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Abstract: Convolutional neural networks (CNNs) and transformers have boosted the rapid growth
of object detection in synthetic aperture radar (SAR) images. However, it is still a challenging task
because SAR images usually have the characteristics of unclear contour, sidelobe interference, speckle
noise, multiple scales, complex inshore background, etc. More effective feature extraction by the back-
bone and augmentation in the neck will bring a promising performance increment. In response, we
make full use of the advantage of CNNs in extracting local features and the advantage of transformers
in capturing long-range dependencies to propose a Swin Transformer-based detector for arbitrary-
oriented SAR ship detection. Firstly, we incorporate a convolution-based local perception unit (CLPU)
into the transformer structure to establish a powerful backbone. The local-perception-enhanced
Swin Transformer (LP-Swin) backbone combines the local information perception ability of CNNs
and the global feature extraction ability of transformers to enhance representation learning, which
can extract object features more effectively and boost the detection performance. Then, we devise
a cross-scale bidirectional feature pyramid network (CS-BiFPN) by strengthening the propagation
and integration of both location and semantic information. It allows for more effective utilization of
the feature extracted by the backbone and mitigates the problem of multi-scale ships. Moreover, we
design a one-stage framework integrated with LP-Swin, CS-BiFPN, and the detection head of R3Det
for arbitrary-oriented object detection, which can provide more precise locations for inclined objects
and introduce less background information. On the SAR Ship Detection Dataset (SSDD), ablation
studies are implemented to verify the effectiveness of each component, and competing experiments
illustrate that our detector attains 93.31% in mean average precision (mAP), which is a comparable
detection performance with other advanced detectors.

Keywords: local perception unit; feature pyramid network; swin transformer; ship detection; SAR
object detection

1. Introduction

Remote sensing observations provided by the Synthetic Aperture Radar (SAR) [1] are
almost unaffected by light and weather conditions. In comparison to other types of satellite
reconnaissance, SAR as an active microwave sensor is better suited for detecting marine
ships in environments with rapidly changing conditions [2]. SAR ship detection, whose
aim is to find specific ship objects and mark their locations from a satellite perspective, is of
significant value in civilian and military fields, like maritime rescuing and marine traffic
management [3]. SAR ship detection has obtained considerable concerns among scholars
and has emerged as a significant research emphasis in recent years [4].

Extensive works have been investigated with regard to SAR object detection. Gener-
ally, deep-learning-based methods [5] get better detection performance than traditional
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manual-feature-based methods [6,7] owing to the significant growth of convolutional neural
networks (CNNs) [8]. Most CNN-based methods are divided into two-stage and one-stage
methods. In the two-stage framework, region proposals are first generated and then a
head network performs regression and classification, such as Faster R-CNN [9], and Mask
R-CNN [10]. While a one-stage detector directly predicts the category and regresses the
location coordinates without generating proposal regions, such as SSD [11], RetinaNet [12],
and YOLO [13–16] series. Moreover, the attention-based transformer has recently been
introduced into computer vision, demonstrating significant potential in fundamental tasks
like object detection and image classification [17].

Although significant efforts have been made, SAR object detection still faces many
challenges. Due to the distinct imaging mechanism, SAR images exhibit some unique char-
acteristics such as unclear contour, discontinuous texture, sidelobe interference, speckle
noise, and complex background (especially in the case of inshore) [18], which pose sig-
nificant obstacles to SAR object detection. Since SAR targets are more indistinctive than
objects in optical remote sensing images, we are aiming to enhance the SAR ship detection
performance in three key aspects, as listed below:

1. A strong backbone is necessary to extract object features more effectively.
2. After feature extraction by the backbone, the integration and propagation of both

semantic and location information in the feature pyramid network (FPN) need to be
strengthened for more effective feature representation.

3. Oriented bounding boxes are preferred to horizontal ones in order to provide more
precise locations for arbitrary-oriented objects and reduce the introduction of back-
ground information.

As for the first aspect, we design a transformer-based backbone integrated with CNN
modules, which makes full use of the CNN’s ability to extract local features and the Swin
Transformer’s ability in capturing long-range dependencies [19]. Although the Swin Trans-
former acquires excellent performance in optical object detection, challenges still exist when
applying it in SAR ship detection. Swin Transformer does well in capturing long-range
dependencies but exhibits a limited capability in local feature extraction, which is crucial for
detecting small SAR ships. Considering CNN’s ability in local feature extraction, we design
a convolution-based local perception unit (CLPU) comprising dilated convolution [20] and
depth-wise convolution [21]. Attributed to these techniques, the convolution-based local
perception unit reinforces local feature extraction and enhances the representation learning
of local relations. We insert the convolution-based local perception unit before the Swin
Transformer block, forming a hybrid network named the local-perception-enhanced Swin
Transformer (LP-Swin).

As for the second aspect, enhancing feature representation in the feature pyramid
improves the utilization of feature extracted from the backbone, so we introduce a cross-
scale bidirectional feature pyramid network (CS-BiFPN) based on BiFPN [22]. In contrast
to the standard FPN [23] structure, BiFPN integrates top-down and bottom-up pathways
for the fusion of multi-scale features. Additionally, BiFPN introduces learnable weights,
enabling the network to learn the significance of different input features and focus on those
that have a significant contribution to the output features. By incorporating additional
longitudinal cross-scale connections to the existing BiFPN network, the integration and
propagation of both semantic and location information can be strengthened, and CS-BiFPN
achieves a more comprehensive representation of multi-scale features.

As for the third aspect, in order to implement detection with oriented bounding
boxes and reduce the introduction of background information, we utilize R3Det [24] as
the baseline, which is an effective one-stage detector for arbitrary-oriented objects. R3Det
incorporates a novel module in order to address feature misalignment issues that existed in
refined one-stage detectors. R3Det achieves superior extraction speed and accuracy.

Based on the above three improvements, we propose a transformer-based detector
called LPST-Det, which is a one-stage approach built on the architecture of R3Det. We
first design a convolution-based local perception unit to introduce CNN’s ability of local
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feature extraction into the Swin Transformer, composing a hybrid backbone named local-
perception-enhanced Swin Transformer (LP-Swin). Then, we devise a CS-BiFPN to obtain
more powerful feature representations. Finally, we apply our LPST-Det to a public SAR
dataset and further analyze the accuracy gain of LP-Swin and CS-BiFPN in the overall
performance. The main contributions of this paper are as follows:

1. We propose a local-perception-enhanced Swin Transformer backbone called LP-Swin,
which combines the advantage of CNN in collecting local information and the ad-
vantage of Swin Transformer to extract long-distance dependencies, so that more
powerful object features can be extracted from SAR images. Specifically, we introduce
a convolution-based local perception unit termed CLPU consisting of dilated convolu-
tion and depth-wise convolution to facilitate the extraction of local information in the
vision transformer structure and improve the overall detection performance.

2. We introduce a cross-scale bidirectional feature pyramid network termed CS-BiFPN
with the aim of enhancing the utilization of features extracted by the backbone and
mitigating the challenges posed by multi-scale ships. The incorporation of longitu-
dinal cross-scale connections strengthens the integration and propagation of both
semantic and location information, which benefits both classification and location
tasks.

3. We construct a one-stage framework integrated with LP-Swin and CS-BiFPN for
arbitrary-oriented SAR ship detection. Ablation tests are conducted to assess the effect
of our proposed components. Experiments on the public SSDD dataset illustrate that
our approach attains comparable detection results with other advanced strategies.

2. Literature Review
2.1. CNN-Based SAR Object Detection

CNN has demonstrated significant success in SAR object detection. Li et al. [25]
enhanced the Faster R-CNN by hard negative mining and transfer learning for SAR ship
detection. The authors of [26] introduced a G-CNN to enhance the efficiency of the detector
by combining the depth-wise separable convolution. Jiao et al. designed a DCMSNN [27]
to solve multi-scale and multi-scene problems. Xu et al. [28] employed network pruning to
introduce a lightweight architecture termed Lite-YOLOv5, which excels in on-board ship
detection. Xu et al. [29] designed the GWFEF-Net, utilizing dual-polarization features for
ship detection, and achieved superior detection performance. The authors of [30] presented
a unique approach based on YOLOv7 for SAR instance segmentation. Zheng et al. [31]
incorporated the MobileNetV1 backbone into the YOLOv4 algorithm to devise a lightweight
network for ship recognition.

However, the above methods all adopt horizontal bounding boxes to regress the
location of objects, which cannot accurately annotate the objects. Therefore, oriented
bounding boxes are more suitable for SAR object detection. MSR2N, proposed by [32],
employs oriented bounding boxes to reduce background information interference in ship
detection. Wang et al. [33] replaced the horizontal bounding box with the rotating bounding
boxes on the SSD framework for the localization and detection of ships in a single stage.
An et al. [34] proposed DRBox-v2 for rotating SAR target detection, which combines a multi-
layer rotational bounding box generation mechanism, a modified encoding scheme, focal
loss, and hard negative mining. The authors of [35] constructed a rotation detector, which
combines both horizontal and rotating anchors to address scenes with dense distribution. In
our study, the R3Det framework is adopted to detect ships with oriented bounding boxes.

The above methods all adopt CNN as the backbone to capture features, but it is hard
for the CNN to learn the long-distance dependencies owing to the constrained receptive
field of an individual convolution. Although the CNN’s global feature extraction ability
can be enhanced by multiple stacking convolutional layers, it will lead to a much deeper
network with numerous parameters, experiencing difficulty in converging [36]. In our
study, the transformer network is employed to augment the global feature extraction.
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2.2. Transformer in Object Detection

Transformer architecture has become prevalent in recent years. The transformer is
good at collecting global features and establishing long-range dependencies because of
its self-attention mechanism. Due to its significant success in the NLP field, scholars have
attempted to incorporate a transformer network into computer vision, yielding several
notable works. DETR [37] is the first transformer architecture applied to object detection.
DETR combined CNN and transformer encoder-decoder structure to build an end-to-end
detector, avoiding many hand-designed components. Deformable DETR [38] presented a
deformable attention mechanism to address issues related to restricted spatial resolution of
features and slow convergence.

Applying transformers to computer vision has two main research lines. One is the
hybrid structure that combines CNNs and transformers, the other is the pure transformer
architecture. The conformer [39] designed a concurrent structure to combine the CNN
with visual transformer, which achieves enhanced representation learning. CMT [40] took
advantage of both transformer and the CNN to promote its feature extraction ability. As a
pioneering research, the Vision Transformer (ViT) [17] directly employed the standard trans-
former for the image recognition task. ViT simply treats an image as non-overlapping image
patches, achieving encouraging results in image classification. However, because of the
quadratic complexity to image size, it is difficult to directly apply ViT to downstream tasks
like semantic segmentation and object detection, whose inputs are high-resolution images.
To address the above issues, Swin Transformer was proposed as a general-purpose network.
Notably, its linear complexity enhances the adaptation to downstream vision tasks.

Researchers are actively exploring the Swin Transformer’s utilization in the remote
sensing field. CRTransSar [41] innovatively proposed a vision transformer combined with
CNN architecture on the basis of contextual joint-representation learning. Shi et al. [42]
presented a novel transformer, which mainly replaces the original attention mechanism
with a deformable attention mechanism. ESTDNet [43] proposed a FESwin to strengthen
the capture of SAR ship features. Ke et al. [44] have implemented a SAR ship detection
algorithm on the basis of the Swin Transformer, which leverages the capabilities of the
transformer to model long-range dependencies. Xu et al. [45] combined the Swin Trans-
former with convolutional layers that comprise dilated convolution to take advantage of the
CNN and the Swin Transformer. Inspired by CMT and Xu’s work, we incorporate dilated
convolution and depth-wise convolution to strengthen the extraction of local information.
Moreover, we implement detailed experiments on the dilation rate, analyzing its influence
on the transformer backbone.

2.3. Multi-Scale Feature Representations

Since FPN can effectively augment the features extracted by the backbone, it holds
great significance in object detection. As a fashionable work, FPN [23] introduced a
top-down connection path to utilize multi-scale features, enabling more accurate object
detection. The original FPN has performance bottlenecks due to the single top-down fusion
pathway, so PANet [46] added an additional bottom-up path aggregation network to solve
this issue. However, there are only adjacent-scale feature fusion connections in the above
two structures. NAS-FPN [47] designed a better cross-scale feature pyramid structure by
employing neural architecture search technology, but it is difficult to explain the irregular
network. Moreover, BiFPN [22] repeatedly applied top-down and bottom-up architecture
and introduced learnable weights to help the model control the contribution of different
input features.

In SAR object detection, some studies are focusing on the improvement of feature
pyramid network. As an illustration, Liu et al. [48] introduced a scale-transfer pyramid
network by incorporating lateral connections and establishing connections between multi-
scale features. Hu et al. [49] introduced a DenseFPN that employs distinct methods for
processing shallow and deep features. Quad-FPN [50], which consists of four novel FPNs,
was proposed to address the small ship detection and multi-scale feature problems. Unlike
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conventional approaches, its innovative structural design not only achieves excellent
detection performance but also provides novel ideas for researchers. Chen et al. [51]
designed a multi-scale fusion detector to detect small targets in a road scene. The authors
of [52] devised a DFANet to extract and fuse dual-modality features. In this study, to
overcome the limitation that there are only transverse cross-scale connections in the BiFPN,
we introduce additional longitudinal cross-scale connections to improve the extraction of
location information.

3. Materials and Methods

This section introduces LPST-Det, a SAR ship detector built on the basis of vision
transformer. Initially, we present the overall framework of the LPST-Det. Subsequently, we
provide a detailed elaboration of the two essential components of LPST-Det, including the
local-perception-enhanced Swin Transformer backbone and the cross-scale bidirectional
feature pyramid network.

3.1. Overview of the Proposed Method

The workflow of our LPST-Det is illustrated in Figure 1. LPST-Det is built on the R3Det
framework, an advanced one-stage model for inclined object detection. The proposed
detector comprises three components, including LP-Swin, CS-BiFPN, and R3Det-Head.
Initial feature maps are extracted by the LP-Swin backbone, and then CS-BiFPN augments
them into powerful multi-scale feature representations. Subsequently, the R3Det-Head
performs regression and classification, producing the final results.

To enhance the extraction of both local perception and global representation, we devise
the LP-Swin backbone, which combines the global feature capture capability of the Swin
Transformer and the local feature extraction ability of the CNN. Furthermore, to obtain a
more effective feature representation, we design the CS-BiFPN, which enhances the original
BiFPN by introducing longitudinal cross-scale connections. These longitudinal cross-scale
connections can facilitate the transmission and integration of both semantic information
and location information.

Figure 1. Workflow of the proposed LPST-Det.

To accurately annotate the object, we utilize the detection head of the R3Det algorithm
to implement detection with oriented bounding boxes. R3Det employs horizontal anchors to
improve speed and the recall rate in the first step, while refined rotation anchors are applied
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in dense scenes during the refinement step. Moreover, to weaken feature misalignment
caused by bounding box location changes, the feature refinement module (FRM) performs
position information re-encoding corresponding to the refined bounding box. This process
achieves feature map reconstruction and enables precise target detection.

LP-Swin and CS-BiFPN serve as two main components of our method, and a compre-
hensive description of the backbone and neck will follow in the subsequent section. One
can refer to [24] for details of other parts in this detection framework.

3.2. Local-Perception-Enhanced Swin Transformer Backbone
3.2.1. Structure of Local-Perception-Enhanced Swin Transformer

We introduce a local-perception-enhanced Swin Transformer backbone called LP-
Swin, incorporating the strengths of both vision transformer and CNN architecture. While
the CNN architecture excels at extracting local features, it exhibits disadvantages in cap-
turing long-distance feature dependencies due to convolution operations. The vision
transformer is expert in capturing long-distance feature dependencies but misses local
features due to the self-attention mechanisms. The proposed LP-Swin backbone can com-
bine the advantages of the self-attention mechanism and convolution operation to enhance
representation learning.

Figure 2 presents the LP-Swin’s overall structure. Swin Transformer, specifically
the Swin-T version, is chosen as the basic four-stage architecture because of its similar
hierarchy and similar complexity to ResNet-50 [53] for fair comparison. Then, we redesign
the architecture of the Swin Transformer by adding CNN-based modules to strengthen
the ability of extracting local feature. Inspired by CMT [40] and Xu’s work [45], we
adopt dilated convolution and depth-wise convolution to design a convolution-based local
perception unit called CLPU and insert it before each Swin Transformer block to enrich
local information. For clarity, T2, T3, T4, and T5 are defined as the output features of
four stages.

Figure 2. Overall structure of the LP-Swin backbone. (Swin block is short for Swin Transformer block).

Next, we will describe the principle and workflow of the Swin Transformer block in
Section 3.2.2, while more details about CLPU will be left to Section 3.2.3.

3.2.2. Swin Transformer Block

Figure 3 illustrates two Swin Transformer blocks, consisting of a window MSA
(W-MSA) module, a shifted window MSA (SW-MSA) module, MLP modules with a GELU
activation function, LayerNorm (LN) functions, and residual connections. MSA calculation
in the standard Transformer leads to quadratic complexity, while the W-MSA in Swin
Transformer performs self-attention within a local window rather than the entire area,
achieving linear complexity, as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (1)



Remote Sens. 2024, 16, 483 7 of 18

Ω(W-MSA) = 4hwC2 + 2M2hwC (2)

Although calculation within local windows can reduce W-MSA’s complexity, these
windows cannot connect with each other resulting in model performance degradation.
Cross-window connections can be achieved by SW-MSA. Therefore, W-MSA alternates
with SW-MSA in two successive blocks.

Figure 3. Swin Transformer blocks [19].

Figure 4 illustrates the shifted window approach. W-MSA partitions the 8 × 8 feature
map into 2 × 2 windows of size 4 × 4 (M = 4). Subsequently, SW-MSA generates 3 × 3
non-overlapping windows from the 2 × 2 windows by displaying them with (M/2, M/2)
pixels. The shifted window method enhances the cross-window exchange of information
and also increases the receptive field.

Figure 4. Shifted window in Swin Transformer.

3.2.3. Convolution-based Local Perception Unit

Vision transformer is good at capturing long-range feature dependencies but easily
misses the local relation and the structure information inside the image patch due to the
self-attention mechanisms. We introduce a convolution-based local perception unit termed
the CLPU to facilitate the extraction of local information in the vision transformer structure.
The equation below clarifies the CLPU:

CLPU(X) = DConv(DWConv(X)) + X (3)
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where X is the input, DWConv denotes depth-wise convolution, and DConv represents
dilated convolution. To reinforce the model’s representation learning capability, a CLPU is
integrated before each Swin Transformer block.

Figure 5 illustrates our CLPU’s composition, comprising a 3 × 3 depth-wise convolu-
tion, a 3 × 3 dilated convolution, a GELU activation function, and a residual connection. In
the CLPU module, the depth-wise convolution is employed to extract local features. Subse-
quently, the dilated convolution increases the receptive field, facilitating the extraction of
context information surrounding the ship target. Finally, the GELU activation function and
the residual connection improve the learning ability of this convolutional module.

Figure 5. Structure of CLPU.

Each input channel undergoes a single filter operation in depth-wise convolution.
Every single convolution kernel conducts convolution operations on an input channel to
obtain the corresponding output channel. This approach makes the depth-wise convolution
highly efficient, as it significantly lowers the computational cost and reduces the model
size in comparison to standard convolution.

By adjusting the dilation rate (defined as d), dilated convolution enlarges the receptive
field. When d = 1, the dilated convolution degenerates into standard convolution. In SAR
ship detection, the utilization of dilated convolution increases the receptive field, thereby
effectively capturing the contextual information around the ship target. Figure 6 gives
intuitive illustrations of 3 × 3 dilated convolution with d = 1, 2, and 3, respectively. In
Section 4.3.1, we determine that d = 3 is the optimum parameter in our model based on the
ablation experiments.

(a) (b) (c)

Figure 6. Illustrations of dilated convolution under different dilation rates: (a) d = 1; (b) d = 2;
(c) d = 3.

3.3. Cross-Scale Bi-Directional Feature Pyramid Network

We devise CS-BiFPN, a cross-scale bi-directional feature pyramid network. This design
is motivated by the structure design of NAS-FPN [47] and BiFPN [22]. Our innovative
network aims to augment the extraction of both multi-scale semantic information and posi-
tion information. In the original BiFPN, there are only transverse cross-scale connections
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between the input and the output, illustrated in Figure 7a. We introduce additional longitu-
dinal cross-scale connections to enhance the transmission and integration of both semantic
information and location information, benefiting both classification and location tasks.

We add two kinds of longitudinal cross-scale connections, including two top-down
and three bottom-up cross-scale connections, as shown in Figure 7b. T3, T4, T5, T6, and
T7 are input feature maps, where T3, T4, and T5 are extracted by the LP-Swin backbone
(as illustrated in Figure 2), T6 is derived from a 3 × 3 stride-2 convolution on T5, and T7
is obtained in a similar way on T6. Then, through multiple transverse and longitudinal
connections, they are combined in various resolutions to construct a feature pyramid P3,
P4, P5, P6, P7. To enhance clarity, we illustrate the implementation process using P6 as
an example.

P′
6 = Conν(T6, Resize(T7)) (4)

P6 = Conv(T6, P
′
6, Resize(P4), Resize(P5)) (5)

where P′
6 is the intermediate feature on the top-down pathway, and P6 is the output feature

on the bottom-up pathway. In the first step (i.e., top-down), T7 is upsampled by a factor
of 2 and then fused with T6. Subsequently, the fused feature goes through a convolution
process, generating the intermediate feature P′

6. In the second step (i.e., bottom-up), P4 and
P5 are downsampled by a factor of 4 and 2, respectively. Then P6 is obtained by fusing T6,
P′

6 and the two downsampled features. Subsequent feature maps are constructed following
a similar approach.

(a) (b)

Figure 7. Comparison of different feature pyramid networks. (a) The original BiFPN; (b) the proposed
CS-BiFPN.

3.4. Evaluation Metrics

We adopt the precision rate (P), recall rate (R), and mean average precision (mAP) to
quantitatively assess the performances of SAR ship detectors. The precision and the recall
are defined as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)
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where TP denotes the amount of accurately recognized ship targets, FP indicates the amount
of false alarms and FN represents the amount of missed ship targets. Average precision
(AP) is calculated by the area under the Precision-Recall (PR) curve, as follows:

AP =
∫ 1

0
P(R)dR (8)

We employ the AP to comprehensively assess the models’ performances under dif-
ferent Intersection over Union thresholds, with 0.5 being the default. In our detection
tasks, the mAP remains equivalent to the AP as the task involves a single object category.
Furthermore, we calculate the mAP for both inshore and offshore test sets to assess our
method’s performance in different SAR scenarios, referred to as Inshore and Offshore,
respectively.

4. Results and Discussion

We evaluate our model through ablation studies and comparative experiments on a
public SAR ship dataset. First, we give a brief introduction to the benchmark dataset and
elaborate on the details of the implementation. Subsequently, we validate the competitive-
ness of our LPST-Det by comparing its performance with several advanced approaches.
Next, ablation tests are performed to assess the performance of two essential parts: the
LP-Swin backbone and the CS-BiFPN neck. Finally, we describe the limitations of our
LPST-Det in the discussion section, analyzing reasons and providing potential solutions.

4.1. Dataset and Implementation Details

Within the SAR image community, the SAR Ship Detection Dataset (SSDD) [54] serves
as the first publicly available dataset. It comprises diverse images with resolutions vary-
ing from 1 to 15 m, captured by different sensors such as RadarSat-2, TerraSAR-X, and
Sentinel-1, derived from various complex scenes including both inshore and offshore sce-
narios. There are 2456 ships in total among 1160 images in SSDD. The sizes of the images
vary from 214 × 160 to 668 × 526. Moreover, it comprises several typical hard-detected
samples, such as ships under severe speckle noise, densely distributed small ships, and
densely parallel ships at ports, which pose challenges in the detection task. The SSDD
dataset provides three types of annotations, including a horizontal bounding box, rotatable
bounding box, and polygon segmentation. To achieve a more precise localization of ship
targets, we utilize the rotatable bounding box annotations and employ the R3Det detector
for ship detection. The training dataset versus the test dataset ratio is established as 8:2 in
accordance with the protocol specified in [54].

We adopt the AdamW optimizer to train our model for 72 epochs, employing a
batch size of 8. A weight decay of 0.05 is adopted and the initial learning rate is set
as 0.0001. We implement the warm-up strategy for 500 iterations, and the learning rate
undergoes a 10-fold reduction at each decay step. Moreover, we apply LoadImageFromFile,
LoadAnnotations, and RRandomFlip strategies to enhance the data. In our experiments,
the input images are resized into 672 × 672. In addition, we use the Swin-T pretraining
model in our study.

4.2. Experimental Results on the SSDD

We integrate the proposed LP-Swin backbone and the CS-BiFPN neck with the R3Det
head to design our LPST-Det. Table 1 reports the comparison results between LPST-Det
and other advanced methods.
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Table 1. Performance comparison with different advanced methods. Items marked with * mean that
the data come from the original paper.

Method Stage mAP50 Inshore AP Offshore AP FPS

KeyShip * [55] - 90.72 - - 13.3
Cascade RCNN * [56] Multiple 88.45 - - 2.8
ROI Transformer [57] Multiple 90.51 75.11 96.40 -

MSR2N * [32] Two 90.11 - - 9.7
Gliding Vertex [58] Two 91.88 75.23 98.35 -

CSL [59] Two 92.16 76.15 98.87 7.0
SCRDet++ [60] Two 92.56 77.17 99.16 8.8

RetinaNet-R [12] One 86.14 59.35 97.10 30.6
R3Det [24] One 90.45 76.36 97.21 24.5

DRBox-v2 * [34] One 92.81 - - 18.1
S2A-Net [61] One 92.08 75.79 98.79 29.0
Jiang’s * [62] One 92.50 - - -

LPST-Det One 93.85 81.28 99.20 16.4

We carry out experiments on both inshore and offshore test datasets to analyze the
performance of LPST-Det in various scenarios. Our LPST-Det attains Inshore AP, Offshore
AP, and mAP of 81.28%, 99.20%, and 93.85%, respectively. We conduct a comparative
analysis between LPST-Det and existing two-stage, one-stage, and SAR object detection
methods. In comparison to the advanced two-stage method SCRDet++ and one-stage
method S2A-Net [61], our approach achieves a 1.29% and 1.77% improvement in mAP,
respectively. And our LPST-Det outperforms other SAR target detectors such as DRBox-v2,
KeyShip [55] and Jiang’s method [62]. Additionally, compared with the original R3Det
method, LPST-Det improves the performance of inshore and offshore scenario by 4.92% and
1.99%, which proves the effectiveness of our proposed LP-Swin and CS-BiFPN in diverse
complex scenes.

Figure 8 presents some visualized results of ships in the SSDD offshore dataset. For
SAR ships in simple offshore scene, due to the relatively minor background information
interference, LPST-Det achieves both accurate and stable detection, resulting in a quite high
accuracy in the SSDD offshore dataset.

Figure 8. Detection results of SSDD offshore ship. The red oriented boxes indicate correct
detection outcomes.
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Figure 9 exhibits several visualized detection results of inshore ships. It is evident that
LPST-Det mitigates background interference arising from the port and accurately locates
ships near the port. Both the detection precision and the visualized results verify the
effectiveness of LPST-Det in offshore and inshore scenes.

Figure 9. Detection results of SSDD inshore ship. The red oriented boxes indicate correct
detection outcomes.

4.3. Ablation Experiments
4.3.1. Experiments for the Dilation Rate in CLPU

As mentioned in Section 3.2.3, we have introduced the CLPU module to augment
the vision transformer’s local feature extraction. The dilation rate (d) serves as a key
hyper-parameter in the CLPU because it controls the receptive field. In other words, it
determines how much contextual information can be captured by the dilated convolution.
To determine the ideal value of d, experiments are conducted by varying d from 1 to 4.
Table 2 provides the comparative results.

Compared to the standard 3 × 3 convolution (i.e., d = 1), dilated convolutions with
d = 2, 3, and 4 yield gains of 0.2%, 0.39%, and 0.08% in mAP, respectively, while the recall
rate is almost the same. It proves that the technique of expanding the receptive field is
beneficial for local feature extraction. The highest recall rate of 0.944 and the best mAP of
93.34% indicate that d = 3 is the optimal value, so we use this criterion in the CLPU of the
LP-Swin backbone for the subsequent experiments.

Table 2. Experiments for the dilated convolution in CLPU.

dilation Rate mAP50 Inshore AP Offshore AP Precision Recall

d = 1 92.95 79.96 97.98 95.5 94.2
d = 2 93.15 80.90 98.05 96.1 94.2
d = 3 93.34 80.95 98.26 96.3 94.4
d = 4 93.03 80.56 98.00 95.7 94.2
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4.3.2. Experiments for LP-Swin Backbone

As mentioned in Section 3.2.1, we have proposed an LP-Swin backbone that combines
the advantages of both vision transformer and CNN architecture. We select the R3Det
detection algorithm as the baseline and conduct three sets of ablation experiments. Our
baseline comprises ResNet-50 and the standard FPN structure. Initially, ResNet-50 is
replaced by Swin Transformer while maintaining consistency in the neck part. Subsequently,
we integrate the LP-Swin into the network. Table 3 shows the comparative results.

In comparison to the ResNet-50 backbone, the Swin Transformer backbone can bring a
significant improvement of 2.38% in mAP, 3.21% in Inshore AP, and 0.61% in Offshore AP,
which proves the superiority of the Swin transformer over the CNN. Furthermore, after
introducing our CLPU, LP-Swin can increase mAP by 0.51% and further improve Inshore
AP and Offshore AP by 1.38% and 0.46%. The highest results indicate the superiority of the
LP-Swin and its detection ability in complex scenes.

Table 3. Comparison of the LP-Swin with standard backbones.

Method mAP50 Inshore AP Offshore AP Precision Recall

ResNet-50 90.45 76.36 97.21 93.5 91.7
Swin-T 92.83 79.57 97.80 95.2 93.8

LP-Swin 93.34 80.95 98.26 96.3 94.4

Figure 10 depicts the visualization of detection results using three backbones: Res-
Net-50, Swin-T, and LP-Swin. In the initial scenario of Figure 10, the ResNet-50 network
suffers from one missed detection, while the Swin Transformer network experiences one
false alarm. In contrast, the LP-Swin network accurately identifies and localizes the ship
object without any false alarms or missed detections. In the second scenario, the ResNet-50
network encounters one false alarm, while both the Swin Transformer network and the
LP-Swin network achieve correct detection and precise localization. In the final scenario, all
three networks achieve the correct classification. Notably, in scenes where all classification
results are correct, LP-Swin attains the highest confidence score among the networks
under comparison.

4.3.3. Experiments for CS-BiFPN Network

As mentioned in Section 3.3, we have proposed a CS-BiFPN neck, which facilitates
the integration and propagation of both semantic and location information. Similarly,
we carry out three sets of experiments to assess our CS-BiFPN. Firstly, we substitute the
standard FPN with the standard BiFPN while employing the LP-Swin as the backbone.
Subsequently, we improve the neck part by using the CS-BiFPN. Table 4 exhibits the
comparative outcomes.

In contrast to the traditional FPN structure, BiFPN yields enhancements of 0.3%
in mAP, 0.22% in Inshore AP, and 0.34% in Offshore AP. Furthermore, the CS-BiFPN
contains both transverse and longitudinal cross-scale connections, leading to an additional
0.21% improvement in mAP, 0.11% improvement in Inshore AP, and 0.6% improvement in
Offshore AP. It indicates that incorporating longitudinal cross-scale connections is essential
for the FPN structure.

Table 4. Performance comparison of different feature pyramid networks.

Method mAP50 Inshore AP Offshore AP Precision Recall

FPN 93.34 80.95 98.26 96.3 94.4
BiFPN 93.64 81.17 98.60 96.5 94.5

CS-BiFPN 93.85 81.28 99.20 97.1 94.7
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(a) (b) (c)

Figure 10. Visualization results of different backbones. (a) ResNet-50; (b) Swin Transformer;
(c) LP-Swin. The yellow oriented boxes represent missed detection.

4.4. Limitation and Discussion

Although we have designed LP-Swin and CS-BiFPN to enhance feature extraction
and fusion, and improved the detection performance in some inshore scenes, there are still
limitations in some hard-detected samples, as shown in Figure 11. When ships are densely
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distributed in parallel at inshore ports, LPST-Det may encounter missed detections, thereby
degrading the detector’s performance. The reasons for this phenomenon are as follows.
(1) Out of a total of 928 training images in the SSDD dataset, only about 13 of them are
related to the scene of ships densely parallel berthing at ports, which is not conducive to
the model learning in the training stage. We consider this to be the root cause of the missed
detection. (2) The distinctive SAR imaging mechanism results in unclear image contour,
making it challenging to distinguish the boundaries of two tightly packed ships or ships
very close to a port. (3) The interaction of cruciform sidelobes worsens the overlapping
effect between targets.

In response to the above issues, further research can be conducted from the
following aspects.

Firstly, for the problem of insufficient training samples, the generative adversarial
network (GAN) is an effective strategy for data augmentation and can be used to generate
scenes of multiple parallel ships at a port or an individual ship at different ports. Secondly,
to address the unclear contour issue, it would be helpful to introduce a segmentation task
that emphasizes edge information to enhance ship detection. In addition, most existing
SAR detectors are following the framework of optical image object detection, ignoring
some unique characteristics in SAR images, like cruciform sidelobes and sea clutter. An
additional denoise subnetwork may be an attempt to alleviate these interferences. Lastly,
ships berthed side by side will cause serious hull overlap effects, while the prow and
stern are relatively easy to recognize. Therefore, imbalanced semantic feature extraction
strategies may be beneficial for the detection head to predict the target location in these
densely distributed scenarios.

(a) (b)

Figure 11. Detection results of densely parallel ships. (a) Ground truth; (b) LPST-Det.

5. Conclusions and Future Work

This paper introduces LPST-Det, an effective one-stage detector designed for arbitrary-
oriented SAR object detection. To enhance the extraction of object features in SAR images,
we present a local-perception-enhanced Swin Transformer backbone termed LP-Swin,
which combines the global feature extraction capability of Swin Transformer and the local
feature capture ability of the CNN to enhance the feature extraction ability. We augment the
transformer structure by incorporating a convolution-based local perception unit, referred
to as the CLPU, to improve the capture of local features and boost the overall detection
performance. Furthermore, we construct CS-BiFPN, a cross-scale feature fusion structure
that enhances the extraction of multi-scale semantic information and position information
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through the introduction of additional longitudinal cross-scale connections, which can
enhance the fusion of extracted multi-scale features. In addition. We integrate the proposed
LP-Swin and CS-BiFPN into the R3Det detector, ensuring high accuracy while maintaining
rapid detection speed. We perform comparison experiments and ablation tests on the
SSDD dataset. In comparison to existing object detection methods, our method exhibits
improvements over both general detectors and SAR ship detectors. LPST-Det attains
93.31% in mAP, with 81.28% in Inshore AP, and 99.20% in Offshore AP, illustrating that it
achieves accurate classification and localization of ships in complex detection scenarios.
Both visualized results and detection accuracy verify the detection performance of LPST-Det
in complex scenes.

Although our detector succeeds in most detection scenes, it exhibits limitations in some
hard-detected samples. When ships are densely distributed in parallel at inshore ports,
LPST-Det may encounter missed detections, thereby degrading the detector’s performance.
Our future work will explore more effective solutions for inshore scenes and the design of
a lightweight transformer-based backbone in SAR object detection.
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