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Abstract: For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes
a DOA estimation method based on the deep convolution neural network. The algorithm adopts
the deep convolutional neural network, and the DOA estimation problem of the array signal is
transformed into the inverse mapping problem of the array output covariance matrix to a binary
sequence in which “1” indicates that there is a target incident in the corresponding angular direction at
that position. The upper triangular array of the discrete covariance matrix is used as the data input to
realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation
accuracy of the proposed algorithm is significantly better than that of the typical super-resolution
estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions
of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the
same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than
that of the deep fully connected neural network. The analysis of the simulation results shows that the
algorithm is effective, and the time and space complexity can be further reduced by replacing the
square array with the upper triangular array as the input.

Keywords: DOA estimation; deep convolutional neural network; covariance matrix; the upper
triangular matrix

1. Introduction

Array signal processing, also known as spatial domain signal processing, is an im-
portant branch of the signal processing field, widely used in radar signals, underwater
sonar, wireless communication, radio astronomy, and other fields [1]. Mainly, to process
the signals received by the array, enhance the useful signals needed, suppress useless
interference and noise, and obtain important parameters, the estimation of the direction of
arrival (DOA) is one of the important research contents of array signal processing [2]. DOA
estimation, also named spatial spectrum estimation, estimates the direction angle of the
spatial signal reaching the array reference element by processing the received signal of the
array. The traditional DOA estimation methods are mainly based on beamforming [3] and
‘null pattern’ guidance techniques [4], and the typical representatives are the methods of
delayed-add and Capon minimum variance [5,6]. In order to maximize the amplification of
useful signals and suppress interference signals, this type of method searches for the peak
output power and aligns the main lobe with the incident direction of useful signals under
the premise of a known array flow pattern. It is only applicable to the case where there
is only one signal in the target airspace. In the late 1970s to early 1980s, the development
of the proper channeling subspace algorithms made DOA estimation leap to the super-
resolution level. The characteristic subspace algorithms are divided into two types, noise
subspace algorithms represented by the MUSIC algorithm, and signal subspace algorithms
represented by the ESPRIT algorithm. The MUSIC algorithm [7], proposed by Schmidt
in 1979, uses the orthogonality of the signal subspace and noise subspace to construct a
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spatial spectral function and estimate signal parameters through spectral peak search. The
ESPRIT algorithm [8], proposed by Roy et al. in 1989, is based on the rotation invariance
of the subspace that does not need spectral peak search, and its computing efficiency is
greatly improved. In 1988, maximum likelihood estimation theory was applied to DOA
estimation [9]. This method still has a good performance under the condition of low SNR
and snapshot deficiency. As the maximum likelihood DOA estimation function is nonlinear,
multidimensional search is indispensable for solving the optimal solution, which generates
a large number of operations; alternating projection [10] is usually used to simplify the
optimal solution process. The subspace fitting algorithm [11] is similar to the maximum
likelihood algorithm; the difference is, the former is used to fit the signal subspace [12] and
noise subspace [13], and the latter is used to fit the received data and actual signal. Both
algorithms require multidimensional search; therefore, the solving process of the maximum
likelihood algorithm can be directly applied to the subspace fitting algorithm [11].

In recent years, the continuous development of deep learning theory and technology
has provided new ideas and strategies for DOA estimation [14]. Deep learning-based DOA
estimation methods can be divided into two main research branches: the first is a supervised
algorithm that learns the projection relationship between the inputting feature and DOA.
For example, in 2015, a single-layer neural network model was designed by Xiao [15] to
implement DOA estimation, and the deep learning method was used to solve the DOA
estimation problem for the first time. In addition, in 2018, CNN was introduced into the
study of the DOA estimation problem for the first time by Chakrabarty and Habets [16],
which improved the estimation accuracy and robustness of the algorithm. In addition,
neural networks dealing with higher-order fractional linear systems such as GMDH neural
networks [17] also provide new ideas for supervised DOA-based estimation methods.
The second is an unsupervised algorithm based on feature enhancement. For example,
in 2020, Xiang proposed an algorithm that improved the estimation accuracy by phase
enhancement [18]. Although the existing methods about deep learning have a preferable
estimation precision, due to the complex model and overmuch training parameters, time
complexity and space complexity are unsatisfactory. Based on this, a DOA estimation
method by deep convolutional neural networks (DCNN) is proposed. The upper triangular
matrix of the covariance matrix of the discretized received signals is used as the input,
which can effectively reduce the number of parameters generated by the full connected
layer, and DOA estimation can be achieved at the cost of lower time and space complexity.
In addition, the mapping between input and DOA can be obtained by network training.

2. Signal Model

Suppose there is an ideal uniform linear array (ULA) with L array elements whose
element spacing is less than half a wavelength. M farfield narrowband signals are incident
to the array at angles of θ1, θ2 . . . θk, space signal sources are fixed, and the center frequency
of all signals is the same and known. Under these conditions, the output signal vector of
the ULA with the number of snapshots t is as follows:

X(t) = [x1(t), x2(t) . . . xL(t)]
T = ∑M

m=1 a(θm)sm(t) + n(t) = A(θ)s(t) + n(t), (1)

where xi(i = 1, 2 . . . L) is the output of the i’th array element; θm is the DOA of the
m’th incident signal; m = 1, 2, . . . , M; θ = [θ1, θ2, . . . , θM]T is the DOA vector; s(t) =

[s1(t), s2(t), . . . , sM(t)]T is the signal vector; n(t) = [n1(t), n2(t), . . . , nL(t)]
T is the array

additive noise vector; and a(θm) denotes the steering vector of the m’th signal and is
expressed below:

a(θm) =

[
1, e

j2πd sin θm
λ0 , . . . , e

j2π(L−1)d sin θm
λ0

]T
, (2)

A(θ) = [a(θ1), a(θ2), . . . , a(θM)]T , (3)
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where λ0 is wavelength of incident signals, d is the element spacing and is not more than
0.5 λ0 (that is d ≤ 0.5 λ0), and the covariance matrix Rxx of the output matrix X(t) is
as follows:

Rxx = E
{

X(t)XH(t)
}
= A(θ)RssAH(θ) + σ2IL, (4)

where Rss = E
{

s(t)sH(t)
}

is the signal covariance matrix, σ2 is an unknown noise power,
and IL is the identity matrix of L× L.

The problem of DOA estimation is to obtain the incident angles of the sources aided
by the array output signal vector and geometry. Generally, the number of sources is finite,
and the signal arrival directions are sparsely distributed in space [19]. Hence, the spatial

domain [−60◦, 60◦] can be divided into N sets of discrete angles θ̃ =
[
θ̃1, θ̃2, . . . , θ̃N

]T
with

equal spacing:

Ã =
[
a
(

θ̃1

)
, a
(

θ̃2

)
, . . . , a

(
θ̃N

)]T
, (5)

s̃(t) = [̃s1(t), s̃2(t), . . . , s̃N(t)]
T , (6)

X̃(t) = Ãdiag(r1, r2, . . . , rN)s̃(t) + n(t), (7)

When a signal arrives in a certain direction in space, its position number in the discrete
set θ̃ is ri = 1; otherwise, ri = 0. Therefore, the DOA estimation problem is converted
into the inverse mapping of the array output covariance matrix to the position ordinal of
the corresponding nonzero element in the discrete set. In this paper, the DCNN model
is designed to solve the DOA estimation problem, in which the array output covariance
matrix calculated by the array output signal vector obtained by Equation (7) is the input of
the DCNN model, which is:

R̃xx = E
{

X̃(t)X̃
H
(t)
}

, (8)

As the covariance matrix has symmetry, the upper triangular array (or lower triangular
array) of the covariance matrix is selected as the input of the convolutional neural network
and the set of discrete angle numbers {r}N

i=1 as the output of the convolutional neural
network in the training phase to reduce the input data size and the operation volume. In
the test phase, the nonzero or larger M values of the set of discrete angle numbers {r′}N

i=1

are the angle estimates with signal arrival, i.e.,
{

θ̃′i

}M

i=1
.

3. Deep Convolutional Neural Network Model

The convolutional neural network (CNN) is a common deep learning algorithm, which
is a feedforward neural network that can reduce the number of parameters to a large extent
by local connectivity and weight sharing [20]. A typical CNN model usually consists of
several convolutional and pooling layers connected alternately, ending with a fully con-
nected layer [21]. The convolutional layer extracts the features, the pooling layer samples
the features, and the fully connected layer connects all the extracted features and finally
solves the corresponding problem by a classifier or regressor. Generally, one convolutional
layer plus one pooling layer is a feature extraction process, but the pooling layer is not
necessary and not always connected after each convolutional layer; it can be designed and
selected according to the input data characteristics. In this paper, the DCNN model is as
follows in Figure 1.

Deep convolutional neural networks have significant advantages in extracting spatial
features, and DCNNs require fewer parameters than fully connected neural networks.
The convolutional neural network model contains three convolutional layers, connects a
pooling layer, and finally connects three fully connected layers. After forward propagation,
the backward error propagation is performed to correct the parameters, iterating in this
manner, and the network training is completed when the training error is less than the
threshold or the iterations are completed.
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Three convolutional layers are used for feature extraction, and the sizes of the convolu-
tional kernels are all 3× 3, with the numbers of n1, n2, and n3. The role of the pooling layer
is to reduce the dimension and prevent overfitting, and as the number of array elements is
often not too large, only one pooling layer is added at the end of the convolutional network
structure design, with a template of 2× 2.

Before the convolution operation, the input data are first padded in order to preserve
the data boundary features. As the convolution kernel size is 3× 3, two rows (columns) are
filled at each boundary of the input data to preserve the boundary features of the input
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data. In the convolution layer, sliding convolution calculations are completed according
to the convolution kernel size and step size. The convolution kernel is corrected by error
backpropagation in the backpropagation stage. The input of the neural network is the
upper triangular array of the covariance matrix, and a 3× 3 covariance matrix with a step
size of 1 is used as an example to perform two convolution processes, as shown in Figure 3.
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Figure 3. Two convolution processes of the upper triangular array. (1), (2) and (3) in denote the form
of the data before and after the convolution operation, respectively.

(1), (2) and (3) in Figure 3 denote the form of the data before and after the convolution
operation, respectively. The yellow part of (1) denotes the upper triangular array of the
covariance matrix of the neural network input expressed above, and its white part denotes
the padding part. The red and green matrices in (1) are convolved with c1 respectively, and
the results obtained correspond to r11 and r21 in (2). Similarly, the blue and black matrices
in (2) are convolved with c2 and the results obtained correspond to l11 and l31 in (3).

After the convolution operation, bias is added to the convolution result and then
input to the activation function to increase the nonlinearity of the system. Currently, most
neural networks use the ReLU function as the activation function, but when the data input
has negative numbers, the activated result will fall into the hard saturation zone and lose
the original feature expression, and the weights will not be able to update in the iterative
training, making the relevant neurons lose their functions. Therefore, this paper adopts the
Leaky ReLU function as the activation function, and its expression is

f (x) =
{

x x ≥ 0
ax x < 0

, (9)

The figure of the Leaky ReLU function is shown in Figure 4.
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As can be seen from the Figure 4, when the input value is positive, the result is itself
by the activation function output, and when the input value is negative, the Leaky ReLU
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function assigns a smaller slope. In Equation (9), a is a fixed parameter less than 1 and
greater than 0.

In the convolutional neural network structure, the pooling layer is connected after
the convolutional layer. The purpose of the pooling layer is to: (1) reduce the number of
features and data redundancy; (2) improve data scale invariance and rotation invariance;
(3) prevent overfitting. The pooling layer is generally divided into maximum pooling and
average pooling with a size of 2× 2. The pooling layer does not contain parameters and
divides the data into 2× 2 subregions starting from the top left of the input data, with no
overlap or omission between subregions. Maximum pooling means that the maximum
value is retained by internal selection, and average pooling means that the average value of
each subregion is retained by calculation. In this paper, maximum pooling is used in the
model. As the input of the convolutional layer is the upper triangular array, the input of
the pooling layer is also the upper triangular array, and when there are missing data in the
pooling subregion near the main diagonal, the missing value is calculated according to 0.

The fully connected layer in the convolutional neural network is the same as the im-
plicit layer in the traditional feedforward neural network. The input of the fully connected
layer is one-dimensional data, there is no spatial structure feature, and no feature can be
extracted. After the feature extraction in the convolutional and pooling layers, a nonlinear
combination is performed in the fully connected layer to achieve classification or regression.

3.2. Error Backpropagation Process

The error backpropagation part of the fully connected layer is the same as the tradi-
tional feedforward neural network’s. The pooling layer does not contain any parameters or
learning process, so there is no need for parameter derivation and gradient descent update
in the pooling layer, and the backpropagation in the convolutional layer needs to take into
account the size adjustment [22]. Backpropagation is performed after forward propagation
to correct the convolutional kernel and fully connected layer parameters of the CNN model
until the specified number of iterations is reached.

4. Simulation and Result Analysis

In the simulation experiments, an ideal ULA with eight array elements is selected,
and the element spacing is λ/2, where λ denotes the wavelength. The target airspace
range is [−60◦, 60◦]. Three narrow-band incoherent signals arrive at the line array from
different azimuthal angles. The DCNN structure is the same as that described in Section 3.1
above, the difference is that the input data is the upper triangular array, the number of
convolutional kernels in each layer is 12, 12, and 6, the size of the convolutional kernel is
3× 3, the activation function is the Leaky ReLU function with the slope of the negative
region a = 0.1, the pooling layer is selected as the maximum pooling criterion with a size of
2× 2, the depth of the fully connected layer is 3, and the number of neurons in each layer
is 1500. The size of the training set is 50,000 and the size of the test set is 100. However,
the angle information of the input data of the test set follows the actual angle of incidence
rather than the discrete angle.

Usually, the root-mean-square error (RMSE) is used to measure the DOA estimation
performance, which is defined as:

RMSE =

√
1

MQ ∑Q
i=1 ∑M

j=1

(
θ̃′ij − θ̃ij

)2
, (10)

where Q is the test set capacity, M is the number of signal sources, and θ̃′ij and θ̃ij are
the DOA estimation and true value of the j-th source in the i-th test, respectively. In this
paper, assuming that the incident angle is 25.3◦ and the step size is 1, the ideal output is
25◦ according to the assumptions of the model. The difference between the actual output
(which may be 24◦, 25◦, or 26◦) and the ideal output (25◦) is used as the basis for calculating
the RMSE.
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4.1. Determination of Discrete Angle Interval

In determining the discrete angle interval, the effect of step size on the resolution of
DOA estimation, accuracy, and the time-space cost of model training is considered. In
this paper, 0.5, 1, 5, and 10 are used as discrete angle intervals (i.e., step size) for training,
respectively. The step size is the resolution size, and the smaller the step size, the higher the
resolution; in terms of accuracy, the model accuracy increases with the step size, as shown
in Figure 5 below.
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Accuracy means the rate of assigning the angle of arrival to the correct angle bin. The
accuracy of the experimental output results for all four step sizes reaches more than 85%,
among which the accuracy is nearly 100% when the step size is 1, 5, and 10, but when the
step size is 0.5, in the output results, the corresponding values of one or several adjacent
sequential numbers are 1, except for the corresponding value of the angular sequential
number of the signal’s arrival, which affects the final judgment of the DOA. In terms of
time/space complexity, as the target airspace is in [−60◦, 60◦], the output is 1 × 241 when
the step size is 0.5, 1 × 121 when the step size is 1, 1 × 25 when the step size is 5, and
1 × 13 when the step size is 10. The output of the model is a sequence of zeros and ones,
and the length of this sequence is influenced by the step size. As the step size decreases,
the number of output elements increases, and the higher the number of output elements,
the higher the time and space complexity, and the more time and memory are required
for model training, the training time and memory requirements increase exponentially. In
addition, the signal model and covariance matrix are more similar to the actual received
data when the step size is 0.5 and 1 compared to 5 and 10.

By fully considering the effects of computing efficiency, accuracy, and resolution, in
this paper, the step size is chosen to be 1. Although this leads to a loss of resolution accuracy
compared to the actual angle of incidence or smaller discrete angular intervals, this loss of
accuracy is acceptable in most cases.

4.2. Effect of the Number of Snapshots on the Performance of DOA Estimation

The snapshot number is the number of sampling points of each array element in the
time domain, and usually, the snapshot number will have some influence on the DOA
estimation performance. In this set of simulation experiments, keeping the other simulation
parameters constant and the signal-to-noise ratio (SNR) as 10 dB, the array-received data
with snap counts of 10, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 are designed for
simulation experiments, and the MUSIC algorithm, ESPRIT algorithm, maximum likeli-
hood, Deep Learning (DL) algorithm, and DCNN method proposed in this paper are used
to perform DOA estimation and calculate the RMSE values. In addition, the Cramer–Rao
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bound is calculated for the same conditions. Among them, the DL algorithm [20] takes the
deep fully connected neural network as an example, and the same discretization method
is used for the simulation experiments. In the data input stage, the covariance matrix is
transformed into a one-dimensional matrix for the input and completes the training. The
simulation results are obtained as shown in Figure 6.
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From the above figure, it can be seen that the RMSE of the DOA estimation of all five
methods tends to decrease with the number of snapshots; when snapshots increase to a
certain level (around 250 in Figure 6), the decreasing trend of the RMSE is not obvious,
and in practice, very large numbers of snapshots are often difficult to obtain. The DCNN
algorithm proposed in this paper is closer to the Cramer–Rao bound.

4.3. Effect of SNR on DOA Estimation Performance

The SNR is the ratio of the power of the output signal to the power of the noise output
at the same time, often expressed in decibels. The higher the signal-to-noise ratio, the less
noise is generated. In this group of experiments, keeping other parameters unchanged, the
snapshot number of 400 is used, and SNRs of −5 dB, 0 dB, 3 dB, 6 dB, 9 dB, 12 dB, 15 dB,
18 dB, 21 dB, 24 dB, 27 dB, and 30 dB are used for simulation experiments. Comparing
the RMSE of DOA estimation by the MUSIC algorithm, ESPRIT algorithm, maximum
likelihood, the Deep Learning algorithm DCNN method proposed in this paper, and the
Cramer–Rao bound (CRB), the simulation results are obtained as shown in Figure 7.

From the above figure, it can be seen that changes in the SNR have significant influence
on the DOA estimation accuracy of all five algorithms; the higher the SNR, the lower the
RMSE, and the RMSE decreases less and less as the SNR increases continuously; when
the SNR is less than 12 dB, the RMSE of the DOA estimation of all five algorithms is
significantly affected by the SNR, and the RMSE decreases significantly with the SNR; as
the SNR increases further, the RMSE decreases slowly with the further increase in SNR.
Among the five algorithms, the DL and the DCNN algorithm proposed in this paper
perform well at low SNRs, but when the SNR is greater than 12 dB, the DL algorithm does
not perform as well as the other four methods. The DCNN algorithm is significantly better
than the other algorithms when the SNR is less than 15 dB at a snapshot number of 400, the
performance of MUSIC, ESPRIT, ML and DCNN algorithms is nearly the same when the
SNR exceeds 15 dB, and the DCNN is closest to the Cramer–Rao bound.
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4.4. Effect of Upper Triangular Array as Input on the Efficiency of Operation

As the array output covariance matrix is a matrix symmetric about the main diagonal,
the upper triangular array of the covariance matrix is chosen as the input of the DCNN
model in this paper. Taking the number of array elements as 6, 8, 10, and 12, the structure of
the deep convolutional neural network is kept unchanged, and the upper triangular array
and the square array are used as the input, with SNR = 10 dB and snapshot number = 400.
Triu represents the upper triangular matrix, Matrix represents the square matrix, and the
mean square error values of DOA estimation are shown in Table 1:

Table 1. RMSE comparison of Triu and Matrix arrays as inputs with different numbers of array elements.

Array Elements 6 8 10 12

Triu matrix 0.0873 0.0864 0.0852 0.0835
Matrix 0.0882 0.0857 0.0844 0.0837

As can be seen from the above table, model training using the upper triangular and
square arrays produces similar results with no significant difference in the estimated
performance. As the network structure is the same when the upper triangular array and
the square array are used for model training, respectively, there is almost no effect on the
design of the convolutional kernel in the convolutional layer, but there is an effect on the
number of convolutional operations and the memory size for storing the convolutional
results. Taking the number of array elements as 6, 8, 10, and 12, the structure of the deep
convolutional neural network remains the same, and the upper triangular array and the
square array are used as inputs. The number of convolutional operations or maximum
pooling operations generated by the two input patterns in the convolutional and pooling
layers is shown in the following table:

In Table 2, C1, C2, and C3 denote the first, second, and third convolutional layers,
respectively, P1 denotes the pooling layer, and SUM denotes the sum of the number of
convolutional and pooling operations performed. It can be seen from the table that as the
number of array elements increases, the number of operations increases, and both time
complexity and space complexity increase. With the same number of array elements, the
number of operations is greatly reduced by using the upper triangular array as the model
input compared with the square array, and the higher the number of array elements, the
higher the proportion of operations reduced by using the upper triangular array, as well
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as the proportion of total operations reduced by convolution pooling when the number
of array elements is 6, 8, 10, and 12. It can be seen that the time complexity and space
complexity can be greatly reduced by using the upper triangular array as an input in the
convolution and pooling layers.

Table 2. Comparisons of the number of operations between Triu and Matrix arrays as inputs in
different layers with different numbers of array elements.

Number C1 C2 C3 P1 SUM

6
Triu 432 3024 8640 2592 14,688

Matrix 768 5184 13,824 3456 23,232

8
Triu 660 5184 18,144 5184 29,172

Matrix 1200 9216 31,104 7776 49,296

10
Triu 936 7920 31,104 8640 48,600

Matrix 1728 14,400 55,296 13,824 85,248

12
Triu 1260 11,232 47,520 18,144 78,156

Matrix 2376 20,736 86,400 31,104 140,616

Affected by the structure of the full connection layer, in the whole training process of
the DCNN model, the full connection layer has the greatest impact on the time complexity
and space complexity. In the case of the same number of hidden layers and the number of
neurons in each layer, the larger the input scale is, the higher the computational complexity
rate is. After the convolution layer and the pooling layer, the number and size of the feature
map generated by the two input modes are still the same, but the feature map generated by
the input mode of the upper triangular matrix is still the upper triangular matrix, and the
feature map generated by the input mode of the square matrix is still the square matrix,
i.e., the size of the feature map generated by the two inputs is N × N, but the former is the
upper triangular matrix and the number of elements is

(
N2 + N

)
/2, but the latter contains

the number of elements as N2. Therefore, when the feature map is expanded in the full
connection layer, the number of intermediate parameters required is also very different, as
shown in Figure 8.
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The unfolding process of the fully connected layer is equivalent to a convolution
process, where the size of the convolution kernel is equal to that of the feature map, and the
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number of convolution kernels is equal to the number of neurons in the first hidden layer.
Although the neural network structures in these two kinds of input modes are identical,
the intermediate variables required in the unfolding process are not the same, due to the
different number of elements contained in the two convolution kernels when the feature
map in the two input modes is convolved. From the Figure 8, it can be seen that as the
number of array elements increases, the intermediate variables required in the unfolding
process of the upper triangular array and the square array increase, the gap between them
further increases, and the reduction in intermediate variables can speed up the operation
process and save operation memory. Therefore, it can be seen from both the Figure 8 and
the Table 2 that the advantage of using the upper triangular array (or lower triangular array)
as an input compared to the square array is that it can fully extract the matrix features and
ensure the DOA estimation performance, while effectively reducing the time complexity
and space complexity of the deep convolutional neural network in the training process,
thus improving the training efficiency.

5. Discussion

With the continuous development of deep learning and the increasing complexity of
the actual electromagnetic environment, the research of the DOA estimation method based
on deep learning provides a new solution idea for this kind of problem. On this basis, this
paper proposes a DOA estimation algorithm based on the DCNN, which takes the upper
triangular array of the covariance matrix of the discrete received data as the data input,
and the output is a spatial angle sequence. The angles corresponding to the first several
maxima in the output sequence are the estimated angles under the premise of the known
number of sources, so as to achieve DOA estimation of multiple sources. The simulation
experiments show that the algorithm outperforms the MUSIC algorithm, ESPRIT algorithm,
ML algorithm, and fully connected deep learning algorithm in the case of low SNR and
small snapshots, and the algorithm performance is almost the same as those of the MUSIC
algorithm, ESPRIT algorithm, and ML algorithm with high estimation accuracy in the case
of high SNR and large snapshot. The DCNN is closer to the Cramer–Rao bound under
all conditions; meanwhile, compared with the square matrix as an input with the DCNN
model, the upper triangular array as an input can effectively reduce the time and space
complexity of the model training process and greatly improve the computing efficiency.
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