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Citation: Bożek, A. Discovering

Stick-Slip-Resistant Servo Control

Algorithm Using Genetic

Programming. Sensors 2022, 22, 383.

https://doi.org/10.3390/s22010383

Academic Editor: Alex Alexandridis

Received: 22 November 2021

Accepted: 3 January 2022

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Discovering Stick-Slip-Resistant Servo Control Algorithm
Using Genetic Programming
Andrzej Bożek
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Abstract: The stick-slip is one of negative phenomena caused by friction in servo systems. It is
a consequence of complicated nonlinear friction characteristics, especially the so-called Stribeck
effect. Much research has been done on control algorithms suppressing the stick-slip, but no simple
solution has been found. In this work, a new approach is proposed based on genetic programming.
The genetic programming is a machine learning technique constructing symbolic representation of
programs or expressions by evolutionary process. In this way, the servo control algorithm optimally
suppressing the stick-slip is discovered. The GP training is conducted on a simulated servo system,
as the experiments would last too long in real-time. The feedback for the control algorithm is based
on the sensors of position, velocity and acceleration. Variants with full and reduced sensor sets are
considered. Ideal and quantized position measurements are also analyzed. The results reveal that
the genetic programming can successfully discover a control algorithm effectively suppressing the
stick-slip. However, it is not an easy task and relatively large size of population and a big number of
generations are required. Real measurement results in worse control quality. Acceleration feedback
has no apparent impact on the algorithms performance, while velocity feedback is important.

Keywords: servo control; stick-slip effect; sensor feedback; genetic programming

1. Introduction

Friction is a complicated nonlinear dynamic phenomenon. In mechatronics and
robotics, it is a force disturbing control processes of mechanical motion. In particular,
friction causes tracking errors of position control devices, commonly called as servomecha-
nisms, or servos for short. Stick-slip effect is a specific type of such errors that emerges while
a servo moves continuously with a relatively low speed. It has a form of cyclic oscillations
around (or above/below) a reference trajectory (see examples in Figures 1e, 3 and 4a,b).

In this work, an original paradigm and tool for design of a control algorithm for
stick-slip compensated servo systems are proposed. The paradigm assumes the use of
a machine learning approach to directly discover an effective control algorithm. The
paradigm has been verified in simulation experiments, and its usefulness has been proven.
Genetic programming (GP) [1] has been chosen as the machine learning tool. It is very
well suited for discovering control algorithms because the GP constructs individuals that
can be decoded as programs. In the implemented learning framework, GP nodes have
been defined that represent input data, arithmetic operations, nonlinear functions, as
well as unit delays. This makes the genetic process possible to generate a broad range of
control algorithms.

The stick-slip has been isolated to deal with a well defined problem in this work.
Besides a smooth motion during which the stick-slip emerges, a servo can stabilize a
constant reference position or execute a transient motion in reaction on a reference trajectory
step. These tasks are quite different; in particular, step responses are less susceptible to
friction and standard linear or optimal control approaches may be sufficient for them.
For that reason, generalization of the GP learning task to deal with any type of reference
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trajectory at once is not advantageous, as the discovered algorithm could not specialize
enough in any kind of disturbance.
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Figure 1. Servomechanizm with friction: (a) general control structure; (b) cascade control structure;
(c) single loop structure with PID; (d) stick-slip-resistant structure with parse-tree-based controller;
(e) stick-slip effect.
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A genetically obtained control algorithm can be considered in some sense to be an
intelligently discovered program processing sensor data. Special attention has been paid
to sensors in the modeled servo system. The learning efficiency has been tested under
the assumption that the discovered control algorithm has full access to measurement of
position, velocity, and acceleration, as well as for the configurations in which acceleration,
and optionally also velocity, are inaccessible. The scenarios of ideal and real measurement
have also been compared.

The design of a servo system suppressing friction disturbances combines several
aspects, mainly: friction modeling, identification of friction in real systems, implementation
of friction compensators and compensated controllers, selection of appropriate sensors. The
up-to-date review of friction modeling in servo machines [2] reveals that it is a very complex
issue. The correct friction model and its compensation can significantly improve servo
tracking accuracy, especially at low motion velocity. One of the first friction models was
proposed by Dahl [3]. However, this model does not capture the Stribeck effect [4,5], which
is crucial for low-speed motion servo disturbances [6], especially the stick-slip oscillations.
The Stribeck effect is taken into account in the well-known LuGre model [7,8]. This model
has many variants and extensions. In particular, the variant proposed by de Wit et al. [9]
has been used in this work, as it captures the main friction components important for
modeling of servo disturbances, but it remains simple for numerical implementation and
fast in simulation. Having a parametric friction model, the common approach is to identify
its parameters using an optimization technique. Many classic and intelligent methods
are used: distinguishing inertia torque and friction torque [10], iterative minimisation of
the error between a model and experiment result [11], gradient-based convex optimiza-
tion [12], genetic algorithms [13], accelerated evolutionary programming [6], and particle
swarm optimization hybridized with neural dynamic programming [14]. Approaches
involving online adaptative estimation of the motor parameters including friction model
coefficients [15] exist. The vast majority of the methods use a time function of servo position,
but frequency response analysis is also employed [16]. Similar optimization techniques
are applied for tuning servo controllers, e.g., linear quadratic regulator [17] and different
variants of genetic algorithms [18,19]. Sometimes, the same method is used for the friction
model identification and controller tuning, e.g., glowworm swarm optimization [8], ge-
netic algorithm, and differential evolution [13]. Asymptotic tracking control for nonaffine
systems with disturbances [20] is an advanced method proposed for rejection of unknown
disturbances. The experiment involving SCARA manipulator confirmed that this approach
satisfies design requirements and outperforms a PD controller. In some aspects, the formu-
lation of this control problem and the form of its verification are similar to those from this
work, but they also differ in details, e.g., objective definition. It is worth confronting both
the approaches in a future comparative study.

While there is probably no published research on the application of the GP for pro-
cessing sensor data involving servos, this approach has been studied in the general field
of sensor technology. A GP-based design of soft-sensors for biochemical systems was
proposed, and it was proven that this approach outperforms solutions based on neural
network and support vector regression [21]. A GP-based method of data analysis from
Compact Airborne Spectrographic Imager hyperspectral sensor was developed that out-
performed multiple regression, tree-based modeling, and genetic algorithm partial least
squares [22]. The GP approach was successfully employed for recognition of coffee crops
on images captured by a satellite [23].

The GP is also used in mechatronics, but not so often [24–26]. It may be a result of
getting used to parametric models of mechatronic systems. Such models include numerical
parameters which values are determined by other optimization and learning methods.

The general structure of the servo position control system considered in this work is
presented in Figure 1a. It consists of a controlled servo-effector and a position controller.
The controller executes an algorithm calculating the control signal u on the basis of the
reference position pref and feedback signals from sensors. In a general case, three kinematic
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signals (position, velocity, and acceleration) can be measured and provided to the controller.
The jerk feedback [17] is omitted as very rare. The goal of the position control is to minimize
static and dynamic errors between the reference position pref and the actual position p of
the servo-effector. It is assumed that the servo-effector includes an electronic device, called
as an amplifier or drive, which transforms the control signal u into current, as well as an
electric motor generating electromagnetic force Fem = uK proportional to the current and to
the control signal. The electromagnetic force plays the role of the mechanical force or torque
in the case of linear or rotary motor, respectively. The force divided by an inertia parameter
I (mass or moment of inertia) results in the acceleration a. The velocity v and position p of
the servo-effector are consecutive time integrals of the acceleration. The friction force Ffr is
also included in the model. It is always directed against the velocity and reduces the effect
of the electromagnetic force. In general, the friction force may depend on actually every
variables: a, v, p, Fem. The structure of the proposed servo-effector model is similar to that
used in [15], which turned out to be sufficient for an adaptive algorithm compensating
friction in servo control.

The servo controller is often implemented in the nested form presented in Figure 1b.
It is split into separate units: an (actual) position controller, velocity controller, and ac-
celeration controller. Each unit uses an input error signal obtained by negative feedback
from a proper sensor. In practice, the acceleration feedback and acceleration controller are
used rarely [17,27–29] and, without them, the output of the velocity controller becomes
the control signal. In the majority of industrial servo systems, simple linear controllers: P
(proportional) and PI (proportional-integral) are used as the position and velocity controller,
respectively [17,30]. The servo control structure can be even simpler after replacement of
the nested P-PI controller by a single-loop PID controller, as shown in Figure 1c. In the latter
case, the position feedback signal from one sensor suffices for effective control. However,
there are limitations of performance of the simple linear servo control. In particular, such a
linear control cannot efficiently suppress an impact of nonlinear phenomena, especially
the friction force. The stick-slip effect appears when a servo tracks a ramp reference posi-
tion with velocity in a specific range. Then, instead of smooth motion, the servo position
changes according to a stairs-like trajectory with an oscillatory position error, as presented
in Figure 1e.

The approach introduced in this work to suppress the stick-slip effect is illustrated
in Figure 1d. It assumes a return to the general structure from Figure 1a, i.e., all sensor
signals are again provided to one common control algorithm. However, the algorithm is
discovered by the GP. It should make it possible to find an algorithm outperforming the
simple PID in the stick-slip suppression. This research concept has been comprehensively
verified in the work. GP learning experiments have been conducted on a simulated servo
system with friction, as a real-time realization will last an unacceptably long time.

The proposed approach of discovering of a servo control algorithm is novel, and no
similar solution is known to the author. There are a few aspects of originality. Genetic
programming as a machine learning technique has not been used for such a nonlinear
control problem like stick-slip suppression, neither in the context of servo control nor
processing multi-sensor data. This method is powerful and convenient because no a
priori knowledge about a controlled process is required; instead, the learning is driven
by a fitness function. As there is no free lunch, the flexibility comes at the cost of long
training time. The research has confirmed these supposed properties that GP finds control
algorithms of excellent performance, but it takes a long time, such that the learning is
too slow for real-time execution, and it needs a simulated system. There are also more
detailed research results, e.g., the acceleration feedback seems not to increase the control
quality, while the velocity feedback is important, both for the sensors modeled as ideal and
real. Besides the main results, the proposed design of a genetically constructed controller
exemplifies a concept of dynamic genetic program, used perhaps for the first time in this
work. This is a genetic program in which memory cells representing discrete-time state
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variables are employed as node functions (unit delays), making it possible to encode
complex dynamical systems.

2. Materials and Methods
2.1. Structure of an Experimental Simulation System

The structure of the experimental simulation learning system is shown in Figure 2. It
is a specialization of the concept introduced in Figure 1d. A control algorithm discovered
by the GP is dedicated for a digital controller; hence, it has to be executed with a given
cycle time. This is ensured by the clock domain ∆∗, which imposes that values of all the
signals inside it, namely p∗ref, u∗, p∗, v∗, a∗, are recalculated cyclically every time interval
∆∗. The servo-effector is simulated inside a separate clock domain with a shorter cycle
time ∆ = ∆∗/N to better emulate continuous-time dynamics expected of this subsystem.
The integrators inside the effector are modeled by approximate trapezoidal discrete rule,
i.e., the relationship between input xk and output yk signals of an integrator has the
form yk = yk−1 + (xk−1 + xk)∆/2. The control signal value u∗ computed by the position
controller is held in the ZOH (zero-order hold) block, until computation of its new value after
the interval ∆∗. The readings from sensors are sampled in every controller cycle. Such a
connection between the controller and effector reflects the structure of a real digital servo
control system.

CLOCK DOMAIN ∆∗ CLOCK DOMAIN ∆ = ∆∗/N
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Figure 2. GP-based learning system.

The value ∆∗ = 1 ms has been used in the research, which is typical for servo control.
The step of the servo-effector simulation is 10 times faster, so N = 10 and ∆ = 0.1 ms,
providing a compromise between precision and speed of simulation.

2.2. Friction Model

In the simulation model of the servo-effector, the friction force Ffr is calculated on the
basis of the formula proposed in [9]

F∗fr(v) =




±Fs, v = 0,
(

Fc + (Fs − Fc)e−(v/vs)
2
+ Fv|v|

)
sgn (v), v 6= 0.

(1)
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However, the expression isolated for the interval v = 0 is difficult for numerical
processing due to the zero length of this interval and the ambiguous force sign. For that
reason, the extension proposed by Karnopp [31,32] has been used

Ffr(v) =




±Fex, |v| < α,

F∗fr(v), |v| ≥ α,
(2)

where a small enough velocity modulus |v| < α is treated as the actual zero velocity
and the friction compensates the external force ±Fex, otherwise, i.e., for |v| ≥ α, the
basic Formula (2) for the friction force is applied. The used model takes into account a
few physical phenomena of friction, namely static, Coulomb, and viscous components,
represented by the parameters Fs, Fc, and Fv, respectively. The model also represents the
Stribeck effect, related to the Stribeck velocity vs.

Prior to implementation of the complete system presented in Figure 2, the model
of servo-effector with the friction function described in (1) and (2) was connected to a
classic PID controller to verify if it generates the expected stick-slip effect. The result
is shown in Figure 3, where an outcome from a real servo system is also provided for
comparison. Friction parameters and PID settings of the simulated structure have been
adjusted experimentally to get similar stick-slip oscillations in the simulated and real
systems in terms of their amplitude and period. The effects are indeed similar, even though
the simulation cannot reflect all properties of the physical system, e.g., it does not reveal
stochastic behavior, evident for the real servo.
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Figure 3. Stick-slip effect in real and simulated servo system: (a) position; (b) control.
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2.3. Learning Trajectory and Fitness Function

The learning trajectory is a time function of reference position to be followed by the
servo-effector controlled by an algorithm constructed in the GP evolutionary process. It
has been defined in the form

pL
ref(t) =

{
0.1t, t ∈ [0, 5],

1− 0.1t, t ∈ (5, 10].
(3)

The function plot has a triangular shape shown in Figure 4a. The reference position
first grows with the constant slope 0.1, and then returns to zero with the slope −0.1. The
ramp shape of the trajectory is necessary to induce a stick-slip effect that is to be reduced
by the discovered control algorithm. The learning trajectory has two parts to reduce a
possibility of control algorithm overfitting. In the case of a very simple reference trajectory,
like in Figure 3, the GP process is likely to discover an algorithm which ignores the actual
reference position and generates its representation internally. The time span of the learning
trajectory should be as short as possible to speed up the learning process, but it has to be
long enough to reveal established stick-slip oscillations. As a compromise, the time of 10 s
has been chosen.

The fitness of a control algorithm is measured by similarity between the reference and
actual servo trajectory expressed by the mean sum of squared errors (MSE), where the error
is a difference between time-related positions on both the trajectories. The smaller (closer
to zero) value of such defined fitness function, the genetic individual representing a control
algorithm, is better fitted. The intervals at the beginning of the rising and falling ramp
parts of the learning trajectory have been excluded from the fitness calculation, to omit
the transient dynamic processes related to changes of the trajectory shape and to evaluate
only the parts with a steady stick-slip effect. The excluded intervals are [0, 2] and (5, 7], and
the fitness function is calculated in the remaining intervals indicated by yellow color in
Figure 4a. The calculation is based on the servo-effector position sampled with the cycle
time ∆∗. The value p∗(k∆∗) denotes the position at the k-th sample, i.e. at the time k∆∗.
Finally, the fitness function obtains the form

fitMSE =

5/∆∗

∑
k=1+2/∆∗

(
pL

ref(k∆∗)− p∗(k∆∗)
)2

+
10/∆∗

∑
k=1+7/∆∗

(
pL

ref(k∆∗)− p∗(k∆∗)
)2

N
, (4)

where N = #
(
(2/∆∗, 5/∆∗]∩N

)
+ #
(
(7/∆∗, 10/∆∗]∩N

)
= 6000 is the number of trajectory

points involved in the fitness calculation.

2.4. Fitness of the PID Algorithm

Before performing the GP learning experiments, the servo-effector has been tested in
connection with the standard PID controller to obtain related value of the fitness function (4),
needed later for verification if and how much the GP-discovered algorithm outperforms
the PID.

For the PID test and for all GP learning experiments, the following parameters of the
servo-effector have been used: K = 1, I = 1, Fs = 3, Fc = 0.5, Fv = 1, vs = 0.1, α = 0.01.
The simple values were arbitrarily assigned to K and I, and then the parameters of friction
were adjusted experimentally to obtain a typical stick-slip effect. It has also been assumed
that the control signal has the range [−10, 10], so it is trimmed to this interval before being
provided to the effector.
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The PID controller has been tuned using formulas proposed in [30], which depend on
the servo-effector gain k and a desired settling time ts. We ignore the friction in the PID
tuning, then k = K/I = 1, and the formulas for settings become the following functions of
the settling time:

kp =
216
ts

2 , ki =
432
ts

3 , kd =
27
ts

. (5)

A sequence of simulations has been performed for ts ∈ [0.7, 3] and the obtained values
of the fitness in function of ts are presented in Figure 4c. The fitness function obtains
minimum value of 9.5× 10−6 for ts = 0.57 s. It represents the best suppression of the stick-
slip effect achieved by the PID. If the settling time increases above 0.57 s, the amplitude of
the stick-slip oscillations gradually grows. For instance, in Figure 4a,b, the oscillations for
the best suppression (blue color) and for a worse case (red color, ts = 2 s) are compared.
The plot in Figure 4b is just an enlargement of the one from Figure 4a for the time interval
[2, 4]. While the settling time decreases, the amplitude of the stick-slip oscillations becomes
smaller, but the amplitude of control signal oscillations grows, as shown in Figure 4d. If the
settling time becomes small enough, the limits on control signal make an effective control
impossible and the system loses stability, then the fitness function obtain large values, as
shown in Figure 4c. On the whole, the plots in Figure 4a–d depict limitation of the PID
control in stick-slip effect suppression.

2.5. Implementation and Configuration of the Genetic Programming Process

The ECJ software package [33] has been used for implementation of GP. The ECJ sup-
ports “Koza”-style tree-structured GP representation [1]. Genetically discovered programs
are encoded by s-expression parse-trees, where leaves (terminals) represent arbitrary data,
typically input information or constants, whereas intermediate nodes (non-terminals) are
genetic functions or operations which process input data from their children and forward a
result to parent nodes. In particular, the root node of such a tree returns a final result of the
encoded program. An example of a simple parse-tree is presented in Figure 5. It encodes
a program

Prog(A, V) := U(5/A)× I(7+A, S(V), 23), (6)

where the nodes “×”, “/”, and “+” execute arithmetic operations, the nodes “U” and
“S” represent some unary functions, and “I” represents a ternary function. While it is not
necessary for GP in general, the exemplary program processes numerical data, as only such
data can be compatible with the arithmetic operators and numerical terminals 5, 7, 23. The
terminals A and V should be considered as numerical arguments of the encoded program.
The servo control algorithms in the implemented GP system are encoded in a similar way.
The reference position and signals from sensors are provided to terminals of an encoding
parse-tree and a resultant value obtained in the tree root is used as the control signal for the
servo-effector (compare Figure 2).

×

U

÷

5 A

I

+

7 A

S

V

23

Figure 5. Example of parse-tree.
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It is important to define the set of GP node functions properly. One should not omit
a function important for the structure of well-fitted programs. Otherwise, the genetic
process might substitute such a function with a combination of others, but probability of
success will decrease. On the other hand, too large of a set including similar and redundant
functions is also problematic, as it may impede constructing of well-fitted individuals due
to large combinatorial complexity.

The set of GP node functions used in the research is given in Table 1. Elementary
arithmetic operations (addition, subtraction, multiplication, division) form the basis of the
set. To avoid “not a number” results, the division has a special safe definition, such that the
result is 0 if the divisor is equal to 0. The arithmetic operations suffice for constructing ratio-
nal expressions over the variables provided to terminals. Two nonlinear node functions are
also included: sin and if-else, denoted in parse-trees by S and I, respectively. They increase
flexibility of GP-generated programs to express nonlinear relationships. In particular, the
sin function may represent periodic behaviors in a control algorithm, possibly useful in the
stick-slip suppression, as this phenomenon reveals a periodic form. The if-else expression
can model sophisticated decision procedures, piece-wise functions, and so on. The last
non-terminal function in the defined set is the unit delay U. It is a special type of node which
introduces memory to encoded programs and makes them possible to exhibit dynamic
behavior. It works equivalently to a standard z−1 discrete-time transfer function. A node
with the function U provides to its parent the value obtained from the child in the previous
parse-tree evaluation. For this reason, each U node has incorporated a variable saving
the previous input. The values of all these variables define current state of the control
algorithm, which evolves in consecutive control cycles. Before the first cycle of simulation
of an evaluated algorithm, all the state variables are set to 0.

Table 1. GP node functions.

Symbol Arity Operation Explanation

+ 2 arithmetic addition
− 2 arithmetic subtraction
∗ 2 arithmetic multiplication
÷ 2 safe arithmetic division ÷(a, b) = if b = 0 then 0 else a/b end
I 3 if-else expression I(a, b, c) = if a > 0 then b else c end
S 1 sin function S(a) = sin a
U 1 unit delay

{1, . . . , 100} 0 integer constant randomly initialized and mutated
R 0 reference position from trajectory generator
C 0 control signal from previous control cycle
P 0 actual position from position sensor
V 0 actual velocity from velocity sensor (or estimator)
A 0 actual acceleration from acceleration sensor (or estimator)

The subset of terminal functions defined in Table 1 includes constant integer values
and input signals from the servo-effector. A genetic process can create terminal node with
a random integer in the set {1, . . . , 100} and, once the node is present in a parse-tree, the
assigned value can be changed to another one (from the same set) in the result of mutation.
The set of constants is restricted, due to assumption that the genetic evolution can construct
required values combining the integers using arithmetic functions. It is easier to deal
with the simple form of constants, e.g., to write them to files without approximation. The
terminal functions P, V, A represent current values of the sampled signals from sensors (or
related estimators), namely p∗, v∗, a∗, respectively. The terminal R provides the reference
position, i.e., the signal p∗ref. The terminal C represents the value of control signal u∗

calculated by an encoded algorithm in its previous evaluation (the previous control cycle).
Hence, it is also a form of memory inducing dynamic behavior, but more specific than the
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function U. It has been introduced because u∗ is an important signal and the direct access
to its previous value may be useful for discovering a well-fitted algorithm.

In addition to design of the GP function set, there are many other parameters to be
adjusted in the GP system. The basic configuration used in the research is presented in
Table 2. By trial and error, the number of individuals in population and the number of
generations were set to 1000 and 500, respectively. This ensures the emergence of good
solutions in the genetic evolution. Individuals in the initial population are created randomly
using a ramped half-and-half algorithm [33,34] generating parse-trees of depths between
2 and 6. There are many more detailed options, but they have been kept unchanged from
the default ECJ settings.

Table 2. Basic configuration of GP.

Parameter Setting

Initial population ramped half-and-half (2:6) algorithm
Breeding pipelines reproduction, crossover, mutation

Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.1, 0.2, 0.3

Selection method tournament without elitism
Tournament size 7

Size of population 1000
Number of generations 500

The GP learning experiments were executed in 15 different configurations given in
Table 3. For each configuration, the GP learning process was repeated 100 times. The
symbols introduced in the table are used to indicate an experiment configuration later in
the text. First of all, the experiments have been carried out for different sets of input sensor
data. There are options with full data and restricted configurations, i.e., without sensing of
acceleration, velocity, both acceleration and velocity, and finally also without feedback of
the control signal u∗. The restrictions are imposed by omitting terminals in the GP function
set. This is for the GP to discover which sensors are necessary to effectively suppress
the stick-slip. If some sensor is redundant, the result is expected to be not worse after
its elimination. It could then be even better, as the evolutionary process has a simplified
set of functions to use. In the research, three different levels of mutation have also been
compared, namely for the mutation probability equal to 0.1, 0.2, and 0.3. More intensive
mutations increase exploring capability of the evolutionary process, but they may destroy
well-fitted individuals.

Table 3. GP experiment configurations.

Mutation
Probability

Full
Input

No Acc No Vel No Acc,
No Vel

No Acc,
No Vel,
No Ctr

0.1 F01 NA01 NV01 NAV01 NAVC01
0.2 F02 NA02 NV02 NAV02 NAVC02
0.3 F03 NA03 NV03 NAV03 NAVC03

According to the test trajectory definition (3), a real-time experiment evaluating one
genetic individual on a physical servo system would take 10 s. One evolutionary process
configured according to Table 2 executes almost 500,000 evaluations (reproduced individ-
uals do not need to be reevaluated). Such a learning process needs about two months
to complete, and it is to be repeated 100 times for each of 15 variants defined in Table 3.
Hence, it is impossible for practical realization, at least using one or only a few physical
devices simultaneously. This is a reason why the form of computer simulation has been
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chosen. The execution of 100 repetitions of the GP learning process for a fixed parameter
configuration takes a few hours on a modern personal computer.

3. Results
3.1. Unconstrained Bang-Bang Control Algorithms

The results of experiments performed with the settings described before revealed
some problem. The genetic process has a tendency to produce control algorithms which
generate an oscillatory bang-bang control signal (Figure 6).
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Figure 6. Tracking quality for bang-bang control: (a) J = 2.7× 10−9; (b) J = 1.3× 10−12.

This is quite a predictable result, as the friction force becomes relatively insignificant
if the control signal amplitude is maximal. Therefore, the GP system can rather easily
discover effective algorithms issuing the bang-bang control. However, such a control is
not preferred. First, it may induce mechanical vibrations and overloads in a real system.
Second, the high frequency band of this control signal may not be transferred accurately in
a real servo structure, and its properties important for stick-slip suppression may be lost.

To prevent the GP system from finding the bang-bang control, a penalty component
has been added to the fitness function. During algorithm evaluation, the number Z of
zero crossings by the signal u∗ is counted; more precisely, it is the number for which the
condition u∗(k∆∗) u∗(k∆∗+∆∗) < 0 is satisfied. If Z > 20, then the fitness function value is
increased by a large component, such that the evaluated individual becomes very poorly
fitted. Therefore, a few control sign changes are permitted, as they may be unavoidable
in the transient phases of servo tracking, but the continuous bang-bang oscillations are
banned. All the following results have been obtained in the GP system with this penalty.

3.2. Control Algorithms for Servo with Ideal Measurement

We assume first that the measurement is ideal. The value Pk provided to parse-tree
terminals P in the k-th control cycle is equal to the sampled position p∗(k∆∗) (the conditioner
does not change it in any way), which, in turn, is the exact value of the physical signal
p(k∆∗) (the position sensor is ideal), the same is true for velocity and acceleration, namely

Pk = p∗(k∆∗) = p(k∆∗), Vk = v∗(k∆∗) = v(k∆∗), Ak = a∗(k∆∗) = a(k∆∗). (7)

The overview of the results obtained for the ideal measurement and the configurations
indicated in Table 2 is given in Figure 7. The green points represent fitness of the best
individuals for each of 100 repetitions of 15 considered configurations. The blue and red
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points represent the mean and best (minimum) values, respectively, of the fitness function
for each configuration. For comparison, the line indicating the best fitness function value
obtained by the PID algorithm is also shown. The values of the fitness function span many
orders of magnitude, so the logarithmic scale is used.
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all GP

mean GP

best GP

best PID

Figure 7. Comparison of GP learning results for ideal sensors.

More details are given in Table 4. The symbol S denotes the set of all best individuals
from 100 GP learning repetitions for a given configuration. In rows 1–20, the numbers of
solutions with the fitness function value included in the indicated decade are specified.
The table also provides the numbers of solutions better than the minimum obtained by
the PID (row 21), exact mean values (row 22), and exact minimum values (row 23) of the
fitness function.

The data in Figure 7 and Table 4 reveal that it is actually statistically difficult for the
GP learning to discover a control algorithm which suppresses the stick-slip better than the
PID. The mean GP result is worse than PID for every configuration, and the percentage of
GP individuals better than PID varies from 2 for NAVC03 to 38 for NA02. On the other
hand, the 100 repetitions suffice to find very well-fitted individuals with the fitness function
value many order of magnitude lower than the one obtained by the PID algorithm. The
learning is most effective in the case of the full signal configurations and the configurations
without only the acceleration feedback. Other configurations, commonly characterized
by the absence of velocity feedback, result in worse fitness of the best individuals. This is
somewhat counterintuitive, as one could expect that acceleration may be the important
feedback signal, giving direct information about the actual state of the controlled system.
The results also reveal that the variation of mutation probability in the range [0.1, 0.3] has
no systematic impact on the learning efficiency. Therefore, no concrete probability value is
preferred, but one can use the probability variation to diversify the GP learning process.

In Figure 8, the progress of GP learning is shown in terms of the fitness function value
obtained by the best individual in consecutive generations. There is a plot for each of the
100 repetitions. The configurations NA02 (a) and NAVC02 (b) are compared, including the
globally best and worst individuals, respectively. There is an evident difference between
these configurations, and the data provided to a discovered algorithm in the variant
NAVC02 (without a∗, v∗, u∗) is clearly too limited for effective learning. The plots in
Figure 8a indicate that many repetitions of the evolutionary process were not stagnated at
the moment of their termination after 500 generations, and they could improve solutions if
they run longer.
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Table 4. GP learning results for ideal sensors.

No. Parameter F0
1

F0
2

F0
3

N
A

01

N
A

02

N
A

03

N
V

01

N
V

02

N
V

03

N
A

V
01

N
A

V
02

N
A

V
03

N
A

V
C

01

N
A

V
C

02

N
A

V
C

03

1 #
{

s ∈ S : J(s) ∈ [10−2, 10−1]
}

44 30 30 28 19 13 16 31 22 5 9 5
2 #

{
s ∈ S : J(s) ∈ [10−3, 10−2)

}
27 29 30 27 24 31 24 16 20 14 11 11 4 2

3 #
{

s ∈ S : J(s) ∈ [10−4, 10−3)
}

13 18 15 19 14 15 32 28 29 66 68 63 93 97 94
4 #

{
s ∈ S : J(s) ∈ [10−5, 10−4)

}
2 5 1 2 5 8 12 7 9 6 4 4 2

5 #
{

s ∈ S : J(s) ∈ [10−6, 10−5)
}

2 2 3 1 7 6 5 9 6 5 5 11 1 1
6 #

{
s ∈ S : J(s) ∈ [10−7, 10−6)

}
2 3 6 5 7 3 9 5 6 4 1 2 2 3 1

7 #
{

s ∈ S : J(s) ∈ [10−8, 10−7)
}

6 6 8 7 9 12 1 1 2 2
8 #

{
s ∈ S : J(s) ∈ [10−9, 10−8)

}
1 1 1 3 8 7 1 2 2

9 #
{

s ∈ S : J(s) ∈ [10−10, 10−9)
}

1 1 1 1 2 1 2 2
10 #

{
s ∈ S : J(s) ∈ [10−11, 10−10)

}
2 2 1 1 1 1

11 #
{

s ∈ S : J(s) ∈ [10−12, 10−11)
}

1 1 1 1
12 #

{
s ∈ S : J(s) ∈ [10−13, 10−12)

}
1

13 #
{

s ∈ S : J(s) ∈ [10−14, 10−13)
}

2 1
14 #

{
s ∈ S : J(s) ∈ [10−15, 10−14)

}
1 2

15 #
{

s ∈ S : J(s) ∈ [10−16, 10−15)
}

1 1 1
16 #

{
s ∈ S : J(s) ∈ [10−17, 10−16)

}
1 1

17 #
{

s ∈ S : J(s) ∈ [10−18, 10−17)
}

1 1 1
18 #

{
s ∈ S : J(s) ∈ [10−19, 10−18)

}
1 1 2

19 #
{

s ∈ S : J(s) ∈ [10−21, 10−20)
}

1
20 #

{
s ∈ S : J(s) ∈ [10−22, 10−21)

}
1

21 #{s ∈ S : J(s) < JminPID} 14 18 24 24 38 33 16 18 20 9 8 17 3 3 2

22 means∈S J(s) [×10−4] 85
.5

65
.3

61
.3

61
.1

39
.2

34
.0

38
.0

57
.1

45
.4

16
.0

23
.2

14
.2

4.
72

3.
43

3.
78

23 mins∈S J(s) 8.
22
×

10
−

17

1.
03
×

10
−

21

4.
18
×

10
−

19

1.
08
×

10
−

18

3.
94
×

10
−

22

1.
30
×

10
−

19

6.
03
×

10
−

9

3.
60
×

10
−

14

1.
68
×

10
−

17

2.
87
×

10
−

7

1.
05
×

10
−

9

2.
12
×

10
−

10

2.
35
×

10
−

7

4.
60
×

10
−

7

1.
03
×

10
−

7
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Figure 8. GP learning progress: (a) NA02; (b) NAVC02.

So far, the GP learning results have been analyzed statistically. Let us now study
closer the best obtained individuals. The globally best algorithm has been found for the
configuration NA02; and its fitness function value is 3.94× 10−22. Its parse-tree is presented
in Figure 9. The tree seems to be too large and complicated to interpret the algorithm it
represents. One can, however, observe a few specific details. The sub-expression R− P
or P− R, representing actually a position error, is present in the tree a few times. This is
an elementary expression expected in the algorithm of position controller. There are three
occurrences of the sub-expression 100 + 100, which obviously evaluates to 200. Presum-
ably, the evolutionary process constructed this sub-expression once and then multiplied it
crossing individuals, finding the constant 200 useful for a well-fitted individual, while a
single terminal can represent an integer constant in the interval [1, 100]. There are “dead”
sub-expressions in the parse-tree, which is quite common for products of evolutionary algo-
rithms, as they cannot detect that some part of genetic information is trivial or redundant.
In particular, the sub-expression I(P, R, R) evaluates to R, and the sub-expression R− R
evaluates to 0.

In Figure 10, the tracking quality for the best individual is presented in the form of the
position error, i.e., p∗ref − p∗, and the control signal. In part (a), the signals are presented in
the full range of their variability. In part (b), the regions taken into account for calculation
of the fitness function value are zoomed. There are two important observations. First,
the penalty used for elimination of control signal oscillations works properly. The control
signal has bang-bang oscillations only at short transient phases around the 0 and 5 s, but it
keeps a constant value during the established ramp signal tracking. This constant control
signal counteracts the friction force. Secondly, during the ramp signal tracking, the position
error settles on the value about ±2× 10−11 m, which is actually immeasurable. Therefore,
the best individual and many others with a similar value of the fitness function represent
control algorithms that suppress the stick-slip practically ideally.

The ideal position tracking presented in Figure 10 may be a result of overfitting, and
there is a risk of quality deterioration when the system parameters are changed. To verify
this, the sensitivity of the fitness function value of the best individual on the parameter
deviations has been analyzed. For each parameter x ∈ {K, I, Fs, Fc, Fv, vs, v}, the fitness
function value has been computed in the interval [0.1xr, 10xr], where xr is the reference
value of x used in the GP training. In particular, the parameter v represents the slope of the
reference trajectory, which deviates from its training value 0.1, indicated in (3) and Figure 4a.
The results are shown in the full scope in Figure 11a and zoomed in the interval [0.5xr, 2xr]
in Figure 11b. The plots indicate that the fitness function value becomes exceptionally low
only very close to the training parameter values. However, the algorithm fitness remains
relatively good and much better than the PID fitness in broad intervals of parameter values.
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The sensitivity analysis exhibits that the algorithm can suppress stick-slip for a wide
range of the reference velocities. However, the analysis has been performed using the
trajectory of the shape shown in Figure 4a with a piecewise constant velocity, and it is
not clear whether the performance is also satisfactory for a variable velocity. Therefore,
additional tests have been carried out to verify the algorithm for more complex trajectories,
in particular, trajectories with a smoothly changing velocity. The trajectories are shown
in Figure 12. The first trajectory (Figure 12a) consists of parts with sinusoidal shapes,
as well as constant position intervals; it also includes two steps at time 1 and 12 s. The
second one (Figure 12b) is a piecewise parabolic continuous trajectory. The plots reveal
that the algorithm has a good performance in tracking of non-constant smooth parts of the
trajectories, even if the motion has a variable velocity. In such cases, the stick-slip is usually
suppressed to an irrelevant level, but an exception can be found for the first decreasing
part of the sinusoidal shape. On the other hand, the GP discovered algorithm copes poorly
with the constant reference position and steps. It is not surprising, as these are conditions
for which the algorithm was not trained. If switching the GP algorithm to the standard PID
in the time intervals [0, 3] and [11, 14], the steps are handled much better and the control
signal is smooth (line PID+GP). The switching itself does not disturb the tracking.
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Figure 9. Parse-tree of the best individual.
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Figure 10. Tracking quality for best individual: (a) full range of signal values; (b) signal values in
steady state.
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Figure 11. Servo control sensitivity: (a) x ∈ [0.1xr, 10xr]; (b) x ∈ [0.5xr, 2xr].
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Figure 12. Tracking quality of composite trajectories: (a) piecewise constant and sinusoidal;
(b) parabolic.

It is also interesting to see the parse-tree of the second globally best solution (Figure 13).
Its fitness function value is 1.03× 10−21 and the difference with the best one is practically
insignificant. This algorithm has been obtained for the configuration F02, so it has the
access to acceleration feedback. The parse-tree reveals that the algorithm extensively
uses this feedback. In particular, the acceleration terminal A is almost in any case in the
sub-expression C−A or A− C representing the acceleration error because K = I = 1,
hence a ∼= u. Therefore, similarly as for the position feedback, the acceleration feedback is
employed in the form that one could expect in a reasonably designed control algorithm. It
is intriguing that, having the acceleration feedback accessible, the GP process has used it in
a natural way, but it also found a similarly well-fitted individual without it.
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Figure 13. Parse-tree of the second best individual.
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The second best individual turned out to be simpler than the best one because many
parts of its parse-tree can be algebraically simplified and ordered. It is also easy to split
it into a linear and nonlinear parts. The resultant equivalent parse-tree is presented in
Figure 14. The nonlinear part is particularly tiny. A direct analysis and interpretation of
this algorithm would probably be possible.

linear part

non-linear part

+

×

49022 −

R P

×

6 −

C A

×

−1 U

U

P

×

−76 V

×

2 R

×

−1 U

I

×

V C

U

P

C

÷

V −

91 U

+

S

57

S

P

Figure 14. Simplified and ordered parse-tree of second best individual.

3.3. Control Algorithms for Servo with Real Position Sensor

Let us consider now a realistic imperfect measurement. We assume the usual im-
plementation of a real servo, in which there is only a position sensor in the form of a
quadrature encoder. Such a sensor quantizes actual position value. Let the quantization
step be equal to 0.1 mm, then

Pk = p∗(k∆∗) =
b10, 000 p(k∆∗)c

10, 000
. (8)

The velocity and acceleration signals are not directly measured. They need to be
estimated numerically. Two scenarios have been considered, being alternative implemen-
tations of the conditioner block (Figure 2). In the first implementation (a-scenario), the
velocity and acceleration are obtained in the simplest way, by calculation of the differences

Vk =
Pk − Pk−1

∆∗
, Ak =

Vk −Vk−1
∆∗

, P0 = V0 = 0. (9)

It is well-known that such calculation degrades signal quality by amplification of
quantization noise. For this reason, a real/filtered form of differentiation is used, e.g., in
derivative blocks of PID controllers. More advanced solutions have also been proposed [35].
In the considered second scenario (b-scenario), the standard filtered derivative is used. It has
the continuous-time transfer function s/(Tf s + 1), and the ZOH-equivalent discrete-time
form (z− 1)/(Tf z− Tf p f ), which implies the following recursive formulas:

Vk =
Pk − Pk−1

Tf
+ p f Vk−1, Ak =

Vk −Vk−1
Tf

+ p f Ak−1, P0 = V0 = A0 = 0, (10)

where the settings Tf = 0.002 s and p f = exp (−∆∗/Tf ) = 0.607 have been applied for the
filter time constant and its pole, respectively.

Experiments have been conducted only for the configurations including the velocity
feedback (F01-3, NA01-3), assuming that it is required for good results, as observed in
the previous case of the ideal measurement. The obtained distribution of the fitness
function value is presented in Figure 15. It is evident that the best individuals are now
remarkably worse than for the ideal measurement. On the other hand, there are still many
individuals significantly better than the best PID-based case. One can also observe that
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different configurations, measurement scenarios, and mutation levels have little impact on
the results.
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Figure 15. Comparison of GP learning results for servo with real position sensor.

More details are provided in Table 5. Compared to the data in Table 4, the subset of
the individuals with J ∈ [10−22, 10−10] is empty. However, for the greater values of the
fitness function, the distribution is favorable. There are relatively many solutions with
J ∈ [10−9, 10−7]. The number of results outperforming the PID is also relatively large, e.g.,
it is 46 for NA03a, better than in all the experiments for ideal measurement. It means that it
is harder to find extremely well-fitted individuals when the measurement is realistic, but
it is not so hard to find sufficiently good individuals. According to the row 10 in Table 5,
the configuration without acceleration feedback increases a chance to obtain a result better
than the PID-based minimum. The globally best individuals have been discovered for the
configuration without acceleration feedback and with filtered derivatives (NA01-3b).

Table 5. GP learning results for servo with real position sensors.

No. Parameter F0
1a

F0
2a

F0
3a

N
A

01
a

N
A

02
a

N
A

03
a

F0
1b

F0
2b

F0
3b

N
A

01
b

N
A

02
b

N
A

03
b

1 #
{

s ∈ S : J(s) ∈ [10−2, 10−1]
}

48 32 43 24 14 9 24 17 5 5 11 8
2 #

{
s ∈ S : J(s) ∈ [10−3, 10−2)

}
15 21 14 22 30 20 41 41 56 33 38 32

3 #
{

s ∈ S : J(s) ∈ [10−4, 10−3)
}

15 24 24 23 16 17 21 25 15 31 25 21
4 #

{
s ∈ S : J(s) ∈ [10−5, 10−4)

}
8 7 4 10 7 8 5 5 10 8 5 11

5 #
{

s ∈ S : J(s) ∈ [10−6, 10−5)
}

6 4 1 4 5 7 2 3 3 3 4 7
6 #

{
s ∈ S : J(s) ∈ [10−7, 10−6)

}
7 5 2 7 17 12 4 5 5 7 5 2

7 #
{

s ∈ S : J(s) ∈ [10−8, 10−7)
}

1 4 10 9 9 23 2 3 6 11 10 17
8 #

{
s ∈ S : J(s) ∈ [10−9, 10−8)

}
3 2 1 2 4 1 1 2 1 1

9 #
{

s ∈ S : J(s) ∈ [10−10, 10−9)
}

1 1

10 #{s ∈ S : J(s) < JminPID} 14 16 15 21 33 46 9 12 14 23 21 28

11 means∈S J(s) [×10−4] 96
.0

65
.5

80
.2

53
.5

36
.2

27
.7

62
.1

52
.3

42
.5

25
.4

37
.7

31
.1

12 mins∈S J(s) 2.
04
×

10
−

8

2.
42
×

10
−

9

2.
17
×

10
−

9

4.
56
×

10
−

9

9.
49
×

10
−

9

2.
48
×

10
−

9

6.
90
×

10
−

9

6.
09
×

10
−

9

1.
60
×

10
−

8

1.
07
×

10
−

9

3.
75
×

10
−

10

9.
78
×

10
−

10

The tracking quality is illustrated in Figure 16 for the best individuals of the scenarios a
and b. The problem of oscillations reappears. The control signal oscillates without changing
the sign, so the individual is not discarded by the zero-crossing penalty. It indicates that
it is harder or impossible for the GP to discover a non-oscillating control in the case of
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real measurement. There are full-scale bang-bang unipolar oscillations in the scenario a.
The oscillations are significantly reduced in the scenario b in which filtered derivatives are
applied for estimation of velocity and acceleration.

P
o
s
it
io

n
 e

rr
o
r 

[x
1
0

 m
]

(a)

Time [s]
P

o
s
it
io

n
 e

rr
o
r 

[x
1
0

 m
]

(b)

Time [s]

Figure 16. Tracking quality for scenarios (a,b) with real sensors.

4. Discussion

One can observe that discovering of a good algorithm for servo stick-slip suppression
is a quite difficult task for the GP. A relatively small part of the GP training attempts results
in a fitness function value better than the best one obtained by the plain PID control, even
though the number of generations is large. Indeed, the number of generations amounts to
500 here (Table 2) while, e.g., a training based on not more than 20 generations was sufficient
to discover successful strategies for robot RealTimeBattle [26]. However, the large number
of generations is really required in this experiments, as the generations evolve slowly and
often do not stagnate even after the 500 stages (Figure 8). Despite these difficulties, the GP
evolutionary process has found many well-fitted individuals that proves the existence of
algorithms effectively suppressing stick-slip. These algorithms are represented by quite
simple, but obviously nonlinear expressions. It is hard to expect an effective compensation
of the nonlinear friction force by a linear control rule.

The fitness function values are actually unrealistically low for the variant of ideal
measurement. Switching to the real measurement scenarios makes a remarkable difference.
It shows how important the measurement in such precise nonlinear control is, and that
details of sensors characteristic and signal conditioning rules should be included in the
model to obtain reliable results. It is a symptomatic discovery of the GP that the acceleration
feedback is not needed for a good control algorithm, but the tachometric feedback is
important. While some studies claim that the acceleration feedback improves servo control
quality, it may not be the case for the stick-slip suppression or it may depend on some
unrecognized details of a servo system model.

The results confirm the general usefulness of the GP for discovering friction-resistant
servo control algorithms. The results also provide some hints on how to improve the
approach in the future. While the zero-crossing penalty has prevented bipolar bang-bang
oscillations of the control signal, it has not eliminated unipolar oscillations observed in
Figure 16. To achieve better suppression, a more restrictive penalty is needed with more
sensitive oscillation detection. It is also a disadvantage that the GP cannot capture the sym-
metry between positive and negative slopes of the reference trajectory, as one can observe in
Figure 6 and on the examples of all the presented parse-trees (Figures 9, 13 and 14), which
do not represent functions symmetric with respect to sign of V. For a practical application,
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one can extract only the part of the function for one sign of velocity and symmetrize it
directly, but it would be more advantageous to restrict the GP, so that it does not produce
the asymmetric control algorithms. Finally, while the obtained algorithms are essentially
immune to parameter changes (Figure 11), one would expect lower sensitivity on the actual
reference velocity v, as this parameter can vary in a broad range in a real system. It seems
that the individuals obtained in this work are overfitted for the slope value used in the
learning reference trajectory. To improve the algorithms in this aspect, a more diversified
reference trajectory may be used, having a variable velocity or components of different
slope values.

5. Conclusions

Although it seems to be impossible to apply the GP for learning servo stick-slip com-
pensation in real-time, the discovered well-fitted control algorithms can be implemented in
a real-world servo system after the off-line training. Modern embedded servo controllers
are fast enough to cyclically execute calculation described by the obtained parse-trees.
Therefore, the approach can be useful in practice. A practical use has to be preceded by
identification of real system parameters, and then the GP learning may be conducted offline
using simulation. The result of this work indicates that the learning outcome strongly
depends on details of the modeled and simulated system; in particular, it depends on the
selected sensors set, sensors accuracy, and signal conditioning. One can notice that the GP
method can also be applied to the emerged problem of identification of real servo system
parameters. It will provide a non-parametric model which may be especially advantageous
for the modeling of friction, as friction does not have a unique well-established parametric
model. The experiments on a real system remain the subject of future work.
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