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Abstract: Radiometric identification is the problem of attributing a signal to a specific source. In
this work, a radiometric identification algorithm is developed using the whitening transformation.
The approach stands out from the more established methods in that it works directly on the raw IQ
data and hence is featureless. As such, the commonly used dimensionality reduction algorithms
do not apply. The premise of the idea is that a data set is “most white” when projected on its own
whitening matrix than on any other. In practice, transformed data are never strictly white since
the training and the test data differ. The Förstner-Moonen measure that quantifies the similarity
of covariance matrices is used to establish the degree of whiteness. The whitening transform that
produces a data set with the minimum Förstner-Moonen distance to a white noise process is the
source signal. The source is determined by the output of the mode function operated on the Majority
Vote Classifier decisions. Using the Förstner-Moonen measure presents a different perspective
compared to maximum likelihood and Euclidean distance metrics. The whitening transform is also
contrasted with the more recent deep learning approaches that are still dependent on feature vectors
with large dimensions and lengthy training phases. It is shown that the proposed method is simpler
to implement, requires no features vectors, needs minimal training and because of its non-iterative
structure is faster than existing approaches.

Keywords: radiometric identification; RF fingerprinting; signal classification; whitening transform

1. Introduction

Radiometric identification is the problem of attributing a signal to the source; often
brand or model. Source identification is accomplished by RF fingerprinting of devices by
looking for signatures that may arise from manufacturing tolerances, imperfections or nor-
mal statistical variations in production. There is considerable work in signal classification
and modulation recognition [1,2]. However, radiometric identification does not neatly fit
in either of the two categories. In many ways, radiometric identification is a more difficult
problem as signals originating from different sources may have similar characteristics such
as modulation, bit rates, pulse shapes, etc. This fact makes subtle device variations the
main signature for radiometric identification. Such variations, however, are small, imper-
ceptible and difficult to model. Why radiometric identification is of interest are many fold.
The military has been interested in this capability for some time as a means of identifying
friendly from hostile radar [3,4]. Satellite communication may be faced with intentional
or unintentional jamming from rogue sources. Knowing the source and the brand of the
interferer may help identify the offending source. Radiometric identification is also a
valuable tool in securing wireless devices. Spoofing attempts in wireless networks and IoT
devices can be thwarted if the source of the signal could be identified and blocked [5,6].
It is more difficult to mimic device characteristics that are embedded in signals than to
replicate modulation or pulse shaping.

Radiometric identification can be formulated in the context of a statistical classifier.
The classical approach follows feature extraction, dimensionality reduction by techniques
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such as PCA and finally multiple discriminant analysis classifier [7,8]. In [9], Square Inte-
gral Bispectra (SIB) is used to extract the unique stray features of individual transmitted
signals, followed by PCA to extract a low-dimensional feature vector. It has been ob-
served that features retained after dimensionality reduction are not necessarily optimal
for classification.

A combined optimization of dimensionality reduction and fingerprint classification is
proposed in [10]. The idea is to drive dimensionality reduction by minimizing the classifi-
cation error and maximizing the mutual information between the reduced dimensionality
features and the class label simultaneously. The RF fingerprint features are extracted from
the statistics of the normalized instantaneous amplitude, phase and frequency of the signal
resulting in feature vectors with up to 960 dimensions. The dimensionality reduction
problem remains, however. Feature extraction for transmitter identification algorithms
have been developed to operate in either transient [11] or steady state phases [12]. The tran-
sient phase is an analog state of the signal occurring right after the transmitter is activated
whereas the steady state phase is characterized by modulation.

More recent work on radiometric identification has been influenced by the rise of deep
learning (DL) tools. Examples are RF fingerprinting [13], IoT device fingerprinting [14],
spectrum sensing [15] and RF device identification in cognitive networks [16]. What is still
needed in all such work is the extraction of feature vectors followed by time consuming
dimensionality reduction. The feature vectors extracted in [10], for example, have 960 di-
mensions before dimensionality reduction. In other words, the main problem still remains.
The use of DL is often accomplished by the programming of off-the-shelf tools or use of
various convolutional neural networks (CNN) routines implemented in Matlab. For ex-
ample, the compressed bispectrum is identified as the feature then used to train a three
layer CNN [17]. What differs are the number of layers, taps, filters, activation functions etc.
Another example along this vein appears in [18] where Keras API is used with TensorFlow
on the backend to distinguish distracted drivers. In [15], DL is implemented for RF device
fingerprinting in the cognitive Zigbee networks using the time-domain complex baseband
error signal as training and test data.The results show good accuracy (≈90%) but at high
SNR (≥20 dB). In [19], the input data are preprocessed as Hilbert spectrum gray-scale
images and achieves acceptable accuracy under moderate SNR levels (Avg 70% accuracy
rate for SNR of 15 dB). A comprehensive performance comparison is shown for various DL
algorithms in [13], reporting an average accuracy of 98% measured for 12 transmitters.

The fact that ML operates on much smaller data sets and requires much less training
time compared to DL (hours of training [15]), provides more versatility to signal character-
istics changes that occurs under different environmental circumstances (overheating, excess
current, etc.), which can strongly affect the classification selected feature. This property of
ML (data-driven) allows for fast feature update and consequently results in higher accurate
classification on the long term. In addition, the reduced complexity compared to DL allows
to easier hardware implementation and fast on-the-fly classification.

Specific Emitter Identification(SEI) is another paradigm for radiometric identifica-
tion [20–22]. The SEI approach attempts to identify the unique transmitter of a signal using
only external feature measurements [22]. SEI is implemented in two stages, (1) transient
signal state and (2) steady state signal state. The transient approach applies to the particular
signatures embedded in the signal as the transmitter powers up or down [23,24]. Transient
approaches are more difficult to implement due to the unavailability or transient nature of
the data that is often not accessible or saved. Steady state approach refers to the period
where transients have stabilized. The available features include modulation and pream-
ble [25,26], among others. In modulation-based techniques, the received and the target
constellations are compared where the difference creates an RF fingerprint [27]. A fast
decision identification algorithm appears in [28]. Identification is based on the similarity
of a signal vector and its comparison to patterns available in a database. The approach
is classified as an example of SEI applied to radar identification. The algorithm was ap-
plied hundreds of radar signals records which came from several different types of radars.
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In some cases, copies of the same type of radar of were investigated. Weighing all features
equally, 85% correct recognition rate is reported for radar types. A mixed method of radar
identification based on electromagnetic emission and intrapulse analysis appears in [29].
The premise is that electronic devices impart electrical features on the transmitted pulse.
The signal model is N non-overlapping pushes form K transmitters. Linear Discriminant
Analysis is used. Four distance metrics are used to classify the unknown pulse. It is
reported that three copies of the same type of radar are successfully recognized.

Radiometric identification of communication protocols are also of interest. Identi-
fication of sources that use the LTE protocol is reported in [30,31]. The identification is
based on unique modulation characteristics exhibited by the transmitters, resulting from
minute imperfections introduced during radio hardware manufacturing. Device imper-
fections have been used as a signature for radiometric identification including clock jit-
ter [32], the digital-to-analog converters (DAC) errors [33], local frequency synthesizer [34],
the power amplifier non-linearity [35–37]. Power amplifier imperfections are also used for
source identification [38]. Real radar signals are used for emitter identification [39].

An entirely different application for radiometric identification is radar. Even though
the transmitters may belong to the same type of radar, they may exhibit subtle differences
in their transmitted pulses. In [33], 18 features are used to identify three class of radars.
Five radar emitter identification fingerprints based on radar signal transients are com-
pared. Traditional techniques include radio frequency (RF), pulse amplitude, pulse width,
intentional pulse modulation type, or pulse repetition intervals. In [40], unintentional
modulation information on the emitter waveform is used as RF fingerprints, to tie the
received signal and its corresponding the emitter. Unintentional Modulation on Pulse
(UMoP) is a method that exploits variations due to manufacturing differences of the trans-
mitter hardware, including the power amplifiers UMoP is like a fingerprint of an emitter
and can identify transmitters from the same model [41]. Variational Mode Decomposition
to radar identification is reported in [42]. The data set consist of 47 emitters. Some of these
emitters were productions of the same radar. Results demonstrate that the effective SNR
value should be around 47 dB to obtain a correct classification probability larger than 0.9.

In this work, the whitening transform is used as the framework for radiometric
identification. This is fundamentally different than multiple discriminant analysis or deep
learning. Identification is featureless, meaning it operates on raw complex IQ samples.
Dimensionality reduction doesn’t apply as the IQ data are two dimensional to begin with.
Therefore, the costly feature extraction and dimensionality reduction common to most
radiometric identification techniques is avoided. As a whitening detector, radiometric
identification differs from multiple discrimination analysis in one key metric. The metric is
the degree of whiteness of the transformed data whereas the metric in multiple discriminant
analysis is maximum likelihood driven by the distance metric. The distance measure,
Förstner-Moonen distance plays a key role in establishing the whiteness of the whitened
data. This metric is the input to a mode function followed by the Majority Vote Classifier.

2. Framework for Radiometric Identification

The received signal is first corrected for phase offset, oscillator frequency offset and
symbol timing errors before application of the whitening transform. The whitening trans-
formation is an orthogonal projection based on a variation of the PCA and is related to
the orthogonal subspace projection [43]. One whitening transformation matrix per source
is estimated from the training data. There is no need to know the modulation type, fre-
quency, phase or anything else about the signal. Identification of the unknown source
is based on the observation that a data set is “most white” when projected on its own
whitening matrix than on any other, hence matched whitening. Projection of the unknown
data on the whitening transforms whitens the data only if there is a match between the
whitening matrix and the data. Even when the data matches its own whitening transform,
the projected data is never truly white. A “whiteness” measure is developed by choosing a
divergence metric for the comparison of covariance matrices. This measure is the sum of
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the squared logarithms of joint eigenvalues of the reference and test covariance matrices;
the Förstner-Moonen distance. Whitening is well known in signal detection and it is often
formulated as the Whitening Matched Filter. The goal is to decorrelate noise samples at the
filter output. A 3D implementation of WMF is used for environmental impact studies in
hyperspectral imagery [44]. Object detection by using whitening/dewhitening to trans-
form target signatures in multitemporal hyperspectral appears in [45]. Examples of such
whitening approaches mostly apply to signal and object detection and are not relevant to
radiometric identification as proposed here.

2.1. The Whitening Transform

Let X ∈ Rp×n be the data matrix consisting of n measurements of p variables with the
covariance matrix Σ. Statistical whitening is a linear transformation that transforms the data
such that the covariance matrix of Y = WX is the identity matrix. The whitening transform
matrix is not unique. In fact, [46] mentions five different projection matrices that whiten the
data, with the most prominent ones being the PCA and ZCA whitening [47]. Specifically,

WPCA = Λ−
1
2 UT (1)

where U and Λ are the matrices of eigenvectors and eigenvalues in the decomposition of
the covariance matrix Σ = UΛUT . The whitening transformations produce decorrelated
data but to what end? More importantly, what role does whitening play in radiometric
identification? This is where the matched whitening transform deviates from the existing
use of PCA in radiometric identifications. PCA is best known for data compression by
guiding the removal of the components of Y with insignificant energy. The features that
remain are not necessarily the best for classification. Yet, almost all PCA-based radiometric
classification techniques use the features that survive compression in a subsequent dis-
criminant function to classify the data. ZCA has the added property of zero-phase by
undoing the rotation caused by the PCA. Neither of the two are applicable here. Producing
uncorrelated data is a preprocessing step from which lower dimensionality feature vectors
are extracted. Dimensionality reduction does not apply to IQ samples as there are only two
dimensions to begin with and are largely decorrelated already. PCA has been used in deep
learning as well by accelerating the convergence in convolutional neural networks [48].

2.2. Classification by Matched Whitening

The data are organized in an N ×M matrix X = [x1, x2, . . . , xM], xi ∈ RN×1 where M
is the number of measurements and N is the number of variables, or dimensions. For the
IQ data, N = 2 and M is the number of symbols in the record. Let Wi, i = 1, 2, . . . , m be the
whitening transform matrices for m source signals {c1, c2, . . . , cm}. The class-dependent
whitening matrices are computed offline from the training data. Since the IQ data are
affected by phase and frequency offsets, the data need to be corrected before the whitening
matrices are calculated. The test data are partitioned into blocks used to generate statistics.
There is no “correct” block length. It depends on the rate of change of phase, frequency
offset or Doppler shift. In the case of nonlinear phase offset, block lengths are chosen short
enough to insure near stationary phase during phase estimation. More on how to choose
the block length for reversing the frequency offset appears in Section 3.

Let Xj ∈ R2×M be the jth block. The unknown measurement vector is repeatedly
whitened by Wi, ∀i.

Yi = WiXj, i = 1, 2, . . . , m

cov(Yi) = I ⇐⇒ Xj ∈ ci
(2)

The covariance matrix of the whitened data is an identity matrix if and only if Wi
matches the data that are projected on it. In other words, the whitening matrix can only
whiten its own data. Conversely, if the unknown data are whitened, the data belongs to
the same class that the whitening matrix came from.
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To illustrate this point, three multivariate normal populations are created and shown
in Figure 1a. The 3rd data set (in black) is used as the “unknown” source and is repeatedly
projected on Wi, i = 1, 2, 3. After each projection, the scatter diagram is plotted and shown
in Figure 1b–d. When the data from group 3 is whitened by W1, Figure 1b, the major axis
of the projected data appears at an angle to the principal axis of the projection matrix. This
indicates that the data and the whitening matrix are mismatched. Repeated projections
produce Figure 1b–d. It is only in Figure 1d that the whitening transformation produces a
circular scatter diagram. The projection that produces the least correlated data identifies the
brand. This property indicates that the source of the unknown data matches the whitening
transform of group 3. The detector can be implemented as a bank of parallel matched filters
shown in Figure 2.

Group 1

Group 2

Group 3

(a) (b) (c) (d)

Figure 1. The “unknown” data, shown in black, are repeatedly projected on the spaces spanned by the eigenvectors of other
groups. When the principal axis of the projected data aligns with the reference axis, a match is declared. In this example, the
source of the unknown data is the group shown in black. (a) Three multivariate normal data sets simulating different signal
sources, (b) Black data is whitened by the red whitening matrix, (c) Black data is whitened by the green whitening matrix,
(d) Black data is whitened by its own whitening matrix.

W1

W2

Wm

d(Σ1, I)

d(Σ2, I)

d(Σm, I)

Cov

Cov

Cov

Σ1

Σ2

Σm

Y1

Y2

Ym

Xi

Min
k=k∗
{dk}

Figure 2. Radiometric identification by whitening transformations. The branch with the most
whitened data reveals the source of the unknown signal.

2.3. Development of a Whitening Measure

There are several issues with tying the unknown data to its own whitening matrix.
First, the IQ components of the real data are already quite decorrelated so whitening may
not bring significant additional decorrelation. Second, the subspace defied in (1) is created
offline from the training data. However, the test data are different even if coming from the
same population as the training data. If the data different than the training set are used,
the whitening of the data will be approximate. The core property is that the covariance
matrix of the unknown data will resemble the identity matrix if projected on its own
subspace more than on any other. Third, how to measure “whiteness”. This is a problem in
covariance matrix matching [49].

There are any number of metrics to measure the distances between two symmetric, pos-
itive definite covariance matrices. They include KL divergence, Euclidean distance, squared
Frobenius norm, Bhattacharyya distance, Bregman matrix divergence and LogDet [50],
among others. In this work we use the Förstner-Moonen metric [49] as a similarity measure
of two covariance matrices. As a point of reference, the well-cited Correlation Matrix
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Distance(CMD) metric [51] and the Kullback-Leibler measures are studied. There is no
one definition for similarity but three are monotonic with correlation and hence are valid
measures. We have superimposed CMD, KL and Förstner-Moonen plots for comparison.
The graphs appear later on in Figure 3a. As expected, the pairwise distance increases
with increasing correlation, meaning that the covariance matrix of correlated variables
is at farther distances from a diagonal covariance matrix. It is noteworthy that the KL
measure is virtually coincident with the Förstner-Moonen metric hence justifying its use as
a similarity index.
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(a) (b)

Figure 3. Two illustrations of the effectiveness of the Förstner-Moonen distance. All three similarity
measures behave monotonically with correlation with the Kullback-Leibler measure virtually co-
incident with Förstner-Moonen. (a) Comparison of Förstner-Moonen, CMD and Kullback-Leibler
distance metrics, (b) The Förstner-Moonen distance is lower when data are transformed by matched
whitening transfom.

Let A and B be the reference and measured covariance matrices. The proposed
distance measure is defined by,

d(A, B) =

√
n

∑
i=1

ln2λi(A, B) (3)

where λi(A, B), the joint eigenvalues of A and B, are the roots of |λA− B| = 0. In the
context of the whitening transform, the reference covariance matrix is the identify matrix
A = I and B = cov(Yi) is the covariance matrix of the unknown data whitened by
Wi. Therefore, the joint eigenvalues reduce to simply the eigenvalues of the measured
covariance matrix B of the unknown data.

The classifier built on (3) is a Majority, or Plurality, Vote Classifier [52] governed by
rules h1, h2, . . . , hm. The rules are membership functions. Given the measurements Xi from
an unknown source,

hj(Xi) = 1 Xi ∈ cj

= 0 Xi 6∈ cj
(4)

The membership functions work off the Förstner-Moonen distance as follows,

hj(Xi) =

{
1 d(Σj, I) < d(Σk, I) ∀k 6= j
0 otherwise

(5)
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Every time a whitened block is closer to its own true class as measured by the Förstner-
Moonen distance , a 1 is recorded. The rule outputs are then fused in the following way,

C(Xi) = mode

{
p

∑
i=1

h1(Xi),
p

∑
i=1

h2(Xi), . . . ,
p

∑
i=1

hm(Xi)

}
(6)

where p is the number of blocks. The mode function is the number that occurs most often
in the set, i.e., hj(Xi) is the number of times Xi is voted to belong to cj. The unknown
measurement Xi is classified to the class receiving the most votes. This process is pictured
in Figure 2. This is an example of “hard” voting. The alternative is “soft” voting where the
frequency of assignments to classes are retained.

The computational complexity of the algorithm consists of the whitening matrix,
whitening transform and eigenvalue decomposition. If X ∈ Rd×M, where d is the number
of variables and M is the number of measurements, the complexities of the whitening
transform is O(d2M + d3), whitening transform is O(d2M) and eigendecomposition is
O(d3). With IQ signal representation, d = 2 and it’s constant throughout. Therefore, each
of the complexities above ultimately reducing the overall complexity to O(M). i.e., linear
with the number of measurements.

3. Reversing Phase and Frequency Offsets

The first challenge to radiometric identification surfaces before the algorithm is im-
plemented. Signals are often made available with uncorrected phase rotations. There
are two types of rotations. Fixed rotation is cause by a constant phase offset of the refer-
ence carrier. Time-varying rotation is caused by the frequency mismatch of the reference
carrier. The mismatch could be hardware-related or caused by Doppler. Either way, it
is an unknown quantity. The frequency mismatch, termed offset frequency fd, causes a
corresponding time-varying phase which results in constellation smearing. This is different
than fixed phase offset which causes the entire constellation to rotate. Figure 4 shows the
time varying phase offset under two SNR levels. Both fixed and time varying rotations
must be reversed prior to radiometric identification.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
fd=0.05 Hz,fs=1000,#symbols=2504

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
fd=0.01 Hz,fs=1000,#symbols=12504

(a) (b)

Figure 4. Constellation smearing caused by time-varying phase offset under two SNR values.
(a) SNR = 20 dB, (b) SNR = 10 dB.

3.1. Background

Phase and frequency offset correction prior to source identification is not always
addressed in the radiometric identification literature [17]. The traditional approach to
carrier phase recovery is the power law method [53]. Raising the signal to the Mth
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power creates a tone at M times the offset frequency which can be used to derotate the
constellation. However, this method only works for fixed phase offsets. The approach
presented here extracts arbitrary phase trajectories by fitting a model to the maximum
likelihood estimate of phase points measured over multiple signal segments. The phase
trajectory is first estimated from signal segments that are short enough for the phase to
be considered stationary; essentially a snapshot of the phase in time. The slope of the
line fitted to the phase angles using least squares is proportional to the offset frequency.
In addition, the least squares fit method handles nonlinear phase trajectories caused by
second order offset frequency effect. This is not possible with he power law method.

3.2. Signal Model

An MPSK signal is modeled as follows

s(t) =
√

Pej(2π fct+φm) + n(t), m = 0, 1, . . . , M− 1 (7)

φm ∈ {
2πm

M
, m = 0, 1, . . . , M− 1} (8)

where P is the received carrier power, fc is the carrier frequency and φm is the original
constellation vertices. The local oscillator offset frequency fd creates a time varying phase
offset θ(t) = 2π fdt. Therefore, the offset frequency is the the slope of the phase trajectory.
The basebanded signal for the kth symbol is

rk = ik + jqk =
√

Pej(φk+θk) + noise (9)

The discrete model for the phase offset is {θk = 2π fdt, t = kTs, k = 1, 2, . . . K} where
Ts is the symbol length and K is the number of symbols in the block used to estimate phase
rotation. Successive symbols rotate by 2π fdTs radians away from their nominal positions.
This movement forms an arc over time thus causing a smearing effect shown in Figure 4.
To correct for this rotation, an estimate of θk, θ̂k, must be found and used to recover fd and
derotate the block of symbols. The maximum symbol rotation over a block is T = KTs.

Offset frequency estimation can be achieved by first estimating the phase trajectory.
The estimation of θ(t) is performed over short blocks of length T to assure phase stationarity,
i.e., {θ(t) ≈ θk, t ∈ T}. Therefore, there is one phase estimate per block of data. The quantity
fdT is the fractional rotation of the constellation over 2π for the block length T. This quantity
must be kept small for two reasons. One, smaller fdT means a finer sampling of the phase
curve. This is important in capturing phase nonlinearity by piece-wise linear modeling.
Two, large fdT pushes the symbols beyond their original symbol quadrant. This effect can
be seen in Figure 4b where symbols in the first quadrant have been pushed to the second
quadrant. What constitutes short or long segments is explained in the following section.

4. Results

This section implements the proposed radiometric identification using simulated and
real data. First, data are corrected for offset frequency and used to reverse the time varying
phase offset. Second, the proposed algorithm that is governed by rule (6) is implemented
producing confusion matrices.

4.1. Signal Phase and Offset Frequency Correction

Data are simulated for a QPSK signal subject to local oscillator frequency offset. Table 1
shows the simulation parameters.

The phase curve is built from the estimates of the instantaneous phases computed
from signal blocks short enough to insure stationary phase. Each block of data generates
one phase estimate. Multiple blocks define a segment where symbols rotate a maximum
of 5.62◦.
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Table 1. Simulated data used for carrier recovery.

Item Value

Modulation QPSK
Symbol rate 1000/s
Block length 0.312 s

Symbols/block 3120
No. of blocks 8

Segment length 2.5 s
Total no. of symbols 2504

Max. rotation per block 5.62◦

Total rotation per segment 45◦

Offset frequency ( fd) 0.05 Hz
SNR 20 dB

Figure 5 shows the process by which instantaneous phase values are gathered and
used in the model fitting step. This step can also be explained as the sampling of the phase
curve. The symbol phases per block are histogrammed followed by fitting a polynomial.
The peak of the polynomial is θ̂k for the kth block. This step is repeated over multiple
blocks and shown in Figure 5a–f. The estimated phases {θ̂k, k = 1, 2, . . . , M} define the
linear phase trajectory the slope of which determines fd. Figure 6 is the least squares fit of
the phase model to the data. Figure 6a,b correspond to SNR = 20 dB and 10 dB, respectively.
Figure 6c illustrates that a nonlinear phase trajectory can be modeled and tracked as well.
The estimated f̂d = 0.0505 Hz and f̂d = 0.0455 Hz at SNR = 20 dB and 10 dB, respectively.
The true offset frequency is 0.05 Hz.
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Figure 5. Phase trajectory build by estimation of phase rotation per block. Block lengths are chosen short enough to keep
the phase trajectory linear. (a) Phase offset snapshot 1, (b) Phase offset historgram used for phase estimation, (c) Phase offset
snapshot 2, (d) Phase offset historgram used for phase estimation, (e) Phase offset snapshot 3, (f) Phase offset historgram
used for phase estimation.
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Figure 6. The offset frequency fd is the slope of the phase trajectory θ = 2π fdt. The least squares fit to the estimated phase
values is used to estimate the slope. f̂d = 0.0505 with fd = 0.05. This approach works for nonlinear phase trajectory as well.
(a) SNR = 20 dB, (b) SNR = 10 dB, (c) Quadratic fit to time varying phase angle.

Symbols rotate by 2π fdT radians over the length of a block. This rotation must be
kept to a small fraction of the quadrant that the symbols belong to. For example, in QPSK,
each quadrant is π/2 radians. The proper block length is guided by the modality of
phase histograms. A unimodal phase histogram with a distinct peak indicates that phase
variations remain close to the nominal value, Figure 7a. For large 2π fdT, either due to
large fd or long block length T, the histogram becomes multimodal with no distinct peaks,
Figure 7b. Another disadvantage of large fdT is the 2π phase ambiguity where symbols
move around the circle multiple periods.
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Figure 7. Phase offset histogram is unimodal for small fdT, (a). Longer data blocks cause phase
smearing illustrated by a broad phase angle histogram, (b). (a) Small phase offset, 6◦, (b) Large phase
offset, 26◦.

4.2. Radiometric Identification

We now apply the proposed radiometric identification method to the signals gener-
ated by the following waveform generators or standards: Agilent [54], Viasat EBEM [55],
Teledyne Paradise [56], KRATOS Real Time Channel Simulator (RTsim) [57], and USRP [58].
The data have QPSK modulation sampled at 2.95 MHz for a total of 35 million symbols
per model. Figure 8a,b show signal constellations that are affected by varying amount of
smearing. Figure 8b is a particularly sever case due to the large fdT product causing sym-
bols to rotate potentially multiples of 2π. Following the estimation of fdT and derotation
of symbols, the original constellation is restored in Figure 8c. Figure 9 is a close up of six
constellations after all phase and frequency offsets have been removed. The task now is
to attribute the signals to individual sources. Given the similarity of the constellations in
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structure and features, it is clear that radiometric identification is a much more challenging
problem than conventional signal classification based on modulation information.

(a) (b) (c)

Figure 8. The signal constellation for EBEM signals suffers smearing due to varying amount of fdT, (a,b). Smearing is com-
pletely reversed after phase offset correction. (a) Limited phase offset, (b) Phase offset of multiples of 2π, (c) Constellation
after phase and frequency offset correction.
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Figure 9. Six constellations from six different sources are corrected for phase and frequency offsets and
used for training and testing. There is noise of unknown strength already in the data. Constellation
similarities illustrate the difficulty of radiometric identification by feature extraction.

4.3. Class Confusion Matrices

Training the classifier involves the computation of 5 matched whitening matrices,
Wi, i = 1, 2, . . . , 5. The data consists of 35 million symbols taken from QPSK modulated
signals originating from five different radios. The training set consists of 5× 105 symbols
which is about 1.4% of the total data. The Majority Vote Classifier needs a voting scheme.
Votes are generated by dividing the data into 72 blocks of 5× 105 samples each. Each
block generates one vote which is then tabulated over the entire signal length. The test
blocks are drawn from an “unknown" source, corrupted by Gaussian noise and repeatedly
projected on whitening matrices corresponding to each source. The Förstner-Moonen
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distance is used to compute the mode function in (6) leading to the compilation of the
confusion matrices.

Before creating the confusion matrices, the behavior of the Förstner-Moonen distance
measure needs to be studied. According to (3), as the process is increasingly whitened,
the Förstner-Moonen distance between the whitened covariance matrix and the identity
matrix is narrowed. The theoretical minimum distance is zero for white noise. To test for
this behavior, two random variables with adjustable correlation coefficients are created and
placed in a two-column matrix. The covariance of this matrix is calculated as a function of
correlation values and the corresponding Förstner-Moonen distance is plotted. The results
are plotted in Figure 3. As Figure 3a shows, the distance is an increasing function of
correlation, reflecting that the covariance matrix is moving away from that of a white noise
process for increasing correlation. This is expected.The second property of the Förstner-
Moonen measure is that the unknown data is closer to a white noise process when whitened
by its own whitening transformation than any other, hence matched whitening. To show
this property, the data from Agilent is whitened by its own whitening matrix and then by
the whitening matrix of Viasat EBEM. Distance calculations are performed over 40 blocks
of data and plotted in Figure 3b. What stands out is that the Förstner-Moonen distance for
the Agilent data is almost always less than that when the Viasat EBEM whitening matrix
is used. This behavior is expected, meaning that a correct decision is made every time it
happens. This count is essentially the basis for populating the confusion matrices over
all sources.

Following the above observations, the corresponding confusion matrices can now be
computed and are shown in Table 2. The numbers indicate the percent of correct votes cast
for each source over 72 frames of the test data. Note that the mode classifier in (6) looks for
a plurality of the votes to pick a winner. It’s a hard voting scheme. For example, Paradise
has received only 77.1% of the votes but the unknown signal is still correctly classified to
Paradise. Therefore, Table 2 indicates 100% correct classification. Confusion matrices can
be used in a soft voting scheme as well by keeping the actual vote percentages.

Next, we investigate the impact of smaller data sets and added noise above and
beyond what is already in the data. The total sample size is now 107 which are broken
into blocks of a quarter million samples each translating to less than 100 msec. This length
generates 40 blocks that are used to get classification statistics in the form of confusion
matrices. Table 3 shows the results @ SNR = 15 dB added Gaussian noise. This is above
and beyond what is already in the data. All sources are identified correctly except for
KRATOS RTSim which is identified as Teledyne Paradise. Even then, the 2.5% difference is
well within the statistical variations of the run. The precent correct classification numbers
for each source show a large drop compared to Table 2 but the majority voting scheme
still makes the correct decision, albeit at a reduced margin. For example, Agilent data
are correctly associated with Agilent only 30% of the time but that is still higher than any
others. Tables 4 and 5 repeat the process for SNR = 5 dB and 0 dB. Even though the rates
and margins are lower, the majority vote scheme still picks the correct class. When margins
are low, statistical variability plays a role in making correct source identification. Notice
that the large margin of USRP in Table 2 helps it largely maintain correct identification even
at 5 dB SNR in Table 4. To show how dire the situation is, Figure 10 shows the constellation
in SNR = 5 dB noise. The lack of identifying features is evident throughout. Note that
RTSim and Paradise are tied. This difficulty is of course reflected in Table 4 as well but
correct identification is still possible. Four out of five sources are correctly identified and
the fifth one is tied. Table 5 is the extreme case of SNR = 0 dB. EBEM and Paradise are still
correctly identified.
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Figure 10. Constellations in SNR = 5 dB noise. Constellation structures have practically disappeared,
yet the source identification is still largely possible.

Table 2. Five source cross classification rates.

Agilent Viasat EBEM Paradise RTSim USRP

Agilent 91.4 0 0 8.6 0
EBEM 0 100 0 0 0

Teledyne Paradise 0 0 77.1 0 22.9
KRATOS RTSim 0 0 0 100 0

USRP 0 0 0 0 100

Table 3. Reduced data set Table 2 @ SNR = 15 dB.

Agilent EBEM Paradise RTSim USRP

Agilent 30.0 22.5 12.5 0.0 22.5
Viasat EBEM 15.0 85.0 0.0 0.0 0.0

Teledyne Paradise 5.0 2.5 77.5 2.5 12.5
KRATOS RTSim 2.5 12.5 22.5 20.0 15.0

USRP 22.5 0.0 20.0 0.0 57.5

Table 4. Same as Table 3 @ SNR = 5 dB.

Agilent EBEM Paradise RTSim USRP

Agilent 22.5 20.0 7.5 15.0 17.5
Viasat EBEM 10.0 80.0 2.5 0 5.0

Teledyne Paradise 15.0 0 52.5 12.5 10.0
KRATOS RTsim 12.5 20.0 12.5 12.5 15.0

USRP 35.0 2.5 20.0 2.5 37.5
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Table 5. Same as Table 3 @ SNR = 0 dB.

Agilent EBEM Paradise RTSim USRP

Agilent 17.5 27.5 17.5 5.0 10.0
Viasat EBEM 20.0 60.0 5.0 2.5 2.5

Teledyne Paradise 15.0 5.0 27.5 17.5 15.0
KRATOS RTsim 7.5 22.5 10.0 15.0 12.5

USRP 20.0 12.5 17.5 2.5 17.5

4.4. Comparisons

A comprehensive comparison of SVM, CNN and D(eep)NN are reported for six
radios in [13]. The correct classification rates are 44.8% (SVM), 82.4% (CNN) and 71.9%
(DNN). However, in the absence of accepted benchmarks for radiometric identification,
which do not exist, pure numerical comparison are not conclusive. Factors such as the
complexity of the algorithm, processing speed, training data size and other assumptions
are considered, the comparison is difficult. Even the choice of radios or protocols are
not common. The reported training sample size in [13] is 10% whereas it is 1.4% here.
More importantly, no carrier recovery step reported. By assuming perfect phase and
frequency alignment at the local oscillator, no mitigation for constellation smearing of the
kind reported here has been carried out. This is a significant omission. There is also no
noise in the system. Dealing with high dimensionality is another factor. The whitening
transformation is featureless thus bypassing the dimensionality reduction whereas feature
vectors extracted in [10] have 960 dimensions. RF device fingerprinting in the cognitive
Zigbee networks shows good accuracy (≈90%) but at high SNR (≥20 dB) [15]. In [19],
the input data are preprocessed as Hilbert spectrum gray-scale images, and achieves
acceptable accuracy under moderate SNR levels (Avg 70% accuracy rate for SNR of 15 dB).

5. Conclusions

The problem addressed in this paper is the attribution of a signal to an unknown source.
Previous approaches have been based on feature extraction, dimensionality reduction and
some implementation of a minimum distance classifier. The approach here proposes the
degree of whiteness of the transformed data as a signature for radiometric identification of
the signal. It’s a featureless approach that skips feature extraction by using the raw IQ data.
This formulation demands minimal computational load compared to PCA or deep learning
methods. There are two other features that make the algorithm stand out. One is using real
data captured by satellite radios. The other is addressing carrier and phase recovery by
reversing the embedded phase and frequency offsets as a preprocessing step. Algorithms
that are tuned to the data assuming perfect carrier capture will fail in practice. This work
can be extended in a number of ways, such as expanding the radio source database to
military and commercial radar, wireless broadcasts, modeling time varying frequency
offsets and a more broad comparison with the competing deep learning methods.
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