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Abstract: The moisture content of stored rice is dependent on the surrounding and environmental
factors which in turn affect the quality and economic value of the grains. Therefore, the moisture
content of grains needs to be measured frequently to ensure that optimum conditions that preserve
their quality are maintained. The current state of the art for moisture measurement of rice in a silo is
based on grab sampling or relies on single rod sensors placed randomly into the grain. The sensors
that are currently used are very localized and are, therefore, unable to provide continuous measure-
ment of the moisture distribution in the silo. To the authors’ knowledge, there is no commercially
available 3D volumetric measurement system for rice moisture content in a silo. Hence, this paper
presents results of work carried out using low-cost wireless devices that can be placed around the silo
to measure changes in the moisture content of rice. This paper proposes a novel technique based on
radio frequency tomographic imaging using low-cost wireless devices and regression-based machine
learning to provide contactless non-destructive 3D volumetric moisture content distribution in stored
rice grain. This proposed technique can detect multiple levels of localized moisture distributions
in the silo with accuracies greater than or equal to 83.7%, depending on the size and shape of the
sample under test. Unlike other approaches proposed in open literature or employed in the sector,
the proposed system can be deployed to provide continuous monitoring of the moisture distribution
in silos.

Keywords: 3D volumetric; moisture content; machine learning; tomographic imaging

1. Introduction

Rice storage is a part of the post-harvest activities and contributes up to 6% losses of
harvest [1]. Most of the losses are due to improper storage or moisture build-up due to the
surrounding climatic conditions. Moisture content can be defined as the weight of water in
the grain mass and expressed in terms of percentage. Based on previous studies [2–9], rice
grain moisture content changes with changes in ambient humidity and local weather. Poor
aeration could lead to moisture build-up within the bulk of the grain and reduce the quality
of the grains. It is therefore important to correctly measure and control the environmental
conditions to ensure the quality of the rice in the storage [9].

The moisture of rice in a silo can be unevenly distributed. Therefore, the conventional
measurement of moisture content can fail depending on the sampling point and it may
not represent the moisture content distribution in the silo. Samples taken from a silo do
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not also accurately represent the moisture within the bulk of the grain. To ensure that
the quality of the grain is maintained, thereby reducing losses, it is essential to know the
distribution of moisture content in the bulk of the stored grain continually and in real-time,
if possible. Different methods had been developed for determining the moisture content
of grains [2–9]. However, to the best of the authors’ knowledge, none of the techniques
proposes a real-time 3D moisture content measurement of stored rice.

This paper proposes a new technique that uses radio tomography based on Wi-Fi
signals at a frequency of 2.4 GHz. To estimate the location from the Radio Tomography
Image (RTI) precisely, the RTI reconstruction is based on noisy measurements [10–12].
Conventional RTI methods mostly utilize Tikhonov regularization [13,14] and only consider
the correlation properties of the attenuation map. Many available Compressive Sensing (CS)
solutions [13], including the least absolute shrinkage and selection operator (LASSO) and
orthogonal matching pursuit [3,4], have been proven to successfully reconstruct the image.
Under the framework of Bayesian statistics, Bayesian Compressive Sensing (BCS) [15]
exploits a priori distribution knowledge of attenuation images to improve the recovery
accuracy. However, it requires a reasonable assumption of a prior distribution and it
is computationally intensive. It is also reported that the localization accuracy of BCS is
less accurate than that of Tikhonov, but the advantage of CS over Tikhonov is that the
reconstructed image is cleaner [16]. The Hybrid Tikhonov–LASSO (HTL) combines the
advantage of Tikhonov [14] and the LASSO method.

This paper proposes a novel non-destructive method to determine the moisture con-
tent of rice grain using 3D Radio Tomography Imaging (RTI) based on low-cost Wi-Fi
signal transmissions and regression-based machine learning approaches. The proposed
system can provide continual real-time moisture level distribution in grain stored in a
silo. This paper is organized as follows: Section 2 describes the methodology and the
experimental setup to measure the moisture contents of rice grain; Section 3 describes the
signal processing and the algorithms used to estimate the moisture contents, and Section 4
discusses the results obtained and the conclusions are drawn.

2. Methodology

This section presents the four main steps in the experimental measurement. The first
step discusses the development of the model test with an analysis of Wi-Fi signals for
device-free moisture sensing. The second step assesses the efficiency and accuracy of the
localization of moisture content and its distribution based on the RTI method and evaluates
the performance of the proposed reconstruction method. Then, a machine learning method
is used to predict the moisture values and distribution at unknown levels. The last step
shows the process of volume image reconstruction and the volumetric result of the moisture
content.

2.1. Experimental Setup

The container for the rice sample used in [14,16], was made of 5 mm thick glass panel
with dimensions of 50 cm × 50 cm, and a height of 60 cm to facilitate 2D tomography
imaging for localization of moisture distribution in the rice sample. The rice sample filled
the container to a height of 50 cm. In this paper, the container has been built to facilitate 3D
tomography imaging for the localization of moisture distribution in the rice sample. This
will simplify the calculation of the volume of moisture in the sample.

In this experimental setup, 16 Wi-Fi nodes (also known as ESP) were installed on a
slider around the sample container where 4 ESP are placed on each side with a distance
of 12.5 cm between two nodes. The slider on the outside of the container is made of PVC
pipes, which can be slid up and down manually to acquire the Received Signal Strength
Indicator (RSSI) [17] data at different levels as shown in Figure 1a. All 16 nodes were used
as transceivers. These nodes were connected directly to a PC through USB hubs as shown
in Figure 1a. Wi-Fi 2.4 GHz type ESP-12F was used to measure moisture content in rice due
to ease of programming and cost-effectiveness.
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Figure 1. Rice container with the 16 Wi-Fi nodes.

To create a 3D tomography image of the moisture content, several tomography images
were taken at different levels. The levels indicate the height from the base and the measure-
ments were taken from 5 cm up to 50 cm at intervals of 5 cm. These heights are marked on
the container. Four samples with different moisture contents were randomly placed in the
rice, as shown in Figure 1b, to simulate areas with different moisture contents from the rest
of the grain bulk.

Sections 2.2 and 2.3 provide detailed information on the number of Wi-Fi nodes used
and the process of creating rice samples with different moisture contents.

2.2. Number of Nodes

In this project, the number of Wi-Fi nodes used relied on the average error within
the same area. The average error grows as the number of sensors decreases because the
link density decreases due to the “blank” spaces between the links. Average moisture
content inside the area would not be intersected by enough links if node density is low. As
shown in Figure 2, the average error reduces with an increasing number of nodes. Without
depending on the transmit power, a maximum distance between two contiguous nodes of
25 cm has been experimentally determined.
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The minimum number of nodes required to achieve the best RTI in the same area as
reported in previous studies [5–7] is given in Equation (1).

n =
4
√

a
d

(1)

where,
n: number of nodes.
a: area.
d: distance between two contiguous nodes.

2.3. Sample Conditioning

The recommended moisture level for rice storage to maintain optimum quality ranges
from 14% to 16% [18]. In this research, the moisture content of rice samples was increased
using the moistening method used in the previous research [19–22]. The samples with
different moisture contents can be obtained by adding a predetermined amount of distilled
water, Q, as calculated from Equation (2).

Q = wi
(Md −Mi)

(100−Md)
, % wb (2)

The Moisture Content of grain is usually determined on a wet basis (wb) [23].
wi: Initial mass of the sample in kg.
Mi: Initial moisture content of sample as % wb.
Md: Desired moisture content of the sample in % wb.
Q: Mass of water to be added in kg.
Using this formula, each bag of the sample with 250 g of rice was moistened. A

commercial moisture meter (Meter OGA TA-5) was used to measure the initial moisture
content [24]. Once the initial moisture content is measured, the amount of distilled water
(Q) needed to moisten the samples can be calculated using the formula given in Equation (2).
Next, the required amount of distilled water was added to each sample, and the polyethy-
lene bags were resealed. The samples were then stored at a temperature between 4 and 6 ◦C
for 72 h to ensure equal water distribution [25]. Ten hours before the experimental tests
were conducted, the samples were taken out of the fridge and kept at room temperature.

The samples were conditioned in such a way that they can cover all expected moisture
contents potential levels. Three samples were put in cylindrical-shaped plastic bags and one
sample in a square bag, as shown in Figure 3. Table 1 provides the details of the samples.
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Table 1. Details of the physical sizes of the samples.

Sample (A)
20% MC

Sample (B)
25% MC

Sample (C)
30% MC

Sample (D)
30% MC

Size (cm) length = 40
diameter = 5

length = 40
diameter = 5

length = 40
diameter = 5

length = 12
width = 12

thickness = 2
Weigh (kg) 0.65 0.65 0.65 0.45

Added water (kg) 0.04 0.086 0.139 0.096

3. Moisture Content Prediction
3.1. Signal Processing

The experiment was conducted and optimized for a square-shaped grid area and
the connectivity between each node is set as a peer-to-peer network. Each node was in
the transceiver mode with the transmission power set to 20.5 dB. The model transceiver
moisture localization uses the normal moisture content of 14% to relate RSSI measurements
with high moisture contents and then estimates the transmitter tag location in a 2D way.
For transceiver localization, the RSSI measurements from the wireless links without the
test samples, m, were obtained. Assume that K is the number of nodes at positions, (xk, yk)
k = 1, 2, . . . , K, known a priori fixed around the perimeter of the container. In the network,
each pair of nodes comprises a link, leading to L = K (K − 1) bidirectional links in total.
In addition, each node measures RSSI from another 15 nodes in succession as shown in
Figure 4. The RSSI of links will change due to the medium between the nodes, which
includes the samples. The impact of the samples on the RSSI often depends on several
factors. It is expected that signals, and hence RSSI, propagating through samples with
higher moisture contents experience higher levels of attenuation compared to those from
samples with lower moisture contents. Due to absorption, RSSI values for signals that
have propagated through samples with high moisture contents are smaller and this can be
used to determine the location of the sample within the silo. This localization approach is
capable of locating multiple moisture areas at the same time [26].
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3.2. Regularization RTI

The RTI system is used to derive a cross-sectional image vector of an area, based on
the power attenuation of the radio signals. In previous research studies, such as in [14],
the shadowing-based image vector construction has been used and each radio link is
considered where the focus points are located at the sender and receiver nodes. Any
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high moisture content which lays within the region is considered to be obstructing the
corresponding radio link, hence contributing to the signal attenuation.

Tomography refers to the imaging technique which can be used to evaluate the mois-
ture content by measuring the effect of radio waves passing through the rice grain samples
(material-under-test). To obtain the RTI image, the measured Received Signal Strengths
(RSS) within the wireless network between the different nodes are used.

The electric field of signal through lossy materials can be calculated using

|E(z)| = E0e−αz (3)

where E(z) is the electric field at distance z, E0, in volt/meter, is the field at a reference
point, and α is the attenuation constant. Since power is proportional to the square of the
electric field, the power as a function of distance from a reference point, P0, can be written as

|P(z)| = P0e−αz (4)

The presence of water affects the relative complex permittivity, ε, of the medium [27].
The relative complex permittivity can be expressed as:

ε = ε′ + jε′′ (5)

where ε′ is the dielectric constant of the material and ε′′ is the dielectric loss factor. The
relative complex permittivity also depends on the frequency, temperature, bulk density, and
composition of the medium. In [27], it has been shown that for plane waves propagating
through low loss material, the relative complex permittivity can be calculated as follows:

ε′ =

(
β

β0

)2
, ε′′ =

2αβ

β2
0

(6)

where β0 = 2π
λ0

is the phase constant and λ0 is the wavelength of the wave in free space,

and β = φ
d + β0, where φ is the phase shift of the propagating wave. α = A

d , where A is the
attenuation and d is the bulk density [28]. The dependency of the attenuation constant on
the dielectric properties of the medium can therefore be expressed as:

∝=
ε′′

2ε′

(
φ

d
+

2πd
λ0

)
(7)

Assuming uniform bulk density, d can replace z in Equation (4). Widely used tech-
niques to measure the dielectric constant, ε′, and dielectric loss factor, ε′′ , include transmis-
sion line (impedance) [29] and free-space (reflection and transmission) [28,30] techniques.
Trabelsi et al. have shown that the relative complex permittivity function increases with
the moisture content of wheat grain for measurements at a wide range of temperatures
and frequencies [27,31,32]. This means that signal attenuation (A) increases in the presence
of moisture in grains due to an increase of ε′′ [27]. Additional losses are due to structural
geometric of the components in the medium which affect the absorption and scattering of
the propagating signal.

Some researchers have used the RTI concept for different applications [33,34]. If ∆yi is
the resultant difference of RSS value per link, i, and ∆x is the RTI image to be reconstructed,
n denotes a noise vector, and W is a weighted matrix, ∆yi can be written as:

∆ yi = W ∆xi + n (8)

Each of the values is measured in decibels (dB). To simplify, the notations X and Y are
used for ∆x and ∆y, respectively.

Y = WX + n (9)
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For image construction, with Tikhonov regularization [35] applied, can be expressed as:

X = (WTW + a
(

Dx
T Dx + Dy

T Dy

)−1
Wy

TX (10)

In Equation (8), y is the vector of all link difference RSSI measurements, x is the
attenuation image that is to be estimated, W is the weight matrix, Dx is the difference
operator for the horizontal direction, and Dy is the difference operator for the vertical
direction, and T is the time of the operator [36].

For the performances of the RTI reconstruction, two methods, the Tikhonov and
LASSO, were used in the grid area on a voxel size of 100 × 100, and the data was read
at heights (i.e., 5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, 40 cm, 45 cm, and
50 cm). The performance of the solutions based on the Tikhonov regularization, the LASSO
method, Hybrid Tikhonov–LASSO (HTL), and a proposed integrated image reconstruction
combining Tikhonov and LASSO are presented in this paper. Figure 5 shows the output
image of the three reconstruction methods when the high moisture content is located at
a height of 20 cm. The Tikhonov regularization method projects blurred images that are
corrupted by noise. The sectional shapes of all samples are unclear due to the multiple
locations of high moisture content samples. The Tikhonov method is not able to resolve the
areas with high moisture contents accurately. By contrast, using the LASSO and HTL, the
image is reconstructed with much higher resolutions and is not significantly affected by
noise. In addition, the HTL method also provides distinct profiles for the different levels of
moisture contents, unlike the other two methods.
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Figure 5. The attenuation image was reconstructed using (a) Tikhonov and (b) LASSO and (c) Hybrid
Tikhonov–LASSO (HTL).

Table 2 presents the estimated image quality by Tikhonov, LASSO, and HTL methods.
The image quality values are a measure of how accurately the methods estimate the location
and dimensions of the samples. The root mean square error (RMSE) values compare the
estimated and actual dimensions of the samples. The table shows that the Tikhonov method
achieves satisfactory localization accuracy but has the largest imaging error. On the contrary,
the LASSO method gives the best image resolution but has a larger localization error than
that of the Tikhonov method. Combining the advantages of LASSO and HTL methods,
the proposed reconstruction method gets the best localization performance from the HTL
method and the image quality of the LASSO method.
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Table 2. Performance evaluation for Tikhonov, LASSO, and HTL.

Tikhonov LASSO (HTL)

Image Quality 27% 66% 93%
RMSE 0.14 0.12 0.08

3.3. Regression Machine Learning

The regression analysis, which is a machine learning technique, has been used to
predict the moisture layers at the different heights, 5–50 cm. In other words, it can be used
to predict the moisture values at 7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm, 27.5 cm, 32.5 cm, 37.5 cm,
42.5 cm and 47.5 cm using the datasets at the known heights (i.e., 5 cm, 10 cm, 15 cm, 20 cm,
25 cm, 30 cm, 35 cm, 40 cm, 45 cm, and 50 cm).

The regression analysis uses the given information to provide the best-fit equations
for the layers (heights) in the form expressed in Equation (11). Figure 6 shows the scatter
plots of results of moisture contents prediction using a regression model for measurements
at different heights (10 cm to 50 cm). It shows how the accurate detection of samples varies
with measurement location. It should be noted that accuracy is reduced at the bottom due
to the effect of signal reflection and scattering from the table surface. This can be minimized
by placing the container on raised legs. The regression formulae were obtained from these
scatter plots using RMSE values to determine the best-fit equations:

y = a + bx + cx2 + dx3 + ex4 (11)

where x is layer height; y is moisture value; and a, b, c, d, and e are equation parameters.
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Figure 6. Scatter plot for regression machine learning.

In this case, the data is the given moisture values at 10 intervals. This data is a
100 × 100 matrix which is to be converted into a vector of 10,000 values. Then, the re-
gression technique is used to create 10,000 equations (each for every pixel location). The
parameters for each equation are calculated at heights of 7.5, 12.5, 17.5, 22.5, 27.5, 32.5,
37.5, 42.5, and 47.5, and the moisture content values are also calculated. The values are
converted from a vector to a matrix and then saved in layers. Figure 7 shows the locations
of moisture distribution at the top layer.
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Figure 7. The locations of moisture distribution in (5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm,
40 cm, 45 cm, and 50 cm) and predicted in high (7.5 cm, 12.5 cm, 17.5 cm, 22.5 cm, 27.5 cm, 32.5 cm,
37.5 cm, 42.5 cm and 47.5 cm).

After estimating the level of moisture at unknown layers, the displacement of the
points of moisture that corresponds to that of the moisture content is found and tracked.
For a fair evaluation of the performance of the external RTI method reported in this work
and comparison with previous work, a blob detection technique with multiple moisture
tracking has been applied. This has been used in many studies such as objective tracking
and localization in robotics [26].

3.4. Volumetric Moisture Content

Volumetric moisture content images, such as computed tomography (CT) scans, which
have been used in the medical field [24–26], consist of a series of stacked two-dimensional
(2D) images that allow for a more accurate representation of the three-dimensional (3D)
moisture distribution [37–40]. The aim of this is an indirect configuration of the internal
moisture distribution locations in a three-dimensional manner, which helps to calculate the
volumetric moisture content in the rice.

In recent years, there has been a steady increase in the use of computed tomographic
images, such as the analysis of the internal structures of materials [33,41]. Other researchers
have used it to analyze the properties of the soil [34,42]. For this project, the 19 computed
tomography images have been used with a size of 100 × 100 pixels, 2.5 cm between each
sliced RTI, as shown in Figure 8. According to the 3D graph, high moisture rice samples
were found and can be localized clearly.
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Figure 8. Stacking 2D slices to create a 3D model.

Volumetric moisture content data consist of slices of RTI’s x, y, z, and v matrices as
three-dimensional matrices, where x, y are the coordinates of pixels in the plane, z is the
height of each slice, and v is the actual image slices, possibly as pixel density values.

Surface rendering was originally applied to volumetric data to present a more direct
method for 3D visualization of moisture distribution from 2D slices [10]. This made it
possible to compare the volume of the actual four rice samples with the size results for 3D
model, as shown in Table 3.

Table 3. The ratio of the size of the volume between Real Volume and 3D Volume.

Sample (A)
with 20% MC

Sample (B)
with 25% MC

Sample (C)
with 30% MC

Sample (D)
with 30% MC

Real Volume (cm3) 785 785 785 288
3D Volume (cm3) 711.03 729.131 732.87 241
Size Quality (%) 90.57707 92.88293 93.35924 83.68056

4. Conclusions

This paper presented some improvements to the quality and imaging performance of
RTI in challenging rice-filled environments. Due to the measured area, the RSS differences
caused by differences in rice moisture contents can be detected and located within the
rice bulk. The RTI improvement quality was applied to build a novel concept in the form
of a non-destructive method for localizing moisture distribution sensing in stored grains
(Rice) in real-time. It was demonstrated that existing accuracy improvement methods are
completely depending on the number of Wi-Fi transceiver nodes and the sample volume.
Rice samples with 20% moisture content, which is closer to the baseline moisture contents
of 14%, were successfully detected and localized, but with a lower image quality.

The higher the number of wireless nodes used, the higher the computational power
required to process the data. In this study, 16 nodes were sufficient for detecting and
localizing different moisture contents of rice in a silo, although the number of nodes will
depend on the dimensions of the silo. The results in this paper have demonstrated a
promising methodology that offers good accuracy. Two major contributions to this are:
(1) the development of moisture detection and variance within stored grains which could
be conducted continually in real-time using low-cost RF systems; (2) using a tomographic
technique to detect and localize moisture contents variation within grain bulk (volumetric
system), with accuracies between 83.7% to 93.4%. The technique and algorithm pre-
sented in this paper can be used to provide real-time continuous monitoring of moisture
hotspots within grain storage systems [43]. The number of nodes and size of the silo can be
adapted accordingly.
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