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Abstract: Intelligent Reflecting Surfaces (IRSs) are emerging as an effective technology capable of
improving the spectral and energy efficiency of future wireless networks. The proposed scenario
consists of a multi-antenna base station and a single-antenna user that is assisted by an IRS. The large
number of reflecting elements at the IRS and its passive operation represent an important challenge
in the acquisition of the instantaneous channel state information (I-CSI) of all links as it adds a
very high overhead to the system and requires equipping the IRS with radio-frequency chains. To
overcome this problem, a new approach is proposed in order to optimize beamforming at the BS and
the phase shifts at the IRS without considering any knowledge of I-CSI but while only exploring the
statistical channel state information (S-CSI). We aim at maximizing the user-achievable rate subject to
a maximum transmit power constraint. To achieve this goal, we propose a new two-phase framework.
In the first phase, both the beamforming at the BS and IRS are designed based only on S-CSI and,
in the second phase, the previously designed beamforming pair is used as an initial solution, and
beamforming at the BS and IRS is designed only by considering the feedback of the SNR at UE.
Moreover, for each phase, we propose new methods based on Genetic Algorithms. Results show
that the developed algorithms can approach beamforming with I-CSI but with significantly reduced
channel estimation overhead.

Keywords: intelligent reflecting surfaces; beamforming; statistical channel station information;
genetic algorithms

1. Introduction

Intelligent reflecting surfaces (IRS), also called reconfigurable intelligent surfaces [1],
and software-controlled metasurfaces [2], have recently attracted great interest. An IRS
is a meta-surface comprising a large number of reflecting elements, capable of reflecting
the incident signal with a given phase/amplitude shift. By densely deploying IRS in wire-
less communication networks and intelligently coordinating their elements, the wireless
channels between the transmitter and receiver can be intentionally and deterministically
controlled to improve signal quality at the receiver and the network’s capacity [3–6].

The optimization of the beamforming at the IRS and the BS has been studied in some
works [3,5,7–14]. In [5], energy efficiency is maximized by jointly optimizing beamforming
at the IRS and the power allocation. In [8,9], the authors design beamforming at the BS
and IRS with the goal of minimizing BS’ transmit power. In [15], a system using IRS and
orthogonal frequency division multiplexing is proposed for maximizing the achievable
rate. The authors optimize beamforming at IRS and BS power. The works in [8,9,15]
consider continuous phases at the IRS, while those in [3,11,13,14] make the more practical
assumption of discrete phases. Moreover, in [12], the phase shift model includes a phase-
dependent amplitude variation in IRS element reflection coefficients. The above-mentioned
works consider perfect knowledge of the instantaneous channel state information (I-CSI) at
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the BS, which is very difficult to obtain in practice due to the large number of elements at
the IRS and would need the deployment of RF chains at the IRS. Moreover, recently, in [7],
we investigated the joint optimization of BS and IRS beamforming with the objective of
minimizing the BS transmit power without any prior CSI knowledge. In addition, in [7],
we propose a new method based on the Particle Swarm Optimization (PSO) technique.
As in [8,9,15], the model in [7] assumes continuous phases at the IRS, which is not feasible
in practice due to hardware limitations.

In order to overcome this issue, recently, some works started exploring the statis-
tical channel state information (S-CSI) [15–25], which is easier to estimate. Accordingly,
in [15–18], the authors designed phase shifts at the IRS by considering only S-CSI in order to
improve system performance. However, in those works, the design of beamforming at the
BS is not considered, which simplifies the optimization problem and, consequently, reduces
system performance. In [19], the authors consider only S-CSI to jointly design beamforming
at the BS and at the IRS in order to maximize the ergodic sum capacity. In [20,21], a new
two-timescale transmission protocol was proposed to maximize the achievable average
sum-rate for an IRS-aided multi-user system. Specifically, the IRS phase shifts are first
optimized only based on the S-CSI of all links. Then, the transmit beamforming vector
at the base station (BS) is designed based on the I-CSI of the users’ effective channels.
A multi-user extension for [20,21] is proposed in [22] and the average transmit power
minimization problem is studied. To finish, some works also study the beamforming
design at the IRS by considering only random rotations schemes without the need of I-CSI
knowledge at the IRS [26–28], however, considering only random phase shifts at the IRS
limits system performance, and to design beamforming at BS, it is still necessary to consider
I-CSI knowledge at the BS [27], which is a challenge in practical scenarios.

Currently, evolutionary computation techniques have attracted great interest due to
their ability to solve complex optimization problems from different fields. These tech-
niques are inspired by biological evolution process, swarm behavior, and physics [29].
Among the main evolutionary computation techniques, Genetic Algorithms (GA) and
PSO are algorithms widely used for handling complex optimization problems [7,23–25,30].
Although both GA and PSO are able to successfully solve different complex problems,
GA is discrete by nature, i.e., it is preferable to use GA to solve discrete optimization
problems. In contrast, PSO is suited for continuous optimization problems. PSO needs to
be deeply modified to solve discrete optimization problems and usually does not present
great performance for complex problems of such forms.

Therefore, as continuous phases at the IRS are not feasible in practice, usually GA is
the most suitable heuristic method to design phase shifts at the IRS. From this, some works
started to explore this technique to design phase shifts at the IRS by considering S-CSI
knowledge [23–25]. More specifically, a multi-pair communication system assisted by an
IRS is considered in [23], while a method based on GA was proposed in order to maximize
the system’s achievable rate by solely optimizing discrete or continuous phase shifts at
IRS by considering only the knowledge of S-CSI. In addition, in [24], system performance
in terms of the achievable rate for a massive MIMO (mMIMO) system assisted by an
IRS is studied. The authors in [24] designed phase shifts at the IRS by only considering
S-CSI knowledge and proposed a novel GA to maximize the sum rate and the minimum
user rate. In addition, the work in [25] considers the performance of an IRS-aided MIMO
system, and the design of the phase shifts at the IRS elements was proposed based on S-CSI.
The authors present a closed-form expression for the uplink ergodic data rate and, based
on this, they consider the GA proposed in [24] to solve the sum-rate maximization problem.
Although, the works in [24,25] consider the design of the phase shifts at the IRS with S-CSI
only, the maximum ratio combining (MRC) is utilized to design beamforming at BS and,
consequently, the knowledge of the instantaneous CSI at the BS is necessary, which is very
difficult to obtain in practice. In addition, in [19], although the authors do not consider any
I-CSI knowledge, beamforming at the BS and at the IRS are designed based only on S-CSI,
limiting system performance, while they do not explore the full potential gains at the BS
and at the IRS.
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Contributions

Motivated by the above challenges, in this paper, we consider a MISO (Multiple-
Input Single-Output) communication system aided by an IRS. Then, we propose a new
framework split into two phases in order to design beamforming at the IRS and BS by
considering new methods based on the main GA features. We aim to maximize the system
achievable rate while meeting a maximum transmit power requirement at the BS through
beamforming optimization at IRS and BS. To achieve the main goal of this work, first, beam-
forming at the BS and the phase shifts at the IRS are designed based only on S-CSI and,
secondly, such beamforming pairs are used as an initial solution of the proposed method
in order to improve its convergence; the beamforming at BS and IRS are designed based
only on the feedback of SNR at UE. Here, it is important to note that the proposed solution
does not require any explicit channel estimation process. As we can observe, differently
from [15–18,23–25], both beamforming at the BS and the phase shifts at the IRS are designed,
which considerably increased the complexity of the optimization problem. In addition,
the methods proposed differ significantly, in terms of GA implementation, from those
in [23–25], as we consider a more specialized algorithm design. Moreover, different
from [20–22,24,25], the proposed solution does not consider any knowledge of I-CSI. In addi-
tion, different from [26–28], where the beamforming at IRS was designed based on random
phase shifts at the IRS, in this paper, we designed a suboptimal beamforming vector at IRS,
which allows the better exploration of IRS gain. In addition, in [19], although the authors
do not consider any I-CSI knowledge, beamforming at the BS and at the IRS is designed
based only on S-CSI, without any other further refinements based on SNR feedback as in
this work. Finally, different from [3,5,7–14], we consider discrete phases at the IRS elements.
Therefore, the main contributions of this work are as follows:

1. We develop a novel framework based on meta-heuristic methods to design beamform-
ing at BS and IRS without requiring I-CSI;

2. We reveal that the proposed solution can achieve a close-to-ideal performance by
considering only S-CSI knowledge with low training overhead.

The rest of this paper is organized as follows. Section 2 presents the system model and
the optimization problem. Section 3 describes GA operation and its principles. Section 4
reports the proposed approach. Section 5 presents simulation results. Finally, Section 6
concludes the paper.

Notations: An Italic letter such as a denotes a variable, bold-faced upper case letters
such as A denote a matrix, and a bold-faced lower case letter a represents a vector, where
[a]i is the i-th element of a. In addition, (·)H denotes the conjugate transpose.

2. System Model

We consider a wireless communication system where an IRS is deployed to assist
communication between a multiple-antenna BS and a single-antenna user equipment (UE),
as shown in Figure 1. The BS is assumed to be equipped with N antennas and IRS is
equipped with M = Mh × Mv reflecting elements. In accordance to [31], in this paper, we
consider that the channels change slowly, as we assume limited mobility.

The received signal at UE is as follows [9]:

y =
(√

βchH
iuθHbi +

√
βdhH

bu

)
ws + n, (1)

where βd and βc are the pathloss of the direct link (BS-UE) and the cascade link (BS-IRS-
UE), respectively. hH

iu ∈ C1×M is the IRS-UE channel vector, Hbi ∈ CM×N is the BS-IRS
channel matrix, hH

bu ∈ C1×N is the BS-UE channel vector, w ∈ CN×1 is the beamform-
ing vector at the BS, s denotes the transmitted data defined as an independent random
variable with zero mean and unit variance, and n ∼ CN (0, σ2) is the additive white
Gaussian noise. In addition, Θ = diag

(
[ξ]1ej[θ]1 , . . . , [ξ]Mej[θ]M

)
where [ξ]m ∈ [0, 1] (with

m = 1, . . . , M) and θ =
[
[θ]1, . . . , [θ]M

]
denote the amplitude reflection coefficient and the
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discrete phase shift vector at the IRS, respectively. The discrete phase [θ]m takes values on

the set T =

{
0, 2π

K , . . . , 2π(K−1)
K

}
, where K = 2B, and B denotes the number of bits per each

element at the IRS. Moreover, in accordance to [8,9], we consider [ξ]m = 1 for m = 1, . . . , M.

BS

UE

IRS

.........

Hbi

hbu

hiu

IRS Controler
IR

S
 C

o
n
tr

o
l 

L
in

k

Figure 1. An IRS-assisted single-user downlink communication system.

In this paper, we consider two different pathloss models; i.e., for the BS-UE direct link,
pathloss (in dB) is provided by the following [32]:

βd = Gt + Gr − 22 log10(dBU)− β0, (2)

where Gt and Gr are the antenna gain at the BS and UE (in dBi), respectively, dBU is the
distance between the BS and UE, and β0 is a constant path loss factor. The pathloss of the
BS-IRS-UE compound link (in dB) is given by the following [33]:

βc = Gt + Gr + 10 log10(D)− β1, (3)

where β1 is a constant path loss factor, D =

(
ab

dBIdIU

)2

cos2 φc, dBI is the distance be-

tween the BS and IRS, dIU denotes the distance between the IRS and UE, a = MhdIRSλ
and b = MvdIRSλ are the IRS dimensions, respectively, λ denotes the wavelength, and

φc = arctan
(

yb
xb

)
denotes the angle of arrival to the IRS, where (xb, yb) denotes BS

position [33].
In addition, to compute the small-scale fading, we consider the Rician fading channel

model for BS-UE and IRS-UE links, which are given by the following:

hi =

(√
κi

1 + κi
hLoS

i +

√
1

1 + κi
hNLoS

i

)
, (4)

where i ∈ {iu, bu}, which represents the IRS-UE and BS-UE link, respectively, and κi
is the Rician factor. For the sake of simplicity, in this work, we consider κi = κ ∀ i.
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Moreover, hLoS
i represents deterministic LoS components, which define S-CSI, and hNLoS

i
denotes the Rayleigh fading of the links. It is important to underline that, in accordance
to [31,34–36], we consider an LoS link between BS and IRS

(
Hbi = HLoS

bi
)
, which is a

reasonable assumption in practical scenarios. In addition, we consider partial LoS links
between BS and UE (BS-UE link), and between IRS and UE (IRS-UE link), both defined
by (4), which is a general formulation and is in accordance to [8,15]. Therefore, in this

work, we define S-CSI as
(

HLoS
bi , hLoS

bu , hLoS
iu

)
. Since we consider low-mobility users, S-CSI

changes slowly.
The LoS components of all links are expressed by the antenna array responses at

the IRS and at the BS, which are dependent on the array geometry. In this work, we
consider that the BS is equipped with a Uniform Linear Array (ULA) as in [16,37] and IRS
is equipped with a Uniform Planar Array (UPA); thus, the LoS components of the BS-IRS,
BS-UE, and IRS-UE links are, respectively, given by HLoS

bi = aIRS
(

ϕIRS, θIRS
)HaBS

(
θBS
)
ejφbi ,

hLoS
bu = aBS

(
θBS
)
ejφbu , and hLoS

iu = aIRS
(

ϕIRS, θIRS
)
ejφiu , where ϕIRS and (θIRS, θBS) are

azimuth and elevation angles, respectively, and φbi, φbu, and φiu denote the random phase
in the LoS components of the BS-IRS, BS-UE, and IRS-UE links, respectively. aBS

(
θBS
)

and
aIRS

(
ϕIRS, θIRS

)
denote the ULA response and UPA response, respectively, and are given

by the following [1]:

aBS
(
θBS
)
=

1
N

[
1, ejkdBS cos(θBS), . . . , ejkdBS(N−1) cos(θBS)

]
, (5)

aIRS
(

ϕIRS, θIRS
)
=
[
ejΛ(ϕIRS,θIRS)

Tu1 , . . . , ejΛ(ϕIRS,θIRS)
TuN
]
, (6)

where k = 2π
λ is the wavenumber, um = [0, I(m)dIRSλ,J (m)dIRSλ] for m = 1, . . . , M,

where I(m) = mod (m− 1, Mh), J (m) = b(m− 1)/Mhc, dBS, and dIRS are the distances
among the BS elements and among the IRS elements, respectively, and Λ(ϕIRS, θIRS) =

2π
λ

[
cos(ϕIRS) cos(θIRS), sin(ϕIRS) cos(θIRS), sin(θIRS)

]T
is the wave vector [38]. Finally,

the achievable rate in bps/Hz at the UE is as follows:

R = log2(1 + SNR), (7)

where SNR is the signal-to-noise ratio at the UE, and it can be written as follows.

SNR =

∣∣∣∣(√βchH
iuθHbi +

√
βdhH

bu

)
w
∣∣∣∣2

σ2 . (8)

Optimization Problem

In this work, we aim to optimize beamforming at BS and the phase shifts at IRS in
order to maximize the achievable rate at the user by considering a maximum transmit
power constraint. This optimization problem is provided by the following:

Maximize
w,θ

R

Subject to ||w||2 ≤ Pt,

[θ]m ∈ T , m = 1, . . . , M,

(9)

where Pt is the transmit power at BS. From the constraints in (9), it can be seen that
the optimization problem is non-convex and cannot be solved by a standard method.
Accordingly, to overcome this problem, we propose a novel solution based on GA described
in Section 4.
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3. Genetic Algorithms

The concept of GAs is based on the Theory of Evolution by natural selection, as pro-
posed by Charles Darwin [39], in which individuals change over time and these changes
help them to survive and to reproduce in order to generate descendants in the next genera-
tions. GAs are known to have simple implementation and to deliver good results in many
optimization problems [23,40]. The terms typically used in GA come from biology, and for
facilitating understanding, Table 1 lists the main terms used in this work and their meaning
in the proposed optimization problem. Moreover, the operation of a GA is summarized
next [41,42]:

1. Randomly generate the individuals of the first generation;
2. Compute the fitness of each individual;
3. Elitism: Create a set with some of the fittest individuals of the current generation and

perpetuate these individuals to the next generation;
4. Select some individuals (named parents) by the Tournament Method (Selection Method),

which will be submitted to the Reproduction Process (Crossover and Mutation Operators).
5. Crossover Operator: This operator makes the permutation of the genetic material of

the selected parents and generates children with probability pc, generating a set of
new individuals.

6. Mutation Operator: The individuals generated in the previous step are submitted to
the Mutation Operator with probability pmut, generating another set of individuals.

7. Generate the new population by the union of the sets of individuals generated in
Steps 3 and 6.

8. The GA is completed if the stop criterion is fulfilled. Otherwise, return to Step 2.

In order to better explain the operation of a GA, the main methods and operators used
in this optimization technique are explained next.

Table 1. The meaning of the main GA parameters.

GA Parameter Meaning

Gene An element of the beamforming vector

Individual The set of optimization variables in the problem

Population A set of solutions for the optimization problem

Parents Individuals selected in the Selection Method

Children Individual generated by the Crossover Operator

Fitness Function Metric defined by the optimization problem

Fitness Output of the fitness function

Generation Iteration of the algorithm

3.1. Selection Method

In GA, selection methods are used to choose individuals for participating in the repro-
duction process. Several selection methods exist in the literature [42]. In the present work,
we consider the Tournament Method [42] by which Ttourn randomly chosen individuals
enter a tournament; the winning individual, i.e., the one with the highest fitness, is se-
lected [42,43]. This process is repeated until the required number of individuals is reached.
The selected individuals are submitted to the reproduction process.

3.2. Reproduction Process

The reproduction process basically consists of crossover and mutation operators,
which are applied in the individual selected by the selection method [41–43]. The basic
operation of these operators are described next.
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3.2.1. Crossover Operator

From this operator, the selected individuals (named parents) have their features per-
muted to form descendants. In this work, we implemented the Uniform Crossover Operator
for real coding [42], for which its basic operation is described next. This operator follows
the crossover probability, which directly influences the diversity of the next generation.
Thus, for a given crossover probability (pc), the selected individuals are submitted to the
crossover operator, i.e., a chain of bits (0 or 1) is randomly generated. For each bit, if the
value is “1” (respectively, “0”), then the current gene of the first child receives the current
gene of the first (respectively, second) parent and the current gene of the second child
receives the current gene of the second (respectively, first) parent. Otherwise, for a given
probability (1− pc), the selected parents are perpetuated for the next generation.

3.2.2. Mutation Operator

The Mutation Operator is applied on individuals resulting from the crossover operator
in order to add new features in individuals and increase their genetic diversity. This
operator aims at reducing the likelihood that the GA becomes stuck at a local optimum. This
operator follows a given mutation probability (pmut) [42,43]. In this paper, we implemented
the Real Random Mutation Operator. This operator randomly selects a new value from the set
of valid values of that optimization variable to replace the current one of the selected gene.

3.3. Elitism

Elitism is a method that is used to ensure that the genetic material of the fittest
individuals of the current generation will be perpetuated to the next generation, improving
GA convergence. In Elitism, the best individuals of a population are selected and kept for
the next generation without experiencing crossover and mutation operators. This method
guarantees that the quality of the solution obtained by the GA does not decrease in the
next generation. In addition, Elitism improves the performance of GA because this concept
ensures that the GA does not waste time rediscovering good solutions that are previously
analyzed [42,44].

4. Proposed Solution

In this paper, a solution based on GA is proposed to solve the optimization problem
in (9). In the proposed approach, we exploit S-CSI in the beginning of the beamforming
design process. We divide our proposed solution in three phases, as illustrated in Figure 2.
In the first phase, S-CSI is acquired using standard estimation techniques [45,46] and fed
back to BS (the acquisition of the S-CSI is left for future work, here, we focus on analyzing
the influence of the S-CSI knowledge on the optimization problem.) In the second phase,
considering only S-CSI, the beamforming vectors at BS and IRS are determined at BS and
the suboptimal beamforming pair, evaluated in terms of the instantaneous achievable rate
in (7), is computed. It is important to emphasize that, in this phase, we only consider the
LoS components of all channel links. Thus, for each beamforming pair, BS receives the
feedback of the SNR at UE, and the ongoing beamforming pair is evaluated based on (7).
Therefore, we maximize the instantaneous achievable rate. This process is performed for all
pairs. Note that, in this phase, I-CSI does not need to be explicitly estimated; therefore, we
do not require any instantaneous channel estimation process, which considerably reduces
the training overhead. To finish, the main phases are described below.

LoS
H hbu

LoS

hiubi
LoS( , , ) ( , )w θEstimate the

S-CSI1
LoS

H hbu

LoS

hiubi
LoS( , , )

2
Compute (w, )

based on the
estimated S-CSI

θ Compute w and

without the CSI
knowledge

θ

3

w θ( ),

Figure 2. Diagram of the proposed solution.
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1. Estimate S-CSI : In this phase, we consider that IRS is in the sensing mode and

the S-CSI of all links
(

HLoS
bi , hLoS

bu , hLoS
iu

)
is estimated by considering dedicated sen-

sors/receiving circuits at the IRS using standard estimation techniques [45,46].
2. Compute w and θ: Based on the estimated S-CSI, in this phase, we consider Algorithm 1

to compute w and θ. To better explain the operation of Algorithm 1, its main steps are
described as follows:

I. Randomly generate L beamforming vectors at the IRS
(

θl , l = 1, . . . , L
)

.

For each θl , compute the Maximum-Ratio Transmission (MRT) beamforming
vector [47] given by the following:

wl =

√
Pt

[√
βc

(
hLoS

iu

)H
θHLoS

bi +
√

βd

(
hLoS

bu

)H]H

∣∣∣∣∣∣√βc

(
hLoS

iu

)H
θHLoS

bi +
√

βd

(
hLoS

bu

)H∣∣∣∣∣∣ . (10)

where it is important to highlight that, for a given θl , wl is the optimal transmit
beamforming at the BS considering only S-CSI. Here, each individual in the
proposed GA is defined as a beamforming vector at the IRS

(
θ
)
.

II. Calculate the fitness defined by (7) of each individual, where SNR at UE is
given by the following:

SNR =

∣∣∣∣(√βchH
iuθHLoS

bi +
√

βdhH
bu

)
w
∣∣∣∣2

σ2 , (11)

where θ = diag
(

ej[θ]1 , . . . , ej[θ]M
)

.

III. Elitism: Select the Nf fittest individuals
(

θ f | f = 1, . . . , Nf

)
, which are pre-

served without any modification for the next generation.
IV. Selection Process: Select, from the Tournament Method, (L−Nf) parents from

the individuals of the current generation.
V. Crossover Operator: With crossover probability pc, generate (L−Nf) children

from the crossing of the selected parents. Otherwise, with probability 1− pc,
the children are the same as the selected parents. The following individuals

are generated:
(

θc | c = 1, . . . , L− Nf

)
.

VI. Mutation Operator: With mutation probability pmut, select one child gener-
ated in Step V and submit it to the Real Mutation Operator. Otherwise, the se-
lected child is perpetuated for the next generation. This step is run (L− Nf)

times. The following individuals are generated
(

θp | p = 1, . . . , L− Nf

)
.

VII. The new population is generated by the union of the individuals generated

in Steps III and VI
[
θ f , θp

]
. In other words, the L beamforming vectors,(

θl , l = 1, . . . , L
)

, are updated.

VIII. Check whether the maximum number of iterations (Nit) has been reached
(stop criterion). If so, return the fittest individual

(
wbest, θbest

)
. Otherwise,

proceed to Step II.

3. Compute w and θ: In this phase, the beamforming vectors at BS and the phase shifts
at the IRS to be tested are defined at BS and sent to IRS from the controller illustrated
in Figure 1. For each beamforming pair, the BS receives feedback of the SNR at UE,
and the beamforming pair is evaluated based on (7). This process is repeated for all
pairs. In addition, in order to speed up the convergence of the proposed solution and
to reduce overhead since we assume a limited mobility scenario, in the process of
generating the first population of the proposed method, as illustrated in Figure 2, we
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consider the knowledge of both beamforming pairs based on S-CSI computed in Phase
2 and the best pair of beamforming computed in the previous channel realization.
Note that, in this approach, I-CSI does not need to be estimated. Therefore, we do not
need to equip IRS with several RF chains and we do not require any explicit channel
estimation processes. The proposed solution is detailed in Algorithm 2, and its main
steps are described next.

I. The first population is generated by the following individuals: (i) (L − 2)
pairs of beamforming (individuals) randomly generated; (ii) the beamforming
pair generated in the first phase

(
w, θ

)
considering S-CSI; and (iii) the best

beamforming pair from the previous channel realization (w, θ).
II. Compute the fitness of each individual defined by (7), where the SNR at UE is

given in (8).

III. Elitism: Select the Nf fittest individuals
(

w f , θ f | f = 1, . . . , Nf

)
, which are

maintained for the next generation.
IV. Selection Process: Select (L− Nf)/2 individuals from the individuals of the

current generation.
V. Crossover Operator: With probability pc, generate (L− Nf)/2 children from

the crossing of the selected parents. Otherwise, with probability 1− pc, the chil-
dren are the selected parents without any modification. The generated individ-

uals are stored in
(

wc, θc | c = 1, . . . , (L− Nf)/2
)

.

VI. Mutation Operator: With mutation probability pmut, randomly select an in-
dividual selected in Step III. Otherwise, with probability 1− pmut, randomly
select an individual generated in Step V. In either case, submit the selected
individual to the Real Mutation Operator with probability pmut. This step
must be run (L− Nf)/2 times, and the following individuals are generated(

wp, θp | p = 1, . . . , (L− Nf)/2
)

.

VII. The new population is generated by the union of individuals generated in

Steps III, V, and VI,
(

wl , θl = (w f , θ f ), (wc, θc), (wp, θp) | l = 1, . . . , L
)

.

VIII. Check if the maximum number of iterations (Nit) is reached (stop criterion).
If so, then return the fittest individual (wbest, θbest). Otherwise, proceed to
Step II.

Note that, comparing Algorithms 1 and 2, there are some differences in the form that a
new population is created in each generation. In Algorithm 1 the new population (Step VII-
Phase 2) is generated following the basic principles of GAs [43]. However, in Algorithm 2,
we propose a modification in the Mutation Operator (Step VI-Phase 3) and consequently
in the generation of a new population (Step VII-Phase 3). These modifications were made
after extensive tests for obtaining maximum performance.

In addition, it should be noted that the proposed solution exploits S-CSI knowledge as
an initial point of the beamforming search in order to improve its convergence. With this
approach, as we show next, it is possible to reach a close-to-ideal solution with reason-
able overhead.
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Algorithm 1: Algorithm applied in Phase 2 to compute
(
θ, w

)
.

Input : Communication System Parameters: N, M;
GA Parameters: L, Nit, pmut, pc, Nf.

Output : wbest, θbest

1 Randomly initialize the first population: (θl | l = 1, . . . , L).
2 For each θl , compute wl based on (10).

3 for g = 1 : Nit do

4 Compute the fitness of each individual based on (9).
5 Select the Nf fittest individuals given by (θ f | f = 1, . . . , Nf).
6 Select (L− Nf) parents by the Tournament Method.

7 for k = 1 : (L− Nf) do
8 if pc < rand() then
9 Submit the selected parents to the Uniform Crossover Operator and

generate two new children.
10 else
11 Keep the selected parents for the next generation without any

modification.
12 end
13 end
14 Crossover Operator: The previous generated individuals are defined as

(θc | c = 1, . . . , L− Nf).

15 for k = 1 : (L− Nf) do
16 if pmut < rand() then
17 Submit the child

(
[θc]k

)
to the Real Mutation Operator.

18 else
19 The child is kept without changes for the next generation.
20 end
21 end
22 Mutation Operator: The previous generated individuals are defined as

(θp | p = 1, . . . , L− Nf).
23 Determine the new population: θ =

[
θ f , θp

]
.

24 end
25 Determine θbest, the fittest individual, according to (9).
26 Compute wbest based on (10) for θbest.
27 return θbest, wbest
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Algorithm 2: Algorithm applied in Phase 3 to compute
(
θ, w

)
.

Input : Communication System Parameters: N, M;
GA Parameter: L, Nit, pmut, pc, Nf.

Output :wbest, θbest

1 for g = 1 : Nit do
2 if (g = 1) then

3 Generate the first population
(

wl , θl | l = 1, . . . , L
)

;

4 end

5 Compute the fitness of each individual based on (9).
6 Determine the Nf fittest individuals defined as

(
w f , θ f | f = 1, . . . , Nf

)
.

7 Select (L− Nf)/2 parents by the Tournament Method.

8 for k = 1 : (L− Nf)/2 do
9 if pc < rand() then

10 Submit the selected parents to the Uniform Crossover Operator and generate two new
children.

11 else
12 Keep the selected parents for the next generation without any change.
13 end
14 end
15 Crossover Operator: The previous generated individuals are given by(

wc, θc | c = 1, . . . , (L− Nf)/2
)

;

16 for k = 1 : (L− Nf)/2 do
17 if (pmut < rand()) then

18 Select an individual from (w f , θ f ) given by (welitism, θelitism).
19 if (pmut < rand()) then
20 Submit the selected individual to the Real Mutation Operator.
21 else
22 Keep the selected individual for the next generation without any modification.
23 wmut = wfittest; θmut = θfittest

24 end
25 else

26 Randomly select a child
(

wc, θc | c = 1, . . . , (L− Nf)/2
)

.

27 if (pmut < rand()) then
28 Send the selected child to the Real Mutation Operator.
29 else
30 Keep the selected child for the next generation without any modification.
31 end
32 end
33 end
34 Mutation Operator: The previous generated individuals are given by(

wp, θp | p = 1, . . . , (L− Nf)/2
)

;

35 Determine the new population: w = [w f , wc, wp], θ = [θ f , θc, θp].
36 end
37 Determine wbest and θbest according to (9).
38 return wbest, θbest

5. Simulation Results

In order to show the performance of the proposed solution, we present the results
achieved by considering the simulation setup in Figure 3, where (xb, yb), (xi, yi), and (xu, yu)
are the BS, IRS, and UE locations, respectively. Therefore, dBI, dBU, and dIU are the BS-IRS,
BS-UE, and IRS-UE distances given by dBI =

√
(yb − yi)2 + (xb − xi)2,

dBU =
√
(yb − yu)2 + (xb − xu)2, and dIU =

√
(yi − yu)2 + (xi − xu)2, respectively. The

simulation parameters considered in this work are described in Table 2, unless specified
otherwise, and all curves present an average of 103 different realizations. It is important
to highlight that the GA parameters were defined after extensive simulations. Numeri-
cal results are shown for three beamforming solutions: (i) Upper Bound (the Upper Bound
benchmark represents the optimal solution to the proposed optimization problem. For this
benchmark, we consider perfect knowledge of the I-CSI at the IRS/BS/UE and continu-



Sensors 2022, 22, 2390 12 of 21

ous phase shifts at the IRS elements. In addition, from the I-CSI knowledge, the optimal
beamforming at the BS is computed considering Maximum Ratio Transmission (MRT).
After this, the proposed optimization problem is converted to a convex problem following
the steps described in [8] and the optimal beamforming at the IRS is computed using the
CVX toolbox [48]), the optimal beamforming using continuous phase shifts at the IRS, and
optimal beamforming at the BS, which is calculated by solving the optimization problem
in ([8] Equation (12)) using CVX [48], while the resulting achievable rate is an upper bound
for the optimization problem in (9); (ii) GA-without CSI (which considers that the beam-
forming at the BS and at the IRS are computed without any prior channel knowledge at the
IRS/BS/UE. More specifically, for this benchmark, we consider discrete phases at the IRS
and we compute beamforming at BS and IRS using Algorithm 1 in the manuscript. Here, it
is important to hightlight that the GA-without CSI differs from the proposed solution based
on S-CSI knowledge (GA-With S-CSI) by the fact that the first generation of the proposed
GA does not consider the beamforming pair computed based on S-CSI as an initial step),
the beamforming at the BS, and the phase shifts at the IRS are computed by applying
only Algorithm 1, which does not exploit the S-CSI knowledge; and (iii) GA-with S-CSI,
the proposed solution presented in Section 4, exploiting S-CSI knowledge.

BS

UE

IRS

( , )x yb b

( , )x yu u

( , )x yi idBI

dIU

dBU

x

y

Figure 3. Simulation setup.

5.1. Number of Phase Bits

In this work, we consider discrete phase shifts at each reflecting element at IRS. As the
high resolution (large number of controlling bits B) or ideal continuous phase shifts are
not energy efficient and are difficult to achieve due to hardware limitations, it is important
to achieve a close-to-ideal performance with a small number of controlling bits B [49].
Therefore, Figure 4 presents the convergence of difference methods for different values
of B by considering M = 40 and (xu, yu) = (95, 8) m (dIU ∼ 5 m, i.e., UE close to the
IRS). From the results, it can be verified that the proposed solution achieves a suboptimal
performance with only B ≥ 2 bits when we consider S-CSI knowledge (Figure 4). From the
results, we can conclude that the proposed solution can be applied in practical scenarios
with low-resolution phase shifts. Therefore, in the rest of this paper, we consider B = 3 bits.
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Table 2. Simulation parameters.

Parameter Value

N 10
Mv 10
Nit 103

Nf 2
Ntourn 2
pmut 8% (case with S-CSI)
pmut 5% (case without S-CSI)

pc 90% (for both cases)
dIRS 0.5
Gt 3 dBi
Gr 3 dBi
fc 4 GHz

dBS λ/2
κ 1 (if not specified otherwise)

(xb, yb) (50, 10) m
(xi, yi) (100, 10) m
σ2 [9] −80 dBm

Pt 20 dBm
β0 41.98
β1 21.98
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Figure 4. Analysis of the number of controlling bits at each element at the IRS with and without CSI
knowledge considering M = 40 and (xu, yu) = (95, 8) m, i.e., dIU ∼ 5 m.

5.2. Influence of LoS and Topology

Figure 5 presents the convergence of the proposed solution with and without S-CSI
considering κ ∈ {1, 2}. From the results, we can see that the proposed solution considering
S-CSI knowledge achieves a better performance with considerably fewer iterations and
converges to the suboptimal solution in a few iterations. In addition, we can verify that
for a scenario with high influence of the LoS components, the difference between the
performance of the proposed solution and the one without S-CSI increases as expected.
Figure 6 compares the system’s achievable rate versus BS-UE distance by considering
M = 40 reflecting elements at the IRS. From the results, it is possible to conclude that the
proposed solution achieves a close-to-optimal performance for small values of dIU, i.e,
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when the user is close to the IRS. Moreover, we also can see that when dIU decreases, the
influence of S-CSI knowledge considerably increases.

Number of Iterations
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Figure 5. Convergence analysis for M = 80 and (xu, yu) = (75, 8) m, i.e., dIU ∼ 25 m.
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Figure 6. Achievable rate versus BS-UE distance for M = 40.

Figure 7 shows the achievable rate versus the number of elements at the IRS (M) for
dIU ∈ {45, 25, 5} m. Note the following: (i) for dIU = 45 m in Figure 7a, the achievable
rate remains almost constant. This can be explained due to the fact that, as UE is far
from IRS, increasing M does not increase the achievable rate at UE. Thus, in this case,
the achievable rate is more dependent on beamforming at the BS; (ii) for dIU ≤ 25 m in
Figure 7b,c, the achievable rate greatly increases with M and the proposed solution reaches
a close-to-ideal performance with discrete phases at each IRS element and only a few
number of controlling bits. This can be explained due to the fact that, as UE is close to
IRS, the UE can explore the IRS gain added to the system. In addition, from the results, we
can verify that the position of UE has a considerable influence; this can be related to the
gain of the beamforming at BS or at the IRS which the UE can exploit when it is close to the
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BS or IRS. This conclusion is ratified in Figure 6, where we can note the importance of the
UE’s position.

In addition, we can verify from the results presented in Figure 7 that the gap to the
upper bound, when we consider S-CSI knowledge, remains constant as M increases. How-
ever, from the results, we can also verify that, when we do not consider S-CSI knowledge
(GA-Without S-CSI), the performance gap in terms of bits per second per Hertz (here
defined as ∆r) between GA-Without S-CSI and the Upper Bound increases as M increases,
as we can observe in Figure 7b, where for M = 20, ∆r =∼ 0.5 bps/Hz, and for M = 80,
∆r ∼ 3 bps/Hz. Therefore, it is possible to verify that, when we consider S-CSI knowledge,
the proposed method can maintain the same performance gap independent of IRS’s size,
which can be explained due to the fact that, in our proposed solution, we consider the
beamforming pair computed based on S-CSI knowledge as an initial solution. Therefore,
the first generation of our method is not generated in a random manner, and this increases
the quality of the exploitation of the search space by the proposed method and, conse-
quently, increases system performance. Therefore, this also demonstrates the importance of
S-CSI knowledge.
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Figure 7. Achievable rate at UE versus the number of reflecting elements (M) at IRS.

5.3. Amount of Feedback

Next we evaluate the amount of feedback from the user to the BS, NitL. If the amount
of feedback is not larger than the number of pilots required by a method based on explicit
channel estimation, (MN + 1) [50], then the proposed solution has a clear advantage.
Figure 8 shows the training overhead of our solution in terms of the equivalent number
of pilots that would be required for estimating the channel. We can see that the proposed
method, even when using only 30% of the training overhead necessary to estimate the
channel, performs close to the upper bound. Moreover, recall that our solution does not
require additional RF chains at the IRS elements. Finally, it is important to stress that the
upper bound considers continuous phases at the IRS and the proposed solution considers
a more realistic scenario with discrete phases at the IRS elements. From the results, we
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can verify that it is possible to obtain a close-to-ideal solution with a reduced amount of
feedback from the user.
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Figure 8. Training overhead of the proposed solution for (xu, yu) = (95,8) m, i.e., dIU ∼ 5 m.

5.4. Imperfect S-CSI Knowledge

The previous results consider perfect S-CSI knowledge. Thus, in order to investigate
the robustness of the proposed solution, we next consider the following model for imperfect
S-CSI knowledge [51], taking the BS-IRS link as an example:

HLoS
bi =

(√
1− τ

)
HLoS

bi +
√

τE, (12)

where HLoS
bi is the LoS component of the BS-IRS link and HLoS

bi represents the imperfect
estimation of the LoS component of the BS-IRS link, while E represents the estimation error,
for which its entries are i.i.d. zero mean circularly symmetric complex Gaussian random
variables with zero mean and unit variance. Moreover, τ ∈ [0, 1] is the estimation accuracy,
i.e., if τ = 1, there is no correlation between HLoS

bi and HLoS
bi ; otherwise, if τ = 0, we have a

perfect S-CSI estimation. We consider that the imperfect estimation of the LoS components
or all links (BS-UE and IRS-UE) is generated in the same manner.

Figure 9 presents the convergence of the proposed solution for different values of τ
considering the following schemes: (i) proposed solution with perfect S-CSI; (ii) proposed
solution with imperfect S-CSI; and (iii) proposed solution without any CSI. In all cases, we
consider κ = 1, i.e., both LoS and NLoS components present the same influence on all links.
From the results, we can verify that imperfect S-CSI knowledge degrades the performance,
but the proposed solution with imperfect S-CSI still achieves a better performance than in
the case without S-CSI.

5.5. Computational Complexity

In this paper, we proposed a solution based on GA. Therefore, to compute the compu-
tational complexity of the proposed solution, it is necessary to consider the complex-
ity of each genetic operator in each phase of the proposed solution. For the second
phase, we have the following computation complexity: (i) O

(
NitM

)
for the Tourna-

ment Selection method; and (ii) O
(

NitLM
)

for the crossover and mutation operators.
To finish, in the third phase, we have the following: (i) O

(
Nit(M + N)

)
for the Tour-

nament Selection method; and (ii) O
(

NitL(M + N)
)

for the crossover and mutation op-
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erators. Therefore, the computational complexity of the proposed solution is given by[
O
(

Nit(M + N)(L + 1)
)
+O

(
NitM(L + 1)

)]
, where Nit is the number of generations, L is

the population size, and M and (M + N) is the individual size for the second and third
phase, respectively. Therefore, as we can verify, the proposed solution presents a linear
computational complexity.
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Figure 9. Convergence of the proposed solution with perfect and imperfect S-CSI for M = 20 and
(xu, yu) = (95,8) m, i.e., dIU ∼ 5 m.

For the importance of computational complexity analysis, for this work, we consider
that the issue of training overhead is more relevant as this is one of the main challenges
in IRS-assisted communication systems. Therefore, in the manuscript, we evaluate the
amount of feedback from the user to the BS, NitL (Figure 8). If the amount of feedback is not
larger than the number of pilots required by a method based on explicit channel estimation,
(MN + 1) [50], then the proposed solution has a clear advantage. As we can observe from
the numerical results in Figure 8, the proposed method, even when using only 30% of the
training overhead necessary to estimate the channel, performs close to the upper bound.

6. Conclusions

In this paper, we evaluated two different solutions based on GA in order to design
beamforming at BS and IRS, with a maximum transmit power constraint and discrete phase
shifts at IRS. First, we proposed a solution that does not consider any knowledge of the CSI
at BS, and a suboptimum design of the beamforming at BS and IRS was performed. Next,
we proposed another solution to solve the beamforming problem only by exploiting S-CSI
knowledge. The novel solutions were evaluated considering different setups, and from the
results, we can conclude that they achieve a great performance considering discrete phases
with a few numbers of controlling bits at each element and with a reasonable amount of
feedback from UE. This shows that the proposed solutions are very attractive in practice. As
future works, we intend to investigate the system overhead in a MIMO multi-user system.
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Abbreviations

BS Base Station
CSI Channel State Information
GA Genetic Algorithm
I-CSI Instantaneous CSI
IRS Intelligent Reflecting Surfaces
LoS Line-of-Sight
NLoS Non-LoS
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
mMIMO massive MIMO
MRC Maximum Ratio Combining
PSO Particle Swarm Optimization
S-CSI Statistical CSI
SNR Signal-to-Noise Ration
UE User Equipment
ULA Uniform Linear Array
UPA Uniform Planar Array
β0, β1 Constant path loss factors.
βc Pathloss of the BS-UE link
βd Pathloss of the BS-IRS-UE link
θ Phase shift vector at the IRS
θ Phase shift vector at the IRS considering only S-CSI
(θIRS, θBS) Elevation angles
κ Rician factor for all links
λ Wavelength
ξ Amplitude reflection coefficient
σ Power noise
τ Estimation accuracy
φbi Random phase in the LoS components of the BS-IRS link
φbu Random phase in the LoS components of the BS-UE link
φiu Random phase in the LoS components of the IRS-UE link
ϕIRS Azimuth angle
B Number of bits per each element at the IRS
dbi BS-IRS link distance
dBS Distance among the BS elements
dbu BS-UE link distance
dIRS Distance among the IRS elements
diu IRS-UE link distance
E Estimation error
Gr Antenna gain at the UE
Gt Antenna gain at the BS
hbu BS-UE channel vector
hLoS

bu Deterministic LoS components of the BS-UE link
hNLoS

bu Rayleigh fading of the BS-UE link
hiu IRS-UE channel vector
hLoS

iu Deterministic LoS components of the IRS-UE link
hNLoS

iu Rayleigh fading of the IRS-UE link
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Hbi BS-IRS channel matrix
HLoS

bi Deterministic LoS components of the BS-IRS link

HLoS
bi Imperfect estimation of the LoS components of the BS-IRS link

K Phase shift levels
L GA population size
M Number of elements at the IRS
Mh Number of elements in the horizontal level at the IRS
Mv Number of elements in the vertical level at the IRS
n Additive white Gaussian noise at the UE
N Number of antennas at the BS
Nit Number of iterations at the GA
Nf Number of elements selected by the elitism process
pc Crossover probability
pmut Mutation probability
Pt Transmit power at the BS
R Achievable rate at the UE
s Transmitted data
T Set of all possible discrete phases at the IRS
Ttourn Number of elements selected to compete in a tournament.
w Beamforming vector at the BS
w Beamforming vector at the BS considering only S-CSI
(xb, yb) BS position
(xi, yi) IRS position
(xu, yu) UE position
y Received signal at the IRS
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