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Abstract: Pine wilt nematode disease is a devastating forest disease that spreads rapidly. Using
drone remote sensing to monitor pine wilt nematode trees promptly is an effective way to control the
spread of pine wilt nematode disease. In this study, the YOLOv4 algorithm was used to automatically
identify abnormally discolored wilt from pine wilt nematode disease on UAV remote sensing images.
Because the network structure of YOLOv4 is too complex, although the detection accuracy is high,
the detection speed is relatively low. To solve this problem, the lightweight deep learning network
MobileNetv2 is used to optimize the backbone feature extraction network. Furthermore, the YOLOv4
algorithm was improved by improving the backbone network part, adding CBAM attention, and
adding the Inceptionv2 structure to reduce the number of model parameters and improve the accuracy
and efficiency of identification. The speed and accuracy of the Faster R-CNN, YOLOv4, SSD, YOLOv5,
and the improved MobileNetv2-YOLOv4 algorithm were compared, and the detection effects of
the Faster R-CNN, YOLOv4, SSD, YOLOv5 and the improved MobileNetv2-YOLOv4 algorithm
on trees with pine wilt nematode were analyzed. The experimental results show that the average
precision of the improved MobileNetv2-YOLOv4 algorithm is 86.85%, the training time of each
iteration cycle is 156 s, the parameter size is 39.23 MB, and the test time of a single image is 15 ms,
which is better than Faster R-CNN, YOLOv4, and SSD, but comparable to YOLOv5. Compared with
the advantages and disadvantages, comprehensively comparing these four indicators, the improved
algorithm has a more balanced performance in the detection speed, the parameter size, and the
average precision. The F1 score of the improved algorithm (95.60%) was higher than that of Faster
R-CNN (90.80%), YOLOv4 (94.56%), and SSD (92.14%), which met the monitoring requirements of
pine wilt nematode trees. Faster R-CNN and SSD pine-wilt-nematode tree detection models are
not ideal in practical applications. Compared with the YOLOv4 pine-wilt-nematode tree detection
model, the improved MobileNetv2-YOLOv4 algorithm satisfies the condition of maintaining a lower
model parameter quantity to obtain higher detection accuracy; therefore, it is more suitable for
practical application scenarios of embedded devices. It can be used for the rapid detection of pine
wilt nematode diseased trees.

Keywords: UAV; deep learning; YOLO algorithm; pine wilt nematode

1. Introduction

Pine wilt nematode is one of the most dangerous and devastating diseases in forest
ecosystems in China and even in the world [1]. In recent years, the spread of pine wilt
nematode has accelerated, and the damage has become increasingly serious. As of 2020,
pine wilt nematode disease has occurred in 726 county-level administrative regions in
18 provinces in China [2]. (Pinus thunbergii) has expanded to Korean pine (Pinus koraien-
sis), larch (Larix gmelinii), and other species [3], and the epidemic directly threatens the
security of nearly 60 million hm2 of pine forest resources in China. The monitoring of
abnormally discolored wilt from pine wilt nematode disease is the key to the prevention
and control of pine wilt nematode disease. Through monitoring, the disease situation can
be grasped in time, and corresponding control work can be made accordingly, which is
conducive to the management of pine wilt nematode disease.
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Early monitoring methods were mainly based on ground surveys, that is, on-site
inspections by forest rangers to determine whether an epidemic occurred in the forest
area, preliminarily judge the degree of damage caused by the epidemic, and the location
information of diseased trees, which is conducive to subsequent prevention and control.
However, the use of artificial ground surveys will consume a lot of manpower and material
resources, the efficiency is extremely low, and there is a time lag, especially in mountainous
and remote areas with complex geographical environments, it is difficult to fully understand
the dynamics of the pine needle nematode epidemic promptly, and it is easy to miss the best
preventive measures. It is a good time, which leads to the further spread of the epidemic.

In 1994, my country adopted the U.S. Forest Service aerial photography system to
monitor the epidemic. Since then, domestic researchers have begun to use a large amount
of space remote sensing technology to monitor pests and epidemic areas. Compared with
ground measurements, aerospace remote sensing technology can save manpower and
improve monitoring efficiency. However, due to the limitation of spatial resolution of aerial
remote sensing images, only large-scale epidemic monitoring can be performed, and it is
difficult to monitor individual affected trees. Rainy weather affects the clarity of remote
sensing images and creates many difficulties for aerial photography. The long flight cycle
of satellites is in stark contrast to the characteristics of short infection time and fast spread
of pine trees, which is likely to cause monitoring gaps.

Since their inception, UAVs have mainly used in the military field [4]. With the
development and application of UAV technology, UAV technology has been widely used
in crop protection, photography, disaster relief, and other civilian fields. Researchers at
home and abroad have used UAV remote sensing technology to monitor trees affected by
pine forest diseases. First, the affected trees were found from high-resolution drone images
of pine forests using a visual judgment method, which is subjective. Tao Huan et al. [5]
used the HSV threshold method to identify diseased trees in the obtained UAV images,
and the overall accuracy of the method was (60% to 65%). Wang Hong et al. [6] used
portable ground equipment to collect the spectral reflectance of the pine trees with the
diseased beetle and established the spectral characteristics of the diseased pine trees,
which achieved an accuracy rate of more than 80% in the prediction of the diseased pine
trees. Liu Xialing et al. [7] obtained high-resolution images and used a multi-template
detection method to identify trees affected by pine forest diseases in different disease
stages. The results show that this method can effectively improve the detection efficiency of
diseased trees compared with visual interpretation. Therefore, machine learning methods
have also adopted by related researchers. Hu Gensheng et al. [8] used a dual-spectral
camera installed on a UAV platform to obtain images of pine forests and then used a
weighted support vector data description algorithm to identify diseased trees. Aimed at the
problem that the traditional aerial photo identification method cannot quickly locate the
pest outbreak center and track the spread of the disaster, Sun Yu et al. [9] proposed a real-
time monitoring method based on deep learning. The depthwise separable convolutional
network as a feature extractor achieves an average precision of 97.22% during testing.
Zhang Sulan et al. [10] used the spectral reflectance of Masson pine as the data source to
analyze the ridge trace of 14 spectral characteristic parameters and constructed a pine wilt
nematode disease ridge regression monitoring model. The test results showed that the
determined coefficient R2 of the constructed pine wilt nematode ridge regression model
was 0.8686, the mean square error RMSE was 0.2735, and the average estimation accuracy
was 87.15%, which provides technical support for the early monitoring and control of
pine wilt nematode disease. The method of combining Fast R-CNN and UAV remote
sensing proposed by Huang Huayi et al. [11] has an accuracy rate of 90%. For UAV
image data, Song Yining et al. [12] used a linear spectral clustering superpixel algorithm
to monitor and locate diseased trees and used support vector machines to accurately
locate diseased trees. The test results show that in the monitoring results of the linear
spectral clustering superpixel method, the intersection ratio with manual detection results
was greater than 58%. Lu Mingzhan and others have explored the rapid identification
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technology of abnormal trees by drones based on artificial intelligence. Tests have proved
that the accuracy of this technology in identifying diseased trees is more than 90%, which
is 70 times faster than manual speed. Liu Jincang et al. [13] used UAV remote sensing
technology to take color images of forest areas and used the CRF algorithm to classify and
identify diseased pine trees according to the color characteristics and texture characteristics
of ground objects in the images. After experimental verification, this method has a good
effect on the monitoring of pine wilt nematode disease. Based on the analysis of pine wilt
nematode disease prevention and control work in Chongqing, Wu Honggan et al. [14]
further carried out the remote sensing monitoring of dead pine trees by unmanned aerial
vehicles and gave detailed working steps, which provided a basis for the research on the
spatiotemporal regularity of pine wilt nematode disease.

It was used in Canada in 1988 to detect leaf moth disease. Joon-Bum et al. [15] used
IKONOS satellite imagery to monitor epidemic areas in South Korea. With the continuous
development of satellite remote sensing technology, foreign researchers began to use high-
resolution satellite remote sensing data and hyperspectral satellite remote sensing data
to monitor trees with pine wilt nematode disease. After obtaining high-quality remote
sensing images by UAV, Mutiara et al. [16] used an artificial neural network and support
vector machine to classify and detect trees affected by the disease; Iordachel et al. [17] used
a random forest method to classify the found diseased trees. Pham et al. [18] realized that
the use of empirical methods and artificial intelligence to analyze and predict vegetation
parameters in hyperspectral remote sensing is flawed and proposed a new deep learning
model to solve the problem of class imbalance and gradient normalization. Testing the
model achieves a class-balanced accuracy of 78.32%. S.Natesan et al. [19–23] proposed a new
method of UAV monitoring tree species based on residual neural network, using the images
collected by UAV in the past three years to train the artificial neural network, respectively
conducted two groups of experiments, obtained 80% and 51% tree species classification
accuracy. Franklin et al. proposed a new method for UAV tree species classification based
on object image analysis and machine learning, using image segmentation technology
to segment the acquired images. During the experiment, after using the random forest
algorithm for classification, the overall correctness of the independent verification samples
was obtained. The rate reached 78%. Kim MJ et al. [24] used drones to collect orthophoto
images of 423 pine trees suspected of being infected with pine wilt nematode disease in
six areas and used a satellite navigation system to conduct field investigations. The study
found that the occurrence of pine wilt nematode infection has nothing to do with tree
species, which improved monitoring and work efficiency in pine wilt nematode endemic
areas. In their research, Onishi et al. used a commercial drone to obtain aerial images of
forests and performed image segmentation operations to separate a single tree canopy.
Using an open-source deep learning framework, a machine vision system for automatic
tree classification was constructed. The classification accuracy of seven tree species in the
environment reached 89.0%, providing a cost-effective tree classification tool for forest
researchers and managers. Kestur et al. [25–27] used UAV as a new type of remote sensing
platform applied in the field of ecology, proposed an ELM spectral space classification
method for monitoring, delineation, and counting carried out spectral space classification
of tree crowns in RGB images and proved that the performance of this algorithm is better
than K-Means spectral space clustering method. Lees et al. [28] used drones to collect high-
resolution images in pine wilt nematode endemic areas and used artificial neural network
ANN and support vector machine technology to monitor pine trees that were killed and
withered by pine wilt nematode disease. Using satellite images and deep learning-based
image segmentation algorithms in Guatemala forests, Wyniawskyj et al. [29,30] realized an
automated model for forest area detection at the pixel level of satellite images.

All the above methods can realize the monitoring of diseased trees, but the use of UAV
remote sensing to monitor pine wilt nematode trees is the general trend.
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2. The Location of the Study Area

From 2017 to 2019, Yantai City, Shandong Province, carried out the census and disposal
of pine wilt nematode trees. Among them, the Queen’s Mountain Forest Area in Penglai
District, Yantai City, is the main epidemic area. After the pine tree is infected, it gradually
begins to die from the top of the tree. During manual inspections during this period, an
early-infected pine was discovered. Through in-depth investigation, the diseased pine trees
in the forest area were found one after another, and the disease has spread in the forest area.
Taking Queen Mountain and its surrounding areas in the Penglai District, Yantai City, as
the study area, we explored a new method for detecting diseased trees.

The location of the study area is shown in Figure 1. During the Xianfeng and Tongzhi
years of the Qing Dynasty, there was war in the Jiaodong area. At that time, many villages
were in crisis, and they built walls in the mountains to protect themselves. Queen’s
Mountain is also called “Weizi Mountain”, which is also related to this. At that time, it
was a woman with strong martial arts who led the surrounding villages to practice and
defend the mountain. Under her leadership, the mountain people repelled the enemy’s
attack many times, but in the battle, she was unfortunately hit by a dark arrow and died
in battle. To commemorate her, the locals named “Weizi Mountain” “Queen’s Mountain”,
which has a long history. There are 34 species of ancient and famous trees in the forest area,
with a total of tens of thousands of trees.
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Figure 1. Location information of the study area.

3. Creation of Experimental Datasets

This chapter takes pine wilt nematode diseased trees as the research object and uses
drone aerial photography technology to collect images of diseased trees in Queens Moun-
tain Forest Area, Penglai District, Yantai City. At a flight altitude of 100 m above sea level,
the M600 drone carried out aerial photography missions to the pine forest in the Queen’s
Mountain Forest area according to the route planned in advance. The Yu-2 UAVs performed
shooting tasks at average altitudes of 50 m, 100 m, 250 m, and 300 m.

3.1. UAV Parameters

In this paper, the pine wilt nematode diseased trees were taken as the research object,
and the RGB image information of the pine wilt nematode trees in the Queens Mountain
forest area of Penglai District, Yantai City, China, was collected by using the image acqui-
sition method of aerial photography of the forest area by the UAV airborne camera. The
equipment and its parameters used to collect images from aerial photography are shown in
Figures 2 and 3 and Table 1.
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Table 1. UAV and airborne camera parameters.

UAV, Camera Parameter Value

DJI “Yu” series of MAVIC aircraft

Maximum take-off mass/g 1100
Dimensions (L × W × H)/mm 322 × 242 × 84

Maximum flight altitude/m 500
Maximum flight speed/(km·h−1) 50

Max flight time/min 31

DJIFC200 camera

Dimensions (L × W × H)/mm Gimbal, lens, and body
Photo format JPEG
Image Sensor 1/2.3” CMOS

Photo resolution 4000 × 3000

DJI M600 aircraft

Maximum take-off mass/g 15,500
Dimensions (L × W × H)/mm 1668 × 1518 × 727

Maximum flight altitude/m 300
Maximum flight speed/(km·h−1) 65

Max flight time/min 32

3.2. Cut Aerial Images

Quality checks are performed on each image, and invalid images are removed. The
identification of pine wilt nematode trees requires high color saturation and brightness,
but due to the influence of impurities in the air, the original image color brightness is not
clear. The original image was processed by using the dark channel dehazing method. The
dehazing process can saturate the color of the image and improve the brightness, which is
beneficial to the identification of pine wilt nematode trees. Because the images obtained
by UAV aerial photography technology are too large, each image must be more than 4 G,
and some images can even be as high as 12 G. The image size is too large. If the original
image is downsampled, the available features will be reduced. To better obtain the feature
information of the image, the image after the dehazing process is cropped and divided, the
frame size is 500 × 500, and the unit is the pixel.
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I created a total of 116,012 image samples of forest areas. The amount of image data is
shown in Table 2:

Table 2. Segmented aerial forest image.

Sample Quantity

Forest image 116,012

The pine trees with pine wilt nematode disease photographed by the two are shown
in Figure 4. Figure 4a,b were taken by the M600, and Figure 4c,d were taken by the
Royal 2 drone.
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3.3. Manually Labeled Datasets

In the Queen’s Mountain Forest, Penglai District, Yantai City, after drone aerial pho-
tography was used to collect images of pine trees, the Labellmg professional image labeling
software was used to manually label the collected 116,012 images and transform them into
the PascalVOC type. Click the mouse to use the green box to select the object and enter the
name of the object on the label. In the figure, the tree with pine wilt nematode disease is
labeled, and the label is “illtree”, and the labeling result is shown in Figure 5.
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All of the label files were obtained after manual labeling. The XML label file contained
the category information of the labeled object and the coordinate information of the labeling
box of the diseased tree, that is, the bounding box of the object, as shown in Figure 6. This
was marked in the format of [xmin, ymin, xmax, and ymax], xmin and xmax are the
coordinates of the upper left corner of the object frame, ymin, ymax are the coordinates
of the lower right corner of the object frame; how many objects need to be identified in a
picture? How many objects are there in its XML file?

After the image was successfully annotated with the annotation software, the annota-
tion information of the dataset was read, and the annotation information in the label file
was read out using a python script and stored in the txt file, and all of the images appeared
in the labels folder: label information. As shown in Figure 7, the coordinate information of
the bounding box of the object in the XML tag file was read.
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3.4. Classification of Datasets

Finally, the images containing trees with pine wilt nematode disease were selected in
the cut image as a sample set for the detection of pine wilt nematode trees. The dataset was
divided into three categories: training, testing, and validation. The default training, testing,
and validation follow the 8:1:1 ratio for random classification.

4. Introduction to the YOLOv4 Model

The YOLOv4 algorithm uses three feature layers for classification and regression
prediction, mainly composed of three parts: the backbone feature extraction network
CSPDarknet53, the enhanced feature extraction network SPP + PANet, and the prediction
network YOLO Head. The specific network model structure is shown in Figure 8.
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First, extract features from the input image through the backbone network CSPDark-
Net53. In this process, use a convolutional layer with a convolution kernel size of 3 × 3 and
a stride of two to downsample the input five times in a turn to form three effective feature
layers 13 × 13, 26 × 26, and 52 × 52.

In addition, the 13 × 13 feature layer is fused with multi-scale receptive fields through
spatial pyramid pooling networks (SPPnet), and the fused 13 × 13 feature layer is combined
with the 26 × 26 generated by the backbone network, 52 × 52 feature layers together
through the feature fusion network PANet to fuse the shallow layer with sufficient detailed
features and the deep layer with rich semantic features, which improves the problem of poor
detection of small objects. In this process, a total of two upsampling, two downsamplings,
multiple convolutions, and concatenation operations.

Finally, the feature layer obtained after the feature fusion network is sent to the detec-
tion network, and the input image is divided into 13 × 13, 26 × 26, and 52 × 52 grid images
by classification and regression, and the large, medium, and small three are detected respec-
tively. Objects of different scales. Each grid is responsible for predicting three bounding
boxes; each bounding box predicts the location information of the object (including the
center coordinates and width and height of the predicted box) and the confidence of the
existence of the object if there are k categories in the dataset, the final output feature. The
number of channels on the graph is 3 × (5 + k). Compared with the two-stage object
detection algorithm, the YOLOv4 algorithm not only improves the detection accuracy but
also speeds up the detection speed.

5. Improved MobileNetv2-YOLOv4 Model

The objection detection algorithm based on deep learning is one of the important
branches of computer vision. The objection detection is based on the convolutional neural
network to complete the image analysis and processing to solve the problem of “what is
the objection object? Where is the objection object?” Point out the category of all interested
objection objects in the image and the location of the objection object in the image, which is
the classification and positioning of the objection object. At present, objection detection
algorithms are mainly divided into two categories: one-stage and two-stage. The one-
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stage includes SSD and YOLO, and the two-stage includes R-CNN, Fast R-CNN, and
Faster R-CNN. The YOLO algorithm has been used on objects such as tomatoes, boats,
birds, and planes. Compared with the two-stage algorithm, the YOLO algorithm has a
faster detection speed. The YOLO detection algorithm has made great progress, but due
to the large proportion of equipment resources in the convolutional neural network, it
is not suitable to run directly on mobile and embedded devices. To reduce the number
of model parameters, maintain the same detection accuracy and further improve the
precision measurement speed, the use of a lightweight deep learning network optimizes
the backbone feature extraction network. Among them, the MobileNet series is a typical
representative of lightweight networks. The MobileNetv2 network is a structure generated
by neural architecture search technology based on MobileNetv2. It is mainly improved in
the following three aspects: (1) Improve the backbone network; (2) Add CBAM attention;
(3) Add the Inceptionv2 structure.

5.1. Ideas for Improvement

(1) Improve the backbone network

Since the YOLOv4 algorithm uses CSPDarknet53 as the backbone network, although it
can extract effective feature information, the network structure is quite complex, resulting
in an excessive number of parameters, which is not ideal in terms of practicability. There-
fore, this chapter uses MobileNetv2 as the backbone network in the YOLOv4 algorithm,
which can reduce the number of parameters while ensuring its accuracy and form the
MobileNetv2-YOLOv4 model. The MobileNetv2-YOLOv4 model extracts three effective
feature layers through Mobileetv2, which are 52 × 52, 26 × 26, and 13 × 13, respectively.
Since the detailed information in the 13 × 13 feature map is gradually lost in the process of
feature extraction, convolution with a kernel size of 3 × 3 and a stride of four is used on
the 52 × 52 feature for downsampling with the 13 × 13 feature. Graphs are fused to form
bottom-up connections.

(2) Add CBAM attention

The feature fusion network of the YOLOv4 algorithm is located after the backbone
network, and the three effective feature layers extracted from the backbone network are
further convolutionally fused to obtain more representative features. In this process,
since the features have the same expressive power in the two dimensions of the feature
map channel and space, the extracted features are redundant, which makes the detection
effect of the model worse. Therefore, the CBAM attention mechanism is added to the
five convolutions after the feature fusion network of YOLOv4 is spliced to build the CBC
module. In this way, the network can focus on more important features in the training
process, ignore redundant features, and improve detection accuracy. The CBC module is
shown in Figure 9.

(3) Add Inceptionv2 structure

Since the detection network of the YOLOv4 algorithm only uses the 3 × 3 convolution
kernel to integrate the feature map, the integrated feature information is weak, and the inte-
gration process requires a large number of parameters. If the one-dimensional convolution
of 1 × 3 and 3 × 1 is replaced by 3 × 3, the convolution can increase the nonlinear expres-
sion of the model while reducing the number of parameters. Drawing on the structure of
the Inceptionv 2 model, the 3 × 3 convolution in the last layer of the YOLOv4 algorithm is
changed to the Inception 3 × 3 structure, and an ICP module is constructed: first, use three
parallel 1 × 1 convolutions to reduce the number of channels, and then replace the original
3 × 3 convolution with a 1 × 3 convolution and 3 × 1 convolution, and then add it to one
of the 1 × 1 convolutions, and finally fuse it, which reduces the number of parameters
while deepening the depth of the network and improving the performance of the network.
The structure of Inception 3 × 3 is shown in Figure 10.
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5.2. Improved MobileNetv2-YOLOv4 Network Structure

The overall network structure Figure of the improved algorithm can be obtained from
the improvement points, as shown in Figure 11.

Figure 12 shows the detection process of MobileNetv2-YOLOv4’s pine-wilt-nematode
tree detection model. The input image is first passed through the MobileNetv2-YOLOv4
feature extractor. In the process of generating the feature map, the detection boxes are
divided into six scales for regression training, and finally, the categories and bounding
boxes are obtained through the non-maximum suppression operation. Table 3 shows the
overall structure of MobileNetv2-YOLOv4, which mainly includes one initial convolution
and 19 bottleneck blocks.
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Table 3. MobileNetv2-YOLOv4 structure.

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1 × 1 - 1280 1 1

72 × 1280 Avgpool 7 × 7 - - 1 -
12 × 1280 conv2d 1 × 1 - k -

Note: Each line describes a sequence of 1 or more identical (modulo stride) layers, repeated n times. All layers in
the same sequence have the same number c of output channels. The first layer of each sequence has a stride s, and
all others use stride 1. All spatial convolutions use 3 × 3 kernels. The expansion factor t is always applied to the
input size.
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6. Experimental Part
6.1. Experimental Environment

The YOLOv4 object detection methods used in this paper are based on the TensorFlow
deep learning open-source framework. The hardware and software configurations of the
GPU nodes used are shown in Table 4.

Table 4. GPU node hardware and software details.

Project Configure

CPU Intel Xeon E5 v5
RAM 128 GB DDR5

Graphics processing unit NVIDIA Tesla K80 × 2
Operating system Linux (RedHat 6.9)

Deep Learning Framework TensorFlow 2.3.1
CUDA CUDA 10.1

The hardware and the software configuration of the mobile workstation are shown in
Table 5.

Table 5. Mobile workstation hardware and software details.

Project Configure

CPU Intel i7-11700K
RAM 16 GB DDR4

Graphics processing unit NVIDIA GeForce RTX 3060
Operating system Linux (Ubuntu 18.04)

Deep learning framework Tensorflow 2.3.1
CUDA CUDA 10.1

6.2. Experimental Parameters

The parameter settings of this experiment are shown in Table 6.

Table 6. Experimental parameter settings.

Parameter Project

Learning rate 0.01
Learning rate momentum 0.873

Weight decay 0.005
The maximum number of iterations 300

Non-maximum suppression 0.6
Confidence 0.1

Intersection over union 0.5

The other command-line parameter settings required to perform this experiment are
shown in Table 7.

Table 7. Command-line parameter settings.

Command-Line Arguments Parameter Meaning Setting Value

Batch Unified input image scale 16
Epochs The number of times the dataset participated in training 300
Device Training equipment GPU

Weights Weight file MobileNetv2-YOLOv4.pt

6.3. Evaluation Metrics and Methods

In practical application scenarios, a single indicator cannot meet the requirements,
it is not suitable, and it is not easy to judge the quality of a model. This paper improves
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the YOLOv4 algorithm, but whether the improvement can stand the test is a question.
Therefore, this paper uses the Accuracy Precision (AP), training time, parameter size,
and test time to evaluate the performance of the improved algorithm. The concepts are
as follows:

1. Average precision refers to the mean of the accuracy under different recall rates, which
is the average precision in the test set.

2. Training time refers to the time required to train an iterative cycle.
3. Test time refers to the time required to detect a single image.

In addition, when evaluating the test accuracy of the improved algorithm, the precision
rate (Precision, P), recall rate (Recall, R), and F1 score are used.

Precision =
TP

TP + FP
(1)

In Formula (1), TP + FP is the total number of detection frames calibrated by the
detection model on the pine wilt nematode disease tree test set.

Recall =
TP

TP + FN
(2)

In Formula (2), TP + FN is the total number of detection frames calibrated by the
model on the test set.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Formula (3) represents the accuracy of the model, where TP, FP, TN, and FN have
specific meanings shown in Table 8.

Table 8. Specific meaning.

P (Positive, 1) N (Negative, 0)

T (True, 1) TP (Positive samples predicted by the model to be positive) TN (Negative samples predicted by the model to be negative)

F (False, 0) FP (Negative samples predicted by the model to be positive) FN (Positive samples predicted by the model to be negative)

F1 score is an indicator used in statistics to measure the accuracy of a binary classifica-
tion model. It also takes into account the precision rate and recall rate of the classification
model and refers to the harmonic mean of the precision rate and recall rate, as shown in
Formula (4).

F1 = 2· Precision·Recall
Precision + Recall

(4)

The training platform was fixed, and the experimental environment was guaranteed to
remain unchanged. Using the same image data, the three object detection algorithms were
based on the improved MobileNetv2-YOLOv4 algorithm, the Faster R-CNN algorithm, the
SSD algorithm, the YOLOv4 algorithm, and the YOLOv5 algorithm. These five algorithms
detected the same image and finally obtained the detected data results.

According to the results, analysis and study of the performance of the five algorithms,
comparing the average accuracy, training time, parameter size, and the test time of the
five algorithms, and judging the improvements to the MobileNetv2-YOLOv4 algorithm,
Faster R-CNN algorithm, SSD algorithm, YOLOv4 algorithm, and YOLOv5 algorithm,
it was determined that they have a better performance for detecting pine wilt nematode
trees. In addition, by using the algorithm’s precision rate, recall rate, and F1 score and
other indicators, we analyzed and compared the different performances of the Faster R-
CNN algorithm, SSD algorithm, YOLOv4 algorithm, YOLOv5 algorithm, and improved
MobileNetv2-YOLOv4 algorithm.
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6.4. Experimental Results and Analysis

During the model training process, after the MobileNetv2-YOLOv4 pine-wilt-nematode
tree-detection model was trained 250 times, the mAP curve peaked at 0.6. The model con-
verged after 250 training runs, so the 300 training results were used.

The total training loss of the improved algorithm is shown in Figure 13. After training
for 300 epochs, the loss function tends to be stable, and the variation range is small,
indicating that the learning rate is set reasonably, the loss value was finally stabilized at
0.21 and 0.22, and the training was finally in a state of convergence.
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(1) Performance comparison of different algorithms

Different algorithms were selected, and the results of the identifying images were
also different. As shown in Table 9, this paper used five algorithms to compare the data
of the victim wilt detection. In terms of average precision, the improved algorithm has an
average accuracy of 86.85%, which is 7.21%, 6.29%, 3.37%, and 3.73% higher than that of the
Faster R-CNN, SSD, YOLOv4, and YOLOv5 algorithms, respectively; in terms of training
time, after the algorithm is improved, the training time of each iteration cycle is 156 s,
which is 168 s, 131 s, and 93 s less than the Faster R-CNN, SSD, and YOLOv4 algorithms,
respectively, but 33 s more than YOLOv5. In terms of parameter size, after the algorithm
is improved, the model parameter size is 39.23 MB, which is 412.95 MB, 330.19 MB, and
174.69 MB smaller than Faster R-CNN, SSD, and YOLOv4 algorithms, but 16.27 MB larger
than YOLOv5. During the test time, a single image was improved by the algorithm. In the
test, the time is 15 ms, which is 67 ms, 32 ms, and 6 ms less than the Faster R-CNN, SSD,
and YOLOv4 algorithms, respectively, but 8 ms more than YOLOv5.

Table 9. Performance comparison of different object detection models.

Models for
Object Detection Backbone Average Precision% Training Time/s Parameter Size Testing Time

Faster R-CNN VGG 16 79.64 324 452.18 82
SSD VGG 16 80.56 287 369.42 47

YOLOv4 CSPDarknet 53 84.48 249 213.92 21
YOLOv5 YOLOv5 s 84.12 123 22.96 7

This paper MobileNetv2-YOLOv4 86.85 156 39.23 15

Note: The average precision is the average precision of the testing set, the training time is the time required to
train one epoch, and the testing time is the time required to recognize a single image.

In terms of average precision, training time, parameter size, and test time, the im-
proved algorithm performs better than Faster R-CNN, SSD, and YOLOv4 algorithms; in
terms of training time, test time, and model parameter size, YOLOv5 is better than Faster
R-CNN, SSD and the improved algorithm performed excellently, but the average accuracy
of Faster R-CNN, SSD, and YOLOv5 algorithm tests was not as good as that of the improved
algorithm. In the task of pine-wilt-nematode-disease tree detection, the accuracy require-
ments were higher, so the improved algorithm was better than YOLOv5. The improved
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algorithm can obtain higher detection accuracy under the condition of maintaining a lower
model parameter quantity, and the improved algorithm is more suitable for practical appli-
cation scenarios of embedded devices. Therefore, a comprehensive comparison is made on
the four evaluation indicators of average precision, training time, parameter size, and test
time, and the improved MobileNetv2-YOLOv4 algorithm has better detection performance.
At present, in terms of detection accuracy, the detection performance of the improved
YOLOv4 algorithm still needs to be improved, but it meets the detection requirements of
pine wilt nematode trees and can be applied to the detection of pine wilt nematode trees in
different regions.

(2) Performance Evaluation of Improved Algorithms

In the performance indicators of the object detection model, Recall and Precision
represent recall rate and precision rate, respectively, and precision rate and recall rate are
a pair of contradictory measures. Generally speaking, when the precision rate is high,
the recall rate is low, and when the recall rate is high, the precision rate is low. In this
experiment, the PR curves before and after the improvement of the identification of trees
with pine wilt nematode disease are shown in Figure 14. As can be seen from Figure 14a,b,
the P-R curve of the latter can completely cover the P-R curve of the former, and the
performance of the latter is better than that of the former; that is, the improved algorithm
has a better performance.
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The important performance index of the pine-wilt-nematode tree detection model is to
reduce the omission of the pine-wilt-nematode tree detection during the detection process.
As shown in Table 10, using the Faster R-CNN pine-wilt-nematode tree detection model,
among the 95 objections, the number of false positives was three, the number of false
negatives was 13, the accuracy rate reached 83.16%, and the recall rate reached 85.87%, the
F1 score reached 90.80%; the SSD pine-wilt-nematode-disease tree detection model, among
95 objections, the number of false positives was one, the number of false negatives was 13,
the accuracy rate reached 85.26%, and the recall rate reached 86.17% the F1 score reached
92.14%; using the YOLOv4 pine-wilt-nematode tree detection model, 10 of the 87 objections
were underreported, the accuracy rate reached 89.69%, the recall rate reached 89.69%, and
the F1 score was 94.51%. Using the improved MobileNetv2-YOLOv4 pine-wilt-nematode
tree detection model, 8 out of 87 objects were underreported, the model accuracy rate
reached 91.58%, the recall rate reached 91.58%, and the F1 score was 95.60%. From the
analysis of the experimental results, it can be seen that the number of false positives for
the YOLOv4 and the improved MobileNetv2-YOLOv4 pine-wilt-nematode tree detection
model for the objection is 0, and the number of false positives was lower than that of Faster
R-CNN and SSD pine-wilt-nematode-tree detection model. Therefore, the application effect
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of the Faster R-CNN and SSD pine wilt nematode tree detection model is not ideal in actual
scenarios, and the model parameters are also very large, so they are not suitable for running
on mobile and embedded devices.

Table 10. Performance comparison of different object detection models.

TP TN FP FN Precision Accuracy Recall F1 Score

Faster R-CNN 79 0 3 13 96.34% 83.16% 85.87% 90.80%
YOLOv4 85 0 0 10 100% 89.69% 89.69% 94.56%

SSD 81 0 1 13 98.78% 85.26% 86.17% 92.14%
This paper 87 0 0 8 100% 91.58% 91.58% 95.60%

Note: TP, FP, and FN indicate the quantity of true positive, false positive, and false negative, respectively. P, R,
and F1 indicate precision, recall, and F1 score.

The analysis of the experimental results shows that the accuracy of the improved
algorithm is 8.42%, 5.41%, and 1.89% higher than that of the Faster R-CNN, SSD, and
YOLOv4 algorithms, respectively, indicating that after the algorithm is improved, the
detection accuracy is better. The recall rate of the improved algorithm is 5.71%, 5.41%,
and 1.89% higher than that of Faster R-CNN, SSD, and YOLOv4 algorithms, respectively,
indicating that after the algorithm is improved, the detection in the test area is more
comprehensive. The F1 scores of the improved algorithm are 4.80%, 3.46%, and 1.04%
higher than those of Faster R-CNN, SSD, and YOLOv4 algorithms, respectively, which can
meet the needs of pine wilt nematode epidemic control.

6.5. Algorithm Performance Test

After the training is completed, the detection effect of the model on the test set is
shown in Figure 15.
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Figure 15. The figure of the detection effect of pine wilt nematode trees.

After the algorithm is improved, especially when the object is small, the accuracy rate
has improved. As shown in Figure 16, for the same object, using MobileNetv2-YOLOv4,
the accuracy rate reaches 0.9, which is 1% higher than YOLOv4.

As shown in Figure 17, in both images, there are trees with pine wilt nematode disease
and ground objects with similar colors to the trees with pine wilt nematode disease. In the
first image, the diseased tree has a similar color to the land next to it. In the second image,
the same is true. In this regard, using the MobileNetv2-YOLOv4 model, the diseased tree
can also be successfully detected, and a relatively good accuracy rate can be obtained, as
shown in Figure 18.
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6.6. Analysis of Factors Affecting Accuracy

When analyzing the detection results, it shows that the improved MobileNetv2-
YOLOv4 algorithm can better complete the task of automatic identification of pine wilt
nematode diseased trees and can achieve better detection accuracy. However, in this pro-
cess, it will also cause missed detections and misjudgments. The main factors that affect
the detection accuracy are as follows:

1. Similar features. There are features similar to abnormally discolored wilt in the
test area. Because the image features of similar ground objects and abnormally
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discolored wilt are similar, and the color and texture are close, it is easy to cause
misjudgment of abnormally discolored wilt during identification, thus affecting the
accuracy of identification.

2. Stand canopy closure. Statistical results show that the forests with high canopy
closure have overlapping crowns, which will cause partial or complete occlusion. The
partially occluded canopy of discolored trees has incomplete shapes and changes in
shape characteristics, which are prone to missed detections during identification, and
those that are completely occluded cannot be identified.

3. Slope aspect. The shaded slope area lacks sunlight and has shadows. The brightness
of the canopy image in the shaded area is low, resulting in the dark color of the
abnormally discolored tree canopy, and the image color and texture characteristics are
not obvious, and it is easy to miss detection during identification.

4. Resolution. Due to the consistent flying height of the drone, the undulation of the
terrain will cause changes in the size of the resolution. The higher the terrain, the
higher the resolution, the larger and clearer the canopy, the lower the terrain, the
lower the resolution, and the smaller the canopy features of abnormally discolored
wilt will occur; and it is easy to miss detection during identification.

6.7. Discussion

In the monitoring of pine wilt nematode trees, UAV remote sensing technology has
low cost, wide range, high flexibility, and high efficiency and has been well applied in the
automatic identification of pine wilt nematode trees [28,29]. In this study, the improved
MobileNetv2-YOLOv4 algorithm was used to identify trees with pine wilt nematode disease
automatically, and the F1 score reached 95.60%, which met the needs of pine wilt nematode
disease prevention and control. Compared with the overall accuracy (60–65%) of the
HSV thresholding method proposed by Tao Huan et al. [30]. The accuracy is significantly
improved. The detection accuracy of this study is slightly higher than the accuracy (90%)
of the method combining Fast R-CNN and UAV remote sensing proposed by Huang Huayi
et al. However, this study considered other factors for the detection of pine wilt nematode
trees. Therefore, the reliability of the accuracy is higher.

In this study, the YOLOv4 algorithm was improved according to the fast-spreading
speed of pine wilt nematode. The simplified object detection framework can speed up
the detection speed. The test time of the improved MobileNetv2-YOLOv4 algorithm for a
single image is 15 ms, which is 67 ms, 32 ms, and 6 ms less than Faster R-CNN, SSD, and
YOLOv4, respectively. When the number of detections is too large, the time spent on image
detection by the improved MobileNetv2-YOLOv4 algorithm will be much less than that
of Faster R-CNN, SSD, and YOLOv4, which can meet a wide range of requirements and
monitoring needs. The improved MobileNetv2-YOLOv4 algorithm reduces the number of
parameters and the size of the model, reduces the requirements for hardware equipment
for the identification program, and improves the efficiency of identification. It can realize
real-time drone monitoring of pine wilt nematode trees, grasp the situation of diseases and
insect pests in forest areas in real-time, and track the epidemic situation. The development
of pine wilt nematode meets the demand for timeliness of pine wilt nematode control.

The limitations of inverted residual block: feature maps encoded by the intermediate
expansion layer should be first projected to low-dimensional ones, which may not preserve
enough useful information due to channel compression. Replace ReLU with a linear
activation function. The inverted residual with the linear bottleneck. The module first
expands the input low-dimensional compressed representation to high dimensions, using
lightweight depthwise convolutions for filtering, then projects the features back to the
low-dimensional compressed representation using a linear bottleneck. A shortcut was
introduced, and the last ReLU was removed and changed to Linear. When the step size is
one, the 1 × 1 convolution is first performed to increase the dimension, then the depthwise
convolution is performed to extract features and then the dimension is reduced by the
linear point-by-point convolution. Add the input and output to form a residual structure.
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When the step size is two, the shortcut structure is not added because the size of the input
and output do not match, and the rest are the same.

The color change of abnormally discolored wilt from pine wilt nematode disease is
a dynamic process, and the color of abnormally discolored wilt from pine wilt nematode
disease is different in different stages. The color of the needles of the pine trees infected
with pine wilt nematode did not change significantly in the early stage, but in the middle
stage, the crown color was yellow-brown, and in the later stage, the crown color was
reddish-brown or brown. The method proposed in this paper can only automatically
identify the abnormally discolored wilt in the middle and late stages and cannot effectively
identify the pine wilt nematode diseased wilt with no obvious color change in the early
stage, nor can it distinguish the abnormally discolored wilt caused by pine wilt nematode
disease from other diseases or natural environment stress.

Use hyperspectral data that contains more information. The camera used in this paper
to collect data contains three bands of visible light, RGB, and the amount of information
contained in the image is limited. Because the process of pine disease infection is dynamic,
the changes in its external shape in different disease stages have certain differences. The
method in this paper can identify the pine trees in the middle and late stages of the disease
according to the color and texture characteristics, and it is difficult to detect the pine trees
in the early stage of the disease. Monitor the outbreak comprehensively. In addition to
the changes in appearance, the spectral values of pine trees will also change after being
infected, and the spectral characteristics of reflectance at different disease stages are also
different. Hyperspectral technology uses many narrow electromagnetic bands to obtain
continuous spectral information of ground objects, so hyperspectral data can be used as
the basis for detecting pine trees at different disease stages. In addition, the bands that can
best reflect the information changes of diseased trees are selected from the hyperspectral
images through band selection to improve the detection accuracy of diseased trees. The
diseased pine trees can be detected comprehensively by combining hyperspectral data and
deep learning methods.

We aimed to improve the detection methods for pine-wilt-nematode-diseased trees.
The pine-wilt-nematode-disease detection method mentioned in this paper is based on deep
learning. The object detection model needs a lot of matrix operations and floating-point
operations in the process of training and detection and needs to use a supercomputing
platform with powerful computing power to complete. The corresponding operation
increases the application cost. To reduce computing resource requirements, you can try
a more advanced object detection model architecture or use new pine-wilt-nematode
tree-identification methods such as spectral data analysis to reduce computing resource
requirements and computing power costs while ensuring the Detection performance.

7. Conclusions

In this study, UAV remote sensing technology was used to obtain ultra-high spatial
resolution pine images, and the improved MobileNetv2-YOLOv4 algorithm was used to
identify abnormally discolored trees from pine wilt nematode disease. The main conclu-
sions are as follows:

1. Using the improved MobileNetv2-YOLOv4 algorithm to identify abnormally discol-
ored wilt from pine wilt nematode disease, the average precision reached 86.85%, the
training time for each iteration cycle was 156 s, the parameter size was 39.23 MB, and
the test time for a single image was 15 ms. Faster R-CNN, SSD, and YOLOv4 are infe-
rior to the improved algorithm in terms of average precision, training time, parameter
size, and test time. YOLOv5 outperforms the improved algorithm in training and
detection time, but the average precision is lower than the improved algorithm, so
compared to Faster R-CNN, SSD, YOLOv4, and YOLOv5, the improved algorithm is
more balanced in the model parameters, the detection speed, and the detection accu-
racy, with better performance. Comprehensively comparing the average precision,
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training time, parameter size, and test time, the improved MobileNetv2-YOLOv4
algorithm has better performance.

2. In the pine wilt nematode tree detection task, a comprehensive comparison is made
on the four evaluation indicators of average precision, training time, parameter size,
and test time. The detection accuracy of wilt nematode trees is low, the number of
objections missed and false positives is large, the number of model parameters is
large, the detection speed is slow, and the actual application effect is not ideal, and
it is not suitable for running on mobile and embedded devices. Compared with the
YOLOv4 model, the MobileNetv2-YOLOv4 model has improved significantly in terms
of average accuracy, detection accuracy, and detection speed, and the training time
and model parameters are reduced, and the performance is improved. Compared
with the YOLOv5 model, the parameter quantity of the improved model is slightly
higher than that of YOLOv5, but the average accuracy is greater. For a comprehensive
comparison, the MobileNetv2-YOLOv4 model can obtain higher detection accuracy
under the condition of lower model parameter quantity, and the improved algorithm
is more suitable for practical application scenarios of embedded devices.

3. Similar features, stand canopy closure, slope aspect, and terrain will lead to insuffi-
cient feature acquisition or wrong feature detection during automatic identification,
resulting in missed detection, which will affect the accuracy, but the impact is small.
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