.

Due to the extensive research on the image restoration task, there are numerous
research works devoted to the deraining, desnowing and dehazing tasks. While previous
surveys have focused on general-purpose image denoising, including deblurring and super-
resolution (such as the recently published work by Su et al. [12]), an up-to-date survey of
image restoration methods addressing specifically adverse weather conditions and their
applicability for disaster response operations, has been missing. To this end, the present
work focuses on image restoration methods that could serve the purpose of augmenting
the sight of FRs as the means to increase their situational awareness. The augmentation
of vision scenarios that we consider regard the existence of adverse weather conditions.
That implies that we have focused mostly on architectures that provide accurate results
and could be implemented on portable devices that can provide real-time processing.
However, non-real-time or near-real-time methods are also taken into consideration, since
they may possess several properties or ideas which are desirable in the implementation of
new, lightweight models in the future. In our article, we provide an up-to-date survey of
the deraining, desnowing and dehazing methods, being employed as important tools for
augmenting the sight of FRs and for providing higher-quality input to CV algorithms that
are required to make critical inferences.

The key contributions of this survey are as follows:

• We survey the research literature on the deraining, desnowing and dehazing methods
that employ DL-based architectures. To the best of our knowledge, this work is the
first survey of image restoration methods in adverse conditions for assisting FRs
situational awareness.

• We provide a faceted taxonomy of the abovementioned image denoising methods in
adverse weather conditions in terms of their technical attributes.

• We compare the existing algorithms in terms of quantitative metrics and processing
time in order to decide the appropriateness of each method for the specific task of
facilitating the FRs’ vision.
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Our work aims to conduct a detailed and comprehensive survey on single-image
restoration methods in adverse weather conditions, namely rain, haze and snow. We expect
that this study can contribute toward understanding the current trends in the existing
methods, their applicability and limitations in an applications level for FRs. Additionally,
the challenges that arise from these limitations provide valuable insights for future research
directions. The article is structured as follows. In Section 1, we motivate the use of image
denoising methods for the removal of rain, haze and snow under the more general context
of augmenting the vision capacity of FRs operating in rescue missions. In Section 2, we
present the existing datasets for each task. In Sections 3–5 we survey the literature of DL-
based deraining, desnowing and dehazing methods respectively. For each task, we present
a technical taxonomy of the existing literature based on the architecture of the models both
for single and multi-images. In Section 6, we present the most common quantitative metrics
and the results of the models proposed in the literature in terms of the quantitative metrics
and processing time. Last, in Section 7 we summarize the paper.

2. Datasets

The availability of datasets for the deraining, desnowing and dehazing tasks is impor-
tant for the development and cross-evaluation of methods built around these problems.
Creating large-scale datasets for training DL models from scratch is not an easy task, there-
fore, pre-existing publicly available datasets are very important, because they accelerate
the development of algorithms and researchers are not required to build their own datasets
themselves. In this section we survey the available datasets for the deraining, desnow-
ing and dehazing problems. Tables 1–3 summarize the proposed datasets for deraining,
desnowing and dehazing, respectively.

2.1. Deraining Datasets

A plethora of datasets have become available for enabling the development and evalu-
ation of deraining methods. When designing new deraining methods, a major problem
that is faced is the infeasibility of simultaneously capturing pairs of rainy and clean images,
thereby imposing difficulties in training supervised models. A notable example refers
to the deep end-to-end models, where a pipeline learns to map rainy images fed at the
one end to clean images output at the other end. This difficulty has motivated the idea
of generating synthetic deraining image datasets. Based on this idea, the designer of the
dataset injects noise in the images by means of a synthetic rain streak generation algorithm.
Therefore, by knowing where each rain streak is placed, it is easy to obtain a rain streak
mask image that can provide a supervisory signal to machine learning (ML) methods.
A limitation that is often met when reusing synthetic datasets for training deraining models,
is that the injected noise is often not realistic enough for the trained models to be able to
generalize well on real-world images with naturally generated rain streaks. Finally, apart
from the datasets containing pairs of clean and synthetic rainy images, another class of
datasets contain only real-world images for which ground-truth is unknown. Deraining
datasets that do not contain ground-truth are more suitable for unsupervised deraining
methods (for example, see [13–15]), or for semi-supervised deraining methods which can
be trained on a combination of a paired dataset and a dataset with no ground-truth (for an
example, see [16]).

The RainX datasets (where X is an integer value from a fixed set of integers) are
some of the most commonly used datasets in the evaluation of deraining algorithms.
The Rain12600 dataset is a synthetic rain dataset that was originally contributed by
Fu et al. [17]. The dataset contains a total of 14,000 pairs of rainy and clean images of
the same scene out of 900 original scenes. To create the dataset, originally 1000 images of
scenes were selected from the UCID [18], the BSD [19] dataset and Google image search.
For each single image out of the available 1000 ones, 14 rainy images are synthetically
generated. Some authors reusing this dataset keep 90% of the available 14,000 14-tuples for
training models (amounting to 12,600 images), and keep the rest of the images for testing
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(amounting to 1400 images). The Rain12000 dataset is another synthetic rain dataset that
contains 12,000 images. The dataset was originally introduced by Zhang and Patel [20].
Depending on the rain synthesis occurring in each image, an image is assigned one of three
possible labels, namely light-rain, medium-rain and heavy-rain. The Rain1400 dataset is
traced back to the publication of Fu et al. [17]. This dataset is a subset of 100 14-tuples
from the Rain12600 dataset. The number of examples in this dataset amounts to 10% of
the total example images provided by Rain12000. The dataset is commonly referred to as
Rain1400, and is a subset of the Rain12600 dataset. The Rain800 dataset was contributed
by Zhang et al. [21]. The dataset is split into a training set of 700 synthetic images and a
testing set of 100 images. The Rain12 dataset [22] contains 12 synthetic images which are
injected with one type of rain streak.

The Test100 and Test1200 datasets were contributed for the purpose of conducting
model validation for deraining methods. More specifically, the Test100 dataset was in-
troduced by Zhang et al. [21]. Test100 contains the last 100 examples of the Rain800
dataset. The Test1200 dataset was contributed in the work of Zhang et al. [20]. It contains
1200 images of rainy scenes.

The RainTrainH and RainTrainL datasets make a distinction among scenes with heavy
rain and scenes with light rain. The RainTrainH and RainTrainL datasets were contributed
in the work by Zhang and Patel [20].

The Rain100H, Rain100L and Rain200H are three of the most commonly used datasets
on the deraining problem. Specifically, the Rain100H dataset was contributed in the work
of Yang et al. [23]. It is a synthetic rain image dataset, originally composed of samples from
the BSD200 dataset [19]. The Rain100L dataset, like the Rain100H dataset, was contributed
by Yang et al. [23]. It is a synthetic rainy image dataset that comprises five different
orientations of rain streaks. This dataset can be specifically used to test the ability of a deep
neural deraining model to learn the regularity of rain streaks. The Rain200H dataset was
contributed by Yang et al. [24]. The dataset contains 1800 paired training images and a
testing set of 200 paired images.

The Rain in Driving (RID) and Rain in Surveillance (RIS) datasets resemble two use
cases of image deraining algorithms, making both of them suitable for validating algorithms
whose target application partially or fully coincides with the two use cases. The RID dataset
(contributed by Li et al. [25]) is a set of 2495 rainy images extracted from driving videos of
a high resolution. The dataset demonstrates the veiling effect of rain streaks on the camera
lens. The dataset was captured under real multiple drives and traffic locations. Finally,
the dataset contains ground-truth for four objects (namely, car, person, bus and bicycle).
The RIS dataset (also contributed by Li et al. [25]) contains a total of 2048 real rainy images
from lower-resolution surveillance video cameras. The dataset demonstrates the “rain and
mist” scenario where the surveillance cameras introduce a fog-like effect and a mist-like
effect caused by rain falling near the cameras.

The DAWN/Rainy dataset (contributed by Kenk and Hassaballah [26]) contains
200 images of outdoor rainy scenes. The dataset can be used for the single image deraining
task. It can also be used for an object detection task where the detected targets can be
matched directly with object ground-truth, which is available for each image. A limitation
of the provided object ground-truth is that the provided ground-truth objects are selective
of a small target set of objects.

The NTURain dataset was contributed by Chen et al. [27]. It is a synthetic rain dataset
comprising a total of eight video sequences. The frame-count of each video sequence ranges
between 200 and 300 frames. A total of four of the videos contain short scenes captured
from a panning and unstable camera. The rest of the four videos were captured by a fast
moving camera.

The SPA-Data dataset by Wang et al. [28] contains 29,500 rainy or clean image pairs.
The data are split into a training set of 28,500 examples and a testing set of 1000 examples.
These rainy/clean image pairs are generated from a large dataset of 170 videos of real rain.
The videos cover the topics of urban scenes, suburb scenes and outdoor fields.
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Table 1. Listing of datasets used for the deraining task.

Dataset Synthetic (S)/Real (R) Indoor (I)/Outdoor (O) Pairs Year
Rain12600 [17] S O 14,000 2017
Rain12000 [20] S O 12,000 2018
Rain1400 [17] S O 1400 2017
Rain800 [21] R O 800 2020
Rain12 [22] S O 12 2016
Test100 [21] S O 100 2020

Test1200 [20] S O 1200 2018
RainTrainH [20] S O 1800 2018
RainTrainL [20] S O 200 2018
Rain100H [23] S O 100 2020
Rain100L [23] S O 100 2020
Rain200H [24] S O 2000 2017

RID [25] R O 2495 2019
RIS [25] R O 2048 2019

DAWN/Rainy [26] R O 200 2020
NTURain [27] S O 8 (videos) 2018
SPA-Data [28] R O 29,500 2019

2.2. Desnowing Datasets

A list of benchmark datasets has been compiled for use in the image desnowing
problem. The image desnowing problem has received a limited focus by researchers,
in comparison to other problems such as the deraining and dehazing problems. In this
section, we describe four important datasets which have been used to assist the develop-
ment and evaluation of desnowing methods.

The Snow-100K dataset contributed by Liu et al. [29] comprises both synthetic snowy
images and realistic images, all downloaded from the Flickr service. In particular, the dataset
offers 100,000 synthetic snow images paired with corresponding snow free ground-truth
images. The data are split in a training set and a testing set of 50,000 images each. A total
of 1329 realistic snowy images are provided along with the synthetic images. The dataset
consists of three subsets with small snow particles, medium-size and small-size snow
particles, and combined small, medium and large snow particles. Each subset contains
around 33,000 images.

The Snow Removal in Realistic Scenario (SRRS) dataset is a dataset that considers the
veiling effect of snow, consisting of 15, 000 artificially synthesized images and 1000 real-life
snow images downloaded from the internet. The popular RESIDE dataset is used to
populate the SRRS dataset with images, synthesizing the veiling effect in each one of these
images. To provide labeled data of snow particle appearance, various types of snow are
synthesized by means of image processing software and labels are assigned to each particle.
In terms of a training and validation set, 2500 images are chosen randomly for model
training and 1000 images are kept for testing models. The same partition of the images is
considered to render the additional case where the veiling effect is absent.

The Comprehensive Snow Dataset (CSD), originally proposed by Chen et al. [30], con-
tains 10,000 synthetic images, borrowed from the well-known RESIDE dataset. A snowflake
and snow streak synthesis algorithm is applied to generate synthetic images from the clean
images. The variety in the data is controlled in terms of three factors, namely (a) the level
of transparency of snow streaks; (b) the size and the location of snow streaks. The goal is to
generate realistic looking image samples.

The SITD dataset was contributed in the work of Li et al. [31]. It contains 3000 snowy
images, snow-free images and snowflake images. The images were generated from
50 videos that were collected from the web and 100 videos that were recorded by the
authors. White snow particles were generated synthetically based on a snow model and
were injected in the images. The dataset also promotes the variety of its samples by consid-
ering: (a) the density of snowflakes; (b) the shapes of snow particles; (c) the transparency
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of snowflakes; (d) the time of the day at which samples were captured; (e) the scene that
was captured.

Table 2. Listing of datasets used for the desnowing task.

Dataset Synthetic (S)/Real (R) Indoor (I)/Outdoor (O) Pairs Year
Snow-100K [29] S & R O 100,000+ 2018

SRRS [32] S & R I & O 16,000 2020
CSD [30] S I & O 10,000 2021
SITD [31] S O 3000 2019

2.3. Dehazing Datasets

A great amount of datasets focusing on the dehazing task has been found in the
literature. Most of them are proposed for training supervised learning models and therefore
contain pairs of hazy and haze-free images. Since it is impossible to capture the exact same
image with and without haze simultaneously, researchers have approached this problem in
three different ways. The first one is using datasets in which haze is synthetic and has been
added to clear images based on mathematical models; the second one is using datasets in
which haze is generated by a professional haze machine, and the third and most recent one
is using datasets where both hazy and clear images are real, but are not captured at the same
time. In this section, we describe the most popular datasets used for the dehazing task.

Tarel et al. [33] released the first synthetic dataset for single image dehazing, named
Foggy Road Image DAtabase (FRIDA). It consists of 72 pairs of synthetic images with and
without fog, captured from virtual urban road scene using the SiVIC™ software. For each
one of the 18 clear images, four foggy ones were generated synthetically. In order to
generate the foggy images, four different types of synthetic fog were used. The FRIDA2
dataset was introduced by Tarel et al. [34]. It consists of 264 pairs of synthetic images with
and without fog, captured from virtual diverse road scenes, where for each clear image
four synthetic foggy ones were generated. The synthetic images were generated in the
same way as in FRIDA.

Some years later, El et al. [35] released the CHIC dataset. It is a benchmark dataset
created using two indoor scenes in a controlled environment that were captured both in
hazy and clear conditions. In order to create haze, a haze machine was used and produced
nine different levels of haze density. The clear images and their corresponding nine hazy
images are also accompanied by some known parameters like the distance between each
object and the camera, the local scene depth, etc.

One of the most widely used datasets for single image dehazing is the Realistic Single
Image Dehazing (RESIDE) dataset [36]. RESIDE is a benchmark dataset that consists of two
versions: the Standard and the extended (RESIDE-β) one. The standard version includes:
(a) an Indoor Training Set (ITS) which contains over 10,000 pairs of hazy and clear indoor
images, where for each clear image 10 synthetic hazy ones were generated; (b) a Synthetic
Objective Testing Set (SOTS), which contains 500 pairs of hazy and clear indoor images
produced in the same way as in ITS; (c) a Hybrid Subjective Testing Set (HSTS), which
contains: 10 pairs of real, clean, outdoor images and the generated hazy ones and 10 real,
outdoor hazy images. The RESIDE-β includes: (a) an Outdoor Training Set (OTS) which
contains over 70,000 pairs of hazy and clear outdoor images, where for each clear image 35
synthetic hazy ones were generated; (b) a Real-world Task-driven Testing Set (RTTS), which
contains over 4000 real hazy images annotated with object categories and bounding boxes.

Other benchmark datasets include the D-HAZY [37], I-HAZE [38], O-HAZE [39],
DENSE-HAZE [40] and NH-HAZE [41] datasets proposed by Ancuti et al. The D-HAZY [37]
dataset contains over 1400 pairs of hazy and clear indoor images. It is built on the Mid-
delbury [42] and NYU Depth [43] datasets, which are datasets that provide clear images
and their corresponding depth information. The hazy images were synthesized by taking
into consideration depth information and by using the physics-based model presented in
Section 6.3.5. The I-HAZE [38] dataset contains 35 pairs of hazy and clear indoor images.
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Here, both hazy and clear images are real and captured under the same illumination con-
ditions. Haze is produced artificially by a professional haze machine and all the images
were taken in a controlled environment. The O-HAZE [39] and the DENSE-HAZE [40]
datasets contain pairs of hazy and clear outdoor images. DENSE-HAZE [40], which con-
tains 33 pairs of images can be considered as the extension of the O-HAZE [39] dataset,
which contains 45 pairs of images, in the way that it contains a much denser and challeng-
ing haze than O-HAZE. The images in both datasets were captured in the same way as in
I-HAZE. The NH-HAZE [41] dataset contains 55 pairs of hazy and clear outdoor images,
captured in the same way as in I-HAZE, O-HAZE and DENSE-HAZE datasets, but here
the haze in the images is non-homogeneous.

The Haze Realistic Dataset (HAZERD) [44] is a benchmark dataset that contains
14 clear, outdoor images accompanied by their corresponding depth maps estimated by
fusing structure from motion and LIDAR. Using the depth map of a clear image, they
synthesized five hazed ones, where each one of them has different levels of haze density.

Zhao et al. [45] recently released the BEnchmark Dataset for Dehazing Evaluation
(BeDDE). BeDDE is a real-world outdoor benchmark dataset where both hazy and clear
images are real and consists of two versions: the standard BeDDE and the EXtension of
the BeDDE (exBeDDE). The standard BeDDE contains 208 pairs of hazy and clear images,
collected from 23 provincial capital cities in China. One clear and more than one hazy
images were captured from the same place for each city. The images are accompanied
by manually labeled masks that provide the regions of interest and the hazy images are
also manually sorted into three categories on the basis of their haze density levels (“light”,
“medium” and “heavy”). The exBeDDE contains 167 hazy images from 12 cities selected
from the BeDDE dataset accompanied by 1670 dehazed images. For each hazy image
10 representative models were selected for producing the corresponding dehazed images,
and for each dehazed result a subjective score from people is provided for assessing the
performance of the dehazing evaluation metrics.

Zheng et al. [46] introduced the 4KID dataset, a 4K resolution (3840× 2160) dataset,
which consists of 10,000 pairs of hazy and clear images extracted from 100 videos. The haze
was synthesized using the physics-based model presented in Section 6.3.5 and a translation
module that translates the hazy images from the synthetic to the real domain.

Recently, the first REal-world VIdeo DEhazing (REVIDE) dataset [47] was released. It
has given the opportunity to further research the video dehazing problem. This benchmark
dataset contains 48 pairs of hazy and haze-free videos from scenes with 4 different styles.
The haze is produced artificially by a professional haze machine and all the videos were
taken in a controlled environment.

Table 3. Listing of datasets used for the dehazing task.

Dataset Synthetic (S)/Real (R)
/Generated (G) Indoor (I)/Outdoor (O) Pairs Year

FRIDA [33] S O 72 2010
FRIDA2 [34] S O 264 2012

CHIC [35] G I 18 2016
RESIDE [36] S & R I & O 10,000+ 2018

D-HAZY [37] S I 1400+ 2016
I-HAZE [38] G I 35 2018
O-HAZE [39] G O 45 2018

DENSE-HAZE [40] G O 35 2019
NH-HAZE [41] G O 55 2020

HazeRD [44] S O 70 2017
BeDDE [45] R O 200+ 2020
4KID [46] S O 10,000 2021

REVIDE [47] G I 40+ (videos) 2021

Although there exist a satisfactory number of publicly available datasets for the
deraining, desnowing and dehazing problems, unfortunately none of them contain scenes
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representative of the FRs’ working environment. Additionally, in most of the paired
datasets the noise is either synthetic or generated artificially using a machine. This leads
to the fact that most of the models proposed in the literature suffer from the domain shift
problem and they are not able to perform well in real-world scenarios.

3. A Review of the Deraining Literature

Rain is one of the most common bad weather conditions. When capturing an image in
a rainy scene, the blurring effect and haziness are noticeable phenomena causing generally
a degradation of the visual quality [48]. This degradation can affect FRs’ visual perception
as well as the performance of any CV tool employed to help their operations in outdoor
scenes. In the last decades, rain removal, which is referred to as deraining, is a task that has
attracted a lot of interest in the research community. In this Section, we survey the recent
bibliography on the deraining problem. Most of the presented methods target the single
image deraining problem, in which the goal is to restore a clean image from an input image
which is corrupted by rain streaks. Other methods target the deraining problem from the
standpoint of other modalities, such as image sequences (video) or stereo images.

3.1. A Taxonomy of the DL-Based Single Image Deraining Methods

In this Section, we provide a taxonomy of the surveyed deraining methods in terms of
the methodological attributes that may characterize a particular deraining algorithm. To
provide a more compact representation of the collected works on the deraining problem,
Table 4 directly summarizes the methods they present in keywords, and further categorize
some of their common attributes (for instance, their general model idea or their use of an
underlying imaging equation).

Previous surveys on the subject [49–53] all provide a similar categorization of the sur-
veyed methods. In this survey paper, we particularly highlight the attributes of more recent
methods; that is, methods that were published in the year 2020 onward. By inspecting the
reviews compactly being presented in Table 4, we came up with a set of seven methodolog-
ical attributes which characterize the surveyed methods. Each method presented in this
Section may be tied with at least one of the suggested attributes. For example, a method
may simultaneously employ a generative adversarial network-like architecture and harness
this architecture by means of an attention mechanism.

3.1.1. CNN-Based Deraining Methods

Deraining networks based on deep convolutional neural networks (CNNs) are net-
works which are mainly composed by convolutions, pooling layers, dropout layers, or
other layers which are common in vanilla deep CNNs. These plain models usually do
not contain more sophisticated structures such as attention layers, multi-scale analysis
constructions, etc.

Fu et al. [17] propose the DetailNet method, which uses a CNN model leveraging prior
domain knowledge from the high-frequency content of training images. Then, by doing so
the model can learn the structure of rain streaks from training data. The authors empirically
observe that the learnt model can also generalize well on real data when trained only on
only synthetic data. Fu et al. [48] propose the DerainNet model. The model employs a
deep CNN and uses the high-pass frequency layer computed from input images. As in the
model presented by Fu et al. [17], this model can also generalize well on real-world rain
images with the underlying model being trained on synthetic data. Yang et al. [54] injected
a hierarchical wavelet transform into a recurrent process that considers the low-frequency
component computed from an input image. The learnt network can adapt to rain streaks of
a larger size while being trained on image examples with rain streaks of only one size.

Coarse-to-fine or local-to-global strategies are also common in the general deraining lit-
erature. Fan et al. [55] propose the ResGuideNetwork model. This model can progressively
produce high quality deraining results, and it has a small set of parameters. It imple-
ments a novel residual-guide feature fusion network. A cascaded network is proposed and
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residuals are adopted from shallower blocks to provide data to blocks that are at deeper
positions in the network. A coarse-to-fine estimation of negative residuals is also realized
in the overall model. Wang et al. [28] propose an image deraining method that is based on
human supervision and temporal priors in order to derain images. It furthermore entails
a novel SPatial Attetive Network (SPANet) to remove rain streaks with a local-to-global
removal strategy.

Li et al. [56] proposes the NLEDN model, an end-to-end encoder-decoder network
with pooling layers, suitable for efficiently learning increasingly abstract feature repre-
sentations. The encoder-decoder design implements non-locally enhanced dense blocks.
These blocks are useful for learning features of a hierarchical structure, and for learning
long-range feature dependencies. Pan et al. [57] propose the dual CNN (DualCNN) for
super-resolution, edge-preserving filtering, deraining and dehazing. The network consists
of two parallel branches, recovering the structures and details end-to-end. The Dual-
CNN can be integrated with common CNN models. Huang and Zhang [58] propose a
deraining network employing the Dynamic Multi-domain Translation (DMT) module. The
parameters of the DMT-Net are estimated end-to-end.

Zhang and Patel [20] propose the DID-MDN multi-stream densely connected CNN
for joint rain density estimation and deraining. The network can learn the density of rain
from training images and can use features computed at different scales. The reader can also
be pointed to the multi-scale methods reviewed in Section 3.1.5.

Cho et al. [59] proposes a deraining network based on a memory network that
explicitly helps to capture long-term rain streak information. The memory network is
tied with an encoder-decoder architecture, similarly with the works by Li et al. [56];
Pan et al. [57]; and, Li et al. [25]. The features that are extracted from the encoder are read
and updated within the memory network.

Guo et al. [60] views single image deraining as a predictive filtering problem. Via their
method, they predict proper kernels via a deep neural network that filters out pixels in
rainy images. The model addresses so-called residual rain traces, multi-scale and diverse
rain patterns by achieving deraining efficiency.

Zheng et al. [61] propose the Segmentation-aware Progressive Network (SAPNet)
based on contrastive learning. First, a lightweight network comprising Progressive Dilated
Units (PDUs) is formed. The SAPNet model also implements an Unsupervised Background
Segmentation (UBS) network, which can preserve semantic information and improve
the generalization ability of the network. Learning the model occurs by optimizing the
perceptual contrastive and perceptual image similarity loss functions.

Li et al. [25] proposes a novel multi-task learning, end-to-end architecture. The
application of multi-task learning in this model is similar to that applied by Yang et al. [23].
The decomposition network splits rain images into two layers: the clean background image
layer, and the rain-streak layer. During the training phase, the authors further employ
a composition structure to reproduce the input by the separated clean image and rain
information for improving the quality of the decomposition. Jiang et al. [62] propose the
Progressive Coupled Network (PCNet) to separate rain streaks from the useful background
regions of rainy images. The integrated Coupled Representation Model (CRM) learns the
joint features and blending correlations. A low-memory requirement for the method is
made possible by the incorporation of depth-wise separable convolutions and a U-shaped
neural network structure.

3.1.2. Different Learning Schemes for Deraining

In this Section, we mention a few works on the single image deraining problem that
are based on classic ML schemes that are common in the general literature of ML. The
target learning schemes met here are multi-task learning, self-supervised learning and
semi-supervised learning.

Yang et al. [23] developed the JORDER method. The method uses multi-task learning
to jointly learn a binary rain map, and finally estimates the rain streak layers and the
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clean background. The authors introduced the contextual dilated network, able to exploit
regional contextual information. A recurrent process progressively removing rain streaks
can handle rain streak variability.

The Few Shot Self-Supervised Image Deraining (FLUID) method by Rai et al. [63]
proposes a self-supervised technique for single image deraining. As the authors mention,
self-supervised approaches rely on two assumptions: (a) the distribution of noise or rain
is uniform, and (b) the value of a noisy or rainy pixel is independent of its neighbors.
To overcome these problems, the authors of FLUID hypothesize a network trained with
minimal supervision to compute the probabilities of pixel rain-class membership.

Wei et al. [16] propose a semi-supervised learning approach where singleton rainy
image examples are used, without their paired corresponding clean images. The network
learns to use the regularities of the data in the unlabeled examples by first bootstrapping a
model given the examples with labelled rain information.

3.1.3. Generative Models for Deraining

The adversarial learning framework developed by Goodfellow and colleagues [64]
targets to learn a generative model of the underlying data distribution by being given a
finite training dataset of labeled examples. The framework learns a generator function G
(usually taking the form of a multilayer perceptron) from which we can sample examples,
and a discriminating function D that computes the probability of an example being a real
example drawn from the training set. To learn both functions given the training data, the
framework alternates the optimization of the parameters of the two functions (the generator
and the discriminator function), rendering a minimax 2-player optimization game. This
game is represented by a value function, which is in turn a function of the parameters of
the generating and the discriminator functions. The framework attempts to sequentially
alternate among minimizing the value function as a function of the generator’s parameters,
and then maximize it in terms of the parameters of the discriminator function.

Four of the surveyed research papers and articles that we collected in this survey, are
based on the generative adversarial learning scheme by Goodfellow et al. [64]. Otherwise,
an altered adversarial learning scheme is used. Here, we briefly discuss how they work.

Qian et al. [65] present an altered adversarial learning scheme for single image
deraining. The scheme employs an altered generative adversarial network formalism, in
which the generator function uses a contextual autoencoder. The autoencoder requires an
input image, and the attentive-recurrent module computes an attention map for the input
image. The multi-scale loss and the perceptual loss, are employed for the autoencoder
to be able to extract contextual information off from different scales (see also multi-scale
methods in Section 3.1.5). The discriminator function enforces global and local image
content consistency. Global-to-local and coarse-to-fine strategies are also discussed in
Section 3.1.1.

Guo et al. [15] propose the DerainAttentionGAN model for single image deraining.
The generative adversarial model scheme used in this framework contains two generator
functions G and F and two corresponding discriminator functions Dclean and Drain. The
cycle consistency loss involves these functions and affects the parameters of the network
under the condition that F(G(rain)) ≈ rain is obeyed approximately. The generator
function G is linked with three subnetworks: (a) the parameter sharing feature extractor GF;
(b) the attention network GA; and, (c) the transformation network GT . Wei et al. [66] propose
the DerainCycleGAN model (for a graphical representation of this model, see Figure 1),
providing an adversarial learning-based methodology for single image deraining. The
model follows the CycleGAN formalism by Zhou et al. [67], and employs the unsupervised
rain attentive detector (URAD) to attend to rain information in both rain and rain-free
image inputs.
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Figure 1. Schematic of the DerainCycleGAN method by Wei et al. [66]. The model follows the
CycleGAN regime and employs URAD (Unsupervised Rain Attentive Detector) modules to attend to
rain information and guide intermediate data projections.

Yang et al. [68] propose a generative adversarial learning scheme, typically including
a generator and a discriminator function. The authors integrate capsule units in both the
generator and the discriminator functions in order to further improve their discriminant
abilities in generatively identifying the characteristic structure of rain streaks in target
images. The method is optimized by iteratively minimizing the loss functor in terms of
the generator and the discriminator functions. Moreover, a Rain Component Aware (RCA)
loss is introduced to minimize the differences between the synthesized rain component
map and the ground-truth by forwarding them through the pretrained network (termed
the RCA network).

Jin et al. [13] proposed the UD-GAN method, which relies on an altered adversarial
learning formulation. This formulation includes a rain generation function that takes into
account the variation of style and color.

The RainGAN model [69] is trained to decompose a rainy image into a clean image
component and a latent 2D matrix encoding raindrop structures in the rainy image. It
can also reverse this mapping and map a clean image and a raindrop latent code into an
image with raindrops. This mapping is defined by the implementation of domain-invariant
residual blocks. HeavyRainStorer [70] is a method specifically designed to handle images
contaminated by heavy rain, which can cause the veiling effect. The proposed method is a
network consisting of two processing stages. In the first stage, a physics-based model is
applied to remove rain streaks from an input image, the transmission and the atmospheric
light. In the second stage, a depth-guided Generative Adversarial Network (GAN) recovers
the background details and corrects artifacts caused by the first processing stage.

The ID-CGAN (Image Deraining Conditional Generative Adversarial Network) [21]
method considers quantitative, visual and discriminative performance in a common objec-
tive function mimicking the form of the conditional GAN loss functions.

3.1.4. Attention Mechanisms for Deraining

In DL, neural attentive mechanisms are mathematical constructs which are integrated
in the DL model and are applied on training data, allowing for the network model to attend
to some interesting portions of the data while adaptively neglecting other data that are
probably uninteresting to the model and most probably to a human interpreting the model.
A model learns to adapt an attention construct to the data by means of model optimization.
In this paragraph, we briefly mention the attentive mechanisms employed by the deraining
methods which are reviewed in our survey.

Jiang et al. [71] propose a neural network that decomposes images with rain streaks
into multiple rain-specific layers. Each consequent layer is individually analyzed in order
to identify rain streak structures. Improved non-local blocks are designed to exploit the self-
similarity in rain information by learning spatial feature correlations, while simultaneously
reducing computation time. A mixed attention mechanism is applied to guide the fusion of
rain layers.
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Hu et al. [72] present the DAF-Net model. The model is trained to learn depth-
attentional features from the training image set. At first, the input image is forwarded
through a deep neural network that calculates the depth map of the input image. Then
the integrated attention mechanism is applied to the calculated depth map and attention
weights are, in turn, computed. The latter weights indicate the local and more distant
structure in depicted rain streaks.

The APAN method by Wang et al. [73] employs an attention module that oper-
ates at an across-scale manner to capture long-range feature correspondences from com-
puted multi-scale features. The dual attention residual group network (DARGNet) by
Zhang et al. [74] proposes a single image deraining model for increased performance on
the task. The framework comprises two attention mechanisms: a spatial attention mech-
anism and a channel attention one. The spatial attention mechanism extracts multi-scale
features that can capture the variability of both shape and size in rain streaks. In turn, the
channel attention mechanism calculates signal dependencies that exist among different
channels. We can draw a similarity with the method of Jiang et al. [71] in the computation
of cross-channel signal dependencies. Wei et al. [75] proposed a hybrid neural network
with an integrated robust attention mechanism, termed the Robust Attention Deraining
Network (RadNet). The authors designed a lightweight network with a universal attention
mechanism for rain removal at a coarse level, and then proposed a deep neural network
design with multi-scale blocks for finer rain removal.

The recent method by Zhou et al. [76] proposes a task adaptive attention module to en-
able the neural network to restore images with multiple degradation factors. Moreover, the
model also employs a task channel attention module and a task operation attention module.

Lin et al. [77] proposed an Efficient Channel Attention (ECA) module that can extract
global information and detailed information adaptively, resulting in a network module that
is extremely lightweight.

Li et al. [78] proposed an encoder-decoder-based model employing the rain embedding
loss. This loss is used to supervise the encoder. The Rectified Local Contrast Normalization
(RLCN) is used to extract candidate rain pixels. The authors also propose to use a Long
Short-Term Memory (LSTM) network for recurrent deraining and fine-grained encoder
feature refinement at different scales. Figure 2 shows the schematic of the method.

Figure 2. Schematic of the SIR method by Li et al. [78]. The model employs an autoencoder for
single image deraining, regularization loss functions and deterministically generated features that
encourage the autoencoder to attend to rain streak features.
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3.1.5. Multi-Scale Based Deraining Methods

Extracting information from multiple scales off from training data or their intermediate
representations may reveal complimentary structures which may be usable in subsequent
neural processing. In this Section, we review the multi-scale data analysis strategies
followed by the single image deraining literature.

Wei et al. [75] introduces the RadNet model. The model comprises a Robust Attention
Module (RAM), and a universal attention mechanism for rain removal at a coarse level.
Moreover, a Deep Refining Module (DRM) comprising multi-scale blocks allows for fine
rain removal.

The LFDN network by Zhang et al. [79] employs the Multi-scale Hierarchical Fusion
Module (MSHF). The input to this module is an initial feature map. Intermediate features
computed from the initial feature map are extracted using downblock modules. The
MSPFN method by Jiang et al. [80] employs a multi-scale collaborative representation for
rain streaks. This framework is unified and can model rain streaks in terms of their scale
and their hierarchical deep features.

Fu et al. [81] exploits underlying complimentary information not only across mul-
tiple scales but also between channels. The network is designed to transmit the inter-
level and inter-scale features in the neural processing pipeline. The Dual Attention
Residual Group Network (DARGNet) by Zhang et al. [74] integrates a dual attention
model, which comprises spatial attention and channel attention that can integrate scale and
channel information.

The Dense Feature Pyramid Grids Network (DFPGN) by Wang et al. [82] computes
multi-scale features from an input image and then shares these features through several
pathways across layers.

Yamamichi and Han [83] introduces a novel, multi-scale, residual-aggregation derain-
ing network called MRADN. A residual backbone extracts fine and detail context in an
initial scale. A multi-scale analysis module augments feature learning from a semantic
context representation.

Zheng et al. [61] proposed the Segmentation-Aware Progressive Network (SAPNet)
method. The model is lightweight and repetitively employs Progressive Dilated Units
(PDUs). The PDU is reported to crucially expand the receptive field and allow for a
multi-scale analysis of rain streaks.

Jasuga et al. [84] developed the SphinxNet deraining neural network (see Figure 3).
The model can be described in terms of three computation phases: (a) data scaling; (b) the
DerainBlock phase, which entails the feedforward pass of initial scaling data across hierar-
chically placed local encoder and decoder networks; and, (c) final scaling. After the last
step, a derained output image is reported.

Figure 3. Schematic of the SphinxNet method by Jasuja et al. [84]. Encoder and decoder modules are
arranged hierarchically to allow for multi-scale feature encoding and decoding.
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3.1.6. Recurrent Representations for Deraining

Recurrent representations in DL are deep neural networks which are implemented
as a recursive function that is, in turn, a function of a set of parameters. The next term in
the recursive function depends on the previous term or on more than one of the previous
terms, assuming a set of model parameters.

Zheng et al. [85] employ a model that is lightweight and contains recurrent layers to
sequentially remove rain at each level of a pyramid. Figure 4 shows the schematic of the
method. Fu et al. [86] proposes the lightweight pyramid network (LPNet) for the task of
single image deraining. It leverages domain-specific knowledge and Gaussian-Laplacian
pyramid decomposition in order to simplify learning globally and at each pyramid level,
respectively. Recursive and residual network structures are employed to assemble the
LPNet, maintaining a low count of network parameters and state-of-the-art performance.
Li et al. [87] introduces the RESCAN model. Contextual dilated networks are employed
by this model to iteratively (or progressively) remove rain streaks. Squeeze-and-excitation
blocks are used to estimate the strength weight of various rain streak layers before they are
linearly combined to approximate the rain-free image. A recurrent neural network links
features generated at the different stages of computation.

Figure 4. Schematic of the method by Zhang et al. [85]. The (a) shows the MSKSN model, and
(b) shows the MKSB module.

The method presented by Su et al. [88] proposes a novel, unified and recurrent
convolutional residual network. The model employs the so-called R-blocks in convolutional
residual networks. Non-local Channel Aggregation (NCA) simultaneously captures long-
range spatial and channel correlations. In the popular PReNet model introduced by
Ren et al. [89], a recurrent layer exploits the correspondence of deep features computed at
different stages. The recursive evaluation of the ResNet model occurring at a single neural
processing stage can affect the count of network parameters at the expense of negligible
image deraining quality.

Lin et al. [90] uses parallel recurrent subnetworks to distribute the load of identifying
rain streaks at certain ranges of streak size.

3.1.7. Data Fusion Strategies for Deraining

The strategies of fusing data in deep neural networks entail the extraction and/or
combination of data or information from different sources to different targets. In this
Section, we describe the fusion strategies used in the single image deraining bibliography.

The ResGuideNet method by Fan et al. [55] fuses feature activations computed in a
layer-by-layer fashion. Similarly with the ResGuideNet model, the DFPGN model proposed
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by Wang et al. [82] fuses intermediate feature representations at neural processing layers
by means of dense connection blocks.

The method by Zhang et al. [91] includes the SFNet and ViewNet neural submodules.
SFNet computes neural activations from derained images and their scene segmentations,
and concatenates the latent vector representations from both modalities before the concate-
nated vector is fed to a deep CNN. The VFNet fuses the derained image representation
and the scene-segmentation representation obtained from the initial left and right stereo
channels. Then, an encoder-decoder network reconstructs the left and right derained im-
ages. The Lightweight Fusion Distillation Network (LFDN) by Zhang et al. [79] employs a
multi-scale, hierarchical fusion scheme (termed MSHF). The model can encode images with
rain and blur artifacts. It also regulates the parameter count of the resulting neural model.

Wang et al. [92] proposes recurrent scale-guide networks for single image deraining.
The method goes beyond the case of a monolithic single-stage deraining neural network
model; it introduces a recurrent network framework and employs a Long Short-term Mem-
ory (LSTM) network to join link neural processing stages simultaneously. Cai et al. [93]
propose the dual recursive network (DRN). The method is empirically shown to be fast at
image deraining. The increased running time speed is mainly attributed to the very low
number of model parameters, and the variable recurrent count that is a model hyperpa-
rameter. Besides the low model parameter count, the quality of its output is comparable
or better than state-of-the-art approaches (PSNR and SSIM measures are considered by
the authors). The DRN method utilizes convolutional feature maps, and a recursive resid-
ual network which consists of two residual blocks. The residual blocks are evaluated
recurrently, allowing for the model to iteratively refine the deraining transformation. The
method resembles other published techniques which progressively refine their output (for
instance, see the MSPFN method [80]).

3.2. Multi-Image Deraining

Zhang et al. [91] and Kim et al. [94] present two methods that receive as input stereo
images. The rest of the methods in this Section, including the work of Kim et al. [94], are
video deraining methods.

3.2.1. Stereo-Based Methods for Deraining

Zhang et al. [91] propose the Paired Rain Removal Network (PRRNet). The model
comprises a Semantic-Aware Deraining Module (SADM) which can simultaneously per-
form semantic segmentation and deraining. The Semantic Fusion Network (SFNet) and the
View-Fusion Network (VFNet) both fuse semantic information and information obtained
from multiple views. Additionally, the Enhanced Paired Rain Removal Network (EPRRNet)
uses a prior that describes the semantic information in rain streaks in order to remove rain
streaks. A coarse deraining network first reduces the rain streaks on the input images, and
then a semantic segmentation network extracts semantic features from the coarse derained
image. A better deraining result is obtained by another network that fuses the semantic
and multi-view information.

Kim et al. [94] proposes a method for video deraining that makes use of temporal
correlations in the sequence of video frames, and uses a low-rank matrix completion method
to remove rain streaks in a video sequence. Video deraining is achieved as a sequence of
steps: at first, a rain pixel probability map is computed by frame subtraction; secondly,
the rain probability map is analyzed in terms of sparse basis vectors; third, the obtained
basis vectors are classified into vectors referring to rain streaks or vectors pertaining to
outlying information. A low-rank matrix completion technique is then applied to remove
rain streaks.

3.2.2. Video-Based Methods for Deraining

Xue et al. [95] propose a real-time method for video deraining. A fast attentive
deformable alignment module and a spatial-temporal reconstruction module are used.
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Moreover, deformable convolution based on the channel attention mechanism is employed
to maintain frame continuity. Neural architecture search is also employed to discover an
effective architecture for temporal information aggregation. Zhang et al. [96] propose the
Enhanced Spatio-Temporal Interaction Network (ESTINet). This model is optimized for
better video deraining quality and for data processing speed. Deep residual networks
and convolutional LSTM models are employed to capture spatial features and temporal
correlations in successive frames. Yan et al. [97] employ a self-alignment network with
transmission-depth consistency. The method uses deformable convolution layers in an
encoder function for feature-level frame alignment. The temporal relationships among
frames are considered in order to make a prediction for the current frame. The model can
also handle the accumulation of rain to resolve the ambiguity between the depth and water-
droplet density. The network estimates the depth from consecutive rain-accumulation-
removal outputs and calculates the transmission map using a physics-based model.

The ADN method by Yang and Lu [98] extracts multi-scale features from input shallow
features. The extracted hierarchical, multi-scale features are then concatenated together
and fed into a rainy map generator that estimates the rain layer.

The method by Wang et al. [99] proposes the Recurrent Multi-level Residual Global
Attention Network (RMRGN) to gradually utilize global attention information and image
details to remove rain streaks progressively.

Deng et al. [100] propose the RoDerain network. The model employs the so-called
rotation operator to remove the rain streaks in natural and stochastic scenes. The alternating
direction method of multipliers is used to optimize the model.

Kulkarni et al. [101] proposes the Progressive Subtractive Recurrent Lightweight
Network (PSRLN) for video deraining. The Multi-kernel Feature Sharing Residual Block
(MKSRB) learns to capture the structure in rain streaks of a varying size. This allows for
the removal of rain streaks through iterative subtraction. Features that are generated by
the MKSRB are merged with output generated at previous frames in a recurrent fashion to
maintain temporal consistency. The Multi-scale Multi-Receptive Difference Block (MMRDB)
performs feature subtraction as the means to avoid detail loss and extract HF information.
Yue et al. [102] present a semi-supervised video deraining method, in which a dynamical
rain generator is employed to fit the rain layer. The dynamical generator consists of one
emission model and one transition model. These both help encode the spatial appearance
and temporal dynamics of rain streaks. Different prior formats are designed for the labeled
synthetic and unlabeled real data so as to fully exploit their underlying common knowledge.
An expectation-maximization algorithm is developed to learn the model.

Yang et al. [103] proposes a two-stage recurrent network with dual-level flow regu-
larization. At a first stage, the architecture extracts motion information from the initially
estimated rain-free frame, and motion modeling at a second stage. Furthermore, to main-
tain motion coherence between frames, dual-level flow-based regularization is proposed.
This regularization occurs at a coarse flow level and at a fine-pixel level. Wang et al. [99]
and Kulkarni et al. [101] also introduce recurrent processing in the models they propose.
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Table 4. Listing of surveyed research papers.

Category Method Model Short Description Year
DetailNet [17] ACM reduces mapping range; promotes HF details 2017

Residual-guide [55] ACM cascaded; residuals; coarse-to-fine 2018
NLEDN [56] ACM end-to-end, non-locally-enhanced; spatial correlation 2018

DID-MDN [20] ACM density-aware multi-stream densely connected CNN 2018
DualCNN [57] ACM estimation of structures and details 2018
Scale-free [54] HRMLL wavelet analysis 2019
DMTNet [58] ACM symmetry reduces complexity; multidomain translation 2021
UC-PFilt [60] ACM predictive kernels; removes residual rain traces 2022

SAPNet [61] N/A PDUs; unsupervised background segmentation;
perceptual loss 2022

DDC [25] SBM decomposition and composition network; rain mask 2019
DerainNet [48] ACM non-linear rainy-to-clear mapping 2017

PCNet [62] MRSL learns joint features of rainy and clear content 2021
Spatial Attention [28] ACM human supervision; global-to-local attention 2019

CNN-
based

memory encoder–decoder [59] ACM encoder–decoder architecture with memory 2022
APAN [73] ACM multi-scale pyramid representation; attention 2021
IADN [71] ACM self-similarity of rain; mixed attention mechanism; fusion 2020

DECAN [77] ACM detail-guided channel attention module identifies
low-level features; background repair network

2021

DAF-Net [72] DRM end-to-end model; depth-attentional features learning 2019
SIR [78] ACM encoder–decoder embedding; layered LSTM 2022

RadNet [75] ACM/
Raindrop

restores raindrops and rainstreaks; handles single-type,
superimposed-type or blended-type data 2021

DARGNet [74] HRM dual-attention (spatial and channel) 2021

Attention

task-adaptive attention [76] N/A task-adaptive, task-channel, task-operation attention 2022
DerainAttentionGAN [15] ACM uses Cycle-GAN; attention 2022

DerainCycleGAN [66] ACM CycleGAN transfer learning; unsupervised attention 2021
RCA-cGAN [68] ACM rain streak characteristics; integration with cGAN 2022
RainGAN [69] Raindrop raindrop removal as many-to-one translation 2022
UD-GAN [13] ACM GAN; self-supervised constraints from intrinsic statistics 2019

HeavyRainStorer [70] HRM 2-stage network; physics-based backbone; depth-guided
GAN 2019

ID-CGAN [21] ACM conditional GAN with additional constraint 2020

Generative
models

AttGAN [65] Raindrop attentive GAN; learns rain structure 2018
MSPFN [80] N/A streak correlations; multi-scale progressive fusion 2020

MRADN [83] ACM multi-scale residual aggregation; multi-scale context
aggregation; multi-resolution feature extraction 2021

LFDN [79] N/A encoder–decoder architecture; encoder with multi-scale
analysis; decoder with feature distillation; module fusion 2021

SphinxNet [84] N/A AEs for maximum spatial awareness; convolutional
layers; skip concatenation connections

2021

DFPGN [82] ACM cross-scale information merge; cross-layer feature fusion 2021
GAGN [81] ACM context-wise; multi-scale analysis 2022

Multi-scale
based

UMRL [104] ACM UMRL network learns rain content at different scales 2019

JORDER [23] HRM multi-task learning; priors on equation parameters 2020
FLUID [63] N/A few-shot; self-supervised; inpainting 2022

Different
learning
schemes Semi-supervised CNN [16] ACM adapts to unpaired data by training on paired data 2019

PReNet [89] ACM repeated ResNet; recursive; multi-scale info extraction 2019
recurrent residual

multi-scale [85]
MRSL residual multi-scale pyramid; coarse-to-fine progressive

rain removal; attention map; multi-scale kernel selection
2022

Scale-aware [90] HRM multiple subnetworks handle range of rain characteristics 2017
RESCAN [87] Equation (A8) contextual dilated network; squeeze-and-excitation block 2018

Pyramid Derain [86] ACM Gaussian–Laplacian pyramid decomposition 2019
DRN [93] ACM multi-stage residual network with two residual blocks 2019

NCANet [88] Equation (A10) rain streaks as residuals sum; recurrent 2022
PRRNet [91] ACM stereo; semantic segmentation; multi-view fusion 2021

Recurrent

GTA-Net [105] ACM multi-stream coarse; single-stream fine 2021
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4. A Review of the Desnowing Literature

Sometimes, FRs need to detect victims in snowy environments, as for example moun-
tain rescuers that search for victims who are lost in mountain areas. Snow is a common
weather condition that can reduce the visibility of objects and scenes and obstruct the
FRs’ missions. Unlike other atmospheric particles, snow particles have more complex
characteristics, opaqueness, different shapes and sizes, uneven densities and irregular
falling trajectories, which make the snow removal problem, also known as desnowing,
more challenging [29].

4.1. Related Work on the Desnowing Problem

In this section, we review the published literature on the desnowing problem; that
is, image restoration methods which are designed to remove snow particles from images.
Table 5 lists the related work that we survey. Unlike the deraining and dehazing problems
which have attracted significant attention by scientists, the desnowing problem has only
attracted few research works. Importantly, however, researchers working on this problem
also contributed datasets for use by the research community. Here we list the reviews on the
related literature that we have collected on DL-based methods for single image desnowing.

4.1.1. CNN-Based Desnowing Methods

Chen et al. [30] employ the Dual Tree Complex Wavelet Transform (DTCWT) to
decompose an input image into a series of high-frequency (HF) and corresponding low-
frequency (LF) components and propose the hierarchical DTCWT desnowing network
(HDCW-Net). Each component is then recursively analyzed in terms of its HF and LF
content, until i recurrence levels are reached. Then an HF reconstruction neural network is
employed to reconstruct the HF image content, hence alleviating the effect of snow streaks
and the snow veiling effect.

4.1.2. Generative Models for Desnowing

Li et al. [106] uses a compositional Generative Adversarial Network (compositional
GAN) architecture to separate the clean background image regions and the regions con-
taminated by snow. This becomes possible by mainly employing the compositional loss,
and some other minor loss functions that control the ability of the network to generate the
correct output, to guide training of the cGAN model. As a model employing a GAN-style
architecture, it contains a discriminator and a generator network. Figure 5 shows the
schematic of the method.

Figure 5. Schematic of the method by Li et al. [106]. A GAN-based architecture learns to extract the
clean background image component and the rain streak layer component from an input rainy image
by means of the composition loss function.
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Chen et al. [32] proposes the JSTASR model (see Figure 6). This model can simultane-
ously handle transparent and non-transparent snow particles by applying the modified
partial convolution. The model is transparency-aware; hence, it can handle snow with
different transparencies. JSTASR can classify snow particles by considering their size
and scale.

Figure 6. Schematic of the JSTASR method by Chen et al. [32]. The model comprises three modules.
First, it contains a joint size and transparency-aware snow removal module. Secondly, it employs a
veiling effect recovery module, and finally it comprises a size-aware clean image discriminator.

Jaw et al. [107] proposed a novel Deep Neural Network (DNN) architecture with
a top-down pathway and lateral cross-resolution connections; it is depicted in Figure 7.
The model (called DesnowGAN) exploits high-level semantic features and low-level spatial
features for improved efficiency and running time. A novel loss function helps to jointly
learn sharpness, structure and realism.

Figure 7. Schematic of the DesnowGAN method by Jaw et al. [107]. A GAN-based snow removal
module, a refinement module and a discriminator module guide single image desnowing.

4.1.3. Multi-Scale Based Desnowing Methods

Liu et al. [29] proposes the DesnowNet model which deals with the removal of translu-
cent and opaque snow particles instead of paying attention to the transparency of snow
particles (see Figure 8). The model corrects the image content by accurately estimating
and restoring details in the image that are lost due to opaque snow particles. It models
snow by means of a snow mask, which considers only the translucency of snow at each
coordinate, and also by means of a chromatic aberration map that captures fine color
distortions. The model interprets snow through context-aware features and loss functions.
DesnowNet also implements multi-scale receptive fields.
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Figure 8. Schematic of the DesnowNet method by Liu et al. [29].

Li et al. [31] introduces a physics-based snow model and proposes a novel snow
removal method based on the snow model and deep neural networks. The model decom-
poses a snowy image non-linearly as a combination of a snow-free image and dynamic
snowflakes. The authors designed the Multi-scale Stacked Densely Connected Convolu-
tional Network (MS-SDN) to simultaneously detect and remove snowflakes in an image.
The MS-SDN is composed of a multi-scale convolutional subnetwork for extracting feature
maps and two stacked modified DenseNets for snowflake detection and removal.

Zhang et al. [108] proposed the Deep Dense Multi-Scale Network (DDMSNet) for
single image desnowing. The model can learn multi-scale representation off from pixel-
level and feature-level input. Dense connections are applied to connect together multi-scale
feature-computing subnetworks. The network exploits semantic and geometric information
as prior knowledge. Semantic and geometric features are obtained in different stages to
help recover snow and recover clean images.

Table 5. Listing of references on the desnowing problem.

Category Method Short Description Year
CNN-
based HDCW-Net [30] DTCWT analysis; recursively computes HF component; neural network

reconstructs the last HF component 2021

cGAN [106] separates the background from snowy regions; uses compositional loss 2019

JSTASR [32] handles transparent/non-transparent snow particles; modified partial
convolution; transparency aware; considers size and scale of snow particles 2020

Generative
models

DesnowGAN [107]

DNN with top-down pathway and lateral cross-resolution connections;
high-level and low-level spatial features; split-transform-merge topology

reduces model size and computational cost; atrous spatial pyramid
pooling for multi-scale and global receptive field

2020

DesnowNet [29] accurately corrects image content by estimating and restoring details in
the image that are lost due to opaque snow particles 2018

MS-SDN [31] multi-scale convolutional subnetwork extracts feature maps; stacked
modified DenseNets for snowflakes detection and removal 2019Multi-scale

based

DDMSNet [108]
multi-scale representation from pixel-level and feature-level input;

multi-scale subnetwork are desnely connected; semantic and geometric
priors; multistage analysis

2021

5. A Review of the Dehazing Literature

Haze can be defined as the atmospheric phenomenon where dust, smoke or other par-
ticles absorb and scatter the light, resulting in reduction of transparency of the air and conse-
quently reduction of visibility [109]. FRs often need to take action in scenes of crises where
their visual perception is affected by haze (fire, explosion, rescuing in the mountains, etc.),
causing serious problems in the detection and navigation to possible victims.
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Images captured in hazy environments suffer from loss of contrast, color fidelity and
edge information which can further cause reduction of the performance of CV algorithms
used for tasks like object detection, image segmentation, etc. Haze removal, which is
referred to as dehazing, is considered an important process. Since most CV models as-
sume clear weather conditions [110]. However, it can also be considered as a challenging
problem, since the haze is dependent on the unknown depth information which varies at
different positions [111].

5.1. A Taxonomy of the DL-Based Single Image Dehazing Methods

In order to solve the dehazing problem numerous methods have been proposed
in the bibliography. These methods can be divided in two main categories: The hand-
crafted priors-based methods and the data-driven methods. The hand-crafted priors-based
methods use handcraft priors from empirical observation in order to remove the haze.
They include priors such as dark channel (DCP) [111], contrast maximization [112], color
attenuation [113] and non-local prior [114]. Unlike the hand-crafted priors-based methods,
the data-driven methods use large-scale datasets to learn automatically the image prior.
The main focus of this paper will be in data-driven methods. A synopsis of the methods is
presented in Table 6.

5.1.1. CNN-Based Dehazing Methods

Early data-driven methods include ML algorithms like random forest regressor [115],
linear models [116] and the back propagation neural network [117]. In 2016, Cai et al. [118]
adopted a trainable three-layer CNN to directly estimate the transmission map (for more
information, see Section 6.3.5) from a hazy image and also developed the activation func-
tion called Bilateral Rectified Linear Unit (BReLU) to extract haze-relevant features for
transmission recovery. Their pioneering model is known as Dehazenet and achieved a
dramatically high efficiency compared to the state of the art of its times.

Li et al. [119] used CNNs in order to generate the clear image but their approach was
different in the way that they wanted to avoid the estimation of the transmission map and
the atmospheric light intensity. They introduced a new K(x) parameter that integrates these
two parmeters in one as shown in Equation (2). Their model is known in the bibliography
as All-in-One Dehazing Network (AOD-Net).

J(x) = K(x)I(x)− K(x) + b (1)

where b is the constant bias with the default value 1 and

K(x) =
1

t(x) (I(x)− A) + (A− b)

I(x)− 1
(2)

Ullah et al. [120] exploited the transformed Atmospheric Scattering Model (ASM)
proposed in [119]. They introduced a lightweight CNN architecture for estimating the
K(x) parameter, that consists of eight convolution layers and three concatenation layers
and an additional Color Visibility Restoration (CVR) module that helps recovering color
information and contrast of the image by averaging color intensity and equalizing per
channel histogram.

Qin et al. [121] considered two important facts in their model: (1) the haze distribution
may be uneven on different pixels of the image; (2) the different channel features have
totally different weighted information. Their proposed end-to-end Feature Fusion Attention
Network (FFA-Net) uses both pixel attention and channel attention modules and combines
them to design a feature attention module. The combined model is added to stacked
residual blocks. In this way, they managed to focus on processing pixels with thick haze
and more important channel information.

Inspired by the FFA-Net, Wu et al. [122] proposed an AE-like dehazing network with
feature attention block as the basic block, the AECR-Net. They managed to make their
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network much more compact than the FFA-Net and also introduced a novel contrastive
regularization in order to force the network to learn that the output dehazed image should
be closer to the clear image and farther from the hazed one in the representation space.

5.1.2. Multi-Scale Based Dehazing Methods

Inspired by the feature fusion structure of [121], Hu [123] proposed a multi-scale grid
network (MSFFA-Net) in order to avoid the bottleneck issue happened in the conventional
multi-scale approach.

Liu et al. [124] had a CNN-based approach to the problem, without taking the ASM
into consideration. They introduced the GridDehazeNet (GDNet), a network consisting
of three modules: the pre-process module which is a convolutional layer and a residual
dense block and generates multiple different versions of the input image, the backbone
module which performs attention-based multi-scale estimation based on the generated
inputs and finally the post-processing module, which is a residual dense block following
by a convolutional layer and achieves reduction of the artifacts.

Ren et al. [125] employed a Multi-Scale CNN (MSCNN), where firstly a coarse-scale
network was used to learn the mapping between hazy inputs and their transmissions,
and then a fine-scale network performs refined transmission estimation. The two networks
are alternately merged and upsampled to maintain the original resolution. Extending
their work, in 2020, Ren et al. [126] introduced an improved version of the MSCNN with
fewer pooling and up-sampling layers in the coarse-scale network and a novel holistic
edge guided network (MSCNN-HE) that ensures that the objects with the same depth have
the same transmission values. Similarly, in Wang et al. [127] also followed the multi-scale
coarse-to-fine idea and proposed an Ensemble Multi-scale Residual Attention Network
(EMRA-Net). Their coarse network is a Three-scale Residual Attention CNN (TRA-CNN),
where the different scales of the input image are produced using the 2-D Discrete Wavelet
Transform (DWT). Their refined network is an Ensemble Attention CNN (EA-CNN) that
fuses the three outputs of the coarse network into a final haze-free image.

Dong et al. [128] introduced the Multi-Scale Boosted Dehazing Network with Dense
Feature Fusion (MSBDN). Their network is based on an encoder–decoder architecture with
a dense feature fusion module and incorporates the Strengthen-Operate-Subtract (SOS)
boosting strategy in the decoder to boost features of different levels. It also incorporates
an error feedback principle in order to preserve the spatial information and exploit the
features from non-adjacent levels.

Zhang et al. [129] adopted the AOD-Net’s transformed ASM proposed in [119] and
tried to estimate K(x) fast and accurately in order to produce the final haze-free image
according to Equation (2). Their proposed Fast and Accurate Multi-scale End-to-end De-
hazing Network (FAMED-Net) has adopted the Gaussian/Laplacian pyramid architectures
followed by a fusion module. Specifically, the input images are down-sampled to two
different scales. The original and the two down-sampled images are fed to three encoders
(one encoder for each scale) that do not share features. The outputs of the encoders are
interpolated to the original scale and fed to a fusion module that estimates the K(x).

Zhao et al. [130] exploited long-range dependencies in order to improve the haze-
free results. They introduced a Pyramid Global Context (PGC) block plugged into a
U-Net, which is further improved by a dilated residual bottleneck (DRB) block. Their
proposed network achieved to extract long-range dependencies among points and patches
computationally more efficiently than by just stacking many convolutional layers.

In a recent work, Sheng et al. [131] considered the influence of the haze in the lu-
minance of an image in the CIELAB colorspace. They proposed the multi-scale residual
attention network (MSRA-Net), a network that consists of two subnetworks: one for the
luminance and one for the chrominance. The network also embodies the Multi-Scale Resid-
ual Attention block (MSRA-block) and the Feature Aggregation Building block (FAB-block)
and manages to improve the quality of the colors in the haze-free results.
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Fan et al. [132] incorporated depth information in their multi-scale network (MSDFN).
Specifically, they relied on the U-Net architecture. The depth image is first encoded and
then decoded so as to produce the final haze-free image, while both in the encoding and
decoding procedures the multi-level features of the hazy image are concatenated.

Das and Dutta [133] experimented with a deep multi-patch and a deep multi-scale
network and tried to build a network which could remove the haze fast and efficiently
even if it is non-homogeneous. They deduced that their multi-patch hierarchical network
(DMPHN) is faster and better than their multi-scale hierarchical network, because it aggre-
gates local features generated from a finer to a coarser grid. The Trident Dehazing Network
(TDN) proposed by Liu et al. [134], depicted in Figure 9, also tries to remove efficiently the
dense and non-homogeneous haze by following a multi-scale approach. It consists of three
subnetworks: an encoder–decoder network that builds the first version of the haze-free
image, a detail refinement network that focuses on the HF details and a haze density map
generation network that detects which regions of the image have thick and which thin haze.
Non-homogeneous and dense haze was also considered by Jo et al. [135]. They ignored the
ASM and created a multi-scale architecture that employs the selective residual blocks (SRB)
as its main functional module.

Figure 9. The architecture of Trident Dehazing Network [134]. ⊕ refers to tensor addition and ⊗ to
tensor multiplication.

5.1.3. Generative Models for Dehazing

Zhang et al. [136] proposed a dehazing GAN that takes the ASM into considera-
tion, known in the bibliography as DCPDN. The generator consists of two subnetworks:
an edge-preserving pyramid densely connected encoder–decoder network to estimate
the transmission map and an 8-block U-net to estimate the atmospheric light. By us-
ing Equation (13), they obtained the dehazed image. They also introduced a new edge-
preserving loss function to optimize the network that estimates the transmission map and a
joint-discriminator based GAN framework to learn the dependencies between the dehazed
image and the corresponding estimated transmission map. In [137,138], GANs are also
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used for image dehazing and depend on the ASM; however, the model in [138] is based on
unpaired supervision.

Ren et al. [139] completely ignored the ASM. Their proposed Gated Fusion Network
(GFN) is based on the fusion based encoder–decoder architecture, employed an original
hazy image and three derived images as inputs (white balance, contrast enhancement,
and gamma correction methods) and learned to predict confidence maps. After that,
the confidence maps were fused to give the dehazed image. Their model was trained
with MSE and adversarial loss. Qu et al. [140] also tried to avoid ASM and exploited an
Enhanced Pix2pix Dehazing Network (EPDN). They utilised the idea of a multi-resolution
generator, a multi-scale discriminator and an enhancer.

Li et al. [141] proposed an end-to-end trainable conditional GAN (cGAN) with en-
coder–decoder architecture that takes pairs of haze and haze-free images and restores
directly the dehazed images without the need of ASM. Kan et al. [142] also exploited the
paired cGAN framework and the multi-loss function optimization idea. They proposed a
U-connection Residual Network (UR-Net) as a generator and the spatial pyramid pooling
(SPP) structure for the discriminator. The multi-loss function is composed of a combination
of adversary loss, L1 loss, the structural similarity index (SSIM) loss and a new peak-signal-
to-noise ratio (PSNR) loss. Another innovation of this work is that it offers a flexibility in
the size of the input image by embedding the SPP structure.

Engin et al. [143] exploited the CycleGan architecture and enhanced it to recover the
haze-free image from a hazed one. The model is depicted in Figure 10. The advantages
of their so-called Cycle-Dehaze network are that it requires neither the estimation of the
transmission map nor pairs of hazed and their corresponding clear images. The differ-
ences between CycleGan and Cycle-Dehaze are that Cycle-Dehaze uses an additional loss,
the cyclic perceptual-consistency loss and the Laplacian pyramid as a post-processing step
to upscale the dehazed images. Cycle-Dehaze achieves good dehazing results, however
sometimes there exist some distortions.

Figure 10. The architecture of the Cycle-Dehaze Model [143]. G and F are the generators, and D_x
and D_y the discriminators.

Other works inspired by CycleGan architecture are [144–147]. In [144] Dudhane
and Murala followed a similar training strategy as CycleGan, but their Cycle-consistent
generative adversarial network (CDNet) differed in the architecture of the generator, where
they introduced an encoder–decoder architecture with skip connections that estimates
the transmission map. Liu et al. [145] proposed the Cycle-Defog2Refog network that
consists of two transformation paths (hazy to haze-free, haze-free to hazy) and a two-
stage mapping strategy in each transformation path so as to improve the dehazed results.
In order to produce the synthetic hazy images they estimated the transmission map using a
CNN approach. Jin et al. [146] was inspired by the CycleGAN architecture and added a
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Conditional Disentangle Network (UCDN), in order to manage different concentrations of
haze. Mo et al. [147] wanted their network to have the ability to handle uneven and dense
haze concentration and introduced the Dark Channel Attention optimized CycleGAN
(DCA-CycleGAN). The DCA-CycleGAN consists of two subnetworks that compose the
generator, two global discriminators and two local discriminators. The one subnetwork
of the generator (Dark Channel Attention subnetwork) outputs attention maps that assist
the other subnetwork (AE) to be fine-tuned and produce the dehazed image. Additionally,
the local discriminators proposed in this work help the network to manage different
concentration of haze in the image.

Park et al. [148] tried to fuse heterogeneous GANs and specifically the CycleGAN
with the cGAN architecture. The concept of their work is to combine the great color
balance that CycleGAN offer with the preservation of spatial details provided by cGANs.
The CycleGAN is trained on unpaired, real, outdoor hazy and haze-free images, and learns
to produce a haze-free result. The cGANs are trained on paired, synthesized indoor images.
In their proposed method they exploited two different cGANs: the one learns to estimate
the transmission map while the other learns to estimate the atmospheric light. Using
Equation (13) they produce a second version of the haze-free result. After that, the two
estimations of the haze-free results are fused in a CNN, which consists of feature extraction
layers, a merge layer, and reconstruction layers.

Dong et al. [109] adopted the FD-GAN method, which is a GAN with a densely
connected encoder–decoder as the generator and a fusion-discriminator that integrates HF
and LF information as additional priors and constraints. Unlike Dong et al. [109], who use
a fusion-discriminator, Fu et al. [149] suggested fusing the HF domain features into the
generator. Their generative adversarial network (DW-GAN) uses a two-branch-designed
network as a generator, where the one branch (DWT Branch) embeds the 2D DWT, so as
to acquire clear texture details and the other (Knowledge Adaptation Branch) uses the
pre-trained Res2Net as an encoder in order to avoid over-fitting.

In Wang et al. [150] introduced the TMS-GAN. Their architecture is based on two
subnetworks: the Haze-generation GAN (HgGAN) and the Haze-removal GAN (HrGAN).
The HgGAN takes a synthetic hazy image as input and learns to output a synthetic but
realistic hazy image. The HrGAN learns to remove the haze both from synthetic and
synthetic but realistic hazy images. Its generator is trained by the paired synthetic and
synthetic but realistic data and achieves to produce a color-branch and detail-branch
output. The element-wise addition of these two outputs and the clear image produced
by the generator of HgGAN feed the discriminator of HrGAN so as to learn to produce
the final haze-free images. Additionally, they proposed a plug-and-play Multi-attention
Progressive Fusion Module (MAPFM) for both HgGAN and HrGAN.

5.1.4. Deep Reinforcement Learning for Dehazing

Zhang and Dong [151] wanted to combine the simplicity of prior based methods with
the generalization ability of DL and followed an innovative methodology in the image
dehazing problem. They proposed a deep reinforcement learning (RL) based method
(dehaze-RL), where a deep Q-learning network iteratively chooses actions in order to
produce the final haze-free image. The actions set of the agent includes 11 actions that are
existing dehazing algorithms and PSNR and SSIM metrics are used in the reward function
as the measurement. The main advantage of this method is that the dehazed result is much
more interpretable since in every state the corresponding result can be acquired.

Guo and Monga [152] considered the depth information of the image and proposed a
Depth-aware Dehazing using RL system (DDRL). DDRL works by following the assump-
tion that haze is lighter closer to the camera and denser farther from it, and consists of two
networks: a policy network that generates the depth slice and a dehazing network that
estimates the transmission map of each slice.
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5.1.5. Knowledge Distillation/Transferring for Dehazing

Hong et al. [153] presented a model that uses knowledge distillation to apply dehaz-
ing (KDDN), where the teacher is an auto-encoder that receives clean images, learns to
reconstruct them and transfers the knowledge from the intermediate representations to
the student network. The lightweight student network receives the hazy images and by
mimicking features from the teacher learns to output the haze-free image. The student
network’s supervision is based solely on dark channels loss and total variation loss.

Shao et al. [154] considered the domain shift problem. Usually, the models proposed
for dehazing do not perform well in dehazing real hazy images, because they are trained on
synthetic ones. Hence, they introduced a domain adaptation framework, which includes an
image translation network and two dehazing networks (one for the synthetic domain and
one for the real). In this way, they managed to reduce the domain discrepancy and achieve
a good performance in the dehazing task in both domains. Domain gap was a problem
that Chen et al. [155] also tried to address. They suggested a Principled Synthetic-to-real
Dehazing (PSD) framework, which consists of a pre-trained network, trained on synthetic
data as a backbone and they fine-tuned it in an unsupervised manner using real hazy
images and physical priors that guide the fine-tuning process.

Yu et al. [156] recently introduced a two-branch neural network that is able to remove
non-homogeneous haze and perform well even when trained on a small-scale dataset.
The first subnetwork is a transfer learning subnetwork that extracts global representations
from a pre-trained model, while the second one is trained from scratch on current training
data and complements the first one. The final output is produced by ensembling the
two subnetworks.

5.1.6. Unsupervised/Semi-Supervised Learning for Dehazing

Overall, the CycleGAN-based networks described in Section 5.1.3 are trained in an un-
paired manner. Yang et al. [138] was the first to adopt this unpaired training by introducing
the conditional GAN architecture. Motivated by this idea, Golts et al. [157] evolved it and
proposed a fully convolutional network with six dilated residual blocks. Their network
aims to approximate the Dark Channel Prior (DCP) energy function and is trained using
only hazy images. Additionally, an early stopping approach was followed, where a set of
500 paired images was used as a validation set and the training stopped in the epoch in
which the validation set had the best performance in terms of PSNR and SSIM metrics.

Li et al. [158] presented a semi-supervised learning algorithm to solve the problem
of single image dehazing. Their CNN-based network consists of two branches sharing
the same weights and having the same encoder–decoder architecture: a supervised and
an unsupervised one. The supervised branch is trained using synthetic, paired data and
supervised losses while the unsupervised branch is trained using only real hazy images
and unsupervised losses based on image priors.

RefineDNet proposed by Zhao et al. [159] combines the advantages of both prior-based
and learning-based methods and requires unpaired hazy and haze-free images. Their two-
stage network adopts the DCP in the first stage for visibility restoration and adversarial
learning in the second stage for realness improvement. In order to improve the quality of
the dehazed image even more, a perceptual fusion strategy is followed.

The You Only Look Yourself (YOLY) network proposed in [160] employs three joint
disentanglement subnetworks: the J-Net, the T-Net and the A-Net that are designed to
predict the clear image, the transmission map and the atmospheric light, respectively, in a
self-supervised manner, given the hazy image as input.
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Table 6. Listing of the surveyed research papers and articles on the dehazing problem.

Category Method Short Description Year
Dehazenet [118] 3-layer CNN, BReLU activation function 2016
AOD-Net [119] lightweight, transformed ASM 2017

Light-DehazeNet [120] lightweight, transformed ASM, CVR module 2021
FFA-Net [121] attention-based feature fusion structure 2020

CNN-
based

AECR-Net [122] AE-like, contrastive learning, feature fusion 2021
MSFFA-Net [123] multi-scale grid network, feature fusion 2021

GDNet [124] 3 sub-processes, multi-scale grid network 2019
MSCNN [125] 2 nets: coarse- and fine-scale 2016

MSCNN-HE [126] 3 nets: coarse-, fine-scale and holistic edge guided 2020
EMRA-Net [127] 2 nets: TRA-CNN and EA-CNN 2021

MSBDN [128] dense feature fusion module, boosted decoder 2020
FAMED-Net [129] 3 encoders at different scales, fusion module 2019

PGC [130] PGC and DRB blocks 2020
MSRA-Net [131] CIELAB, 2 subnets (luminance, chrominance) 2022

MSDFN [132] depth-aware dehazing 2021
DMPHN [133] non-homogeneous haze, multi-patch architecture 2020

TDN [134] 3 subnets: coarse-, fine-scale and haze density 2020

Multi-scale
based

Jo et al. [135] selective residual blocks 2021
DCPDN [136] generator with 2 subnets, edge-preserving loss function 2018

DehazeGAN [137] ASM-based GAN 2018
DDN [138] ASM-based, unpaired supervision 2018
GFN [139] fusion based, employs a hazy image and 3 derived inputs 2018

EPDN [140] multi-resolution generator, multi-scale discriminator, enhancer 2019
cGAN [141] cGAN with encoder–decoder architecture 2018

Kan et al. [142] cGAN, UR-Net as a generator, flexibility in image size 2022
Cycle-Dehaze [143] CycleGan based, unpaired supervision 2018

CDNet [144] CycleGan based, encoder–decoder architecture for the generator 2019
Cycle-Defog2Refog [145] 2 transformation paths with 2-stage mapping strategy in each 2020

UCDN [146] CycleGan based with a conditional disentangle network 2020
DCA-CycleGAN [147] generator with 2 subnets, 4 discriminators 2022

Park et al. [148] fusion of cGAN and CycleGAN 2020
FD-GAN [109] integration of HF and LF information in the discriminator 2020
DW-GAN [149] generator with a DWT and a Knowledge Adaptation Branch 2021

Generative
models

TMS-GAN [150] 2 subnets: a haze-generation and a haze-removal GAN 2021

RL-based
Dehaze-RL [151] actions: 11 dehazing algorithms, reward function: PSNR and SSIM 2020

DDRL [152] depth-aware dehazing 2020
KDDN [153] teacher-student (dehazing) net 2020

Shao et al. [154] domain adaptation using a bidirectional translation net 2020

PSD [155] domain adaptation by unsupervised fine-tuning (real domain) a
pre-trained model (synthetic domain) 2021

Knowledge
distillation/
transferring

Yu et al. [156] 2-branch net: transfer learning and current data fitting subnets 2021
Golts et al. [157] unsupervised, DCP loss 2019

Li et al. [158] 2-branch: supervised and unsupervised subnets 2019
RefineDNet [159] 2-stage network: DCP and adversarial learning stages 2021

Unsupervised/
Semi-

supervised YOLY [160] self-supervised, 3 joint disentanglement subnetworks 2021

5.2. Multi-Image Dehazing

Other modalities in the DL-based dehazing literature (apart from the single image)
include video dehazing and binocular image dehazing.

In the binocular, DL-based image dehazing few methods have been proposed recently.
Song et al. [161] proposed an encoder–decoder architecture that jointly learns to improve
the quality of the disparity maps and the dehazing results. Pang et al. [162] tried to avoid
the time consuming estimation of the disparity map and proposed the BidNet, which
receives binocular image pairs and try to dehaze them by exploring the correlation between
the images using the Stereo Transformation Module. The most recent Stereo Refinement
Dehazing Network (SRDNet) [163] follows a coarse-to-fine approach and tries to remove
the haze of the binocular image pairs by avoiding exploiting the ASM. Their proposed
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framework consists of two networks: a weight-sharing coarse dehazing network and a
guided separated refinement network, where the latter fuses the information from cross
views avoiding in this way the estimation of the disparity or correlation matrix.

Although, in the literature, the single image dehazing algorithms are often used
for video dehazing, video dehazing can also be considered as a separate task, since the
temporal coherence of video frames offers a great amount of useful information that cannot
be found in single images. Li et al. [164] employed a CNN-based architecture for video
dehazing. Their End-to-End Video Dehazing Network (EVD-Net) is based on the AOD-
Net [119] architecture and follows three different types of temporal fusion structures in
order to consider the available information of the temporal coherence of video frames.
Ren et al. [165] proposed an encoder–decoder architecture that collects information across
frames in order to estimate the transmission map. Their network tries to restore the frames
with the same scenes in a way that the transmissions are smooth enough using two different
fusion strategies.

6. Results
6.1. Quantitative Metrics

In order to evaluate the quality of the output image produced by a deraining, a desnow-
ing or a dehazing model, there are two widely used metrics. These metrics compare the
differences between an output and a reference image and for that reason they are also
called full-reference metrics. In this section, we mention the two most common quanti-
tative metrics that are commonplace in every possible study on deraining, desnowing
and dehazing.

6.1.1. Peak Signal-to-Noise Ratio

The peak-signal-to-noise ratio (PSNR) measures the discrepancy among two images I
(a reference image) and K (a ground-truth image). The discrepancy is measured numerically
as the log (base 10) of the ratio of the square of the maximum intensity value in the image I
to the mean squared error (MSE) of the corresponding pixel intensity values in image I and
image K. Formally, the PSNR measure is given by the formula

PSNR = 10 log10(MAX2
I /MSE) (3)

where MAXI is the maximum intensity value in the set of pixels in image I and MSE is the
value of the mean squared error of the pixel intensities among the reference image I and
the ground-truth image K. The MSE value is given by the formula

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (4)

6.1.2. Structural Similarity

The structural similarity index (SSIM) [166] is a metric that measures the perceptual
difference between two images x and y and is given by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5)

where c1 = (k1L)2 and c2 = (k2L)2 and L is the dynamic range of the pixel values defined
as L = 2bits per pixel − 1 and k1 = 0.01 and k2 = 0.03. µx and µy are the expected values
of the variables x and y, and σx and σy are the variances of x and y.

6.2. Real-Time Performance Classification

Another critical aspect that must be considered when employing a DL algorithm for
enhancing the situational awareness of FRs is whether they are able to process data quickly.
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However, reports on different methods often regard different image resolution, which
naturally has a significant impact on execution time. Hence, in the comparisons of this
section, we have classified each method as real-, near-real- or non-real-time, taking into
consideration both reported frames per second (FPS) and image resolution. The real-time
category includes methods that report high FPS in at least medium resolutions, or medium
FPS in higher resolutions. Near-real-time methods may report medium FPS in medium
resolutions or lower, but still acceptable FPS, in high resolutions. With improving hardware
and computational advances, near-real-time methods may achieve higher FPS and be
promoted to real-time in the near future. Non-real-time methods report very low FPS. It
must be stressed that this classification is still subjective and should not be interpreted as a
strict classification scheme.

6.3. Comparison of Models

The deraining, desnowing and dehazing methods that could serve the purpose of
augmenting the vision of FRs during rescue mission operations should have a low response
time and produce a visually pleasing output. Therefore, in this section we discuss the
results of the models proposed in the literature for deraining, desnowing and dehazing in
terms of PSNR and SSIM values, as well as their processing time. The compared methods
are evaluated based on benchmarking datasets. In Tables 7–9 we report the results for the
deraining, desnowing and dehazing methods respectively. The highest PSNR and SSIM
values are highlighted using bold text and the algorithms have been sorted in a top to
bottom order, where the top is the method with the highest processing time needed.

Additionally, we have classified the methods in three categories (real-time, near-real-
time, non-real-time) based on the maximum images per second that the models can process
(for more information please see Section 6.2), considering also the size of the images. Due
to the large number of algorithms found in the literature and the lack of availability of
code for many of the methods, the reported results are only based on the literature and no
experiments have been made by the authors of this paper. Lastly, some methods have been
omitted due to lack of available information.

6.3.1. Mathematical Background of Deraining

Mathematically, a rainy image O can be modeled as a linear superimposition of the
clean background image B, and the rain streak layer S which contains the rain streaks that
we would like to remove, as shown in Equation (6).

O = B + S (6)

By estimating S we can, in turn, recover the clean image B through the difference as
shown in Equation (7).

B = O− S (7)

The problem of decomposing the rainy image to a clear image and a rain streak layer
is an ill-posed problem and to resolve this many different approaches have been proposed.
In Appendix A we list the different imaging models that have been proposed for the image
deraining task.

6.3.2. Comparison of Deraining Models

In Table 7 we have collected the methods discussed in Section 3 and classified them in
terms of quality metrics and processing time. We observe that the best quantitative perfor-
mance is obtained by the JORDER [23] and ResGuideNet3 [55] methods. Their performance
is justified by the reported PSNR and SSIM values. More specifically, the JORDER [23]
method exhibits the highest PSNR value (namely, 32.95), while ResGuideNet3 [55] exhibits
the highest SSIM value (estimated at 0.939). A drawback is that, while these two methods
score high in terms of the PSNR or SSIM value, they both reach an average processing
time and can be classified as near-real-time performance. Two of the methods have an
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exceptionally short processing time, namely the PCNet-fast [167] and the LPNET [86].
The MSPFN [80], IADN [71] and DDN [17] methods are observed to have an adequate
performance but at the same time they perform in near-real-time settings. We can conclude
that for an augmented vision application around rescue mission operations, a model selec-
tion strategy could be to select a method that has at least near-real-time processing time,
and simultaneously a high value of the exhibited PSNR or SSIM. Using this principle we
can select the PCNet-fast, PCNet or ResGuideNet3 methods. By assuming a high PSNR or
SSIM value, we can potentially improve the processing time capabilities of a method so
that it can be feasible to use it for the intended scenario. Such methods are, for instance,
IADN, PReNet, MSPFN and RESCAN.

Table 7. Quantitative results of deraining methods along with their running time. ↑means higher
is better. In bold we indicate the best result for each dataset.

Dataset Method PSNR ↑ SSIM ↑ FPS ↑ Image Resolution Classification
RESCAN [87] 30.51 0.882 1.83 512× 512 non-real-time
MSPFN [80] 32.39 0.916 1.97 512× 512 non-real-time
PReNet [89] 31.36 0.911 6.13 512× 512 near-real-time
IADN [71] 32.29 0.916 7.57 512× 512 near-real-time
DDC [25] 28.65 0.854 8.00 512× 512 near-real-time

DerainNet [48] 23.38 0.835 13.51 512× 512 near-real-time
PCNet [167] 32.03 0.913 16.12 512× 512 near-real-time
UMRL [104] 21.15 0.770 20.00 512× 512 real-time

PCNet-fast [167] 31.45 0.906 35.71 512× 512 real-time

Test1200

LPNET [86] 25.00 0.782 37.03 512× 512 real-time

Rain100L
JORDER [23] 32.95 0.921 5.55 481× 321 near-real-time

DDN [17] 31.12 0.926 6.25 481× 321 near-real-time
ResGuideNet3 [55] 30.79 0.939 16.66 481× 321 near-real-time

6.3.3. Mathematical Background of Desnowing

Removing snow from a single image is an ill-posed problem. In the literature, it is
often assumed that a snowy image is composed of a clear image and an independent snow
mask and the problem is formulated using Equation (8)

K(x) = J(x)(1− Z(x)) + C(x)Z(x) (8)

where K ∈ [0, 1]p×q×3 is a colored snowy image of size p× q, J ∈ [0, 1]p×q×3 is the cor-
responding snow-free image, Z ∈ [0, 1]p×q×1 is the snow mask and C is the chromatic
aberration map [29].

Recently, Chen et al. [32] reformulated this snow formation model, in order to addi-
tionally take the veiling effect into consideration. Their Joint Size and Transparency-Aware
Snow Removal (JSTASR) model is inspired by the Atmospheric Scattering Model used for
dehazing (for more information the reader can refer to Section 6.3.5) and is formulated
using Equation (9)

I(x) = K(x)T(x) + A(x)(1− T(x)) (9)

where A is the atmospheric light matrix, J is the scene radiance, T is the transmission map
and K is the snowy image without the veiling effect defined as:

K(x) = J(x)(1− Z(x)R(x)) + C(x)Z(x)R(x) (10)

where R is a binary mask which represents the snow location.

6.3.4. Comparison of Desnowing Models

Table 8 lists the reported quality metrics and processing time throughput of the listed
methods for desnowing discussed in Section 4. Again, in terms of execution time we
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use the same classification and the quantitative metrics are the PSNR and SSIM. Clearly,
the DesnowGAN method by Jaw et al. [107] is the only method that exhibits real-time per-
formance. This method proposes multiple model variations which are capable of generating
a variable number of FPS. In particular, it can generate between 14 and 33 FPS. We keep
the one with the highest number of FPS in the context of assisting FRs. The JSTASR [32],
MS-SDN [31] and DesnowNet [29] methods belong to the class of non-real-time methods.
It is also interesting to mention that the DesnowNet [29] and the MS-SDN [31] models score
higher in PSNR and SSIM scores in contrast to the DesnowGAN [107] method. The latter
method is very fast in terms of FPS, but it scores lower in PSNR and SSIM scores. In this
case, the DesnowGAN [107] could be a good fit for enhancing the situational awareness
of FRs due to its high speed, but the MS-SDN model [31] could also be an option if we
consider improving its processing time.

Table 8. Quantitative results of desnowing methods along with their running time. ↑means higher is
better. In bold we indicate the best result among the evaluated methods.

Dataset Method PSNR ↑ SSIM ↑ FPS ↑ Image Resolution Classification
DesnowNet [29] 30.11 0.930 0.72 640× 480 non-real-time

MS-SDN [31] 29.25 0.936 2.38 640× 480 non-real-time
JSTASR [32] 28.61 0.864 2.77 640× 480 non-real-time

Snow-100K
(overall)

DesnowGAN [107] 28.18 0.912 33.33 640× 480 real-time

6.3.5. Mathematical Background of Dehazing

In CV and computer graphics, a hazy image is modeled mathematically using the
Atmospheric Scattering Model (ASM) (Equation 11) proposed by McCartney [168].

I(x) = J(x)t(x) + A(1− t(x)) (11)

where x represents the position of pixels, I(x) is the observed hazy image and J(x) the
corresponding haze-free image to be recovered. The first term on the right hand side
of Equation (11) J(x)t(x) is called direct attenuation, while the second term A(1− t(x))
airlight. There are two critical parameters in the ASM: the parameter A that denotes the
global atmospheric light, and the parameter t(x) that is the transmission map, defined as
in Equation (12).

t(x) = e−βd(x) (12)

where β is the scattering coefficient of the atmosphere and d(x) is the distance between the
object and the camera.

Hence, solving Equation (11) for J(x), the model for the clean image can be written as

J(x) =
1

t(x)
I(x)− A

1
t(x)

+ A (13)

In clear weather conditions β ≈ 0; therefore, I ≈ J. In hazy images the A and t
parameters need to be estimated.

6.3.6. Comparison of Dehazing Models

In Table 9 we have collected the methods discussed in Section 5 and classified them
in terms of quality metrics and processing time, based on the best performance found in
the literature. The quality metrics used for evaluation are the PSNR and SSIM metrics
and the dataset used for evaluation is the RESIDE—SOTS. As can be seen, the MSFFA-
Net [123] has the best PSNR value (36.69), the method proposed by Yu et al. [156] has the
best SSIM value (0.991), while the AOD-Net has the shortest processing time. There is a
trend that the faster the model is the worse the metrics are, but there exist some exceptions.
FAMED-Net [129] and FD-GAN [109] show a relatively good performance although they
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are real-time methods, while the MSCNN [125] is a near-real-time method but has poorer
performance. Since for the specific task we are interested both in execution time and the
quality of the output images the method proposed by Yu et al. [156] and the DW-GAN [149]
could be a good fit, while finding a way to reduce their processing time is also a great idea
for having a real-time algorithm with great quantitative metrics.

Table 9. Quantitative results of dehazing methods along with their running time. ↑ means higher
is better. In bold we indicate the best result among the evaluated methods.

Dataset Method PSNR ↑ SSIM ↑ FPS ↑ Image Resolution Classification
FFA-Net [121] 36.39 0.988 0.57 1600× 1200 non-real-time
Li et al. [158] 24.44 0.890 0.89 512× 512 non-real-time

MSCNN-HE [126] 21.56 0.860 1.20 427× 370 non-real-time
TDN [134] 34.59 0.975 1.58 1600× 1200 near-real-time

DW-GAN [149] 35.94 0.986 2.08 1600× 1200 near-real-time
Light-DehazeNet [120] 28.39 0.948 2.38 620× 460 non-real-time

PGC [130] 28.78 0.956 3.17 563× 752 near-real-time
MSFFA-Net [123] 36.69 0.990 3.23 620× 460 near-real-time
DehazeNet [118] 21.14 0.847 3.33 620× 460 near-real-time

EPDN [140] 25.06 0.923 3.41 563× 752 near-real-time
Golts et al. [157] 24.08 0.933 3.57 620× 460 near-real-time

GDNet [124] 32.16 0.983 3.60 620× 460 near-real-time
MSCNN [125] 17.57 0.810 3.85 620× 460 near-real-time

YOLY [160] 19.41 0.832 4.76 620× 460 near-real-time
Yu et al. [156] 36.61 0.991 11.24 1600× 1200 real-time
cGAN [141] 26.63 0.942 19.23 620× 460 real-time
GFN [139] 22.30 0.880 20.40 620× 460 real-time

DCPDN [136] 19.39 0.650 23.98 512× 512 real-time
FD-GAN [109] 23.15 0.920 65.00 1024× 1024 real-time
DMPHN [133] 16.94 0.617 68.96 1600× 1200 real-time

FAMED-Net [129] 25.00 0.917 86.20 620× 460 real-time

SOTS
(RESIDE)

AOD-Net [119] 19.06 0.850 232.56 620× 460 real-time

7. Discussion and Conclusions

DL algorithms for enhancing vision in adverse weather conditions have raised a lot
of interest in the past few years. This state-of-the-art report presents the vast increase of
research in this domain while focusing on the specific case of assisting FRs. We believe
that such algorithms will have a profound impact on improving the situational awareness
of FRs in cases where their vision is bound by natural phenomena. We first introduce
commonly used datasets, next we present a taxonomy and detailed review of the three
families of image restoration methods for adverse weather conditions based on the most
recent research papers. Attention is also paid to unified image restoration methods that can
simultaneously handle rain, snow and haze. These models can blindly understand which
kind of weather-specific processing should be applied to an input image without requiring
the user to specify in what weather condition the image was captured. Finally, we discuss
the suitability of each of the existing algorithms for rescue missions applications. In order
to decide the competence of each method, we present a comparison of them in terms
of qualitative metrics and processing time. From our results, we can conclude that the
real-time performance for such image restoration tasks is of paramount importance to
integrating them into systems that can perform live in rescue missions.

Furthermore, there are very few real-world datasets and none of them are focused on
the specific task of rescue missions, thus it will be necessary to create future datasets focused
on rescue missions. We hope that this survey will introduce image restoration methods for
FRs to a large research community, thereby facilitating the development of next-generation
image restoration applications focusing on both execution time and performance. Last but
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not least, research directions such as unified models that operate under multiple adverse
conditions can open new pathways for deploying robust vision applications that will be
valuable both for researchers and experts.
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Appendix A

Appendix A.1. Underlying Equations for Image Deraining

This Appendix section supplements Section 6.3.1. Here we discuss several imaging
models that have been proposed in methodologies on the deraining task. These imaging
models, in general, make an attempt to separate the clean image data from the rain streak
data in various ways. Due to the complex data structure that exists in real image data,
the imaging model equations that have been proposed may not model the underlying data
perfectly or perfectly separate the usable data from the undesired noise. Below, we list the
synthetic imaging models inline along with the references which introduced them.

1. Li et al. [90] model the observed rainy image O as a background layer B and a
sequence of s rain streak layers St. Each layer St can model rain streaks of different
characteristics (e.g., that of orientation and size). Their proposed model is known
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in the bibliography as Multiple Rain Streak Layers (MRSL) model and is shown in
Equation (A1).

O = B +
s

∑
t=1

St (A1)

2. The Heavy Rain Model (HRM) proposed by Yang et al. [24] is a convex combination
of two quantities: (1) the underlying image modelled by a set of rain streak layers St
(s layers are assumed) and the background image B; (2) the global atmospheric light
matrix A. The s rain-streak layers St are able to capture the rain streaks with different
characteristics. a is the atmospheric transmission parameter. Equation (A2) shows the
HRM model.

O = α� (B +
s

∑
t=1

St) + (1− α)� A (A2)

3. The model proposed by Xue et al. [54] assumes an image B + R that is gamma
corrected by an exponent γ. This image is linearly combined with the atmospheric
light matrix A. This equation is similar to Equation (A2), except for the fact that the
latter requires multiple rain streak layers St. Their proposed model is known in the
bibliography as Heavy Rain Model with Low Light (HRMLL) model and is shown in
Equation (A3).

O = α(B + R)γ + (1− α)A (A3)

4. Luo et al. [169] introduced the Screen Blend Model (SBM). Their model is inspired
by the Equation (6), but a difference is that in the equation the last term B � S is
subtracted from the quantity B + S. The entries in the matrix B� S weigh each pixel
entry by the relative importance of the background pixel value of the associated entry
and the corresponding value in matrix S. The entries of this matrix can be regarded
as the linear correlation among the signals. Therefore, each pixel intensity associated
with an entry of O is reduced by the product of the values from B and S. The model is
shown in Equation (A4).

O = B + S− B� S (A4)

5. The equation Rain Model With Occlusion (RMO) by Liu et al. [170] is similar to the
HRM, except that they mutually differ in the last term (1− β)� R. In this term βt(i,j)
is a cancellation term that signifies whether the pixel at location (i, j) belongs to the
rain occluded region Ωs (Liu et al. [170] defines Ωs as “the region where the light
transmittance of rain drop is low”) and matrix R is the rain reliance map.

O = β� (B +
s

∑
t=1

St) + (1− β)� R (A5)

6. Yang et al. [103] introduced the Comprehensive Rain Model (CRM). This model is
similar to HRM, however, here a matrix component U is added to the right factor of
the first term of the equation in case 5. The CRM is shown in Equation (A6).

O = β� [(B +
s

∑
t=1

St) + (1− α)A + U] + (1− β)� R (A6)

7. The Depth-aware Rain Model (DRM) by Hu et al. [72] shares a similarity with the
previous equations in that terms that appear in the previous equations also appear in
this last equation but in a different order. The DRM is shown in Equation (A7)

O = β� (1−
s

∑
t=1

St − (1− α)A) +
s

∑
t=1

St + αA (A7)
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8. Equation (A8) by Li et al. [87] combines linearly the clean background image B,
the rain streak layers Ri and the atmospheric light matrix A. This linear combination
is especially a convex combination.

O = (1−
n

∑
i=0

ai)B + a0 A +
n

∑
i=1

αiRi (A8)

9. Equation (A9) by Yang et al. [23] is similar to Equation (6). The difference in the
former equation is that the entries of matrix R are linearly combined with cancellation
entries in a matrix S. When an entry of S is zero, the respective entry in matrix R is
cancelled. In turn, when an entry of S equals 1, then the respective intensity value
in the entry of R is promoted. Hence, the term O in O = B + S� R is similar to the
equation O = B + R, but a difference is that the entries in S� R where the respective
entry in S is zero are cancelled. When each entry in S equals 1, the respective entry in
O is modelled as O = B + R.

O = B + S� R (A9)

10. Equation (A10) by Su et al. [88] involves the iterative estimation of the background
image B. The equation asserts that the rain streak layer R is determined by the paired
differences of estimated background images Bi and Bi−1.

N

∑
i=2

(Bi − Bi−1) = R (A10)

11. The Raindrop Equation (A11) proposed by Qian et al. [65] models the relationship
between the colored image I, a binary mask matrix M with zero-or-one entries,
the clean background image B and the matrix R. Matrix R represents the raindrop
information, which is a combination of the background information and the light
reflected by the environment through the raindrops.

I = (1−M)� B + R (A11)

12. The Rain Accumulation and Accumulation Flow (RAAF) model (Equation (A12))
was introduced in the paper of Yang et al. [103]. The parameter At is the global
atmospheric light. βt is atmospheric transmission. Ut is the rain accumulation flow
layer, and St is the rain streak layer.

Ot = βtBt + (1− βt)At + Ut + St (A12)

Appendix A.2. Loss Functions Employed in the Deraining Problem

In this section, we review some notable loss functions which have been used by recent
deraining methods.

The perceptual image similarity loss [171] measures the discrepancy of a derained
image and the ground-truth of the image. To measure discrepancy, the loss function
takes the difference between the feature activations of the derained image xD and the
feature activations of the ground-truth image xG. The components of the resulting feature
activation vector are reweighted by a vector θi.

The perceptual contrastive loss [61] is the weighted combination of n fraction terms
referring to the i-th layer Vi of an underlying CNN. Three quantities are considered in this
loss function: the derained image xD, the rainy image xR and the ground-truth image xG.
In the fraction terms, the nominator is the `1 distance between the feature activations of
the derained image and the ground-truth image. The denominator measures the distance
between the feature activations of the i-th CNN network for the derained image xD and
the rainy image xR.
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The segmentation loss used in [61] is also commonly known as the focal loss func-
tion [172]. The probability pij models the likelihood that the pixel at position (i, j) belongs
to a particular class, and a and γ are standard parameters. The function computes the
average bit count corresponding to the probability value pij, each weighted by the factor
−a(1− pij)

γ. In this way, the supervision focuses on hard examples while reducing the
loss contribution from easy examples.

The margin loss considers two extreme values m+ and m− and measures their relation
to the squared `2 norm of a vector vk. If we consider two points m− and m+ on a straight
line, then ||vk||2 can be placed at three possible point locations. Based on this location,
the max operators of Tk and 1− Tk are either positive or are cancelled out, and the loss
function varies among a minimum and a maximum value.

The color cycle-consistency loss used in [173] is a trivial modification of the cycle-
consistency loss, originally introduced in [67]. In a Cycle-GAN, a network involving
a generator and a discriminator function is considered. This network employs a cycle-
consistency constraint which ensures that a datum that is projected via projection function
F can be back-projected to the original vector space by another function G. The color
cycle-consistency loss function applies the cycle consistency constraint on the three color
channels of an RGB image matrix of reference.

The identity preserving loss used in [174] considers the absolute error of the coor-
dinates of two vectors. The first vector is a vector n and the mapping GN2R(n), and the
second vector is a vector r and its projection vector GR2N(r). The target in this loss function
is to minimize the average value of the `1 vector norm of the difference of the two pairs
of vectors.

The total variation loss is the sum of the absolute differences for neighboring values
of an input image. It contributes to generating more smooth images while removing the
rough textures of the generated denoised image.

Adversarial loss [64] measures the distance between distribution of the generated
images and the distribution of the ground truth images. In these settings, an adversarial net-
work can have two loss functions, one for the generator who tries too fool the disciminator,
and one for the discriminator who tries to classify a forged distribution from a real one.

The attention loss function used in [78] is one out of many loss functions designed for
serving an attention mechanism in deep neural networks. This loss function considers the
`2 matrix norm of the difference of an attention-mask matrix referring to an s-th scale and a
target attention matrix.

The Charbonnier loss function is a matrix function that involves the `2 matrix norm of
the input variable and a lag term ε that ensures the numerical stability of the loss function.
Since the `2 matrix norm of the input matrix variable is non-negative, the Charbonnier loss
function adds a small parameter ε2 to the squared `2 matrix norm that ensures that the
final loss function value equals at least ε.

Structural similarity is used in the deraining problem as a surrogate loss function
to optimize the weights of a deep neural network. Similarly, the peak-signal-to-noise
ratio metric, which is also a no-reference metric for measuring the quality of an image,
is also used as a surrogate loss function in some of the works on the deraining problem;
for example, see [175]. Both functions are a natural choice of loss functions for a deep
neural network capable of solving the single image deraining problem. Since in deep
neural networks we seek to minimize the underlying loss function, we need to minimize
the negative of either function. In fact, in practice we want to maximize terms involving
the structural similarity and peak signal-to-noise, usually taken to be the mean structural
similarity value and the mean peak signal-to-noise ratio.

Appendix A.3. Loss Functions Used by Desnowing Methods

In this part of the Appendix, we list the loss functions that are introduced by the DL-
based single image desnowing methods available in Section 4.1. Except simple cases of loss
functions that are common in the general literature of DL, Table A1 lists several important
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loss functions which do not fall within the common loss function cases. Importantly, these
non-trivial loss functions are themselves alterations of basic loss functions. For instance,
the complex wavelet loss function in the first row of Table A1 is a modified Charbonnier
loss function. Importantly, the rest of the loss functions make use of the `1, `2 and Frobenius
norms, respectively.

Table A1. Listing of loss functions used by desnowing methods.

Loss Function Ref. Description

∑i

√
||(η̃π

i − ηπ
i ) + j(η̃π

i − ηπ
i )|2 + ε2 Chen et al. [30] Complex Wavelet Loss

||CC(J)− CC(JGT)||1 Chen et al. [30] Contradict Channel Loss
1

Cj HjWj
||φj(ỹ)− φj(y)||22 Chen et al. [30] Perceptual Loss

∑τ
i=0 ||P2i (m)− P2i (m̃)||22 Liu et al. [29] Lightweight Pyramid Loss
1
N ∑N

i=1 ||xi − f (xi)||2 Liu et al. [29] Total Variation Loss
||Gφ

j (ỹ)− Gφ
j (y)||

2
F Liu et al. [29] Style Loss
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