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Abstract: The integrity of remote-sensing image data is susceptible to corruption during storage and
transmission. Perceptual hashing is a non-destructive data integrity-protection technique suitable for
high-accuracy requirements of remote-sensing image data. However, the existing remote-sensing
image perceptual hash-authentication algorithms face security issues in storing and transmitting the
original perceptual hash value. This paper proposes a remote-sensing image integrity authentication
method based on blockchain and perceptual hash to address this problem. The proposed method
comprises three parts: perceptual hash value generation, secure blockchain storage and transmission,
and remote-sensing image integrity authentication. An NSCT-based perceptual hashing algorithm
that considers the multi-band characteristics of remote-sensing images is proposed. A Perceptual
Hash Secure Storage and Transmission Framework (PH-SSTF) is designed by combining Hyperledger
Fabric and InterPlanetary File System (IPFS). The experimental results show that the method can
effectively verify remote-sensing image integrity and tamper with the location. The perceptual
hashing algorithm exhibits strong robustness and sensitivity. Meanwhile, the comparison results
of data-tampering identification for multiple landscape types show that the algorithm has stronger
stability and broader applicability compared with existing perceptual hash algorithms. Additionally,
the proposed method provides secure storage, transmission, and privacy protection for the perceptual
hash value.

Keywords: perceptual hash; blockchain; remote-sensing image; integrity authentication; Hyper-
ledger Fabric

1. Introduction

Remote-sensing imagery, which records the magnitude of electromagnetic waves
from the Earth’s surface, provides precise spatial location information and multispectral
data. It has found widespread application in various civilian and military domains, such
as disaster assessment, geological exploration, and target detection [1,2]. However, the
security of remote-sensing images has emerged as a growing concern. During storage and
transmission, these images are vulnerable to tampering, which can compromise the integrity
of the data, including its accuracy and authenticity. The alteration of data containing
sensitive information, such as national security or court evidence, can have significant
consequences [3]. Therefore, it is imperative to ensure the security of remote-sensing images
and provide technical support to prevent malicious tampering, enabling more precise and
reliable analysis of remote-sensing data for scientific and practical applications.
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There are currently three main techniques for data integrity authentication. The
first technique is digital signature, in which the sender generates a digest of the data
using a cryptographic hash function. The digest is then encrypted with a private key to
produce a digital signature, which is sent along with the original data to the recipient. The
recipient decrypts the digital signature using the sender’s public key and compares the
resulting digest to a digest generated from the original data. If the two digests match, the
data integrity is verified [4]. However, the cryptographic hash function used in digital
signatures has an avalanche effect, where any change in one bit of the data is considered
tampering. This means that these methods only assess the consistency of the binary
representation of the data, not the content consistency. In the process of storing and
transmitting remote-sensing images, data undergo content-preserving operations, such
as format conversion and compression, which can result in changes at the bit level but do
not alter the underlying information. Digital signature technology is not robust to these
content-preserving operations and cannot determine the location of tampering, making it
unsuitable for remote-sensing image integrity authentication.

The second type of data integrity authentication technique is semi-fragile watermark-
ing. This technique is designed to tolerate content-preserving image processing operations,
such as compression and noise while being able to detect changes caused by malicious
tampering. Some scholars have proposed some semi-fragile watermarking schemes specif-
ically for remote-sensing image integrity authentication [5–8]. In particular, Serra-Ruiz
proposed a series of semi-fragile watermarking algorithms using a tree-structured vector
quantization (TSVQ) approach [6–8]. These algorithms involve tiling the original image into
blocks of varying sizes, applying the discrete wavelet transform to each selected spectral
band, and building a TSVQ tree for each block. An iterative algorithm is applied to modify
the tree until it meets a required criterion, and a secret key produces a different criterion for
each block to avoid copy-and-replace attacks. These algorithms can detect possibly forged
blocks and their position in the whole image while also maintaining robustness against
near-lossless compression attacks.

Although semi-fragile watermarking can provide reliable performance and precise
tamper localization, it may not be the best approach for remote-sensing applications where
high accuracy is critical. Remote-sensing image is characterized by high precision, which
is a fundamental feature of geospatial data. High-precision remote-sensing images may
contain sensitive information, such as national defense infrastructure, which must not
suffer any accuracy loss. Unfortunately, the watermark embedding process modifies the
original data, potentially leading to inaccuracies [9]. Therefore, alternative techniques that
can preserve the high accuracy of remote-sensing images while also being efficient are
essential for various scientific and practical applications.

The third technique for data integrity authentication is perceptual hashing (PH), which
inherits the one-way, anti-collision, and digest properties of traditional cryptographic
hash functions [10]. PH maps input data of arbitrary length into a compact hash value,
making it computationally infeasible to find two inputs that produce the same output.
Unlike cryptographic hash functions that perform authentication at the binary level, PH
considers data changes from the perspective of the perceived content rather than the
binary representation, making it robust to content-preserving operations such as format
conversion and compression without modifying the original data. Tamper localization can
be performed through image grid segmentation, providing a precise tamper location. In
comparison to digital signatures and semi-fragile watermarking techniques, PH techniques
satisfy the requirements for remote-sensing images for lossless accuracy, robustness to
content-preserving operations, and precision in tamper localization.

In recent years, researchers have put forward a range of perceptual hash algorithms to
achieve the integrity authentication of remote-sensing images. Zhang et al. introduced a
robust high-resolution remote-sensing (HRRS) image integrity authentication algorithm
based on perceptual hashing techniques that account for both global and local features [11].
The algorithm extracts global features through the efficient recognition capability of Zernike
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moments for texture information, while FAST key points are used for local feature con-
struction and tamper localization. Additionally, Ding et al. proposed various perceptual
hash algorithms for remote-sensing image integrity authentication, including perceptual
hash algorithms for multispectral remote-sensing images and HRRS images based on edge
features [9,12]. Recently, the author presented a novel attention-based Asymmetric U-Net
(AAU-Net) for subject-sensitive hashing of remote-sensing images [13]. The robustness of
the AAU-Net-based subject-sensitive hashing algorithm is stronger than algorithms based
on U-Net and MUM-Net previously proposed by the author [14,15]. Previous research
on perceptual hashing of remote-sensing images has focused on enhancing algorithm
robustness and achieving a good balance between robustness and tamper sensitivity.

However, the security of remote-sensing image authentication information, specifically
the perceptual hash value itself, has not been addressed in the most recent research to
date [16,17]. This oversight can lead to two primary security issues. First, malicious
attackers can aim to deceive the receiver by tampering with the genuine message sent by the
sender or impersonating the sender to transmit a false message. Second, a mutual distrust
problem may arise between the sender and the receiver, leading to mutual deception, denial,
and other related issues. It is crucial to address the security of authentication information to
ensure the reliability and authenticity of communication between the sender and receiver.
Hence, there is a pressing need for new technology to ensure the trusted transmission and
security management of the perceptual hash value.

The advent of blockchain technology has established a novel trust paradigm character-
ized by the non-tamperability of data, transparency of information, decentralized collective
maintenance, and traceability. These attributes provide a fresh approach to data integrity
authentication and information security management [18]. It stores data in a distributed
manner, eliminating the vulnerabilities of centralized storage and offering resistance to
single points of failure. The inherent hash pointer structure of blockchain ensures data
integrity, making it a suitable choice for securely storing perceptual hash values.

Blockchain has gained substantial traction in various industries, including healthcare,
the Internet of Things, and financial activities [19]. However, the unique sensitivity of
remote-sensing imagery in critical applications, such as national security and land man-
agement, demands specific industry standards for secure sharing platforms. Government
and regulatory agencies are likely to mandate such standards for remote-sensing image
authentication. Consequently, the direct application of existing approaches from other
industries to remote-sensing data security may have limitations due to the domain’s distinct
considerations.

In this paper, a remote-sensing image integrity authentication method is proposed
that combines blockchain technology with perceptual hashing. The method is designed to
address the need for remote-sensing image data integrity authentication with robustness
to content-preserving operations and to ensure the security of authentication information.
The main contributions of the paper are as follows:

1. A Perceptual Hash Secure Storage and Transmission Framework (PH-SSTF) is de-
signed to realize the secure storage and transmission of the original perceptual hash
values by innovatively combining the private IPFS network and Hyperledger Fab-
ric. This framework fills the gap in the existing research for the secure protection of
remote-sensing image authentication information.

2. A prototype system was implemented using PH-SSTF, and its practicality and scaling
value were verified through rigorous testing. The proposed framework enables a
higher level of data security and privacy protection, faster data storage and retrieval,
and elastic storage and capacity scaling. These results demonstrate the effectiveness
and potential of the proposed approach.

3. A remote-sensing image perception hashing algorithm with wider applicability is
proposed. The algorithm takes into account the unique multi-band features of remote-
sensing images, uses the Non-Subsampled Contourlet Transform (NSCT) to achieve
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multi-band feature fusion and feature extraction, generates an encrypted perceptual
hash, and improves the efficiency of hash generation.

The rest of the paper is structured as follows: Section 2 provides an overview of the
basic concepts and preliminaries, Section 3 details the proposed methods, Section 4 presents
and analyzes the experimental results, Section 5 examines the effect of parameter choices on
the method and conducts a security analysis and comparative discussion. Finally, Section 6
concludes the paper.

2. Basic Idea and Preliminaries
2.1. Basic Idea

In this paper, a novel remote-sensing image integrity authentication method that
incorporates blockchain technology and perceptual hashing is proposed. The general
concept of the method is illustrated in Figure 1. The proposed method consists of three
stages: generation of the perceptual hash value, secure storage and transmission via the
PH-SSTF, and integrity authentication of the remote-sensing image. First, the perceptual
hash value is calculated by applying the perceptual hashing algorithm to the original
remote-sensing image. During transmission or distribution, the resulting hash value is then
bound with the metadata and transmission information of the image and stored on the
PH-SSTF. After the transmission or distribution is completed, the perceptual hash value is
recomputed and compared with the original hash value stored on the blockchain. If the
difference between the two hash values is below a certain threshold T, the image data are
considered to be intact; otherwise, tampering is detected, and the affected regions can be
pinpointed. This process will be described in more detail in Section 3.
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2.2. NSCT-Based Remote-Sensing Image Perceptual Hash Feature Extraction

Compared to the conventional wavelet transform, the nonsubsampled contourlet
transform (NSCT) is known for its superior ability to preserve the edge and texture in-
formation of images. NSCT is particularly effective in handling non-smooth signals due
to its adaptive and multiscale representation of image features. The NSCT has gained
significant recognition in the fields of remote-sensing image change detection and image
data fusion, as demonstrated by numerous studies [20,21]. The NSCT transform retains
the multiscale decomposition, multi-directionality, and anisotropy of the contour wave
transform, eliminates the down-sampling and up-sampling operations in the decomposi-
tion and reconstruction of image information, and makes the size of each sub-band image
identical to the original image. NSCT eliminates the Pseudo-Gibbs effect, thus making the
transform translation invariant [22]. Therefore, this paper designs the perceptual hashing
algorithm based on NSCT’s method of extracting spatial features of remote-sensing images.
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2.2.1. Spatial Feature Extraction of Remote-Sensing Images Based on NSCT

Texture features are essential spatial features of remote-sensing images that measure
pixel relationships within a local area and reflect the distribution patterns of grayscale
values of neighboring pixels. They provide crucial information about the structure and
organization of object surfaces and their connection with the surrounding environment.

The NSCT low-frequency sub-band coefficients contain most of the information in the
source image, concentrate the overall energy of the source image, and are an approximate
representation of the source image [23,24]. It reflects the average features of the image
and can determine the general contour of the image. In this paper, the low-frequency
sub-band coefficients are used as the main carrier of remote-sensing image perception hash
space feature extraction to improve the algorithm’s robustness to resist content-preserving
operations such as filtering and sharpening.

Additionally, the high-frequency sub-band coefficients also contain some detail and
texture information of the image, and tampering with the high-frequency sub-bands may
only lead to detailed or even texture changes in the reconstructed image by the inverse
NSCT transform. However, from a perceptual standpoint, such attacks, unlike direct
tampering of the original image, can be categorized as either invalid tampering or valid
tampering based on the extent of change in the reconstructed image, where invalid tamper-
ing can be regarded as content-preserving operations. Specific experiments and discussions
will be conducted in Section 5.1.3 of the paper.

Remote-sensing images are multi-band in nature, and detecting any tampering of
valuable content within each band is essential. In practical scenarios, the tamperer may
try to modify only certain bands of the image without drawing too much attention to
hide or camouflage their tampering behavior. Some applications may be more sensitive
to information in specific bands (e.g., near-infrared band applications with water body
identification), so tampering with specific bands can be more difficult to detect but may
have a significant impact on the application results. In the case of tampering at the band
granularity level, the existing perceptual hashing algorithm needs to authenticate and
detect each band once, which is time-consuming and inefficient for multispectral or even
hyperspectral images. To address this issue, this study adopts the NSCT transform for
multi-band feature fusion as a preprocessing step, taking into account the multispectral
nature of remote-sensing images. This preprocessing step helps to reduce the redundancy
of waveband information and enhances the computational efficiency of perceptual hashing.

Therefore, this study proposes the use of statistical features based on the fused NSCT
low-frequency sub-band coefficients from each waveband of the remote-sensing image
as texture features. The perceptual hash value is calculated based on the low-frequency
sub-band coefficients after sub-band fusion using standard deviation and other statisti-
cal features.

2.2.2. NSCT Sub-Band Fusion of Multispectral Remote-Sensing Images

Unlike the traditional remote-sensing image fusion, which combines remote-sensing
image data from different sensors or different resolutions into a new image to obtain more
comprehensive and accurate information, the low-frequency sub-band coefficient fusion
of NSCT in this paper is a preprocessing process to generate the perceptual hash of the
image. For the tampering identification needs at the granularity level of remote-sensing
image bands, the fusion method in this paper needs to balance the two requirements
of high efficiency and sensitivity to tampering in each band. Therefore, compared with
the common fusion methods such as Principal Component Analysis (PCA), IHS/HSV
conversion, and Wavelet Transform, Weighted Average, which is more efficient, is chosen
to meet the requirements of this paper, and the comparison of different methods will be
expanded in Section 5.3.2. The weighted average method has more significant changes in
the fusion results after the tampering of one band.

The weighted average method is commonly used for low-frequency sub-band fusion,
but the existing weighting methods are not directly applicable to the specific purposes
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of this paper. The sensitivity of band information tampering requires that bands with a
greater impact on the fusion result should be assigned higher weights to better reflect the
tampering in the fusion outcome. Hence, it is essential to identify statistical properties
where different bands exhibit similar values in regions without tampering. However,
tampering in a band could cause significant changes in its statistical values.

In general, images of different bands within the same region should demonstrate
consistent statistical properties, including regional energy (RE) and variance. RE refers to
the summation or averaging of pixel values, effectively characterizing the overall brightness
or energy distribution of a specific region in an image [25]. When a region exhibits consistent
surface features with similar reflectance across different bands, it results in a relatively
uniform RE. Band tampering may lead to a change in the RE of a band. For example, an
image region being modified or replaced may result in a significant change in the energy
value of that region. On the other hand, variance reflects the dispersion of pixel values
in an image, indicating the degree of difference or variation in these values. Although
different bands within the same region usually exhibit similar variance, factors such as
varying optical reflectance properties of features, atmospheric effects, and sensor noise may
introduce variations when tampering is not present. Consequently, variance is relatively
less stable than RE when considering weighting metrics. The stability of RE across bands
enables its application as a valuable indicator in detecting potential tampering.

This paper proposes an improved sub-band fusion method that utilizes RE to quantify
the significance of low-frequency sub-band coefficients in distinct bands across all band
ranges. This method uses the RE of sub-band coefficients as weights to perform a weighted
average of coefficients across different sub-bands, resulting in fused coefficients for extract-
ing texture features. The expression for RE in the kth band (with an area size of M × N) is
given by Formula (1).

Ek
l (i, j) = ∑

i∈M,j∈N

[
Ck

l (i, j)
]2

(1)

In the formula, Ck
l (i, j) represents the l-th level low-frequency sub-band coefficients

after the decomposition of the kth band, and M and N denote the total rows and columns
of the low-frequency sub-band coefficients. Ek

l (i, j) denotes the RE value of the k-th band.
This approach effectively preserves most of the energy of the source image and im-

proves the efficiency of subsequent perceptual hash feature extraction. It should be noted
that the region energy is only used as an indicator to assist band tampering detection;
it does not directly determine the specific tampering type or location. Therefore, band
fusion is only a preprocessing process, and the final integrity verification and localization
of tampered regions require perceptual hashing algorithms for further implementation.

2.3. Hyperledger Fabric

Blockchains can be divided into public, private, and consortium blockchains. Table 1
shows the advantages and disadvantages of various blockchains. Private blockchains are
under the complete control and management of a single entity or organization, whereas
consortium blockchains are governed and controlled by multiple participants [26]. In
contrast to private blockchains, consortium blockchains offer a higher degree of decentral-
ization, enabling multiple entities to engage in the network through a distributed approach,
therefore enhancing transparency and the system’s credibility. Private blockchains are
well-suited for managing internal business processes and data within a single entity. In
contrast, consortium blockchains facilitate collaborative efforts among various entities
across organizations, ensuring data security and consistency. Furthermore, consortium
blockchains provide a mechanism for multiple participants to share and access shared data,
fostering more efficient business cooperation.
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Table 1. Blockchain Classification Summary.

Categories Advantages Disadvantages Use Cases Delegates

Public
+Independence
+Transparency

+Trust

−Performance
−Scalability

−Privacy Security

Cryptocurrency
Document validation

BTC
ETH

Solana

Private +Access control
+Performance

−Trust
−Auditability

Supply chain
Asset ownership Multichain

Consortium
+Access control

+Scalability
+Privacy Security

−Transparency
Banking
Research

Supply chain

Hyperledger Fabric
Corda

Quorum

Consortium blockchains provide enhanced data privacy and access control compared
to public blockchains. They are proprietary networks involving selected participants from
specific organizations, ensuring that only authorized members have access to transactions
and data, thus offering strong privacy measures. This fine-grained access control is ideal
for safeguarding sensitive information and tailoring access based on roles and identities
in specific organizational contexts. In contrast, public blockchains operate as open net-
works, with all transactions and data being transparent to the public, resulting in weaker
privacy measures [27]. Although public blockchains theoretically enhance security through
decentralization, high-throughput public blockchains like Solana provide lower-latency
data transmission and validation. However, for scenarios involving remote-sensing data,
particularly in government contexts related to national security and land management,
compliance with specific regulatory requirements is crucial. Consortium blockchains, with
their selected and authorized participants, facilitate better traceability and auditing of
transactions, ensuring data security and regulatory compliance.

Hyperledger Fabric, an open-source platform designed for constructing enterprise-
level distributed applications through consortium blockchains, offers several features that
make it highly suitable for secure storage and transmission of perceptual hash in practical
applications. It supports pluggable consensus protocols and a common programming
language for smart contracts, allowing customization to fit specific business scenarios and
trust models. Hyperledger Fabric utilizes Go as the universal language for smart contract
deployment, benefiting from its high performance, user-friendliness, concurrency support,
and cross-platform compatibility, which provides an efficient, reliable, and flexible devel-
opment environment for enterprise-level blockchain applications. Fabric’s flexible identity
verification and access control mechanisms ensure that only authorized participants can
access and engage with the blockchain network. The platform’s strong scalability enables
it to handle large-scale transaction processing and network expansion, making it well-
suited for complex enterprise environments. Furthermore, Fabric achieves cost reduction,
higher efficiency, and economic benefits by sharing validation nodes and resources. As an
open-source project with an active global community of contributors, Hyperledger Fabric
continuously evolves, receiving timely security updates and bug fixes through community
support. Its proven reliability and trustworthiness in various industries and organizations
further validate its suitability for diverse use cases [28].

The architecture of Hyperledger Fabric is depicted in Figure 2. The platform offers
gRPC APIs and encapsulated SDKs for applications, enabling users to access resources
in the Fabric network such as ledger, transactions, chaincode, events, and permission
management. This design abstracts the internal details of the Fabric framework and allows
for simple invocation through the SDKs. The ledger, the central structure for recording
transaction data, is based on core blockchain elements, including database and consen-
sus mechanism. Chaincode, the smart contract of Hyperledger Fabric, implements the
execution logic of each transaction and utilizes technologies such as Docker containers
and state machines. Permission management, responsible for access control throughout
the process, employs security technologies like PKI systems, digital certificates, and en-
cryption/decryption. The bottom layer of the architecture comprises multiple nodes that
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form a P2P network, interact through a gRPC channel, and use the Gossip protocol for
synchronization. The hierarchical structure of the architecture enhances scalability and
pluggability, making it easier for developers to work on a module-by-module basis. Given
these features, this study selects Hyperledger Fabric as the underlying blockchain network
for the secure storage and transmission of perceptual hash.
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2.3.1. Feasibility of Hyperledger Fabric Applied to Perceptual Hash Secure Transmission

The feasibility of using Hyperledger Fabric for perceptual hash secure transmission in
a remote-sensing image integrity authentication system is evident in the following aspects:

1. Member Licensing Mechanism for Authentication

Hyperledger Fabric utilizes an MSP (Membership Service Provider) mechanism, which
manages members and verifies their identities through PKI (Public Key Infrastructure). In
the remote-sensing image integrity authentication system, data organizations and users
require permission to submit, transmit, and use data. The member licensing mechanism of
Hyperledger Fabric sets strict protocols for network data protection, and the identity of
members is disclosed upon accessing the data to identify the transmission objects.

2. Channel Mechanism for Secure Data Transmission

To ensure the security of the perceptual hash transmission process, the original per-
ceptual hash must be protected from tampering during the transmission and acquisition
process. The channel mechanism in Hyperledger Fabric provides secure point-to-point
transmission and prevents uncontrolled data diffusion that may cause perceptual hash
tampering [29]. In the transmission process, the peer nodes maintained by the sender and
receiver join the corresponding channel and maintain the ledger data as members of the
consortium blockchain. If sensitive data are involved, the regulatory authorities can also
participate in the relevant channel and assume supervisory responsibilities.

3. Modular Architecture for Efficient System Construction

Hyperledger Fabric’s modular architecture, with its ability to support hot plugging,
makes it suitable for transforming existing systems at a relatively low cost. The mature
architecture of the perceptual hash application for integrity authentication allows for a
quick application of the modular Fabric network to access the perceptual hash algorithm
and reduce the cost of building a perceptual hash blockchain storage system.

Hyperledger Fabric was selected as the preferred consortium blockchain platform over
Corda or Quorum due to its demonstrated advantages in flexibility, security, and efficiency
within the member licensing mechanism, channel mechanism, and modular architecture.
In conclusion, Fabric is better suited to meet the requirements of the remote-sensing image
integrity authentication system, ensuring a secure and efficient operation.

2.3.2. Necessity of Combining Hyperledger Fabric with IPFS

The storage of perceptual hash data often poses challenges for direct storage on Hy-
perledger Fabric due to capacity limitations. Thus, this study proposes the use of the IPFS
(InterPlanetary File System) network as an auxiliary decentralized storage organization in
combination with Hyperledger Fabric to ensure secure off-chain storage of large amounts of



Remote Sens. 2023, 15, 4860 9 of 32

perceptual hash values. IPFS is a secure and efficient distributed storage and transmission
protocol that utilizes content addressing. It constructs a decentralized storage system with
hash verification and data integrity through distributed hash addressing [30]. All nodes
that run the IPFS protocol are interconnected, enabling quick location and download of
data resources through directed acyclic graphs and distributed hash tables. IPFS offers
benefits such as data security, tamper resistance, rapid access, no single point of failure,
and firewall restriction immunity.

Compared to other decentralized storage protocols, the integration of IPFS with
Hyperledger Fabric is a more effective approach. This integration has been demonstrated to
be applicable to various data storage scenarios, such as land ownership, electronic medical
records (EMR), and healthcare data [31–34]. However, current methods employ the public
IPFS network directly as the off-chain decentralized storage center for the blockchain, which
is accessible to anyone. In contrast, a private IPFS network is built on the IPFS protocol
and only allows authorized users to access and share content. Compared to the public
IPFS network, a private IPFS network is limited to internal use by a group or organization,
and it provides higher security and privacy. Only nodes possessing the shared swarm.key
can access and share content, and others cannot access information about the content. For
sensitive data transmission and storage scenarios, such as remote-sensing image perceptual
hash, it is necessary to use a private IPFS network to store perceptual hash data for data
integrity proof. This scheme can help mitigate the risk of data tampering resulting from
perceptual hash leakage and protect users’ privacy and data security.

This study utilizes Kubo (go-ipfs) and the IPFS-Cluster to establish a private IPFS
network and integrate it with Hyperledger Fabric to build a Perceptual Hash Secure Storage
and Transmission Framework (PH-SSTF). By restricting access to nodes with the same
shared key, the authenticity and security of perceptual hash value storage are ensured.
At the same time, a wide range of file and information types can be stored with fewer
restrictions, eliminating file redundancy and storage duplication, and improving storage
network performance.

3. Methods
3.1. Remote-Sensing Image Perceptual Hash Generation Algorithm

The remote-sensing image perceptual hashing algorithm designed in this paper em-
ploys the NSCT, which is shown in Figure 3. It is composed of two stages: preprocessing
and perceptual hash value generation. In the preprocessing stage, the one-layer NSCT is ap-
plied to each band of the original image. The multi-band NSCT-transformed low-frequency
sub-bands are then fused according to the RE-based weighted average method, resulting in
the fused low-frequency sub-band coefficients CF. In the second stage, the statistical texture
features are extracted from each grid cell of CF, and the perceptual features are serialized
to obtain the grid perceptual hash value. The perceptual hash value of the remote-sensing
image is generated by concatenating and encrypting the perceptual hash values of the
grids.
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3.1.1. Preprocessing Stage

The preprocessing includes the first three processes of the algorithm: NSCT transform,
grid division, and multi-band NSCT low-frequency sub-band fusion. The specific steps are
as follows:

1. The image k bands are each subjected to an NSCT decomposition of scale 1 to obtain k
low-frequency sub-band coefficients Ci, i ∈ [1, k].



Remote Sens. 2023, 15, 4860 10 of 32

2. The Ci is divided into W × H invisible grid cells of equal size and without over-
lapping. The divided grid cells are denoted as Ci(w, h), where w and h identify the
corresponding positions of the grid.

3. The regional energy (RE) values of all bands at the (w, h) position are calculated by
Formula (1), where Ei(w, h) represents the RE value of the i-th band. The RE of all
bands

{
E1, E2, · · · , Ek

}
will be recorded in the blockchain simultaneously with the

perceptual hash for use in the preprocessing stage of tampering localization. Further-
more, the weight αi of the sub-band coefficients of the i-th band can be calculated, and
its expression is given in Formula (2).

αi =
Ei(w, h)

E1(w, h) + · · ·+ Ei(w, h) + · · ·+ Ek(w, h)
(2)

4. The weighted average of the low-frequency sub-band coefficients at each band (w, h)
position, CF(w, h), is regarded as the sub-band fusion result. The specific calculation
method is shown in Formula (3).

CF(w, h) = α1. ∗ C1(w, h) + · · · αi. ∗ Ci(w, h) + · · ·+ αk. ∗ Ck(w, h) (3)

3.1.2. Perceptual Hash Value Generation Stage

The steps for perceptual feature extraction and the generation of the final perceptual
hash value are as follows.

1. The fused low-frequency sub-band coefficients CF(w, h) of the grid cells are denoted
as Gw,h, and each grid cell is further divided into M × N sub-blocks of equal size.
Calculate the standard deviation σt of each sub-block, and calculate the mean µt and
standard deviation σt by Formulas (4) and (5):

µt =
1

M× N

M

∑
i=1

N

∑
j=1

Ct(i, j) (4)

σt =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(C t(i, j)− µt)
2 (5)

In the formula, M and N are, respectively, Gw,h the total number of rows and columns
of the sub-block; Ct(i, j) represents the low-frequency coefficient matrix of the t-th
sub-block; σt represents the standard deviation of the low-frequency coefficient of
the t-th sub-block with scale 1, t ∈ (1, 2, . . . , M× N). After the above processing, the
characteristic sequence of the grid cell Gw,h consisting of the standard deviation of the
first-order low-frequency sub-bands of each sub-block NSCT transform is obtained as
Hw,h= (σ1, σ2, . . . , σM×N).

2. The mean value σ of the feature sequence Hw,h is calculated and quantized according
to Formula (6) to obtain the perceptual hash value Hw,h

S of the grid cell.

Hw,h
S =

{
1, σt ≥ σ
0, σt < σ

t ∈ (1, 2, . . . , M× N) (6)

3. Logistic mapping, as a typical chaotic system, can be expressed as a nonlinear iterative
equation, as shown in Formula (7).

xl+1 = µx1(1− xl), x1ε(0, 1) (7)

The logistic mapping is chaotic when µ ε (3.56994564, 4 ]. Chaotic sequences can be
generated by logistic mapping. The obtained chaotic sequence is very sensitive to the
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initial value and is non-periodic and non-convergent. The obtained chaotic sequence
can be converted into binary numbers in the encryption process. Let each bit of it be
an inner product with each bit of the original sequence of quantized perceptual hash,
respectively, to obtain the final encrypted perceptual hash value Hw,h

St . In this process,
the initial value in chaotic encryption is used as the key K, which is shared between
the sender and receiver and can improve the algorithm’s security.

The hash value Hw,h
St of Gw,h grid cells can be generated after the above three steps,

and the final perceptual hash value of the whole image is obtained by concatenating the

hash values of each grid cell, PH =
(

H1,1
St , H1,2

St , H1,h
St , . . . , H

w,h

St

)
.

3.2. Perceptual Hash Secure Storage and Transmission

This paper presents a Perceptual Hash Secure Storage and Transmission Framework
(PH-SSTF) based on Hyperledger Fabric and IPFS, as depicted in Figure 4. The abbreviations
used below are shown in Table 2. PH-SSTF consists of three phases: initialization, request,
and data transmission. The initialization phase corresponds to steps 1 to 2 in Figure 4. The
request phase corresponds to steps 3 to 9 in the same figure. Lastly, the data transmission
phase aligns with steps 10 to 14 in Figure 4.

3.2.1. Transmission and Storage Procedure Design

The PH-SSTF designed in this paper revolves around the interaction between subjects
and the blockchain, and its flow is shown in Table 3.
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3.2.2. Hash Registration Chaincode Design

In this study, the perceptual hash secure storage design was implemented using the
Fabric’s chaincode as a bridge between the client and the Fabric network. Figure 5 illustrates
that the hashregistercc chaincode must be installed for each peer node of the representative
data sender and receiver after joining Channel A to access the perceptual hash registration
or query service. The ledger data of Channel A is divided into two parts: the chaincode
invocation record and the current state of the local ledger. The chaincode invocation record
is stored in the form of a blockchain, while the current state of the local ledger is stored in
the form of a key-value database. This design provides a secure and efficient solution for
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perceptual hash storage and transmission in the context of the Fabric network, ensuring
data authenticity and integrity for both data senders and receivers.

Table 2. The abbreviations in framework design.

Abbreviation Description

DS Data Sender is an organization that has Remote-sensing images
DR Data Recipients will perform data integrity certification
PH Initial perceptual hash value
RE The regional energy values of all bands

hashregistercc perceptual hash register chaincode
TxID Hyperledger Fabric transactions number
CID Location of files in IPFS

swarm.key Shared keys for private IPFS network
K Perceptual hash secret key

RESULT Results returned by the chaincode

Table 3. The flow of PH-SSTF.

Steps Description

1. DS starts the Hyperledger Fabric network and establishes a blockchain node peer of Organization 1 (Org1).
2. Blockchain node peer of Org1 representing DS joins Channel A and deploys the chaincode in Channel A.
3. DR sends a data transmission request to DS.
4. DR is identified and establishes the blockchain node of Org2 in the Hyperledger Fabric network.
5. Blockchain node peer of Org2 representing DR joins Channel A.
6. DS will need to transmit remote-sensing image data to obtain PH through Section 3.1 Perceptual Hash Algorithm.
7. DS uploads PH to the private IPFS network to obtain CID.

8. Execute the chaincode and bind CID and perceptual hash key K and data transmission information to the blockchain
for storage.

9. The chaincode is executed successfully and returns RESULT and TxID.
10. DS sends the TxID, the swarm.key file of the private IPFS network and the original file to the DR.
11. After receiving the data and related information, the DR initiates a query by TxID.
12. DR obtains the data corresponding to the CID of PH and the perceptual hash key K.
13. DR joins the private IPFS network created by DS through the swarm.key file and obtains the original PH through CID.

14. DR compares the obtained original PH with the PH obtained by the perceptual hash algorithm and performs integrity
authentication.
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The chaincode hashregistercc used in this system includes a transmission information
registration class with the relevant attributes specified in Table 4. Sender information is
obtained automatically by the system, and an image transaction timestamp is automatically
generated when the hash registration chaincode is invoked.
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Table 4. The registration class properties.

Properties Types Description

Imagedata String Transmitting image information
Sender String Sender’s information

Receiver String Receiver’s information
Imagingtime Int64 Image production time

Transmissiontime Int64 Image transmission time
PHaddress String Perceptual Hash IPFS addresses

The hashregistercc chaincode offers user hash registration and query services, with
relevant functions defined in Table 5. To query the ledger information in Fabric using
the chaincode, the system must implement the ChaincodeStubInterface interface under
the shim package in the chaincode. Transactions are divided into two types, query and
invoke, depending on the request type of the chaincode invocation method. For simple
queries of ledger information, a query transaction is directly sent to query the local ledger
on the peer node. However, if it involves updating the ledger, such as adding, modifying,
deleting, etc., an invoked transaction is sent, waiting for endorsement from other nodes
before completing the transaction. This ensures the accuracy and integrity of the data on
the blockchain.

Table 5. The chaincode functions.

Method Name Types Input Output Description

init String N/A Boolean Initializes the chaincode and
returns a Boolean value.

invoke String N/A Boolean Forwarding parameters to the
corresponding method.

regist String Registration TxID Register the hash and return
the transaction ID.

query Int64 TxID Registration Query hash and transmission
information.

3.2.3. Prototype System Implementation

A prototype system based on PH-SSTF has been designed to ensure the authenticity
and traceability of perceptual hashes using blockchain technology. This system requires a
Fabric network environment, a private IPFS network, and multiple web services and client
development modules. The interface calls to the private IPFS are implemented using the
Node.js web framework Express and js-ipfs, with Fabric version 1.4. The major software
versions used include Aliyun ECS server for ubuntu18.04, Docker version 19.03.12, Docker-
compose version 1.24.1, Go version 1.14.4, and Kubo 0.15.0. The specific construction
methods for the PH-SSTF prototype system can be found in Appendix A, located at the
end of this paper. The interface for the perceptual hash IPFS storage operation is presented
in Figure 6a. Figure 6b shows the interface for perceptual hash registration. Figure 6c
illustrates the perceptual hash query operation interface.
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3.3. Remote-Sensing Image Authentication and Tampering Localization
3.3.1. Preprocessing Stage

Before integrity authentication, preprocessing is first required for possible tampering at
the band level. The fusion weight of the potentially tampered bands needs to be increased
by the calculation and comparison of the regional energy (RE). The specific steps are
as follows:

1. After receiving the data, the data recipient (DR) calls the CID and perceptual hash
key K obtained by chaincode query through TxID. DR then, using the swarm.key file,
joins the private IPFS network created by the DS. By utilizing the obtained CID, DR
retrieves the original perceptual hash PH (including RE) from the IPFS network.

2. The regional energy (RE) values
{

E′1, E′2, · · · , E′k
}

for all bands of the received

image are calculated by Formula (1), where E′i represents the RE value of the i-th
band. Furthermore, by comparing with the regional energy values

{
E1, E2, · · · , Ek

}
for each band of the original image, a new weight α′i of the sub-band coefficients of
the i-th band can be assigned, and its expression is given in Formula (8).

α′i =


E′i

E′1+···+E′i+···+E′k , E′i = Ei

Ei×2
E′1+···+(E′ ′ i×2

)
+···+E′k

, E′i 6= Ei (8)

3. The low-frequency sub-band coefficients C′i of each band are multiplied by the new
weights α′i to obtain the sub-band fusion result C′F. The specific calculation method
is shown in Formula (9).

C′F = α′1. ∗ C′1 + · · · α′i. ∗ C′i + · · ·+ α′k. ∗ C′k (9)
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Any form of tampering will induce alterations in the regional energy of a specific
band. Consequently, any band exhibiting inconsistencies compared to the original image
is classified as a potentially tampered band. Thus, the multiplication of the original
weights in Formula (8) by a factor of 2 is intended to amplify the significance of potentially
tampered bands, therefore enhancing the visibility of tampering effects in the band fusion
results. Although some inconsistencies may be due to content-preserving operations, this
preprocessing does not affect the actual result of integrity authentication.

3.3.2. Integrity Authentication Stage

The main process of the integrity authentication phase can be divided into the follow-
ing steps.

1. Original PH acquisition phase: DR decrypts the original hash value PH obtained by
the IPFS network through perceptual hash key K Get PHS1, PHS1 = (H1,1

S1 , H1,2
S1 , H1,h

S1 ,
. . . , Hw,h

S1 ).
2. Authentication phase: extract the quantized perceptual hash value PHS2, PHS2 =

(H1,1
S2 , H1,2

S2 , H1,h
S2 , . . . , Hw,h

S2 ) from the sub-band fusion result C′F of the pending
authentication image according to the hash value generation step in Section 3.1.2. The
distance Dw,h

H between the perceptual hash value Hw,h
S1 and Hw,h

S2 corresponding to the
same location grid cell Gw,h is calculated using the normalized Hamming distance.
The specific formula is as follows.

Dw,h
H

(
Hw,h

S1 , Hw,h
S2

)
=

1
L

L

∑
ω

{∣∣∣Hw,h
S1 (ω)− Hw,h

S2 (ω)
∣∣∣} (10)

In the formula: Hw,h
S1 , Hw,h

S2 are two hash values of length L; ω denotes each bit in the
hash value.

3. The calculated normalized Hamming distance Dw,h
H is compared to a predefined

threshold T. If Dw,h
H is found to be greater than T, it is concluded that the corresponding

grid cell Gw,h of the received image has been tampered with and marked as such. This
process is repeated for all the grids. If the mean distance Dw,h

H of all grid cells of the
received image is less than the threshold T, it can be concluded that the received image
is either the original image or a trusted image that has undergone content-preserving
operations. Regarding the setting of the threshold T, a dedicated experiment will
be carried out in Section 4.1.1 of this paper, as it concerns the balance between the
robustness and sensitivity of the algorithm.

4. If tampering with a grid is detected, it is considered that the integrity of the transmitted
image has been compromised. Additionally, the location of the tampered area can be
determined using the grid that was marked during the authentication phase.

4. Experiments and Results
4.1. Perceptual Hash Algorithm Validity Experiment

In this study, a total of 400 original remote-sensing images were used for experiments
to form the “original dataset”, including 200 Google Earth remote-sensing images from
the DOTA high-resolution image database [35], 150 Gaofen-2 (GF2) satellite images from
the GID high-resolution image dataset [36], and 50 Sentinel-2B L2A-class remote-sensing
image products downloaded from the official Sentinel data website. The image size ranges
from 1444× 1727 to 10,000× 10,000, with resolutions of 0.5 m for Google Earth images, 1 m
for GF2 images, and 10 m, 20 m, and 60 m for Sentinel-2B images. The band information of
the experimental data is summarized in Table 6.
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Table 6. Introduction of experimental data spectrum.

Parameters Google Earth Gaofen-2 (GF2) Sentinel-2B

Spectral Number 3 4 13

Spectral Central
wavelength (nm)

B-Blue 490
B-Green 560
B-Red 665

B01-485
B02-555
B03-655
B04-830

B01-443
B02-490
B03-560
B04-665

B05-705
B06-740
B07-783
B08-842

B08A-865

B09-940
B10-1375
B11-1610
B12-2190

The hardware platform for the experiment is a quad-core CPU with a 3.8 GHz main
frequency and 16 GB memory; the software development platform is MATLAB R2022a,
and some functions are implemented based on the NSCT toolbox. The parameter µ = 3.6
for chaotic mapping, and the initial value of encryption key K, i.e., chaotic sequence, is 0.5.

4.1.1. Threshold Determination Experiment

Perceptual hashing algorithms are evaluated based on two performance metrics:
robustness and sensitivity. Robustness refers to the ability to produce similar hash values
for visually similar images, even after content-preserving operations. Sensitivity refers to
the ability to detect tampering operations. These two metrics are often inversely related,
meaning that improving one can lead to a degradation in the other. Therefore, a reasonable
threshold must be chosen to balance the two and to be able to identify content-preserving
operations and content-tampering operations effectively.

Accurately determining the threshold value for testing requires a large amount of data.
To achieve this, seven types of content-preserving operations were applied to 400 images
from the “original dataset”, resulting in a “similar dataset” comprising 2800 images that
retained the visual content of the original images. The operations included including LSB
watermark embedding (1 bit-planes), JPEG compression (Quality Factor = 50, 90), Gaussian
filtering (standard deviation = 0.5, 5), format conversion to BMP and PNG (Gaofen-2: B03,
B02, B01; Sentinel-2B: B04, B03, B02). The original dataset was then divided into 12,648 grid
cells, while the similar dataset contained 88,536 grid cells. This resulted in 88,536 pairs of
gridded cells with similar content for testing purposes.

To create the “tampered dataset”, a tampering process was applied to 12,648 grid cells
from the original dataset. Specifically, an external image block was pasted into a block of
each grid cell, with the paste area ranging from 15% to 25% of the original grid cell. Paste
blocks were available in three different sizes: 32 × 32, 64 × 64, and 128 × 128.

Formula (10) was utilized to compute the normalized Hamming distance between
88,536 pairs of similar data and 12,648 pairs of tampered data. The “Detection rate”, which
represents the probability of correct detection, was defined as presented in Formula (11).
The detection rate results under various thresholds T are illustrated in Figure 7. The X-axis
corresponds to the authentication threshold T, while the red and blue curves represent the
detection rates of similar images and tampered images, respectively. The results indicate
that the detection rates of similar and tampered images intersect approximately when
T = 0.05. This means that the algorithm strikes a balance between robustness and sensitivity
when T = 0.05 is chosen as the threshold to ensure that the algorithm can perform its
task effectively in experiments, both in terms of maintaining robustness to similar images
and detecting tampered images. Therefore, in the experiments, a threshold T of 0.05 was
adopted to differentiate between the similar and tampered images.

Detection rate =
The number o f correct detection

The total number o f tested images
(11)
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4.1.2. Algorithm Robustness and Sensitivity Experiment

The purpose of this section is to assess the robustness of the proposed algorithm to a
broader range of unexpected changes caused by content-preserving operations, as well as
its sensitivity to detecting tampered data. To investigate the robustness of the algorithm,
additional content-preserving operations were applied to the 12,648 grid cells derived from
the “original dataset”, as shown in Table 7, using 15 types of content-preserving processing
operations to produce a “new similar dataset” of a total of 189,720 grid cells. To evaluate
the algorithm’s ability to identify tampered data, an equal number of tampered grid cells
were generated for each similar image using the same generation method described in the
previous section for the “tampered dataset”.

Table 7. Parameter setting for Content-preserving operations.

Content-Preserving
Operation Variable Parameters Parameters Setting

JPEG compression Quality factor 50, 90
Gaussian filtering (4 × 4) Standard deviation 0.5, 5

Motion blurring Motion length 5, 10
Salt and pepper noise Noise density 30%, 50%

Gaussian noise Standard deviation 5, 50
Unsharp masking Gain factor 1, 10

LSB watermark embedding Bit-planes number 1

Format conversion to BMP Selected bands Gaofen-2: B03, B02, B01;
Sentinel-2B: B04, B03, B02

Format conversion to PNG Selected bands Gaofen-2: B03, B02, B01;
Sentinel-2B: B04, B03, B02

The Hamming distances between the perceptual hash of the original image and its
corresponding similar image, as well as the tampered image, are calculated. The maximum,
minimum, and mean values of the Hamming distances for each operation type in the
dataset are shown in Table 8.

Based on the results presented in Table 8, a threshold value of 0.05 proves effective in
distinguishing similar images from tampered ones, though a few recognition failures were
also observed. To demonstrate the superiority of this algorithm, the evaluation method of
the Receiver Operating Characteristic (ROC) curve is primarily adopted for assessing the
performance of image perceptual hashing algorithms [37]. The ROC curve plots the False
Positive Rate (FPR) on the horizontal axis and the True Positive Rate (TPR) on the vertical
axis, with a set of FPR values and TPR values obtained by varying the threshold T. TPR
represents the ratio of correctly classified similar images to all similar images. In contrast,
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FPR represents the ratio of tampered images misclassified as similar to all tampered images.
Formula (12) provides the formal definitions of TPR and FPR.

TPR =
True Positive

True Positive + False Negative
, FPR =

False Positive
False Positive + True Negative

(12)

In this formula, True Positive refers to the number of similar samples that are correctly
identified as similar. False Positive refers to the number of tampered samples that are
incorrectly identified as similar. False Negative refers to the number of similar samples
that are incorrectly identified as tampered. True Negative refers to the number of tampered
samples that are correctly identified as tampered.

Table 8. Hamming distance under different types of operations.

Processing Operations
Similar Tampered

Max. Min. Mean Max. Min. Mean

JPEG compression 0.0495 0.0005 0.0045 0.5547 0.0623 0.3243
Gaussian filtering (4 × 4) 0.0237 0.0014 0.0027 0.5124 0.1134 0.2894

Motion blurring 0.0517 0.0018 0.0124 0.5435 0.1044 0.3827
Salt and pepper noise 0.0356 0.0015 0.0138 0.4989 0.0384 0.2845

Gaussian noise 0.0371 0.0027 0.0110 0.4872 0.0738 0.3143
Unsharp masking 0.0428 0.0016 0.0107 0.6483 0.1845 0.2976

LSB watermark embedding 0.0469 0.0020 0.0265 0.5743 0.0937 0.3285
Format conversion to BMP 0.0124 0.0000 0.0026 0.6463 0.1173 0.4866
Format conversion to PNG 0.0112 0.0000 0.0012 0.6271 0.1321 0.4824

In the context of ROC curve analysis, a larger True Positive Rate (TPR) and a smaller
False Positive Rate (FPR) indicate better algorithm performance. Hence, the proximity of
the algorithm’s curve to the upper-left corner of the ROC graph signifies superior algorithm
performance. At times, visual inspection may not suffice to discern which ROC curve
corresponds to a better-performing hash algorithm, leading to the calculation of the Area
Under Curve (AUC). The AUC is a value between 0 and 1, representing the area enclosed
by the ROC curve and the axis. A higher AUC value suggests improved performance of the
classification model in accurately distinguishing between positive and negative instances,
with a perfect model yielding an AUC of 1, and a random guessing model resulting in an
AUC of 0.5. Thus, the application of the ROC curve can effectively indicate the relative
superiority or inferiority of different algorithms.

The algorithms in this study are compared with state-of-the-art algorithms recently
published in academic journals. These comparison algorithms utilize FAST features [11]
and edge features [9,12,38] for the same dataset constructed in this section. The results of
the ROC curves plotted by all the algorithms are presented in Figure 8.

By comparison, it can be seen clearly that the AUC value of the proposed algorithm
is a bit higher than that of the comparison algorithms. These findings suggest that the
algorithm possesses a stronger ability to distinguish between content-preserving and
content-tampering operations. Overall, the results demonstrate the algorithm’s reliability
and accuracy in ensuring data integrity.

4.2. Tampering Localization Experiments
4.2.1. Tampering Localization Ability Test

The proposed algorithm’s ability to locate tampering was evaluated on a three-band
Google Earth image of size 1024 × 1024, as shown in Figure 9. The algorithm accounts for
the vast data volume of remote-sensing images and extracts features for each grid. The
tampering accuracy of the algorithm depends on the granularity of the invisible mesh
division of the grid. To balance high tampering accuracy and reasonable computation
time, a grid cell size of 64 × 64 pixels was used, and the original image was divided
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into 16 × 16 grid cells. Further details on the impact of grid cell size are discussed in
Section 5. The original image was subjected to an Erasure attack on the multi-band, a
Copy-move attack on the green-band, and a Modify attack on the blue-band. The results of
the tampering localization are presented in Table 9.
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Table 9 displays the average Hamming distances between the tampered and non-
tampered regions and the original image. The average Hamming distance of the tampered
region exceeds the algorithm’s set threshold T = 0.05, while the average Hamming distance
of the untampered region is below the threshold. The tampering localization results in
the table show that the algorithm identified 15 tampered cells with a 100% tampering
recognition rate. Notably, the algorithm can identify Copy-move and Modify attacks at the
band level, in addition to detecting Erasure attacks across multiple bands.

4.2.2. Comparative Experiments of Different Algorithms for Tampering Detection

This section focuses on evaluating the efficacy of the proposed algorithm for remote-
sensing image tampering identification of multiple landscape types. To this end, grid
images representing six different landform types in the GID, as illustrated in Figure 10a–f,
were selected as the tampering detection experimental objects. The perceptual hashing al-
gorithms that utilized FAST features [11] and edge features [9,12,38] for tamper localization
were employed for comparison. Three tampering attack methods described in Section 4.2.1
were used to evaluate the algorithms’ effectiveness. The obtained results are presented
in Table 10 where the tamper recognition rate is expressed as the percentage of correctly
identified tampered grids out of the total number of tampered grids.
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Table 9. Tampering with location test results.

Tampering Type Band Tampering Case Band Fusion Results Grid Localization Average Hamming
Distance

Erasure
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tion 4.2.1 were used to evaluate the algorithms’ effectiveness. The obtained results are 
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Table 10. Comparison of different algorithms for tamper detection.

Algorithm Farmland Desert Towns Mountains River Marine

[9] 96.67% 82.87% 96.70% 96.72% 96.19% 87.02%
[11] 97.22% 88.39% 98.35% 95.62% 95.10% 85.94%
[12] 97.78% 90.61% 96.15% 96.17% 95.65% 86.48%
[38] 98.89% 93.92% 97.80% 97.26% 96.73% 91.89%

This paper 98.89% 94.47% 97.80% 97.81% 97.28% 94.59%

As can be seen from Table 10, the algorithm in this paper has a high tamper recognition
capability in recognizing remote-sensing images of various landforms. In particular, it
also has a stable tamper recognition capability for images of smooth areas such as deserts
and marine where edge or corner point features are less noticeable. Figure 10 shows the
FAST feature points and the ‘canny’ edge features for images of marine areas, respectively.
Figure 10g shows that the corner point features (cross marks) are predominantly present in
coastal areas compared to gently sloping oceanic waters. Figure 10h also shows that edge
features are predominantly present in complex coastal areas. Therefore, the comparison
algorithm is poor at identifying Copy-move and Modify attack tampering for the interior
of gently sloping regions with sparse features such as marine and desert. The algorithm
proposed in this paper is based on the statistical features of image texture, which has more
stability and broader applicability than the perceptual hashing algorithm based on FAST
features and edge features.

4.3. Perceptual Hash Storage and Query Performance Experiments
4.3.1. Perceptual Hash Storage Efficiency Experiment

In the PH-SSTF, the perceptual hash file is packaged into data blocks and stored in
a private IPFS network, with the hash addresses stored on the Hyperledger Fabric. In
contrast, existing methods directly store data on the public IPFS network. This experiment
focuses on comparing the storage performance between the traditional public IPFS network
and the PH-SSTF using a private IPFS network for files of varying sizes. Five groups of
perceptual hash data with sizes of 1 MB, 5 MB, 10 MB, 20 MB, and 50 MB were selected,
resulting in a total of 50 test cases per group.

The results, as shown in Figure 11, indicate that the average latency in the private IPFS
network constructed by PH-SSTF is 0.14 s, 0.31 s, 0.98 s, 11.55 s, and 26.15 s, respectively,
for the different file sizes. Conversely, the average latency in the public IPFS network
is 0.26 s, 0.83 s, 1.65 s, 11.71 s, and 27.65 s, respectively. In terms of storage speed, the
average storage rate in the private IPFS network is 9.09, 19.23, 20.52, 24.73, and 29.94 MB/s,
respectively, for the different file sizes. In comparison, the average storage rate in the public
IPFS network is 8.35, 17.69, 11.15, 5.88, and 4.73 MB/s, respectively. The experimental
results demonstrate that the storage rates in the private IPFS network are consistently
higher than those in the public IPFS network. For data sizes up to 5 MB, there is minimal
discrepancy in speed between the private and public IPFS networks. However, as the
file size increases (≥10 MB), the disparity in speed becomes more pronounced. Notably,
the private IPFS network achieves a speed of more than five times faster than the public
IPFS network for a 50 MB file. In the public IPFS network, data transmission primarily
occurs through a peer-to-peer mechanism, with data distributed and stored across multiple
nodes. This distributed characteristic implies that the transmission speed of data can be
limited by the slowest or bottleneck nodes within the network, especially when handling
larger files. Additionally, as file size increases, the need to transfer a greater number of data
blocks can lead to longer response times by nodes, therefore slowing down the overall data
transmission speed. Furthermore, factors such as network congestion, node loads, and
network traffic also influence data transmission speed in the public IPFS network. During
periods of heightened network traffic or congestion, the competition for limited network
resources by numerous data streams can further contribute to a decline in transmission
speed. Therefore, the observed decrease in speed with increasing file size in the public IPFS
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network is the result of the combined effects of multiple factors. Hence, the data storage
performance of the private IPFS network generally outperforms that of the public IPFS
network.
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only Fabric network data query experiments were conducted. Hyperledger Fabric pro-
vides two methods for querying data on the blockchain: chaincode queries and CouchDB 
queries. Chaincode queries involve invoking the query function of the chaincode to re-
trieve data stored on the blockchain, ensuring high availability and persistence. The query 
results are based on the latest blockchain state. On the other hand, CouchDB serves as a 
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4.3.2. Perceptual Hash Query Efficiency Experiment

The perceptual hash query process does not involve IPFS network interaction. Thus,
only Fabric network data query experiments were conducted. Hyperledger Fabric provides
two methods for querying data on the blockchain: chaincode queries and CouchDB queries.
Chaincode queries involve invoking the query function of the chaincode to retrieve data
stored on the blockchain, ensuring high availability and persistence. The query results are
based on the latest blockchain state. On the other hand, CouchDB serves as a separate state
database where data are stored independently, enabling individual backup and recovery.
By utilizing CouchDB queries, data can be directly retrieved from the CouchDB database
without depending on the blockchain. The query performance of these two methods is
compared in Figure 12, using the results of 50 queries as an example. The x-axis labeled ‘i’
represents the index of each query, while the y-axis labeled ‘t’ represents the corresponding
response time. The response time is subject to dynamic variations depending on the
network speed at the time of the query execution. In this study, the chaincode query
approach demonstrates shorter response times compared to the CouchDB query method,
meeting the requirements for network latency.
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generally faster than CouchDB queries, particularly for simple key-value queries. In
contrast, CouchDB queries require network access to the CouchDB database, and their
performance can be affected by network latency and throughput. If there are higher
demands for the performance and availability of blockchain data, chaincode queries may
be more appropriate.

5. Discussion
5.1. Tamper Sensitivity Analysis
5.1.1. Sensitivity Analysis for Grid Cell Size

The size w × h of the grid division can be considered to be the protection level of the
algorithm. The size of the grid cells will directly affect the granularity and accuracy of
tampering identification. Since the experimental image in Figure 9 is 1024 × 1024 size for
the square, for the convenience of computer processing, this experiment takes 512 × 512,
256 × 256, 128 × 128, 64 × 64, and 32 × 32 the five grid cells for grid cell size sensitiv-
ity analysis.

The results presented in Table 11 indicate that the calculation time decreases as the grid
size decreases. Upon multiplying the single-grid computation time with the total number
of grids, the total time consumption for integrity authentication was estimated to be 121.16,
135.2, 170.24, 286.72, and 573.44 s for grid sizes of 512 × 512, 256 × 256, 128 × 128, 64 × 64,
and 32 × 32, respectively.

Table 11. Comparison of tampering sensitivity for different grid sizes.

Grid Size Sample of Original
Images Sample Tampered Images Single-Grid

Calculation Time (s)

Hamming Distance
between Similar

Grids

512 × 512
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tampering that cannot be recognized when the degree of tampering is less than or equal 
to 10%. At this level, the tampered area is approximately 20 × 20 in size, and the threat 
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algorithmic complexity and recognition capability. If a higher level of tampering localization
accuracy is required, a grid size of 64 × 64 is recommended.

5.1.2. Sensitivity Analysis for Different Levels of Tampering

The preceding section’s results indicate that improved tamper localization capability
can be achieved within a reasonable computational elapsed time for a grid size of 64 × 64.
However, further experiments and discussions are required to determine the tamper
recognition sensitivity within the grid. In this section, we adopt a 64 × 64 grid as the basic
unit and conduct various degrees of tampering, ranging from 10% to 90% of the grid, to
determine the minimum degree of tampering detectable by the algorithm.

When using a grid of 64 × 64 as the basic unit and comparing it with the threshold
T = 0.05 set in this paper, the results presented in Table 12 reveal that there are instances of
tampering that cannot be recognized when the degree of tampering is less than or equal to
10%. At this level, the tampered area is approximately 20 × 20 in size, and the threat posed
by such isolated tampering is limited for conventional remote-sensing images. However,
if computational conditions permit, finer grid division, such as 32 × 32, yields accurate
recognition of this degree of tampering, as demonstrated in the last row of Table 11.

Table 12. Comparison of tampering sensitivity for different levels of tampering.

Level of Tampering Sample of Original Images Sample of Tampered Images Hamming Distance
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5.1.3. Sensitivity Analysis of High-Frequency Sub-Band Tampering

The algorithm proposed in this study is based on fusing the low-frequency sub-bands
obtained through the application of NSCT to the original image. To assess the tampering ef-
fect of solely manipulating the high-frequency sub-bands, experimental validation becomes
imperative. Tampering methods for high-frequency sub-bands can be categorized into two
main types. The first category involves local tampering, such as erasing or modifying the
high-frequency sub-bands themselves. The second type is global tampering, which entails
directly replacing the original high-frequency sub-bands with high-frequency sub-bands
from other images. Table 13 presents a comparison of the tampering effects of these two
methods, where the high-frequency sub-bands of the third and fourth images are replaced
with the high-frequency sub-bands of the second image.
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Table 13. Comparison of tampering sensitivity of high-frequency sub-band tampering.

Tampering
Methods

Sample of Original
Images

Sample Tampered
Images Grid Localization Average Hamming

Distance
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The results presented in Table 13 demonstrate that local tampering with the high-
frequency sub-bands alone leads to a reconstructed image that is perceptually similar to
the original image. The Hamming distances between the reconstructed image and the
original image perceptual hash are all below the threshold T. In the context of this paper,
such tampering can be considered a content-preserving operation, rendering it invalid for
practical applications. On the other hand, global tampering, like the direct replacement of
high-frequency sub-bands, causes significant changes in the texture of the reconstructed
image, making it valid tampering. The algorithm in this paper successfully identifies valid
tampering, as evident from the table results. Due to the inherent randomness of tampering
in the frequency domain, coupled with the diverse texture characteristics of the original
image base map, inconsistencies arise in the tampering localization results.
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5.2. Original Perceptual Hash File Storage Reliability Analysis

The original perceptual hash files are stored in a distributed manner using the private
IPFS network to address the issue of a single point of failure, which can lead to data loss
and inaccessibility due to node failures. IPFS breaks down these files into fragments, with
each node storing fragments rather than complete data, based on unique file addresses
generated using content-based hashing. Even if a node is compromised, data accuracy and
integrity are not compromised.

However, the potential for a node to engage in a conspiracy attack and tamper with
the stored perceptual hash files exists. The probability of such an attack is denoted as Pf ault
and can be expressed using Formula (13) [39].

Pf ault =
k−1

∑
i=0

Pk(1− P)n−kCk
n (13)

In the formula, n is the total number of nodes, k is the number of malicious nodes
present, and P is the probability of each node being online.

According to Formula (11), the probability of a successful attack by a malicious node
in a peer-to-peer network can be calculated based on the percentage of such nodes in
the network. The probability values are presented in Table 14, where ‘ f ’ represents the
percentage of malicious nodes out of the total number of nodes in the network.

Table 14. Probability of malicious nodes successfully tampering with data.

f/% Pfault

5 9.53 × 10−7

10 2.00 × 10−5

15 2.01 × 10−4

20 1.29 × 10−3

25 5.90 × 10−3

30 2.06 × 10−2

In Table 14, the following base conditions are set: the total number of nodes n is 20,
the probability of each node being online is 0.5, and the percentage of k to the total number
of nodes is less than 1/3.

Table 14 shows that an increase in the percentage of malicious nodes in the network
raises the probability of a successful attack. For instance, when 30% of nodes are malicious,
the probability of a successful attack is only approximately 2%, indicating a relatively low
success rate. Moreover, this method employs a perceptual hashing algorithm that uses
logical transitions to encrypt the hash values, ensuring the original hash values are securely
protected.

5.3. Comparison with Existing Method
5.3.1. Comparison of Integrity Authentication Algorithms

This section presents a comparison between the proposed image integrity authen-
tication algorithm and several existing algorithms that address the same issue. These
include digital signature algorithms [40], semi-fragile watermarking algorithms [5,8], and
perceptual hashing algorithms [11,38]. The comparison and discussion are conducted in
four dimensions: non-destructive to the original data, robustness to content-preserving
operations, consideration of multi-band properties, and tamper localization ability. Table 15
presents the comparison results.

The results in the table show that the digital signature-based integrity authentica-
tion method lacks robustness and tamper locating capability. Although the semi-fragile
watermarking method improves on this, it is somewhat destructive to the original data.
However, the method described in this paper refrains from making any alterations to the
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original image; as a result, it does not have any bearing on the accuracy of subsequent
applications, such as ground object extraction, in practical remote-sensing research [41].
Compared with existing perceptual hashing algorithms, the proposed algorithm takes into
account the multi-band characteristics of remote-sensing images and thus can identify
band-level tampering attacks. Moreover, the overall efficiency of the algorithm is higher
than the perceptual hashing algorithm that requires multiple repetitions of single-band
processing because the band fusion process has been performed.

Table 15. Comparison of different algorithms for integrity authentication.

Algorithm Digital
Signature [40] Watermarking [5] Watermarking [8] FAST

Based [11]
Canny

Based [38]
Proposed

Algorithm

Non-destructive to
the original data No No No Yes Yes Yes

Robust to
Content-preserving

operations
No Yes Yes Yes Yes Yes

Consider multi-band
characteristics No No Yes No No Yes

Tamper Localization No Yes Yes Yes Yes Yes

5.3.2. Comparison of Waveband Fusion Methods

In this section, the fusion method proposed in this paper will be objectively compared
with existing band fusion methods. Three comparative methods are employed, encom-
passing classical Principal Component Analysis (PCA), HSV conversion, and Wavelet
Transform. To meet the requirements of high efficiency and sensitivity to tampering, it is
necessary to quantitatively calculate the algorithm execution time and the peak signal-to-
noise ratio (PSNR) value between the fused result and the original tampered band. PSNR
is defined as shown in Formula (14).

PSNR = 10× log10

 2552

1
M×N ∑M−1

i=0 ∑N−1
j=0

[
Xi,j − X,

i,j

]2

 (14)

In the formula, Xi,j and X,
i,j represent the pixel values at position (i, j) of the fused

image and the original tampered image, respectively. M and N represent the number of
rows and columns of the images. PSNR can be used to measure the performance of the
fusion result in detecting tampering. A higher PSNR value indicates a higher sensitivity
of the fusion to tampering. The image data from Section 4.2.1 was selected as the unified
experimental data, and the specific experimental results are shown in Table 16.

From the results shown in the table, it can be seen that the fusion method proposed
in this paper has the shortest execution time. In terms of tampering at the band level,
the fusion method proposed in this paper also has the highest PSNR value. The method
proposed in this paper includes a preprocessing step of checking the energy variation
before detection, which increases the fusion weight of potential tampered bands. Therefore,
the fusion method exhibits higher sensitivity to tampering and is more suitable for integrity
authentication scenarios.

5.3.3. Comparison of Previous Schemes and the Proposed Scheme

The security of traditional perceptual hashing algorithms relies on the chaotic transfor-
mation or encryption methods to convert image information into a meaningless encrypted
string, which can be securely transmitted using a secret key. Implementation of these
methods may use the logistic transform employed in this study’s algorithm or encryption
algorithms such as RC4 or AES to encrypt the hash value [9,15]. However, traditional
methods do not guarantee the authenticity of the original perceptual hash. Therefore, the
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assistance of blockchain technology is needed to achieve further refinement. Currently, the
research area of remote-sensing image integrity authentication by combining perceptual
hashing with blockchain has only been initially explored by Ding et al. [42]. Nevertheless,
that study focused on improving the tamper sensitivity of the perceptual hashing algorithm
itself. Only a blockchain structure was proposed for perceptual hash storage, with no
innovative design or practical deployment for specific storage and transmission scenarios.
Therefore, in this section, the proposed PH-SSTF framework is compared horizontally with
the Hyperledger Fabric and IPFS integration schemes used for other Objectives. Table 17
presents the comparison results, which can be analyzed to identify the contributions and
significance of the proposed approach in this paper.

Table 16. Comparison of waveband fusion methods.

Methods Tampering
Sample Fusion Results Fusion Time (s) PSNR

(dB)

PCA
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Table 17. Functionality comparison of previous schemes and the proposed scheme.

Authors Objective 1 2 3 4

Mukne et al. [31] Land acquisition and ownership record management Yes Yes No No
Nyaletey et al. [32] Proposed a BlockIPFS to create a clear audit trail Yes Yes No No

Li et al. [33] Safe storage and sharing of medical record data Yes Yes No No
Mani et al. [34] Patient-centric healthcare data management Yes Yes No No

PH-SSTF Secure transmission and storage of perceptual hash Better Better Yes Yes

Notes: 1: Data security and privacy protection, 2: High-speed data storage and retrieval, 3: Elastic storage and
capacity expansion, 4: Offline data storage and offline transaction.

According to the comparison results in the table, it can be concluded that the PH-SSTF
proposed in this paper has the following optimization points.

1. Stronger Data Security and Privacy Protection
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Although existing combination schemes consider both data security and privacy
protection, a private IPFS network enhances these aspects by restricting access to a specific
group or organization. Only nodes with the shared swarm.key can access and share content,
preventing unauthorized access and data leakage.

2. Higher Speed Data Storage and Retrieval

Utilizing IPFS as the underlying storage layer for Hyperledger Fabric enables dis-
tributed data storage and retrieval. The combination of a private IPFS network and Hy-
perledger Fabric enhances data storage and retrieval performance. Private IPFS networks
provide a direct and efficient way to access specific data, reducing latency and increasing
retrieval speed.

3. Support Elastic Storage and Capacity Expansion

Private IPFS networks offer elastic storage capabilities, allowing flexible allocation
and expansion of storage capacity based on data requirements. Additional storage nodes
can be added, or existing nodes’ capacity can be increased to handle expanding data scales.
Hyperledger Fabric’s flexible architecture seamlessly integrates expanded storage capacity
within the blockchain network.

4. Support Offline Data Storage and Offline Transactions

Private IPFS networks enable local data storage on nodes, even without network
connectivity. Integration with Hyperledger Fabric allows for offline transaction support,
where transactions can be created and signed offline and then propagated once connectivity
is restored. This enhances system robustness and resilience.

Based on the above analysis, it can be concluded that by innovatively combining
Hyperledger Fabric and a private IPFS network, a higher level of data security and privacy
protection, faster data storage and retrieval, and elastic storage and capacity expansion can
be achieved. This provides more possibilities and flexibility for blockchain applications
and is more suitable for various sensitive data storage and transmission scenarios.

6. Conclusions

In summary, this paper presents a comprehensive approach to enhance the integrity
authentication of remote-sensing image data. The key contributions of this paper re-
volve around the introduction of the Perceptual Hash Secure Storage and Transmission
Framework (PH-SSTF). This framework excels at securely storing and transmitting original
perceptual hash values by integrating a private InterPlanetary File System (IPFS) network
and Hyperledger Fabric. It effectively bridges a critical gap in existing research, establishing
a secure infrastructure for remote-sensing image authentication.

The practical implementation and scalability testing of PH-SSTF have been effectively
demonstrated, underscoring its real-world viability and scalability. Beyond fortifying data
security and privacy, this approach streamlines data storage and retrieval processes while
offering flexible capacity scaling options.

Moreover, this paper introduces an advanced perceptual hashing algorithm tailored
specifically for remote-sensing images. This algorithm leverages the capabilities of NSCT
to meticulously capture and represent multi-band features, ensuring exceptional sensi-
tivity to tampering. Extensive experimentation across diverse landscapes and scenarios
has unequivocally confirmed the algorithm’s exceptional robustness and wide-ranging
applicability.

Looking ahead, extending this method to other domains with critical data integrity
and privacy requirements, such as medical imaging and environmental monitoring, will
open exciting interdisciplinary research prospects. Furthermore, future research directions
may encompass the exploration of unsupervised learning methods to develop even more
potent remote-sensing image perceptual hashing algorithms based on deep hashing learn-
ing. Additionally, the integration of artificial intelligence and blockchain techniques for
automated tampering localization and real-time anomaly detection holds the potential to
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enhance data security further. This work will lay a solid foundation for ensuring trust and
authenticity in an increasingly data-driven world.
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Appendix A

This appendix provides a comprehensive overview of the construction methodology
for the prototype system of PH-SSTF.

For the IPFS part, this study uses the Kubo and IPFS-Cluster client to build a local
private IPFS network in the private cluster mode, which is configured by setting the
environment variable LIBP2P_FORCE_PNET and restricting access to nodes with the same
swarm.key file. The operation is also integrated with the web interface. The interface for
the perceptual hash IPFS storage operation is presented in Figure 6a. Specifically, the data
sender uploads the transmitted data to the private IPFS network via the web interface by
selecting the file with the perceptual hash value PH that contains the original perceptual
hash image. The server receives the file from the client via the Post method, calls the toolkit
API to upload the file to IPFS, and then returns the file hash value returned by IPFS to the
client. When downloading, the client receives the file hash through the network, calls the
toolkit API to download the file according to the hash value, and then sends the file back to
the client.

The perceptual hash secure storage prototype system startup process corresponds to
the PH-SSTF initialization phase and the request phase, first completing the Fabric network
environment deployment, using the configuration file method to create organization nodes
on local servers and Aliyun ECS servers, and generating certificates and data files as well
as system and channel founding blocks through the Fabric’s modules. Then complete
the main steps of the perceptual hash secure storage prototype system startup, including
1© The sender (DS) compiles the system project and generates executable prototype system

files; 2© DS starts the Hyperledger Fabric network on which the prototype system runs;
3© initializes the Fabric SDK Go; 4© creates the Channel A and establishes the block of

Organization 1 (Org1) blockchain node peer0, after the receiver (DR) identity is verified,
DS adds the blockchain node peer1 representing DR to the specified channel; 5© completes
the installation and instantiation of the perceptual hash storage chaincode; 6© creates the
channel client; 7© starts the web service. After the service is started, the DS and DR can
register and query the perceptual hash through the browser.

Figure 6b shows the interface for perceptual hash registration. The sender (DS) can
input the perceptual hash IPFS address and relevant transmission information directly into
the perceptual hash storage interface and submit the registration request. After successful
registration, DS sends the TxID returned by the contract and the private IPFS network
swarm.key shared vital file along with the original file to the receiver (DR). Figure 6c
illustrates the perceptual hash query operation interface. Corresponding to the PH-SSTF
integrity authentication phase, DR can query the data by entering the transaction number
(TxID) in the query interface upon receiving it. The query result enables the receiver to
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obtain the original actual perceptual hash value of the remote-sensing image for integrity
authentication or the sender to trace the data receiver for the maintenance of rights and
responsibilities in the case of data tampering.
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