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Abstract: The substantial advancements offered by the edge computing has indicated serious evolu-
tionary improvements for the internet of things (IoT) technology. The rigid design philosophy of
the traditional network architecture limits its scope to meet future demands. However, information
centric networking (ICN) is envisioned as a promising architecture to bridge the huge gaps and
maintain IoT networks, mostly referred as ICN-IoT. The edge-enabled ICN-IoT architecture always
demands efficient in-network caching techniques for supporting better user’s quality of experience
(QoE). In this paper, we propose an enhanced ICN-IoT content caching strategy by enabling artificial
intelligence (AI)-based collaborative filtering within the edge cloud to support heterogeneous IoT
architecture. This collaborative filtering-based content caching strategy would intelligently cache
content on edge nodes for traffic management at cloud databases. The evaluations has been con-
ducted to check the performance of the proposed strategy over various benchmark strategies, such
as LCE, LCD, CL4M, and ProbCache. The analytical results demonstrate the better performance of
our proposed strategy with average gain of 15% for cache hit ratio, 12% reduction in content retrieval
delay, and 28% reduced average hop count in comparison to best considered LCD. We believe that
the proposed strategy will contribute an effective solution to the related studies in this domain.

Keywords: information centric networking; internet of things; collaborative filtering; edge cloud;
content caching

1. Introduction

In recent years, the advancements in the internet of things (IoT) technology has
gained a lot of popularity. Today, investigation on different forms for providing IoT as
a solution is attracting both industry and academia, as well as seeking attention more
than ever [1,2]. Unlike Wireless Sensor networks (WSNs), IoT offers tremendous scope for
nodes and their connections. The recent progress ensures easy utilization of IoT in various
applications, which include, but are not limited to, smart grids, smart education, intelligent
transportation systems, e-healthcare, smart industries, smart agriculture, smart cities,
smart homes, and wearables [3]. Due to the plethora of applications support from various
disciplines, IoT has now become a bridge between human and real world for information
communication. These extensive IoT applications, with almost different nature, have
introduced complications in existing wireless communication systems and have, therefore,
formed a heterogeneous IoT for today’s real information world. Although the current
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developments in mobile communication, with its newly launched 5G, offer enhanced
mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-
reliable and low latency communication (URLLC), still, these heterogeneous IoT always
possess higher requirements in terms of reliable connection, low cost, high speed, minimum
delay, and scalable communication [4]. Due to limited resource constraints, such as storage
and computing with IoT devices, these complex and diverse requirements of heterogeneous
IoT tasks can be computed by effective utilization of cloud computing technology, where a
network cloud has abundance of these resources. The ever-increasing growth in the IoT
technology has offered various advanced functions to several IoT devices. For example, a
smart phone today can perform various computations that was earlier possible only using
computers or laptops. This simply corresponds to cloud computing in close proximity to
users. However, with the massive data being generated by these heterogeneous IoT devices
and extremely high latency offered during IoT to cloud communication, the simultaneous
access by several IoT devices have demanded high bandwidth requirements. Therefore,
the conventional single cloud computing model cannot satisfy all these requirements to
meet quality of experience (QoE) [5]. The edge computing has been extended as a layer
between cloud and IoT in this process of advancements to provide significant solution [6].
The edge cloud offers sufficient resources for computation and storage requirements [7].
Indeed, the different features offered by this edge computing model has provided various
solutions in different domains, but it still faces different challenges, and research in this
field is in its infancy [8]. The edge computing itself lacks intelligent computation and
communication. The intelligent decision making for different computations based on
different scenarios can be implemented by deploying artificial intelligence (AI) technology
in the edge cloud and central cloud. The intelligent algorithms were generally deployed
on these clouds to make them work smarter. The various fields where AI has proved
its effectiveness include robotics, image processing, natural language processing, speech
recognition, and so on [9]. Recently, cloud computing has started using AI’s cognitive
services to offer better QoE. Moreover, the delays involved in current internet architecture
for IoT content distribution due to its IP address-based approach where content has to be
fetched from target device offers various challenges. This can be managed efficiently by
leveraging information centric networking (ICN) communication in IoT and is referred as
ICN-IoT [10,11].

To facilitate enhanced network performance, this study aims to achieve faster content
distribution for IoT device user’s requested content in support to higher cache hit ratio,
reduced delay, and low path stretch. The integration of ICN with IoT would support
fast searching based on content names, as well as caching of content, within network
nodes. The edge cloud would offer low overhead to central cloud for request process-
ing, as well as low delay to user requests. The AI deployed in edge cloud would be
utilized for making intelligent decision in regards to requested content caching on edge
nodes. Our proposed solution for effectively managing the massive traffic flows on the
central cloud mainly considers caching of frequently requested contents at edge clouds
which are in near proximity to IoT end users. The proposed solution leverages collab-
orative filtering and k-means clustering techniques for making intelligent caching deci-
sions at edge nodes. Indeed, various studies in literature do exist for dealing with these
challenges. Similar to this, the authors in Reference [12,13] proposed use of small dis-
tributed data centers in entire network to reduce burden at core cloud network, and some
works [14–16] offer prefetching of content at edge nodes to alleviate and control back-haul
traffic. Although the concept of collaborative filtering was utilized by various online busi-
ness applications, websites and live streaming services for generating recommendations
for user’s preferences, yet, found its application in networking domain after the proposal
presented in Reference [17]. The author presented effective benefit for content placement
decision based on collaborative filtering. However, this could also be used as a improved
solution for various other challenges, such as traffic bottlenecks, bandwidth wastage, and
timely content delivery. Despite its several uses in various applications [18–20], item-based
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collaborative filtering in support to better QoE is still not properly utilized in networking
and communication. In addition, this concept has been mainly implemented in the net-
works supporting TCP/IP architecture, which further degrades system performance due
to its target-based delivery approach.

Considering benefits associated with the combination of all these technologies, such
as ICN-IoT, cloud computing, and edge computing, along with the deployment of AI, our
main focus is on designing AI-enabled edge model for intelligent content caching strategy
which is suitable for heterogeneous IoT architectures to effectively manage massive traffic
flow on central clouds.

To this end, following are the contributions made in this paper:

• We propose an enhanced ICN-IoT content caching strategy by enabling AI’s collabora-
tive filtering within edge cloud to support heterogeneous IoT architectures for traffic
management at conventional cloud computing model. An architecture is designed
by combining ICN-IoT, edge, cloud, and AI for heterogeneous IoT applications to
provide an enhanced hardware model which support user’s QoE.

• We propose a content-based collaborative filtering caching technique for intelligently
caching content on edge nodes. Through the combination of a wireless communication
model, and collaborative filtering caching model of edge nodes, a content fetching
algorithm is designed to retrieve user’s data efficiently.

• We perform extensive simulations to validate the effectiveness of our proposed scheme
over state-of-the-art caching strategies, such as LCE, LCD, ProbCache, and CL4M. The re-
sults obtained from experimentation prove that our proposed scheme significantly
achieves higher cache hit ratio. In addition, the proposed scheme is efficient to achieve
lower content delay and reduced path stretch when compared to these strategies.

The rest of this paper is structured as follows: Section 2 provides brief discussion on
the related work in this domain. The system model of our proposed strategy, along with
its major components, is presented in Section 3. In Section 4, the detailed description of
our proposed design, while considering content caching based on collaborative filtering,
is given. The performance of the proposed approach is evaluated in Section 5. Finally,
the conclusion of this study is presented in Section 6.

2. Related Work

This section represents some recent studies in relation to IoT, ICN, edge computing,
and artificial intelligence, either as an individual technology or in combination for designing
efficient caching strategies. The studies of these works would be beneficial to justify
our motivation for conducting this study and support academic achievements in the
research field.

2.1. IoT and ICN

With ever-increasing traffic on the internet due to several connected IoT devices,
the management of each IP-based content request following conventional network archi-
tecture has started to impose a challenge for its performance. Combining IoT with ICN,
the work in Reference [21] focused on incorporating ICN in IoT. The benefits gained by
IoT from ICN and various challenges being addressed through this combined architec-
ture is introduced in this study. The works in Reference [21] continued research in this
combined field and addressed various issues in this combined architecture by introducing
ICN-based IoT architecture. Further, work in Reference [22] listed comparison of IoT inte-
gration with different CCN standards and offered some improvements towards data traffic
management. In order to reduce the energy consumption in IoT networks, an ICN-based
forwarding strategy for data transmission was proposed by Reference [23]. The work
in Reference [24] investigated a unique naming scheme for smooth interest packet flow
between NDN-IoT-based regions. Similarly, management of the data packet overhead
was discussed in Reference [25]. Similarly, working towards energy efficiency, the work
in Reference [26] proposed an ICN by combining with specific IoT approach called TSCH.
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Further, the authors in Reference [27] proposed a context-based approach for IoT data
communication utilizing ICN architecture. The approach mainly focused on correct routing
and forwarding of information with management of FIB and PIT data structures. Moreover,
Quevedo et al., in Reference [28], presented various caching strategies while considering
bandwidth and energy issues faced by this integration. Generally, cache schemes focus
on providing solution to three issues namely which location is best suited to cache data,
what content should be cached and how the content to be stored. The default caching
scheme is Cache Everything Everywhere (CEE) [29], where each intermediate node locally
caches each piece of content which passes through it. The policy is straightforward but
results in high content redundancy. The simple location-based caching is Leave Copy
Down (LCD) [30], which locates content at the node, i.e., one level below where cache hit
occurs along the delivery path. However, due to frequent requests of popular contents,
at some instance, all nodes will have a copy of same content, leading to cached content
duplication, as well as cache full. The prob(p) [30] is another simple yet stateless caching
scheme where content on routers are cached based on some probability. The scheme does
not consider the router’s location while making a caching decision. To resolve the loca-
tion issue, ProbCache provides high probability for caching when content is near to the
consumer [31]. The scheme manages to reduce redundancy but at the cost of low cache
utilization of the node far from the consumer. To support chunk level caching, WAVE,
based on content popularity and nodes co-ordination, was proposed [32]. The approach
is similar to LCD and differs by caching content exponentially at the neighbor based on
frequency of content. The scheme stores frequent requests near the edge router but does
not consider data packet caching time.

The various broad caching strategies, such as probability-based [30,31], popularity
aware [33,34], reactive caching [30,32], proactive caching [35,36], and non-cooperative [29,36],
were designed for various areas, such as mobile devices, IoT, 5G, vehicular networking,
ad hoc networks, etc. However, these strategies do not fit for an environment with limited
resources due to their own limitations, in one way or another. For non-cooperative caching,
every node individually makes a caching decision on whether to cache content or not,
hence resulting in cache redundancy and no effective utilization of resources.

To address the problems in non-cooperative caching, researchers focused on design
of cooperative caching schemes for ICN. In cooperative caching, network nodes work in
collaboration with others for making caching decision.

2.2. IoT and Edge Computing

The support for IoT applications using edge computing model was presented by
authors in Reference [37]. The performance comparison in terms of energy efficiency and
content fetching delay was conducted to highlight importance of edge in IoT. Further,
researchers in Reference [38] focused on challenges faced by current approaches of IoT and
recommended use of fog computing in IoT scenarios based on several reasons. The study in
Reference [39] analyzed the security aspects offered by IoT-fog computing when compared
with IoT-clouds. Sarkar et al., in Reference [40], investigated the suitability of fog computing
for meeting the requirements from various heterogeneous IoT applications which, in
reality, are not feasible to accomplish with use of traditional cloud model. The work in
Reference [41] presented different new approaches for combining in IoT architecture and
discussed the benefit of incorporating mobile edge computing (MEC) in IoT, which itself
adopted the fog computing model. In addition, the researchers in Reference [42] proposed
a model for agreement of resources. The work was mainly focused around achieving
efficient resource management and demonstrating its effectiveness after evaluation on the
cloudSIM toolkit. The study in Reference [43] proposed a model for supporting reasonable
and effective communication among IoT devices. The algorithm used the concept of
matching theory for accomplishment of node pairs. Further, the feasibility while combining
fog computing with smart gateways was analyzed in Reference [44]. The authors in
Reference [45] proposed home-box networks for efficient content delivery in peer to peer
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overlay networks. The design architecture considered several delays to improve the service
performance in the IoT domain.

Moreover, given limitations offered due to inflexible design of Fog-IoT architecture to
meet current demands, the work in Reference [21] proposed smart collaborative caching
by leveraging ICN for IoT in a fog environment. the solution was designed to achieve
content caching, node location tracing, and resource sharing. Further, the authors in Ref-
erence [46] proposed a joint optimization solution for fog-IoT networks which basically
deals with issues related to content caching, computation offloading, and resource sharing.
The paper proposed a solution based on actor-critic-reinforcement learning to solve joint
optimization issues. Similarly, working on 3C, i.e., computation, caching, and commu-
nication, Luo et al. [47] proposed an efficient algorithm based on an iterative task team
formulation method for solving these issues as a subproblem, with minimum possible
cost. The researchers in Reference [11] proposed a fog-based caching scheme in an IoT
environment by utilizing ICN. The proposed solution worked towards offering minimum
latency to user content requests by providing content near to edge networks based on its
popularity. Working in the same direction to offer minimum service delay to IoT nodes
while reducing energy consumption, work in Reference [48] proposed smart clustering
mechanism by utilizing both fog nodes (FNs) and terminal nodes (TNs).

2.3. Artificial Intelligence in Edge Caching

The artificial intelligence in terms of machine learning and deep learning can be
applied to wireless edge networks for deciding what content to cache and where to cache
so that caching objectives are optimized. The authors in Reference [49] proposed a caching
scheme which predicts the popularity of the new video based on the similarity of features
which are already present in the published video. The work in Reference [50] proposed
popularity-based supervised and deep learning framework for caching at base stations
in mobile edge computing networks. Further, the work in Reference [51] considered
learn-to-rank algorithm and k-means clustering for caching content in small networks.
The scheme aims to maximize cache hit ratio (CHR), and the solution of optimization
problem is NP-hard if content popularity is not known. The algorithm was designed based
on historical content requests. The works in References [52,53] presented proactive learning-
based caching at small base stations and user equipment to meet user satisfaction ratio.
Chang et al. [54] presented a big data and ML-based framework for caching content inside
edge networks. The smart caching in edge networks was explained using two case studies,
where the first was designed by combining unsupervised learning and deep learning, and
the second was using social ties between end users. The reinforcement learning is also used
by many studies for deciding content caching. The learning process of an RL agent can be
modeled as optimal control of a Markov Decision Process (MDP). Based on this, the work
in Reference [55] presented base station-based distributed caching and delivery framework.
The cache replacement transmission was minimized using an MDP optimization solution
based on variables, such as popularity and transmission cost of cache replacement from
one base station to another. The model uses the Q-learning approach for transmission
cost minimization. The authors in Reference [56] proposed deep reinforcement learning
approach for content caching and network slicing in vehicular environment. The work in
Reference [57] proposed multi-tier content caching based on deep Q-learning to support
improved performance in radio access networks. The comparison of different works based
on several parameters is represented in Table 1.



Sensors 2021, 21, 5491 6 of 17

Table 1. AI-based caching techniques.

Ref
Machine
Learning

Technique
Algorithm Objective Caching

Strategy
Caching
Location Network

[49] Supervised CNN
High

computation
offloading ratio

Proactive Base station wireless cellular

[50] Supervised DNN
Reduced
content

retrieval delay
Proactive Base station Mobile edge

computing

[51] Supervised and
unsupervised Learn-to-rank Improved cache

hit ratio Reactive Small base
station

Small cell
network

[52,53] Supervised NA
High user

satisfaction
ratio

Proactive Base station,
user equipment

Small cell
network

[54] Unsupervised DNN
Minimize

latency, High
data rate

Proactive Mobile base
station Hetnet

[55] Reinforcement
learning Q-learning

minimum cache
replacement
transmission

cost

Proactive Base station,
user equipment Macro cellular

[56] Reinforcement
learning Deep RL maximum

cache hit ratio Reactive V2I Radio access
networks

[57] Reinforcement
learning

Deep
Q-learning

maximum
cache hit ratio Proactive

Base station,
user equipment,

access point

Radio access
networks

3. System Model

This paper considers an ICN-based heterogeneous IoT environment. The users in this
network can send message to content providers to receive required content [4]. A three-tier
network architecture serving various IoT applications is presented in
Figure 1. Layer 1, also known as the top layer, represents the core network compris-
ing various cloud servers. These servers are assumed to have all the data demanded by
the users. In addition, these servers maintain records of all access history from various
edge nodes (ENs) that it serves. The middle layer (layer 2) is mainly comprised of several
ENs, where each EN is connected with number of end users. The several users from
diversified ICN-IoT applications constitute the bottom layer of this architecture. Here, we
represent all ENs as set EN = {EN1, EN2, . . . , ENM} for M number of total available ENs
in the network. The users in the network are represented as set U = {u1, u2, . . . , uK} for K
number of total users, where each user may have varying preferences. The cloud server
stores total Ncontents and can be represented as set C = {c1, c2, . . . , cN}, where each piece
of content is assumed to have equal size of T Mbits. Moreover, each piece of content is
supposed to have set F of J attributes, F = { f1, f2, . . . , f J}, where each attribute denotes
some feature. For example, if content represents clothes, the attribute may specify the
genre of the clothes, such as western, fashion, ethnic, indo-western, etc., with each piece of
clothing having an index value between 0 and 1 for each genre. For instance, a western
piece of clothing with lots of cuts and short length may be assigned larger index value for
its style and fashion attributes.

Based on Tables 2 and 3, for each EN and content, the sum of all the values of the
attributes is equal to 1, i.e., ∑J

i=1 fi = 1 for every C and EN.
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To calculate the number of times a specific content Cq has been requested by any ENp,
a history of requests is created, as shown in Table 4. The value of particular cell REQp,q is,
therefore, calculated as :

REQp,q =
ENp ∗ Cq

J
≤ 1. (1)

Here, ENp represents rows in Table 2, and Cq represents columns in Table 3. On the
other hand, the value for cell REQp,q can also be retrieved from history by setting REQp,q
to the fraction of times content Cq has been requested by ENp among all content requests.
This REQ is important and would be useful for deciding the content placement inside ENs.

E-transportation

Smart Education
Smart Agriculture

Smart Home

Digital
healthacare

Heterogeneous
ICN-IoT

Base
Station

Base
Station

Router

Router

Edge Cloud Edge Cloud

Layer
2

Content name
based searching Content name

based searching

Collaborative
filtering
based

caching at
each router

Cloud serverCloud serverCloud server

Layer
1

Layer
3

Gateway Gateway

Figure 1. Three-tier network architecture.

Table 2. EN features.

Edge Nodes/Features f 1 f 2 · · · f J

EN1 · · · · · · · · · · · ·
EN2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
ENM · · · · · · · · · · · ·

Table 3. Content features.

Features/Contents C1 C2 · · · CN

f1 · · · · · · · · · · · ·
f2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
fJ · · · · · · · · · · · ·

The cloud center is a huge database with capacity equal to vol. All the content
requested by IoT user can be provided through a traditional cloud data center but with
longer delays due to congestion bottleneck. The edge nodes on edge clouds can cache some
content frequently requested by users to offer reduced latency. To provide simplicity to our
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design approach, we consider homogeneous cache capacity for each edge node. Therefore,
we assume each EN is equipped with cache of equal size, say SizeL, such that

SizeL = vol ∗ ρ, (2)

where ρ contains a value between 0 and 1, i.e., 0 < ρ < 1, and vol represents the total
capacity of the cloud server database. SizeL denotes a very small cache space available to
each EN as compared to total volume vol.

Table 4. REQ: History of requests.

Edge Nodes/Contents C1 C2 · · · CN

ED1 · · · · · · · · · · · ·
ED2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
EDM · · · · · · · · · · · ·

In our design model, we consider dividing the cache size of each EN into two equal
halves, where one half, i.e., SizeL1 = SizeL

2 , is used for caching the content based on
EN’s local popularity Lp for each EN. SizeL1 contains a set of Z most popular contents
C1, C2, . . . , CZ arranged in descending order of their popularities. The content ranking
depends on the value of Pop, where PopENp ,Cq represents the popularity of Cq in edge
node ENp. This Pop value can be obtained from REQ (history of requests). The other
half of cache space, i.e., SizeL2 = SizeL − SizeL1, is used to cache V contents based on
content-based collaborative filtering technique. Both cache spaces are utilized to perform
content placement during off-peak hours so as to minimize network traffic in peak hours.

4. Proposed Framework

The AI-enabled content placement and caching among edge nodes to support hetero-
geneous IoT applications is proposed using collaborative filtering technique.

4.1. Edge Clustering

In order to obtain benefit from intelligent content caching strategy, all the edge nodes
are partitioned into several clusters [48]. Based on the entries present in REQ (Table 4),
where values can be obtained using Equation (1), we apply k-means clustering to group the
ENs into G clusters (CLs), i.e., CL1, CL2, . . . , CLG [58]. We use cosine distance metric (refer
to Equation (3)) to calculate the distance between any pair of ENs, say ENi and ENj [52].
ENs which belong to the same cluster are going to have distance values approximately
near to 0, whereas ENs belonging to different clusters will have distance value near to 1.
Moreover, the zero value represents the EN is locating exactly in the middle of two CLs.

dist(ENi, ENj) = 1−
∑N

m=1 REQi,mREQj,m√
∑N

m=1(REQi,m)2
√

∑N
m=1(REQj,m)2

. (3)

Here, REQi,m represents the number of requests ENi has made for content Cm.
Further, to decide the optimal number of CLs, there are various methods already

available in the literature. We used Silhouette coefficient method as a metric for deciding
the efficiency of clustering method [59,60]. This method is generally used to estimate
how much certain observation fits to its cluster. To decide the optimal number of clusters,
the average silhouette coefficient is calculated for every possible number of clusters, and
the one with the highest average silhouette coefficient value is chosen.
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4.2. Edge Caching

As discussed in the previous section, each ED is equipped with certain cache space,
i.e., SizeL. Out of total available space, one portion, i.e., SizeL1, is used to cache contents
based on the local popularity of the content. However, the rest of the portion SizeL2 is
used to cache content based on the highest probability of content to be requested in future.
To predict the probability of future requests for available contents, we apply content-based
collaborative filtering. To proceed in this direction, firstly, the similarity index between any
two pair of contents says Ci and Cj is being calculated using cosine coefficient as given in
Equation (4) [53].

Sim(Ci, Cj) =
Ci ∗ Cj

‖ Ci ‖ ∗ ‖ Cj ‖
=

∑J
b=1 Cb,i ∗ Cb,j√

∑J
b=1(Cb,i)2

√
∑J

b=1(Cb,j)2
. (4)

Here, Ci and Cj are the ith and jth contents being represented as a column in Table 3,
and b is the bth feature from total available J number of features. In contrast to the cosine
distance coefficient, cosine similarity coefficient has value 1 when two contents are similar.
The value 0 represents no similarity between two contents. The similarity index between
the same file will always result to value 0, i.e., sim(Ci, Ci) = 0 for all i (refer to Table 5).

Using Tables 4 and 5, we construct a content prediction table CP (Table 6), where CPi,j
can be calculated using formula:

CPi,j =
N′

∑
d=1,d 6=j

sim(Cd, Cj) ∗ REQi,d. (5)

Here, N′ represents set of all the contents requested by EDi. The higher value of CPi,j
represents high probability of content Cj being requested by edge node EDi. Based on the
prediction results, EDi will cache contents with high future request probability in to its
SizeL2 space.

Table 5. Content similarity.

Similarity C1 C2 · · · Ci · · · Cj · · · CN

C1 0 · · · · · · · · · · · · · · · · · · · · ·
C2 · · · 0 · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 0 · · · · · · · · · · · · · · ·
Ci · · · · · · · · · 0 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · 0 · · · · · · · · ·

Table 6. CP: Content prediction.

Prediction C1 C2 · · · Ci · · · Cj · · · CN

ED1 · · · · · · · · · · · · · · · · · · · · · · · ·
ED2 · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
EDM · · · · · · · · · · · · · · · · · · · · · · · ·

4.3. Content Fetching

Based on the content caching scheme discussed above, each ED caches content in its
allocated space. Each user Ux must be associated with at least one ED, based on the nearest
distance rule. Considering a request for a content Ci by user Ux from an edge device EDj,
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the local cache of EDj would be checked first to determine if it contains requested content
Ci. In case of a match, Ci would be delivered to Ux locally. On the other hand, if EDj does
not cache a copy of Ci, it will start searching Ci among all the EDs belonging to its own
cluster CLs. If Ci is cached by any of the EDs belonging to CLs, it would be delivered to
Ux without caching in to EDj. Otherwise, in case of search failure inside CLs, the content
would be requested from central cloud server and would be cached locally inside EDj,
based on LRU replacement policy. Algorithm 1 explains the content fetching procedure.
The likelihood of the content requests generated by users is based on the history of requests
(refer to Table 4). Each user would be connected to same ED for a duration that is long
enough to allow full content delivery.

Algorithm 1: Content Searching Ci.

Input: Ux associated with EDj
Output: Ci
Begin:

1 For each Ci requested by Ux do
2 Check Ci in EDj’s cache
3 if (((SizeL1, SizeL2)← check (Ci) ) 6= 1)
4 if((CLs ← check (Ci)) 6= 1)
5 cloud Database← check(Ci)
6 EDj caches Ci
7 return Ci to Ux
8 else
9 return Ci to Ux
10 endif
11 else
12 return Ci to Ux
13 endif

End

5. Evaluation Scenario

The efficiency of the proposed strategy has been evaluated against ICN-IoT benchmark
caching schemes by implementing simulations in Icarus simulator. The simulator with four
building blocks, such as scenario generation, scenario orchestration, experiments execution,
and result collection, is specifically designed for research in field of ICN caching and
routing. Before evaluation, network is initially warm up with 3× 105 number of requests.
The warm-up requests are initial messages which are sent to network caching nodes to
perform content caching before analyzing system performance. To measure performance
evaluation, measured requests are set to 6× 105 and are sent in network after completion of
warm-up phase. Each user sends request messages that follow Poisson distribution as this
is the most widely used distribution by various caching strategies during implementation.
The network request rate is set to default value as in Icarus settings, i.e., 12 requests
per second for the whole network. The content popularity follows Zipfian distribution,
with skewness parameter α ranges from 0.6 to 1.2. In Zipfian distribution, the value
α corresponds to concentration of user preference. The large α value signifies higher
concentration of user preferences; in case of α = 1.25, more users are interested in same
request in contrast to α = 0.8. The experiments are performed using tree network topology
as this is highly preferred for performance evaluation in recent works. To maintain the
fairness, the uniform storage capacity is allocated to each node by dividing total network
caching capacity with the number of contents. For experimentation purpose, this study
considers different scenarios by varying network cache from 0.04% to 5%. In addition
to content placement scenario generation, the replacement of content is also important.
The proposed strategy considers LRU for cache replacement due to its low complexity
and high consistency with already available ubiquitous caching schemes. Based on all the
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aforementioned settings, the experiments were performed for 4 different content popularity
(α) values with consideration of 4 network cache capacities for each network topology.
The simulations was performed twice, and the average value for each performance metric
was considered to compare the proposed strategy with other benchmark schemes.

5.1. Performance Metrics

From the wide variety of metrics available for computing significance of caching strate-
gies [61], this work evaluates the performance of proposed strategy based on the following:

5.1.1. Cache Hit Ratio (CHR)

CHR determines the ratio of number of requests processed by edge caching nodes
rather than cloud servers. Assuming total M requests being served by network, if request
for any content k is cached inside an edge node and can be served to requester, then it is
counted as cache hits (Cachehits). In case of requested content not found in edge node, it
is served by a cloud server and is considered as cache miss (Cachemiss) The formula for
calculating CHR is:

Cache Hit Ratio (CHR) =
Cachehits

Cachehits + Cachemiss
. (6)

5.1.2. Content Retrieval Delay (CRD)

CRD refers to the total delay incorporated in getting the requested content k by an end
user. In order to calculate total delay, the forwarding operation of both request message for
content k and response message with content object K are considered. Therefore, CRD is
computed using the formula given in the following equation.

Content Retrieval Delay (CRD) = request travel delay + response travel delay. (7)

5.1.3. Average Hop Count (AHC)

AHC defines the average number of hops a content request needs to travel in order to
be satisfied when normalized over total hops until reaching original server. The 0 value
of AHC tends to requests that are served more closely to user, hence the caching strategy
shows its highest efficiency. The value of AHC can be computed using the formula given
in the following equation.

Average Hop Count (AHC) =
Number o f hops travelled
Number o f hops to server

. (8)

5.2. Simulation Results

The evaluation results of the proposed strategy has been compared against various
benchmark caching schemes, which include LCE, LCD, CL4M, and ProbCache. This section
represents the results obtained after performing simulations on aforementioned caching
strategies for different performance metrics.

5.2.1. Cache Hit Ratio (CHR)

The cache hit ratio is the most important metric to examine the performance of
any caching strategy. It determines the percentage of requests being served out of total
generated requests. The high CHR always implies reduced burden on the core network as
most of the requests are served by intermediate nodes. The initial round of experiments
examine the performance of the proposed strategy for CHR. Figures 2 and 3 show the
cache hit ratio results of various caching strategies for different cache size and different
popularity parameter α, respectively. From the results obtained, it can be observed that
the proposed strategy outperforms existing benchmark caching strategies for higher cache
hit operations. The reason behind the better performance of the proposed strategy, among
others, is due to caching content on edge devices based on content popularity and future
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prediction. With the increasing popularity of requested content, the more content would
be cached at edge nodes, and, hence, higher CHR can be attained.

Figure 2. Cache hit ratio for different cache sizes.

Figure 3. Cache hit ratio for different popularity parameter α.

5.2.2. Content Retrieval Delay (CRD)

The next step of experiments work for interpreting the results of content retrieval delay
offered by proposed strategy in comparison to benchmark caching strategies. This metric
is mainly used to compute network latency. Figures 4 and 5 show the result of content
retrieval delay of various caching strategies for different cache size and different popularity
parameter α, respectively. The results clearly reveal the outstanding performance of the
proposed strategy among other considered strategies for reduced retrieval delay with
increase in cache size, as well as content popularity. The reduction in retrieval delay with
gradually increasing cache size is due to higher cache capacity of edge nodes to cache
content and provides data packets for user requests. Similar to this, less delay is observed
for content having higher popularity because of its caching near the user.

5.2.3. Average Hop Count (AHC)

The last round of experiments investigated the performance of proposed strategy
among aforementioned caching strategies, for comparison by considering another chal-
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lenging metric, i.e., average hop count. Figures 6 and 7 show the average hop count results
of various caching strategies for different cache sizes and different popularity parameter
α, respectively. From the results obtained, it can be observed that the proposed strategy
outperforms existing state of art caching strategies by reducing average number of hops
traversed during content delivery operations. For the average hop count, the maximum
improvement is recorded in case of proposed strategy (with varying cache size). This is
due to the design model of the proposed strategy where caching at intermediate nodes
is always aimed to reduce hop count with minimum delay. From the results in Figure 6,
the continuous fall in average hop count value with growing cache size can be clearly
observed for all caching strategies. This represents the direct significance of cache size on
number of hops traversed. The decrease in count of hops with increase in popularity for all
strategies can be seen in Figure 7. The caching of the most popular and future predicted
content near the user is the reason behind the obtained results.

Figure 4. Content retrieval delay for different cache sizes.

Figure 5. Content retrieval delay for different popularity parameter α.
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Figure 6. Average hop count for different cache sizes.

Figure 7. Average hop count for different popularity parameter α.

6. Conclusions

In this paper, we aimed at providing better QoE to user by offering minimum content
retrieval delay, as well as reduced average number of hops utilized to obtain desired content
and to enhance cache hit ratio on each edge node. To this end, we first considered an edge-
enabled heterogeneous ICN-IoT network architecture to satisfy user’s latest demands.
Further, to support an intelligent caching, we proposed an collaborative filtering-based
content caching strategy on each edge cloud where contents would be cached based on its
local popularity and predicted future demands. Afterwards, utilizing both edge clustering
and caching, an algorithm was designed for fetching content by user from the network
to meet QoE. Numerical results revealed the effectiveness of our proposed strategy over
proposed strategy over various benchmark strategies, such as LCE, LCD, CL4M, and
ProbCache, for achieving considered cache hit ratio and content retrieval delay. The reason
behind the improved performance of our strategy in comparison to existing considered
benchmark strategies is caching content based on some request history, thereby predicting
future demands of users. As the work is carried out in collaborative filtering with various
cache sizes, the proposed technique still needs to be checked with various NDN schemes.
For the future work, we will design a caching strategy while considering large set of
attributes available with the requested content and varying caching capacity of all the edge
nodes to further support scalable network with reduced content retrieval latency.
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