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Abstract: Most robots are programmed to carry out specific tasks routinely with minor variations.
However, more and more applications from SMEs require robots work alongside their counterpart
human workers. To smooth the collaboration task flow and improve the collaboration efficiency, a
better way is to formulate the robot to surmise what kind of assistance a human coworker needs and
naturally take the right action at the right time. This paper proposes a prediction-based human-robot
collaboration model for assembly scenarios. An embedded learning from demonstration technique
enables the robot to understand various task descriptions and customized working preferences. A
state-enhanced convolutional long short-term memory (ConvLSTM)-based framework is formulated
for extracting the high-level spatiotemporal features from the shared workspace and predicting the
future actions to facilitate the fluent task transition. This model allows the robot to adapt itself to
predicted human actions and enables proactive assistance during collaboration. We applied our
model to the seats assembly experiment for a scale model vehicle and it can obtain a human worker’s
intentions, predict a coworker’s future actions, and provide assembly parts correspondingly. It has
been verified that the proposed framework yields higher smoothness and shorter idle times, and
meets more working styles, compared to the state-of-the-art methods without prediction awareness.

Keywords: human-robot collaboration; action prediction; assembly; spatiotemporal; deep learning;
human demonstration; robot learning

1. Introduction

Innovations in design and control technology are allowing various robots to complete
complicated tasks in wide segments of our life. Increasingly sophisticated robots have been
crafted to populate different areas. With the booming of computer science and artificial
intelligence, social robots [1] utilize extensive sensors and massive data to gradually develop
human-like communication styles and adjacent safety capabilities. There is evidence that
the same trends have begun to permeate industry [2] for specific assignments where
requirements were previously off-limits. Henceforward, robots are expected to interact
with humans in more challenging aspects, such as the assembly process.

The traditional assembly process [3] can be exhausting for humans, due to the bulky
payload, repetitious procedures, and possible hazardous conditions. Nowadays, many six-
axis robots are used in automation manufacturing [4] to achieve higher capacity and better
quality. Compared with humans, robots can handle the payload effortlessly and carry out
the repeated work tirelessly. These industrial robots relieve humans from monotonously
repetitive work. However, small and medium-sized enterprises (SMEs) have surpassed
large corporations and become the backbone of most industrialized countries [5]. They
typically provide new, pioneering products with flexible supply chains for serving different

Sensors 2022, 22, 4279. https://doi.org/10.3390/s22114279 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22114279
https://doi.org/10.3390/s22114279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8543-9455
https://orcid.org/0000-0002-1810-5412
https://doi.org/10.3390/s22114279
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22114279?type=check_update&version=2


Sensors 2022, 22, 4279 2 of 25

industries and responding to rapid changes in market demands. As the requirements of the
product keep changing, the supplier environment building and integration must evolve [6]
in a similar manner. In fact, SMEs are evolving far more rapidly than ever before, owing to
the advantages of automation and robotics.

As production trends are rapidly changing, the main trigger points in intelligent
manufacturing [7] are starting to arise, namely non-standard and flexibility. In reality,
it is often difficult to anticipate every possibility and develop fully scheduled responses
accordingly for every situation with the limited resources of robots. Taking the economy
under consideration, not all tasks can be automated to solely rely on robots, and some tasks
are too expensive to achieve automation without help from humans. Since the intelligence
of robots [8] will not be sufficient in the near future to carry out various expectations
independently, humans have to engage in these procedures with their flexibility and
cognition strength.

To deal with these issues, the deployed robots must be able to change assignments
easily and be able to work alongside [9] humans. Therefore, the use of human-robot
collaboration (HRC) [10] fits the bill properly in current and future manufacturing scenarios.
Particularly, for assembly manufacturing applications, collaborative robots can be deployed
to assist diverse assignments using cooperative motion control methods. As a result,
humans are less involved in these projects, but their involvement becomes more crucial for
the performance of the whole system.

Recently, many developers have improved HRC technologies [11] to meet the increas-
ing requirements for assembly applications. During human collaborative assembly, we
can infer our working peer’s social cues and engage in these complex activities cognitively.
Similar capabilities should be adapted to the robotic assembly coworkers, which can attain
essential information from observation [12] and play the corresponding role in line with
cooperative humans. By involving humans in the robot workspace, a lot of difficulties
are introduced for this field research, i.e., learning from demonstration [13,14], human
intention recognition [15], human-aware motion planning [16], visual servoing [17], etc.
With the rise of collaborative robots, a lot of research is being conducted on safety as well.
Scalera et al. [18] presented a safety control scheme based on the standards of protective
separation distance and bounding volume for collaborative application. The dynamic
safety zones are applied to design the collision avoidance strategy. Himmelsbach et al. [19]
proposed to extend human-machine differentiation to the safety system in the human-robot
collaboration. Their method treats the differentiation of human and non-human objects
carefully to maintain efficiency while decreasing the protective separation distance. The
collaborative robots need to understand the actions occurring and infer the coworker’s
intentions swiftly, to deliver the correct parts to the human at the right time. Since the plan-
ning and execution are time-consuming for robots in the collaboration space, it is critical
for the robot to understand the evolving tasks within the unstructured workspace [20],
predict the counterpart’s intention in an advanced window, and adjust the related actions
automatically. To design a corresponding system to achieve this function, it is critical to es-
tablish a learning framework for human action early prediction and that is the cornerstone
of this work.

Early research on the prediction of human motions was generally based on heavy
handcrafted models to heuristically arrange the predefined processes. Mainprice et al. [21]
proposed a gesture recognition-based framework to generate a workspace occupancy pre-
diction, then the planner plans the optimal trajectory considering the prediction. Matteo
Ragaglia et al. [22] illustrated a trajectory scaling algorithm for collaboration subjected to
human occupancy prediction. They converted the problem into a series of convex polytopes
by evaluating the reachable sets for each degree of freedom. However, the whole assem-
bly procedures are generally quite complicated to form for the users. The model-based
approaches [23] require expert knowledge to design and debug for the collaboration. Fur-
thermore, the human part introduces tremendous uncertainties [24] into the collaborative
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assembly process, which considerably increases the effort to adapt and maintain the model
in diverse situations.

There were various studies adapted from the statistics-related method in the human
action prediction area. Hawkins et al. [25] designed a collaborative activity representation
in linear chains with conditional dependency. Then, the sub-tasks were predicted in a
probabilistic manner. Hongyi Liu et al. [26] presented a hidden Markov model to predict
human motions in a human-robot collaborative system. They formed an assembly task as
a sequence of human motions and then recognized them to obtain the motion transition
probabilities. Zanchettin et al. [27] schemed a method to predict human activity patterns in
a small part collaborative assembly task. The higher-order Markov chains algorithm was
deployed to achieve the prediction process. Lin et al. [28] developed a hidden semi-Markov
model to predict the human assembly rate for human-robot collaboration. Their model links
the human hidden risk perception with the visible assembly rate and adjusts the robot’s
response according to the predicted human behavior. A competitive fluent assembly process
with a shorter waiting time for the operator is achieved in their experiment scenarios.
However, in the assembly process, the future action may not only depend on the current
action. The nature of the assembly process restrains the limitations of prediction. For
example, the future action may depend on several early operations, or even on the entire
assembly sequence. The model needs to be able to make the appropriate prediction based
on long-term historical information in the collaborative assembly applications.

Some works rely on the recognition of human gestures to classify and make reasonable
predictions about the actions performed by a human. Luo et al. [29] used a two-layer frame-
work of Gaussian mixture models to recognize and predict human reaching motions. The
model observed the trajectory, determined which class it belongs to, and predicted the re-
mainder of the trajectory. Huang et al. [30] devised an anticipatory control method to assist
human partners based on observed gaze patterns. They classified the gaze patterns using
a support vector machine and predicted the potential requested item. Buerkle et al. [31]
presented an upper-limb movement intention prediction model with a mobile electroen-
cephalogram. They classified the signals with a recurrent neural network model in a
semi-online system. Liu et al. [32] combined temporal processing with the convolutional
neural network to predict human motion in the disassembly tasks. They attained motion
recognition through deep learning and performed the prediction based on the recognition
results. However, generally in the assembly procedures, the recognition-based methods
usually require a lot of effort to construct the supportive setups and the complex predefi-
nitions of the tasks. These challenges also increase the deployment expense and restrict
customized manufacturing.

Some studies try to estimate human intention through various sensors other than
vision sensors. Muthugala et al. [33] proposed a system to identify the user intention
for the interpretation of ambiguous instructions related to distances in robot navigation
scenarios. The actual intention is identified by analyzing the gesture information and voice
instructions through a rule-based fuzzy method. Luo et al. [34] presented a framework to
infer human intention and predict human hand motion. The training data were collected
by a Kinect device. Probabilistic Dynamic Movement Primitive is applied for the hand
trajectory prediction in a manipulation task. Wang et al. [35] developed a teaching-learning-
prediction model for the robot to predict human hand-over intentions using wearable
sensors. The extreme learning machine algorithm is applied to infer human intention from
partial demonstrations. Casalino et al. [36] proposed a framework to infer human intentions
through a Bayesian recursive classifier. The position of the head and hand is exploited to
predict human behavior. They also achieve human awareness in the collaborative task by
equipping the wearable device with haptic feedback.

Despite the different methods in various intention identification applications, the
data source is also miscellaneous in human-robot collaboration. In general, wearable sen-
sors provide more condensed information than vision sensors. Remote status monitoring
provided by wearable technology has become an important tool in the industrial collabo-
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ration scenario. Furthermore, wearable devices can provide real-time feedback regarding
collaboration conditions.

However, wearable devices may introduce inconvenience during the assembly pro-
cedure, while vision-based methods are non-intrusive. The vision-based methods can
offer natural, contact-free interactions. In addition, vision sensors have the advantage of
deployment simplicity and low cost compared to wearable devices. Furthermore, vision-
based methods can provide sufficient high-dimension data for the system and sustain
flexibility with extensibility for future applications. Since the collaborative actions may
vary spatiotemporally with assorted implications, the vision-based methods can enable
human-robot collaboration that is difficult or impossible to fulfill with other modalities. In
the meantime, the vision-based method can be enhanced through wearable feedback in
multimodal settings.

A comparison of the representative methods in human action prediction is presented
in Table 1. It shows our method is suitable for the current human prediction difficulties. To
address these challenges, we propose a human action prediction model based on learning
from demonstration in this paper. The proposed method allows robots to learn undefined
tasks within the shared workspace from human demonstrations, and to predict human
actions in advance. Performing this allows trained robots to proactively assist humans
early on, thus making the collaborative process in collaborative assembly smoother and
more efficient. By exploiting the assistance of trained robots, the advantage of humans
and robots can be combined in the collaborative assembly scenario. Human workers
can get the right component at the right time according to their unique assembly habits.
Additionally, human workers no longer need to search for components on a large number
of shelves but can focus on the subtler assembly processes. Finally, prediction-based
collaboration can bring improvement in terms of efficiency and quality, which is the goal of
intelligent manufacturing.

Table 1. The comparison of different methods in human action prediction.

Method Advantages Disadvantages

Fuzzy method [33] Simple model, small dataset requirement Weak generalization ability,
predefined rules.

Hidden Markov model [26] Model clarity, training flexibility, small
dataset requirement

Hard to tune the parameters, weak
dynamics analysis, short-term prediction

Hidden semi-Markov model [28] Model clarity, training flexibility, small
dataset requirement

Hard to tune the parameters,
short-term prediction

Extreme learning machine algorithm [35] Model clarity, small dataset requirement,
high accuracy “Black box” nature, short-term prediction

Convolutional neural network + LSTM [32] High flexibility, effective in heavy data flow “Black box” nature, classification based,
low accuracy

State-enhanced ConvLSTM
End-to-end, undefined task learning,

training flexibility, long-term prediction,
customized ability

“Black box” nature, high resource
requirements

The main contributions of this work can be summarized as follows: (1) We propose
prediction-based learning from a demonstration framework for robots to understand
assignment descriptions and human customized working preferences toward improved
human-robot collaboration. (2) We extend the ConvLSTM concept and develop a novel
state-enhanced ConvLSTM model for robots to learn spatiotemporal dependency and
predict long-term action dynamics efficiently in collaborative works. (3) We establish a
tracking result guided CNN model to leverage the prediction knowledge to proactively
assist humans according to their preferences.

The remainder of this paper is organized as follows. After the discussion of the related
work, we describe the proposed framework and necessary theory in Section 2. Section 3
contains the experiment settings, and Section 4 exhibits a review of important results from
the experiments. The conclusion is presented in Section 5.
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2. Materials and Methods
2.1. A Brief Overview of the Prediction-Based Framework

The purpose of this paper is to predict a human worker’s intentions early and fulfill the
human-robot collaboration properly for the assembly scenarios. The gist of the proposed
framework is shown in Figure 1. The data of assembly tasks and workspace evolvements
are collected by the vision sensor. Then, the raw data are prepared and preprocessed for
the subsequent pipeline. After the pretreatment, the gathered input assembly information
is fed into the recurrent neural network module for intention prediction. This recurrent
neural network was trained based on learning from human demonstrations. During the
training process, the relevant assembly information passes down the action sequences
to tune the parameters. The recurrent neural network [37] learns to keep the essential
knowledge, forget the unimportant facts, and make helpful predictions. The output from
the human collaboration intention prediction module goes through a tracking module
based on an extended Kalman filter [38] to obtain the specific intended assembly part. The
acquired intended part is recognized in the following deep learning module. Finally, the
recognized intended assembly part provokes the robot’s motion planning system [39], and
the robot executes the picking up and delivering action at the appropriate timing for future
assembly collaboration.
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Figure 1. Prediction-based human-robot collaboration framework.

The framework only shows the main data flow and information process pipeline, while
omitting the ROS connection system [40] and robot planning part. The main sub-system’s
details are introduced in the following sub-sections of this section, which include the learn-
ing and prediction model, intention parts tracking model, and intention recognition model.

2.2. Learning from Demonstration and Human Intention Prediction

The proposed framework uses an end-to-end recurrent neural network to imple-
ment human demonstration learning and human intention prediction. Specifically, the
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ConvLSTM [41] was applied to handle the spatial and temporal information during the
assembly process.

The ConvLSTM layer can be explained by the equations below:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)
ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(1)

where Xt is the input sequence at time t and equals the output from the encoder. W** and
b** serve as the weight matrices and bias terms. σ indicates a sigmoid function, and tanh
denotes the hyperbolic tangent function. it, ft, ot represent the input gate, forget gate, and
output gate, respectively. C* and H* refer to the cell unit and hidden state. ‘*’ represents the
convolution operator and ‘o’ represents the Hadamard product operator.

Compared to the fully connected LSTM [42], ConvLSTM introduces convolutional
structures in both the input-to-state and state-to-state transitions. However, the association
between these two parts in ConvLSTM is relatively insufficient in complex models. More
important details disappear as the data pass through more iterations. There are more
couplings between the H state and input X needed to be designed to keep more useful
information in the challenging models.

We add some extra linkages in the model to extract the essential relations for the
long-time forecasting performance. The linkages make the coupling of Ht−1 and Xt richer
to keep persistent knowledge between network layers and reduce information loss as the
time sequence expands. Similar to the filter process, we take advantage of the convolutional
approach to build a feature map and constrain the network hidden states with this map. In
this way, more crucial spatiotemporal information will be sustained in the model during
the sequence processing.

Specifically, the linkage is described in the following equations:

it = σ(Wxi ∗ Xt + Whi ∗ H′t−1 + Wci ◦ Ct−1 + bi)
ft = σ(Wx f ∗ Xt + Wh f ∗ H′t−1 + Wc f ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ H′t−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ H′t−1 + Wco ◦ Ct + bo)

H′t−1 = σ(Wxh ∗ Xt + bxh) ◦ Ht−1
Ht = ot ◦ tanh(Ct)

(2)

where Ht−1 is the hidden state in the previous equation, and all the following Ht−1 parts are
replaced with the state-enhanced H′t−1. Wxh and bxh serve as the corresponding weight and
bias terms. ‘o’ represents the Hadamard product operator as before. Other terms remain
the same as in Equation (1).

As the data flow through the ConvLSTM network, more and more details fade away
due to the information decay. We add the additional operations to learn more global and
local patterns in the input data which have temporal properties. Then, the input-related
feature map treated by the Hadamard product with the hidden state also helps to improve
prediction performance since the operations can be considered as the regularization in
the sequence processing. This can extract spatiotemporal details more effectively using
combinations of input and state data flow. The state enhancement procedure can be
deployed multiple times like the convolutional layers.

In order to improve the efficiency of the proposed model, a convolutional encoder [43]
is used to abstract the essential features of the input sequence. Then, the obtained features
are fed into the ConvLSTMs with state enhancement to calculate the cell states and keep
the critical spatial and temporal knowledge. Next, a convolutional decoder is attached to
generate predictions given the output from the previous layers.

The complete learning and prediction framework can be explained by Equation (3):



Sensors 2022, 22, 4279 7 of 25

X1,...,t = CNNEncoder(I1, I2, . . . , It)
(Hn, Cn) = ConvLSTMk

(
X1,...,t, Cn−1)

(Yt+1, Yt+2, . . . , Yt+T) = CNNDecoder(Hn)
(3)

where X1, . . . , t represents the feature maps extracted from the convolutional encoder. I1, I2,
. . . , It represents the input sequence. Hn and Cn represent the hidden and the cell states of
ConvLSTMs with state enhancement. Yt+1, Yt+2, . . . , Yt+T stands for the predicted frames
from the convolutional decoder. This model can be tuned by applying different layers of
encoder/decoder and ConvLSTMs in accordance with various situations.

2.3. The Predicted Part Tracking System Design

An extended Kalman filter (EKF)-based tracking algorithm is proposed here to track
the human intention part. The Kalman filter [44] has been used successfully in some
industry systems such as robot navigation and object tracking. The Kalman filter applies a
set of recursive equations to calculate the optimal system state efficiently by using a form
of feedback control. The EKF is a nonlinear variation of the Kalman filter. However, the
EKF is not an optimal estimator generally, instead it gives an approximation of the optimal
state estimate by linearization.

The EKF equations are shown below:
x̂−k = f (x̂k−1, uk−1, 0)

P−k = AkPk−1 AT
k + WkQk−1WT

k
Kk = P−k HT

k (HkP−k HT
k + VkRkVT

k )
−1×

x̂k = x̂−k + Kk(zk − h(x̂−k , 0))
Pk = (I − Kk Hk)P−k

(4)

where the first two equations show the state and covariance estimates from the previous
time step k − 1 to the current time step k. x̂k−1 is an a posteriori estimate of the state, uk−1
is the driving function, and f is the non-linear function. Qk is the process noise covariance.
Ak and Wk are the process Jacobian matrix at step k. The following three equations show
the correction process for state and covariance estimates with the measurement update. Pk
is the estimation error covariance. Hk and Vk are the measurement Jacobians at step k, and
Rk is the measurement noise covariance at step k. h stands for the non-linear measurement-
related function. zk represents the measurement, and Kk represents the Kalman gain.

Besides the non-linear estimation problem, there are several challenges for the intended
object tracking in the collaboration scenario. For instance, the position of the intended object
may be measured with error, the intended object may be occluded partly by a human hand,
and a new intended object may appear in the tracking area. To address these challenges,
the EKF was utilized in our tracking system.

After initialization and parameter tuning, the system will make a state prediction based
on previous parameters and the model. Then, the predicted position and the measured
position will be combined to update the system. Meanwhile, the EKF will change the
weight ratio depending on the uncertainty. This process repeats as the tracking evolves. The
EKF-based tracking system outputs the tracked position of the former prediction robustly.
Moreover, the intended parts can be cropped out according to the tracking position.

2.4. The Assembly Intention Recognition System Design

Once these images of intended parts are available, the next step is to recognize the
specific part and prepare the robot to collaborate with the human in the assembly scenario.
During the tracking process, the type and the shape of the intended part could be difficult to
handle for the traditional methods [45]. A convolutional neural network (CNN) model [46]
is designed to recognize the intended assembly part with high accuracy in our framework.

The model accepts tracking input images to abstract the feature map with the con-
volutional operation. With the process of several convolution layers and pooling layers,
features of different levels can be captured for further computation. These features are fed
into the fully connected layers for classification. The probability of each class is calculated



Sensors 2022, 22, 4279 8 of 25

by the softmax function. Finally, the model uses the cross-entropy loss function to evaluate
the consistency of probability and the objective function.

The process can be explained in the following abbreviated equations:

Y = f (W × X + b)
q = softmax(Y′)

Loss = −∑ p log(q)
(5)

where X stands for the input of each convolutional layer, W and b stand for the weight
and bias terms to be trained for each layer. Y′ represents the feature map output from the
convolutional layers and pooling layers. q represents the probability of the output class. p
shows the objective one-hot vector for the cross-entropy loss function. As for the activation
function, we use a rectified linear unit (ReLU) in the model. To improve the efficiency and
performance of the model, the batch normalization approach [47] is added to our model
as well.

Generally, moving parts recognition can be particularly tricky while facing complex
assembly situations. The learning CNN model can ease this dilemma with its decent
generalization performance. The final collaboration decision can be settled conveniently
for different task arrangements and various assembly preferences.

3. Experiment Settings
3.1. An Overview of Learning from Demonstration Approach

In the human-robot collaborative assembly process, robots are required to assist
humans dynamically. Therefore, in the context of the assembly, robots controlled by rigid
codes are undesirable due to the incapacity to adapt to changing situations and the need for
expert knowledge. We proposed a learning from demonstration based model to handle this
problem. The robot can be programmed by human workers without expert knowledge. The
collaborative task arrangement can be transferred to the robot in a natural and expressive
way. The diagram of this model is shown in Figure 2.
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In the demonstration phase, the human worker acts like an experienced teacher for
the robot. During the human-robot interaction process, the complex tasks and customized
assembly styles may be difficult to be defined as a known function, but they can be
demonstrated directly. The robot collects the assembly information from the sensors while
the human performs the assembly assignments. With the human demonstration, the
robot will learn what is going on in the shared workspace. As in the learning process,
the robot learns the task details implicitly and analyzes the optimal actions naturally
without increasing the programming burden. This process will eliminate the need for
expert knowledge-oriented and time-consuming methods. The robot accomplishes a
complex mapping to the human demonstration considering the constraints from the shared
workspace and the requirements from the assembly actions. After the robot obtains the
fundamental experience, various applications can be realized in different scenarios. Here,
we will focus on the assembly collaboration circumstance, i.e., how to make early plans
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to assist humans by delivering parts at the right time. In this project, a state-enhanced
recurrent neural network based model is introduced to learn the task description and
arrange proper executions to cooperate with the human worker while improving the
fluency and safety of the human–robot collaboration.

3.2. The Assembly Signal Collection Process

In this work, the signal was collected from the collaborative research platform, as
shown in Figure 3, which contains a YuMi robot, a control station, and an expansible
interactive interface. The payload of the YuMi robot is 0.5 kg per arm. This payload is ideal
for small parts assembly system prototype design and verification. Due to the payload
limit of the YuMi robot, a downscale vehicle seats assembly experiment environment was
set up.
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Humans can gather assembly information through their eyes and efficiently figure
out the proper manner to cooperate with other coworkers. Hence, the natural way to
collect assembly information for the robot is through cameras. The main purpose of
this study is to build a prediction-based human–robot collaboration model for assembly
manufacturing. During the assembly process, humans will make corresponding actions
according to the assembly goal in the shared workspace. The robot should focus on the
ongoing actions within the workspace and the motion of human hands [48] is a significant
part of all these complex actions. The future assembly intentions and action predictions
can be obtained from the perceived history of human hand manipulation actions. With
the matching parts in human hands, the assembly process can be achieved successfully.
Therefore, the assembly signal collection of this study concentrates on the movement of the
parts within the collaboration workspace. Although we only consider the perception and
prediction of hand actions in this project, the framework can be easily applied to a wider
range of motion predictions such as arms and torso in the workspace. The real-time image
series data from the overhead vision sensor were sampled at a frame rate of 10 Hz and
then fed into the preprocessing system. The data collection stage prepares the formatted
input for the prediction system and other associated systems during the human-robot
collaborative assembly.

3.3. The Analysis Procedure of Assembly Tasks

In this project, the human and the robot are working together to assemble a vehicle’s
seats in a real industrial context. The participants are required to cooperate smoothly by
conducting a series of tasks. The robot participant carries out the part hand-over tasks and
the human worker performs the assembly job.

The task employed in this experiment derives from real industry assembly cases. The
assembly task contains several sub-tasks; the detailed instructions are shown in Figure 4:
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Sub-task 1: install the left seat holder;
Sub-task 2: install the right seat holder;
Sub-task 3: install the back seat holder;
Sub-task 4: install the left seat;
Sub-task 5: install the right seat;
Sub-task 6: install the back seat.
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Sub-tasks 1–3 are independent of each other, which means Sub-tasks 1–3 can be carried
out regardless of order. Sub-tasks 4–6 are independent of each other likewise. However,
Sub-tasks 1–3 and Sub-tasks 4–6 are dependent so Sub-tasks 1–3 need to be finished before
Sub-tasks 4–6 are carried out. After the completion of Sub-tasks 1–3, Sub-tasks 4–6 can be
accomplished based on the human worker’s preference.

In this project, the human and the robot cooperate by installing and delivering partic-
ular parts to accomplish the seat assembly. The human worker conducted and repeated
the assembly procedures to demonstrate assembly preferences. The robot observed and
learned the ongoing action intentions at the beginning phase. Subsequently, the robot
constructed the collaboration knowledge and inferred the predicted actions. Afterward, the
human worker sought the next part needing to be installed from the robot implicitly. The
human worker reached out for the part when it was delivered by the robot, and proceeded
with the following task. All the parts requirements and the delivery timing were conveyed
indirectly, and the robot fulfilled its job without explicit commands. The assembly variances
and noises were diminished by the prediction system. In other words, the robot needed to
figure out the human worker’s collaboration hints and correctly respond in line with the
human worker’s future intentions. The framework of this project is expandable and not
bounded by the types of these tasks.

In general, the task allocation in the collaboration depends on many factors, such as
the attributes of the parts and the capabilities of the participants. In this case, the assembly
process is adapted to establish robot-assisted collaboration. That is, the human worker
handles the assembly maneuver in a guiding role and the robot compliantly handles the
delivery of the parts. The installation of seat holders and seats is fulfilled by human
workers, while the corresponding components are reached for and delivered by the robot.
For instance, a possible collaboration sequence could be listed as:

Step 1: The human worker starts to install the left seat holder on the chassis;
Step 2: The robot picks up the right seat holder and delivers it to the worker;
Step 3: The human worker finishes the installation of the right seat holder;
Step 4: The robot picks up the back seat holder and hands it to the collaborator;
Step 5: The human worker concludes the installation of the back seat holder;
Step 6: The robot grabs the left seat and passes it to the human worker;
Step 7: The human worker finishes the installation of the left seat;
Step 8: The robot picks up the right seat and hands it to the human worker;
Step 9: The human worker completes the installation of the right seat;
Step 10: The robot grasps up the back seat and provides it to the human worker;
Step 11: The human worker conducts the installation of the back seat.
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It should be noted that this experiment setting is designed for robot-assisted collab-
orative assembly. In this assembly assignment, the human worker governs the tasks in
general while the robot mainly follows the human’s lead. This specific setting is established
based on the current SME assembly scenario and customized human comfort considera-
tions. Within this setting, the robot makes the subtle action prediction, provides essential
assistance, and improves assembly efficiency. Our experiment setting takes the part pre-
diction and delivery as the key collaborative action. The human worker needs 6 parts
to accomplish the seat assembly task, which means 6 collaborative action predictions in
one assembly instance. Each assembly instance takes 3–4 min to complete, with some
individual variations. In addition, the human worker can focus on the assembly task and
save the cost of robot action prediction. This setting also benefits the collaboration safety in
some way.

3.4. The Control System Design and Safety Strategy

The structure of the control system is shown in Figure 5, the corresponding software is
described on the right side of the figure. As shown in Figure 5, the control system consists
of five layers, which establish vital flexibility and extendibility for complex projects. The
physical interface layer manages the connections with the hardware through various I/O
interfaces. The kinematic layer handles the robot model through the URDF [49] file and
builds the kinematics for future motion planning. The motion planning layer generates
the proper trajectories by the MoveIt! [50] package and executes the joint trajectories to
low-level hardware controllers. The communication layer is the basis of the system. Many
libraries are embedded in the ROS package to speed up the developing course. It offers
the information interchanging ability for customized modules in different layers via a
predefined protocol. In the human-robot collaboration layer, many critical modules and
built-in functions can be deployed for any specific task. In general, the control system can
provide a modular platform for building modern robotics applications.
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We designed the robot control system based on the MoveIt! package which is in-
tegrated with the ROS. The control system allows the robot to construct the workspace
environment setting, generate motion plans, and carry out the motion plans according to
the change in the workspace. In the human–robot collaborative assembly assignments, the
path planning performance directly affects the collaboration quality. The Open Motion
Planning Library (OMPL) [51] in the ROS configuration is deployed to handle the trajectory
planning jobs. There are many state-of-the-art planners in the OMPL collection, and the
optimal path planner should be adopted to improve the robot’s efficiency and reliability
for different collaborative scenarios.

We conducted several delivery tests to compare the performance of different planners
on the robot. Given the same task in the sharing workspace, the robot runs different
planners multiple times to verify the planner’s performance. Finally, considering the
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planning path length, computation time, and execution time, we choose the fast marching
tree (FMT) [52] planner for the robot to pick up parts and deliver them to its human
coworker based on the result of the tests.

During the assembly procedure, the robot drives its arm from the initial position to
the inventory position, then picks up the desired part and delivers it to the human at the
appropriate position, and eventually returns to the initial position. The grasp orientation in
the part picking up position is set to downward, while the initial position remains the same
during the assembly process. The robot’s motion paths are generated by the planner FMT.

Safety for humans in our collaborative assembly procedure is ensured by several
strategies and methods. First, we impose speed limits on the robot and ensure that it stays
out of the human safety zone. When moving close to the human, the robot is allowed to
move partially at a speed that is slow enough to raise no risk to the human worker. This
collision avoidance strategy fits our project well enough and provides greater flexibility
than the global constrained safety methods. In addition, collision avoidance is not always
possible in the assembly scenario. Safety is a built-in feature of the robot we use. The soft
padded arms and floating-plastic-covered skeleton combined with force-sensing control
ensure the safety of human coworkers in the shared workspace. The material wrapped
in the robot absorbs the unexpected impact, and the collision sensing system maintains
the power and force below injury thresholds. Once the collisions were detected, the
control commands to stop the robot were executed immediately. Furthermore, to deal
with unpredictable events, emergency stops are equipped within easy reach in the shared
workspace. If the emergency stop is triggered, the entire system will be overridden and
shut down. The safety of human-robot collaboration is the top priority and all the strategies
are just a small part of the safety-related system developed.

4. Experimental Results and Discussion

In this part, we describe several experiments to evaluate results for the proposed model
in the learning from demonstration, the predicted actions generation, and the following
human-robot collaboration in the unlabeled assembly manufacture process. Then, we
compare the performance of the proposed model with the speech commanded method to
demonstrate the efficiency and smoothness of our strategy in the industrial human-robot
collaborative assembly scenario.

4.1. The Result of Learning from Demonstrations and Action Prediction

The model uses visual data as the input features to learn spatial and temporal in-
formation. The model was trained with our human demonstration dataset. During the
demonstrations, human workers perform the parts assembly process for the robot without
explicit definition. The dataset is separated into the training part and the testing part. The
testing dataset was used to test the accuracy and generalization of the proposed model.
The performance was evaluated by predicting actions of different lengths from input
video clips. With the proposed model, the robot can monitor the human worker’s actions,
learn the human worker’s intentions from the movements, and understand the ongoing
assembly tasks.

In the model training experiments, the training results of different configurations are
compared. The loss of the training process is shown in Figure 6. The solid orange line
represents the proposed model’s performance and the green line denotes the performances
of the model without state enhancement. As shown in Figure 6, the proposed model
outperforms the corresponding non-enhanced model during the experiments. It can be
seen that the loss has decreased further than the model without state enhancements. At
the same time, the converge time of the proposed model increases since more network
parameters need to be tuned. Furthermore, the proposed model can predict a longer time
span than the previous model, which is better for the following collaboration process.
Evaluations of the testing dataset show that the proposed model mimics human prediction
performance, and indicates the capacity of the network to predict the actions and timing
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of the near future assembly tasks. Since the model with state enhancement can learn and
abstract more spatiotemporal information from human demonstrations, it will be applied
in the following sections to generate predicted actions.
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In order to validate the learning and prediction performance of the proposed model,
we applied another unknown demonstration to examine and generate the predictions.
Figure 7 shows some prediction results in the assembly process. The red square denotes the
provided previous input sequence, and the blue square is the future predicted sequence
according to input.
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It can be seen that the first predicted actions are the back seat holder being installed
after the right seat holder assembly in the long-term prediction, as shown in Figure 7a.
The action sequence is developed smoothly with vital spatial information. Normally,
prolonged predictions are hard to generate due to the loss of spatiotemporal information.
The prediction output here is fairly clear in the long-term regeneration, which reveals the
advantage of state enhancement of the proposed model.

Likewise, the second actions are the right seat being assembled following the left seat
installation. As can be seen from Figure 7b, the model processes the gist information from
previous actions and renders the suitable video reconstruction. Compared to the human
demonstration, the results indicate that the proposed model learns the essential information
from the human actions and predicts the future actions with correct timing. To be more
precise, the model can learn essential spatiotemporal information from previous human
actions and make reliable predictions from both operation and timing perspectives.

The clear prediction results prove that the model can make accurate predictions during
the assembly process without predefined tasks.
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4.2. The Tracking Result of the Predicted Part

After obtaining the prediction output based on the neural network model, the potential
human intention is also embedded in the predicted action sequences. The human intention
has to be converted into the equivalent robot control command for the collaboration. Hence,
for the future human–robot collaborative assembly, the specific part needs to be tracked
and recognized at the correct time step.

Since the human intentions are nested inside the assembly motion of parts, we applied
the EKF to track the intended part in the prediction motion sequence. For instance, the left
seat is intended to be installed following the installation of the back seat holder. Figure 8
shows the assembly motions of the predicted left seat part in overlaying layers. The
measurements of the left seat are marked by blue asterisks, and its motion trajectory is
noted by a red line with the square marker. The results show that the estimations are
matched with the assembly process, and the EKF-based method detects and tracks the
potential left seat part successfully.
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The EKF method can make stable estimations of the tracked parts by weighting the
measurement and estimation. It uses the measurements to readdress the estimation states
for the filtered tracking, and output the estimation based on early states if no measurements
occurred. Figure 9 shows the result of tracking the back seat in the predicted assembly
process. The tracking trajectory is marked by the red line with the square sign as well. The
trajectory has several twists due to the measurement noise during the assembly process.

The tracking in our experiment is based on the part motion within the shared workspace,
thus the misplacement of the parts is under control and the tracking errors are relatively
small. In addition, more complex motion models and attributions of other parts can be
used to reduce the tracking errors if needed.
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4.3. The Tracked Part Dataset Building Process

Since we already concluded the future action sequence and captured the intended
assembly part, obviously this precise part should be recognized in the next step and fed
into the robot control system for preparation of assembly assisting executions. Before that,
we need to build a large dataset for the following neural network’s training procedures.

When we want to apply machine learning models in real industry scenarios, the
desired data resource plays a crucial role in these data-driven [53] approaches. Data are
at the core of the machine learning tasks. The machine learning model extracts latent
features, establishes the implicit map between the input and the target, and validates its
performance from the given training dataset. However, building the required dataset is a
non-trivial mission in the machine learning procedure. In real industry projects, the dataset
collection process is likely to become complicated and the data annotation practice tends
to be time-consuming. In addition, constructing a high-quality dataset generally requires
expert knowledge to collect, assess, and organize the chaotic data for the demanding
CNN model.

For this specific assembly scenario, the potential data-driven model shares the same
challenges. First and foremost, enough data need to be collected effectively. Here, we take
advantage of the previous tracking model to alleviate the pain of data collection. During
the tracking process, we tracked a lot of images for desired parts in the prediction video
sequences, these images contain the independent parts in an organized way. In addition,
the travel behavior of these parts is slightly different, showing different angles and positions
in the tracked images. These various images can be cropped out during the intermediate
tracking process, as shown in Figure 10. Meanwhile, the collection of various images
during tracking can serve as a data augmentation [54] approach. Furthermore, there is
another path to enrich this data collecting process. Since the output of the prediction model
shares the same format as the demonstration input, the tracking model can be applied
directly to the demonstration video sequences. Likewise, this procedure also provides a
lot of independent part images for the dataset construction. As shown in Figure 11, the
samples from the demonstration video are more sharp and clear than the samples from
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prediction sequences. These samples provide more clean data and more variations for the
dataset, which is necessary to achieve the robustness of the desired model by increasing
the generalization ability.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 27 
 

 

The tracking in our experiment is based on the part motion within the shared work-
space, thus the misplacement of the parts is under control and the tracking errors are rel-
atively small. In addition, more complex motion models and attributions of other parts 
can be used to reduce the tracking errors if needed. 

4.3. The Tracked Part Dataset Building Process 
Since we already concluded the future action sequence and captured the intended 

assembly part, obviously this precise part should be recognized in the next step and fed 
into the robot control system for preparation of assembly assisting executions. Before that, 
we need to build a large dataset for the following neural network’s training procedures.  

When we want to apply machine learning models in real industry scenarios, the de-
sired data resource plays a crucial role in these data-driven [53] approaches. Data are at 
the core of the machine learning tasks. The machine learning model extracts latent fea-
tures, establishes the implicit map between the input and the target, and validates its per-
formance from the given training dataset. However, building the required dataset is a 
non-trivial mission in the machine learning procedure. In real industry projects, the da-
taset collection process is likely to become complicated and the data annotation practice 
tends to be time-consuming. In addition, constructing a high-quality dataset generally re-
quires expert knowledge to collect, assess, and organize the chaotic data for the demand-
ing CNN model.  

For this specific assembly scenario, the potential data-driven model shares the same 
challenges. First and foremost, enough data need to be collected effectively. Here, we take 
advantage of the previous tracking model to alleviate the pain of data collection. During 
the tracking process, we tracked a lot of images for desired parts in the prediction video 
sequences, these images contain the independent parts in an organized way. In addition, 
the travel behavior of these parts is slightly different, showing different angles and posi-
tions in the tracked images. These various images can be cropped out during the interme-
diate tracking process, as shown in Figure 10. Meanwhile, the collection of various images 
during tracking can serve as a data augmentation [54] approach. Furthermore, there is 
another path to enrich this data collecting process. Since the output of the prediction 
model shares the same format as the demonstration input, the tracking model can be ap-
plied directly to the demonstration video sequences. Likewise, this procedure also pro-
vides a lot of independent part images for the dataset construction. As shown in Figure 
11, the samples from the demonstration video are more sharp and clear than the samples 
from prediction sequences. These samples provide more clean data and more variations 
for the dataset, which is necessary to achieve the robustness of the desired model by in-
creasing the generalization ability. 

  
Figure 10. Typical data samples were collected from prediction videos. 

Figure 10. Typical data samples were collected from prediction videos.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 27 
 

 

  
Figure 11. Typical data samples were sampled from demonstration videos. 

After gathering the raw data from the shared workspace, the samples already cov-
ered all use cases and vital information. Generally, there is plenty of work that needs to 
be done in the data labeling [55] process. However, the image data of this assembly pro-
cess can be labeled semi-automatically. Since the raw data were captured during the track-
ing process, the obtained parts are organized in a continuous procedure. All the data sam-
ples can be labeled based on assembly sequence and can be processed in a batch-by-batch 
way.  

During the prediction tracking process, the images of each tracked part are mapped 
to a specific label that corresponds to the correct part name for the following assembly 
action. As in the prediction tracking process, the images of each tracked part in the demon-
stration tracking process are assigned to the corresponding part name as well. Here, we 
treat the demonstration input as the prediction output cautiously. Each prediction yields 
a series of tracked images, and these images may not follow the normal assembly se-
quence, but each part and its labels do not change at each step of the assembly process.  

Therefore, we only need to focus on the beginning and end of each image series. If 
the beginning and ending parts are the same, then the whole image series can be labeled 
without hesitation. If the beginning and ending parts are different, then it indicates that a 
new part was assembled after the previous part was assembled during the assembly pro-
cess, and both parts should be labeled individually.  

Table 2 shows the samples we obtained with tracking predicted and demonstration 
clips based on semi-automatic labeling. These samples are obtained from several demon-
strations and predictions. The constructed dataset is representative of all the intended 
parts.  

Table 2. The dataset of the tracking process. 

Parts Demo Prediction Sum 
Left Seat Holder 2500 1000 3500 

Right Seat Holder 2500 1000 3500 
Back Seat Holder 2700 1100 3800 

Left Seat 2500 1000 3500 
Right Seat 2500 1000 3500 
Back Seat 2700 1100 3800 

4.4. The Recognition Result of the Intended Part 
After the tracking and label process is finished, the dataset can be used to train a 

CNN to recognize the predicted part. The label represents the human intention in the next 
assembly step. When the human operator is assembling the product, the predicted images 
are sampled and all the images will be converted to labels, and these labels will be trans-
ferred to the robot to carry out a real collaboration task in the subsequent process. 

The robot needs to learn through enough data to obtain the correct part based on 
human intentions. The model structure and corresponding parameters are displayed in 

Figure 11. Typical data samples were sampled from demonstration videos.

After gathering the raw data from the shared workspace, the samples already covered
all use cases and vital information. Generally, there is plenty of work that needs to be done
in the data labeling [55] process. However, the image data of this assembly process can be
labeled semi-automatically. Since the raw data were captured during the tracking process,
the obtained parts are organized in a continuous procedure. All the data samples can be
labeled based on assembly sequence and can be processed in a batch-by-batch way.

During the prediction tracking process, the images of each tracked part are mapped to
a specific label that corresponds to the correct part name for the following assembly action.
As in the prediction tracking process, the images of each tracked part in the demonstration
tracking process are assigned to the corresponding part name as well. Here, we treat the
demonstration input as the prediction output cautiously. Each prediction yields a series of
tracked images, and these images may not follow the normal assembly sequence, but each
part and its labels do not change at each step of the assembly process.

Therefore, we only need to focus on the beginning and end of each image series. If
the beginning and ending parts are the same, then the whole image series can be labeled
without hesitation. If the beginning and ending parts are different, then it indicates that
a new part was assembled after the previous part was assembled during the assembly
process, and both parts should be labeled individually.

Table 2 shows the samples we obtained with tracking predicted and demonstration
clips based on semi-automatic labeling. These samples are obtained from several demon-
strations and predictions. The constructed dataset is representative of all the intended parts.
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Table 2. The dataset of the tracking process.

Parts Demo Prediction Sum

Left Seat Holder 2500 1000 3500
Right Seat Holder 2500 1000 3500
Back Seat Holder 2700 1100 3800

Left Seat 2500 1000 3500
Right Seat 2500 1000 3500
Back Seat 2700 1100 3800

4.4. The Recognition Result of the Intended Part

After the tracking and label process is finished, the dataset can be used to train a
CNN to recognize the predicted part. The label represents the human intention in the
next assembly step. When the human operator is assembling the product, the predicted
images are sampled and all the images will be converted to labels, and these labels will be
transferred to the robot to carry out a real collaboration task in the subsequent process.

The robot needs to learn through enough data to obtain the correct part based on
human intentions. The model structure and corresponding parameters are displayed in
Table 3. The images from the dataset were resized to 128 × 128 and fed into the network.
There are five convolution layers and two fully connected layers before the classifier.

Table 3. The structure of the CNN model.

Layer Stride Input size Filter size

Conv 1 128 × 128 × 3 5 × 5 × 32
Max Pooling 2 128 × 128 × 32 2 × 2

Conv 1 64 × 64 × 32 3 × 3 × 32
Max Pooling 2 64 × 64 × 32 2 × 2

Conv 1 32 × 32 × 32 3 × 3 × 64
Max Pooling 2 32 × 32 × 64 2 × 2

Conv 1 16 × 16 × 64 3 × 3 × 64
Max Pooling 2 16 × 16 × 64 2 × 2

Conv 1 8 × 8 × 64 3 × 3 × 128
Max Pooling 2 8 × 8 × 128 2 × 2

FC 1 1 × 1 × 2048 2048 × 512
FC 1 1 × 1 × 512 512 × 256

Softmax 1 1 × 1 × 256 Classifier

In the experiment, the model was trained by different dataset configurations, one
with the demonstration dataset and one with the combined dataset. We use 70% data
to train, 20% data for validation, and 10% data to tune the CNN model in the same way.
The samples shown in Table 2 include samples from demonstrations and predictions, and
the model trained from different datasets will be applied to the real subsequent assembly
predictions to recognize human intention parts. As the result of our experiment, the
model with a combined dataset achieves higher validation accuracy in a relatively larger
training iteration. Here, we use the combined dataset configuration trained CNN model
for better performance.

We compare the performance of the model trained only from the demonstrations
dataset with the model from the combined dataset. The model was trained for 350 epochs,
and the validation was carried out every 1000 iterations. With each saved best model, the
performance test procedure can be fulfilled. Figure 12 shows the loss function change of the
combined dataset training process. From Figure 12, we can see that the model converges at
around 65 epochs. In terms of learning accuracy, the model based on the combined dataset
achieves a higher score in the experiment, as shown in Figure 13.
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The recognition accuracy of the selected model is higher than 99% during the following
test scenarios. This model can handle human intention parts recognition successfully for
the prediction actions in our assembly collaboration task. The specific intention part will be
fed into the robot control system during the following collaboration process.

4.5. The Result of Human-Robot Collaboration

After the completion of learning from the human demonstration process, predicting
human future action, and obtaining the correct required part, the human-robot collaborative
assembly routine can be established.

While launching the human-robot collaborative assembly procedure, the proposed
model is deployed upon ROS to assist the human worker to install vehicle seats. After
learning the customized assembly information from the human demonstration, the robot
infers the human worker’s future intention and provides the corresponding required part.
The intended part’s information, such as location and destination, is transferred to the
robot’s controller. Based on that, the robot finds the part in the inventory, plans the proper
motion trajectory, grasps the correct part, and delivers it to the shared workspace. The
collaborative vehicle seat assembly procedure is shown in Figure 14.
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Figure 14. Human-robot collaborative assembly process in real experiment scenario. (a) Initial
position; (b) human worker installs the left seat holder; (c) robot delivers the right seat holder to
human; (d) human worker installs the right seat holder; (e) robot delivers the back seat holder to
human; (f) human worker installs the back seat holder; (g) robot delivers the left seat to human;
(h) human worker installs the left seat; (i) robot delivers the right seat to human; (j) human installs
the right seat; (k) robot delivers the back seat to human; (l) human installs the back seat.

From Figure 14a,b, it can be seen that the human worker installs the left seat holder
into the vehicle floor part without explicit instructions. Based on the previous human
actions and current assembly status, the early prediction action is planned according to the
proposed model, and the robot grasps the right seat holder and delivers it to the human
worker, as displayed in Figure 14c. In the same manner, the human worker installs the right
seat holder in the following step as shown in Figure 14d, then the robot proactively delivers
the back seat holder part to its cooperator, as presented in Figure 14e. Subsequently, the
robot assists its partner to accomplish the vehicle seat assembly according to the human
worker’s preference in a smooth way. Note that the blue and red arrows highlight the
assembly details in the corresponding step.

In a real assembly scenario, the same product can be assembled in a different style
according to the human worker’s preference. We also test the model on a different assembly
option in our experiment. The result is shown in Figure 15 in the same manner as Figure 14.
As shown in Figure 15a,b, the human worker installs the right seat holder first under the
monitoring of the robot. In Figure 15c, the robot analyzes the human actions, plans the
following tasks based on the prediction model, and executes the left seat holder delivering
action. The assembly details are marked by the blue and red arrows. Then, the human
worker finishes the left seat holder installation in Figure 15d, and the robot plans and
executes the back seat holder delivery process in Figure 15e. Since there are different seat
holder installation arrangements, the seats need to be set up accordingly. After the human
worker installs the back seat holder shown in Figure 15f, the robot grasps the right seat
and delivers it correctly based on the previous assembly process as shown in Figure 15g.
From Figure 15h–l, the robot assists the human worker in other seat installing procedures
actively in a matching manner.
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We adopted the Google Cloud speech recognition platform [56] to process the natural 
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Figure 15. Human-robot collaborative process for a different assembly preference. (a) Initial position;
(b) human worker installs the right seat holder; (c) robot delivers the left seat holder to human;
(d) human worker installs the left seat holder; (e) robot delivers the back seat holder to human;
(f) human worker installs the back seat holder; (g) robot delivers right seat to human; (h) human
worker installs the right seat; (i) robot delivers the left seat to human; (j) human installs the left seat;
(k) robot delivers the back seat to human; (l) human installs the back seat.

As demonstrated in Figures 14 and 15, the robot delivers the correct part at the right
time during the collaboration process, and the human-robot collaborative assembly process
was achieved successfully. The results show that the robot can proactively assist the human
worker in the assembly manufacturing procedure. Furthermore, the deployed model can
adapt to the partner’s customized assembly style and collaborate on various assembly
forms fluently.

4.6. Comparison with Speech Commanded Assist Robot

To verify the performance of the early prediction-based approach, we have imple-
mented a more straightforward method in the same assembly scenario. In a human-
robot collaborative assembly context, the human worker can express his intention directly
through natural language. The robot can interpret the human worker’s intentions through
language and then deliver the corresponding part to the human. For this setting, the natural
language commands are the bridge between robot and human worker. This is similar to
the human workers’ cooperation procedure. A human gives the speech instruction to the
collaboration partner, the partner understands the instruction and arranges the correspond-
ing action, then the partner executes the action. In this situation, the human worker serves
as the leader and delegates the desired task to his partner, the assisting robot.

We adopted the Google Cloud speech recognition platform [56] to process the natural
language commands. All the speech instructions are sent to the cloud and converted from
speech to command text. The human assembly intentions are represented by the commands
extracted from the natural language. Once the speech is decoded, the robot assists the
human worker by performing the correct tasks based on the customized assembly sequence.
For example, when the human worker required a specific part from the robot, he gave
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the part’s name, ‘left seat’, to the speech interface, and the speech recognition platform
processed the voice and outputted the parallel text commands. Then, the recognized
commands were fed into the robot controller, the robot picked the desired part, planned
the trajectory, and delivered it to the human for assembly. During the collaboration, human
workers can change task sequences according to their preferences and define customized
assembly procedures. These various actions are similar to the prediction-based approach.

However, after receiving the human’s instruction and planning the potential action, the
robot locates and delivers the required parts within a relatively longer time span than the
prediction-based method. The actual intention will be fulfilled after the whole commands
are interpreted by the robot and the trajectory optimized by the robot planner. Furthermore,
the human worker needs to pay extra attention to things other than his own tasks. This
additional work introduces a tedious burden in the collaboration, which is against the
safety and comfort expectations in the long run.

We invited another six individuals (one female and five males) within an age range of
21–35 as participants in the experiments. The participants included students and researchers
with non-directly related backgrounds. Each of them collaborated with the robot to conduct
the assembly tasks twice using the proposed prediction-based HRC approach and speech
commanded approach. Data from these collaborations were collected and exploited for
further model performance evaluation.

Figure 16 shows each step finish time for two methods in the vehicle seat assembly
experiment. P1–6 stand for the assembly part name, while H and R denote the task handled
by human worker and robot, respectively. As shown in Figure 16, when the assembly
subtask was managed by the human worker, the finish times for every sub-task are similar
to each other for both collaboration methods. However, there is a noticeable difference
in the step finish time between the two approaches. It can be seen that the HRC with
the early prediction method takes less time than the speech commanded method. The
prediction-based approach performs a faster collaboration for the experiment scenario. The
speech commanded assistance robot needs more time to receive the speech and decode
the commands from the cloud platform, which introduces a bigger idle gap during the
assembly process and consequently decreases the smoothness of collaboration.
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Figure 16. Step finish time comparison between human–robot collaboration with early prediction
and speech commanded assistance.

To evaluate the fluency of the human–robot collaboration, we compare the human
idle time and robot idle time [57] between the prediction-based HRC approach and the
speech commanded approach, as shown in Figure 17. The human idle time and robot idle
time are applied to obtain the objective measures. Human idle time refers to the percentage
of human inactivity in the total task time. Human idle time occurs in situations such as
the human waiting for the robot to finish its action. Similarly, the robot idle time refers to
the rate of robot inactivity in the total task time. Robot idle time happens due to waiting
for input, the computing of motion plans, waiting for prior human action, etc. All these
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measures are calculated based on the intervals of assembly action. Figure 17 shows that the
human idle time is relatively high in the speech commanded approach because of the extra
time required for speech command recognition and robot motion planning. Meanwhile,
robot idle time is also relatively high, due to a similar reason. On the contrary, the idle
time of both the human and the robot is comparatively low in the prediction-based HRC
approach, since there are more concurrent activities and less time taken for the human to
wait for the robot to deliver the desired part to continue the assembly assignment.
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Figure 17. Human idle time and robot idle time comparison between human-robot collaboration
with early prediction and speech commanded assistance.

Collectively, it appears that the robot idle time is much lower than the human idle
time, suggesting effective use of the robots. The higher human idle time indicates that
relevant issues such as human safety and comfort are considered in task allocation and
can be reduced in future studies. Moreover, compared with the speech commanded
approach, the HRC approach reduced human and robot idle time values by 34.5% and
58%, respectively. This indicates that, although the human idle time is reserved for safety
reasons, the proposed prediction-based approach achieves fluent collaboration and efficient
resource utilization in the collaborative assembly scenario.

Here, we compare the total task finish time between the prediction-based HRC ap-
proach and speech commanded approach, as shown In Figure 18. The task time in the pro-
posed method is shorter than the speech commanded method. The idle time in the speech
commanded system is significantly longer than the proposed model. The early prediction-
based HRC method takes an average of 36.43 s less than the speech commanded assistance
method. This result indicates that the early prediction-based model has better performance
and more smooth cooperation, which benefits the human-robot collaborative scenario.
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5. Conclusions

Early prediction plays an important role in human-robot collaboration. This paper
presents a prediction-based framework to understand, learn, and assist human coworkers
in the HRC assembly scenario. The proposed model was implemented on a robot to help
in the manufacturing assembly process by delivering parts for installation. Experimental
results show that the model is effective in learning from demonstration, and the robot can
predict the human partner’s future intentions and then naturally deliver corresponding
parts to assist humans proactively in real time. The early prediction-based intention aware
robot has better cooperation fluency, shorter suspended time, and higher collaboration
comfort, compared to the traditional passive commanded one. These outcomes verify
the effectiveness of the human intention prediction-based framework and demonstrate
the importance of future task awareness in human-robot collaboration. In addition, the
predictions inferred from human demonstration can be customized to different human
partners according to their unique working styles. Compared with existing methods,
the developed approach can help alleviate the need for heavy handcrafted models and
complex settings. This model also proposes a potential way by which human coworkers
can personalize the robot and let the robot assist them in the way they prefer. The proposed
framework can serve as a core module in future human-robot collaboration applications and
extend the exercise of more intelligent robot systems. There are limitations in the proposed
method for predicting human intentions in some occlusion scenarios. The prediction results
are affected by the limited workspace due to the view field of the camera. For instance,
human workers sometimes need to clean the parts in areas that may not be covered by
the camera during assembly manufacturing. Further developments of this work include
more complex practices in industrial applications, a wearable-sensor-equipped system
that is less susceptible to occlusions, and more methods to ensure safety and improve
efficiency simultaneously.
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