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Abstract: Automatically translating chromaticity-free thermal infrared (TIR) images into realistic 
color visible (CV) images is of great significance for autonomous vehicles, emergency rescue, robot 
navigation, nighttime video surveillance, and many other fields. Most recent designs use end-to-
end neural networks to translate TIR directly to CV; however, compared to these networks, TIR has 
low contrast and an unclear texture for CV translation. Thus, directly translating the TIR tempera-
ture value of only one channel to the RGB color value of three channels without adding additional 
constraints or semantic information does not handle the one-to-three mapping problem between 
different domains in a good way, causing the translated CV images not only to have blurred edges 
but also color confusion. As for the methodology of the work, considering that in the translation 
from TIR to CV the most important process is to map information from the temperature domain 
into the color domain, an improved CycleGAN (GMA-CycleGAN) is proposed in this work in order 
to translate TIR images to grayscale visible (GV) images. Although the two domains have different 
properties, the numerical mapping is one-to-one, which reduces the color confusion caused by one-
to-three mapping when translating TIR to CV. Then, a GV-CV translation network is applied to 
obtain CV images. Since the process of decomposing GV images into CV images is carried out in the 
same domain, edge blurring can be avoided. To enhance the boundary gradient between the object 
(pedestrian and vehicle) and the background, a mask attention module based on the TIR tempera-
ture mask and the CV semantic mask is designed without increasing the network parameters, and 
it is added to the feature encoding and decoding convolution layers of the CycleGAN generator. 
Moreover, a perceptual loss term is applied to the original CycleGAN loss function to bring the 
translated images closer to the real images regarding the space feature. In order to verify the effec-
tiveness of the proposed method, the FLIR dataset is used for experiments, and the obtained results 
show that, compared to the state-of-the-art model, the subjective quality of the translated CV images 
obtained by the proposed method is better, as the objective evaluation metric FID (Fréchet inception 
distance) is reduced by 2.42 and the PSNR (peak signal-to-noise ratio) is improved by 1.43. 

Keywords: thermal infrared image; image translation; CycleGAN; temperature information;  
semantic mask 
 

1. Introduction 
A thermal infrared (TIR) camera captures infrared radiation emitted by objects in 

scenes as the visible spectrum images do not have ideal color and texture, such as night 
or low-light working environments where TIR images have a strong advantage; thus, in 
recent years, TIR cameras have been widely used in industrial surveillance and drones. 
However, such images do not have color information, which makes it difficult for humans 
to distinguish objects in the scene and affects their use in some important contexts, such 
as emergency rescue environments. In order to improve human eye recognition and 
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computer intelligent processing, many researchers are studying how to translate TIR im-
ages into color visible (CV) images for computer vision tasks such as object tracking, 
crowd counting, panoramic segmentation, and image fusion. 

Furthermore, TIR relies on converting temperature into an image, so there is only one 
active channel measuring mainly the temperature information; however, CV relies on the 
conversion of colors into images, so there are three channels, which we usually call RGB, 
and the information carried by TIR and CV is not in the same domain, such that TIR to 
CV translation is a one-to-three value mapping, including the translation of texture and 
color. Moreover, due to the limitations of imaging mechanisms and camera manufactur-
ing processes, TIR images have limited resolution and a less prominent texture; these huge 
differences between image modalities develop challenges to the design of image transla-
tion models [1]. Most deep learning (DL)-based image translation algorithms use an end-
to-end neural network that directly translates single-channel TIR images to three-channel 
CV images. As a result, when the CV content is simple and the TIR texture is relatively 
rich (such as face TIR images), the translation effect is better [2]; however, when the CV 
scene is complex (such as the street view or the natural landscape), the translated images 
tend to have large areas of color confusion and texture anomalies. 

The translation from TIR to CV has a one-to-many mapping relationship between the 
different domain values, the most important process of which is to translate the infor-
mation of the temperature domain into the color domain. In order to reduce the ambiguity 
of the translation process, the translation of different domain values is only considered a 
one-to-one mapping relationship learning, i.e., first translating the TIR images to grayscale 
visible (GV) images. Existing translation algorithms, such as QS-Attn [3], decompose one 
temperature value into three RGB values, causing the translated image to show blurred 
edges and color confusion, as shown in Figure 1e, which represents the ambiguity in the 
mapping from the temperature value to RGB due to a lack of sufficient constraints. This 
ambiguity can be reduced when the temperature is translated only to grayscale values, as 
shown in Figure 1c. 

   
(a) real TIR (b) real GV (c) translated GV by TIR-GV 

   
(d) real CV (e) translated CV by QS-Attn[3] (f) translated CV by GV-CV 

Figure 1. Comparison between TIR-GV-CV and TIR-CV. 
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Although further translation from GV images to CV images is required, there is no 
blurred edge and color confusion because both effects are translated in the same domain. 
Some existing research results ([4,5]) show that the only disadvantage of the translation 
from GV to CV is that it is not easy to restore the real scene color; however, the resulting 
image can fully meet the visual needs of the human eye, as shown in Figure 1f. 

Since this study focuses on TIR to GV translation, an improved CycleGAN, called 
GMA-CycleGAN (Gray Mask Attention-CycleGAN), is proposed, i.e., a gray image cycle-
consistent GAN with mask attention. The mask attention mechanism helps in improving 
the texture of salient objects (pedestrians and vehicles) to meet the needs of object detec-
tion and semantic segmentation in practical applications. Thus, a mask attention module 
has been proposed. Moreover, this latter does not increase network parameters based on 
TIR temperature masks and CV semantic masks that separate salient objects from the 
background. Therefore, in GMA-CycleGAN, the mask attention module is added to fea-
ture encoding and the feature decoding convolutional layers of the generator. In addition, 
a perceptual loss term is added to the original CycleGAN loss function to make the trans-
lated image closer to the real image in the feature space. 

The subsequent parts of this paper are arranged as follows: first, the relevant research 
status is explained in Section 2, the improved algorithm that was proposed is explained 
in Section 3, the experiments and datasets are explained in Section 4, the obtained results 
are analyzed and discussed in Section 5, and a conclusion concludes this work in Section 
6. 

2. Related Work 
Due to the different imaging principles of thermal and visible light sensors, the tem-

perature domain, where TIR is located, is very different from the color domain, where CV 
is located, and it is difficult for traditional methods to directly identify the mapping rela-
tionship from TIR to CV. Early studies ([6,7]) used the fusion of near-infrared images and 
TIR to supplement texture information, to obtain a fusion image that approximates gray-
scale visible light, and to color the fusion image according to the color distribution of a 
reference color image, so that the visual realism of the obtained image is poor. 

In recent years, DL has been widely used in various computer vision tasks, and the 
powerful fitting ability of neural networks has engendered certain progress in TIR to CV 
image translation tasks. Moreover, scholars have proposed many network models based 
on DL, and these models were divided into two categories: convolutional neural networks 
(CNNs) models and generative adversarial networks (GANs) models according to 
whether adversarial training is used. In addition, models based on CNNs, such as the 
TIR2lab model proposed by Berg et al. [8], are the first end-to-end TIR translation models. 
They hypothesized that the CNN model, based on the autoencoder structure, could iden-
tify the luminance-to-chromaticity mapping relationship of paired TIR and CV, and, for 
the first time, they used the neural network to directly translate TIR to CV. In order to 
make the small objects of the translated images have more realistic and richer texture in-
formation, Wang et al. [9] proposed an attention-based hierarchical thermal infrared im-
age colorization network (AHTIC-Net), which uses multi-scale network structures to ex-
tract the features of objects of different sizes in order to enhance the model’s attention to 
small objects during the training process. In general, the translation model, based on 
CNNs, has an intuitive structure and a simple network training mode; however, due to 
the insufficient constraint of the loss function of CNNs on the image translation, the trans-
lated CV images have the disadvantages of local detail distortion, low image contrast, and 
blurred visual effect. 

Thus, due to the adversarial training of the generative model and the discriminative 
model, GANs have better behavior than CNNs when applied to image generation, and 
they can use the unpaired TIR-CV dataset for training. For instance, Isola et al. [10] pro-
pose pix2pix to identify the mapping of the source image to a target image using paired 
datasets. In order to break through the dataset limitations, Zhu et al. [11] proposed the 
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CycleGAN, which uses two symmetric GANs to form a closed-loop network where one 
GAN translates images from the source domain to the target domain and the other GAN 
translates the target domain image back to the source domain and uses cycle-consistency 
loss to boost the image after two translations to be identical to the original image. Moreo-
ver, Pix2pix and CycleGAN have greatly improved the translation effect between CV im-
ages, so that image translation, based on the GAN model, has attracted the attention of 
many scholars. Subsequently, several have improved GAN, introduced methods such as 
contrastive learning and attention mechanisms, and proposed a variety of unpaired image 
translation models [3,12–14]. These GAN-based image translation models achieve good 
results in tasks such as semantic map to CV translation, super resolution, image inpaint-
ing, and style transfer; however, the visual effect is not ideal when they are directly ap-
plied to TIR-CV translation. Furthermore, Kuang et al. [15] improved the pix2pix method 
and proposed a new algorithm, the TIC-CGAN, which used GAN for TIR image transla-
tion in traffic scenes for the first time. To make the translated image richer in texture, TIC-
CGAN applied a coarse-to-fine generator instead of the pix2pix generator, which led to 
finer texture features in the target images. 

The methods mentioned above, based on CNNs and GANs, use paired TIR-CV da-
tasets for neural network training. This latter translates daytime TIR into daytime CV and 
translates nighttime TIR into nighttime CV, respectively. Since the high beams of oncom-
ing vehicles in nighttime traffic scenes interfere with RGB imaging, resulting in the visual 
effect of nighttime CV being inferior to daytime CV, Luo et al. improved the CycleGAN 
algorithm and proposed PearlGAN [16], which used an unpaired training mode to trans-
late nighttime TIR to daytime CV. Although these improved GAN models improve the 
realism of the translated images, the generated CV images still generate defects related to 
unclear texture and color distortion. This is due mainly to the one-to-many correspond-
ence in the TIR to CV translation, which is itself an ill-posed solution [17]. Thus, including 
the previous CNN models, which directly translate single-channel TIR to three-channel 
CV, these end-to-end translations cannot handle the one-to-many mapping between the 
temperature domain and the color domain well, resulting in different degrees of color 
confusion and edge blurring in the translated image. 

In order to reduce the instability of the ill-posed problem-solving process, we pro-
pose the decomposition of the TIR to CV translation into a two-phase translation process: 
the first one consists of translating from TIR to GV, whereas the second one achieves the 
translation from GV to CV. In the proposed experiment, we use the original CycleGAN as 
the base model. First, we change the TIR to CV one-to-three channel translation to TIR to 
GV one-to-one channel translation. Although this process does not intrinsically solve the 
problem of temperature and color matching, it reduces the uncertainty of temperature-to-
color translation, helping to improve the sharpness of image edges and reduce unwanted 
color noise. Inspired by the spatial attention module of AttentionGAN [18], and in order 
to better distinguish between salient objects (movable pedestrians and vehicles) in the 
generated image, we separate the object and background, then the semantic mask and the 
temperature mask are extracted in CV and TIR, respectively, making the salient objects in 
the image clearer without increasing the network parameters. Moreover, the use of adver-
sarial loss in image translation tasks tends to produce distorted textures [17]. In order to 
mitigate this problem, a perceptual loss term is added to the original CycleGAN loss func-
tion to encourage the translated image to be more similar to the real image in the feature 
space, which makes the texture information of the translated image closer to the true GV 
image. Thus, considering that the grayscale image coloring task is only performed in the 
temperature domain and does not produce edge blurring and noise [4], the original Cy-
cleGAN is directly used for the GV to CV translation. 
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3. Methods 
3.1. The Framework of GMA-CycleGAN 

The flowchart of TIR-GV image translation, based on our improved CycleGAN 
(GMA-CycleGAN), is shown in Figure 2, where A and B present two data domains, 
namely the TIR and the GV, 𝐺஺஻ and 𝐺஻஺ are two mask attention-based CycleGAN gen-
erators, and 𝐷஺ and 𝐷஻ are two CycleGAN discriminators. The first row represents the 
TIR to GV translation, whereas the second row represents the GV to TIR translation. The 
unpaired training scheme is used, where the real images A and B are randomly selected 
from the TIR and GV datasets, respectively. Taking the first row of Figure 2 as an example 
(the same would have been performed on the second row), the input real TIR image A is 
translated by 𝐺஺஻ to GV, and then the discriminator 𝐷஻ determines whether the gener-
ated GV and the real GV image B are real or fake and calculates the adversarial loss. Since 
the adversarial loss, calculated by CycleGAN discriminators, will cause some distorted 
textures in the generated images, we introduce the perceptual loss (pl), based on the VGG-
16 feature extractor [19], to calculate the difference between the global features of the gen-
erated and the real images. This makes the overall visual effect of the generated images 
more realistic. In addition, CycleGAN will also input the generated image and the real 
image A into generator 𝐺஻஺, and calculate the difference between the two translated im-
ages and the real image A, namely, determining the cycle consistency loss and identity 
mapping loss. 

Thus, the remainder of this section consists of introducing the temperature mask and 
the semantic mask in Section 3.2, the improved mask attention-based generator in Section 
3.3, and the improved loss function of CycleGAN in Section 3.4. 

 
Figure 2. The schematic diagram of GMA-CycleGAN. 

3.2. Temperature Mask and Semantic Mask 
In order to better identify the salient objects (movable pedestrians and vehicles) in 

the translated images and perform downstream tasks, such as object recognition and ob-
ject tracking, after the completion of the image translation task, the object will be separated 
from the background in CV and TIR, the semantic mask and the temperature mask will 
be extracted, and they will be added to the generator as prior knowledge. 

Furthermore, we extracted the semantic images from the real CV using Mask2Former 
[20], a semantic segmentation model pre-trained on the CitySpace dataset, and then 
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assigned a value of zero to the background (e.g., sky, vegetation, and road) and a value of 
one to the objects to obtain binary semantic masks, as shown in Figure 3a–c. Among them, 
the semantic masks of the daytime scene have better effect than the semantic masks of the 
nighttime scene, as the pre-trained semantic segmentation model will make an incorrect 
judgment on the object category in the black border of the nighttime CV and it is difficult 
to distinguish pedestrians in the distance; thus, a more accurate temperature mask is used 
instead of the semantic mask in the nighttime scene. 

Moreover, the raw TIR contains temperature information for the imaging area. Due 
to the different characteristics of various types of objects absorbing, emitting, and reflect-
ing heat, the specific objects have different manifestations on TIR. Considering this par-
ticular property of TIR, the object is separated from the background by setting a pixel 
threshold. Among them, the human body temperature is relatively stable, and it is the 
easiest to be separated from the background; moreover, the temperature of the car is 
higher when the engine is working, and the metal and glass materials on the outer surface 
of the car are more reflective when the engine is turned off; thus, it is easier to distinguish 
it. Since the thermal infrared sensor receives both the object’s own radiation and the envi-
ronmental radiation, the influence of solar radiation at night on the thermal imaging is 
small, and the camera is almost only sensitive to the heat emitted by the object itself, so 
the segmentation of the human body and the vehicle in the nighttime scene is more accu-
rate than during the day. In addition, as daytime lighting conditions vary, the threshold 
chosen for segmentation should also vary [21]. Therefore, we used the method proposed 
in [22] to divide the FLIR dataset into three scenarios: sunny day, cloudy day, and night, 
and then extract the corresponding salient object temperature threshold windows for the 
different scenarios. 

     

     

     

     
(a) CV (b) semantic image (c) semantic mask (d) temperature mask (e) TIR 

Figure 3. Temperature masks and semantic masks in different illumination scenarios. 

We set the pixel value in the TIR image threshold window to one and the pixel value 
beyond the threshold window to zero in order to obtain binary temperature masks, as 
shown in Figure 3d,e. From this figure, pedestrians can be better divided in sunny days, 
but the car division noise in the distant parking lot is large, and the road surface also has 
a certain noise. As for the cloudy days, vehicles and pedestrians can also be separated, but 
there is a certain amount of noise. Finally, at night, people in the distance can be accurately 
divided with less noise. Since semantic masks are less noisy than temperature masks dur-
ing the day and vice versa in nighttime scenes with less ambient radiation, we use 
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semantic masks during the day and temperature masks at night. In general, both temper-
ature masking and semantic masking are a little noisy, but our network model does not 
rely entirely on masks as it also relies on other feature information of the original CV-TIR 
image pairs; thus, the mask noise has a small effect. 

3.3. Generator Based on Mask Attention 
Spatial attention focuses on local information within the spatial domain, that is, the 

identification of the areas on the feature map that deserve our attention, yielding better 
network outputs. General spatial attention is calculated using neural networks, which is 
posterior knowledge, while the temperature mask and the semantic mask, inferred by the 
threshold window and pre-training model in this study, can be regarded as a type of spa-
tial attention (i.e., mask attention) based on prior knowledge without increasing the 
amount of network parameters, and can focus on the mask region. The proposed mask 
attention multiplies the input feature map with the mask on a channel-wise pixel-wise 
basis, as expressed in Equation (1): 𝑦௖,௛,௪ = 𝑓௠௨௟௧௜(𝑥, 𝑡𝑚) = 𝑥௖,௛,௪ × (𝑡𝑚ଵ,௛,௪  ×  (1 −  𝛼)  +  𝛼) (1)

Where 𝑥௖,௛,௪ and 𝑦௖,௛,௪ are the feature maps of the mask attention input and output, 
respectively, 𝑡𝑚ଵ,௛,௪ represents the binary masks whose length and width are equal to 
the feature maps, and 𝑐, ℎ and 𝑤 represent the number of channels, the height, and the 
width of the feature maps, respectively. Added to that, 𝛼 is a parameter for adjusting the 
attention strength of the mask. Afterwards, we translate the binary mask to weight mask 
by applying (𝑡𝑚ଵ,௛,௪  × (1 −  𝛼)  +  𝛼). In order to emphasize the salient object and sup-
press the background, we set 𝛼 < 1 as this parameter yields a weaker attention when it 
is close to one and a strong attention when it is close to zero. For feature maps of different 
spatial sizes, the original mask passes through a pooling layer of size 3 × 3, stride 2, and 
padding 1 to keep the length and the width consistent. 

The GMA-CycleGAN generator adds mask attention between the convolutional lay-
ers, the instance normalization (IN), and the ReLU activation layers of the original Cy-
cleGAN encoder and decoder. As shown in Figure 4, among them, the encoder uses three 
convolutional layers to extract the feature maps of 64 ×  64 × 256 from the source image 
of 256 ×  256 × 3 , and then the translator translates the 64 ×  64 × 256 dimension fea-
ture maps extracted in the previous step into the 64 ×  64 × 256 dimensional feature 
maps of the target image through nine residual blocks. Finally, the decoder uses three 
deconvolution layers to restore the low-level features from the feature maps so as to out-
put a 256 ×  256 × 3 image. To maintain the symmetry of the CycleGAN generator, in 
the encoder, we insert the mask attention module after the initialization convolutional 
layer (kernel size equal to 7 × 7 and stride equal to one), and after two down-sample 
convolutional layers (kernel size is equal to 3 × 3 and stride is equal to two), other struc-
tures are the same as the original CycleGAN, and then the corresponding improvements 
are added symmetrically to the decoder. Since the CycleGAN model is mirror-symmetric, 
the mask attention module is placed after the convolution operation when encoding and 
before the deconvolution operation when the feature is decoded. 
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Figure 4. Schematic diagram of the model framework of the GMA-CycleGAN generator based on 
mask attention. 

3.4. Loss Function of GMA-CycleGAN 
Let A and B represent the source image domain (TIR domain) and the target image 

domain (GV domain), respectively, and a and b represent the source image and target 
image, respectively. There are three loss functions for the original CycleGAN: GAN loss, 
identity mapping loss, and cycle consistency loss, where GAN loss includes two GAN loss 
functions, i.e., ℒீ஺ே(𝐺஺஻, 𝐷஻, 𝐴, 𝐵) and ℒீ஺ே(𝐺஻஺, 𝐷஺, 𝐵, 𝐴). Moreover, GAN loss guaran-
tees that the generated sample is distributed the same way as the real sample. The cycle-
consistency loss ℒ௖௬௖(𝐺஺஻, 𝐺஻஺) encourages the sample to remain unchanged after passing 
through two generators, i.e.,𝐺஻஺(𝐺஺஻(𝑎)) ≈ 𝑎 and 𝐺஺஻(𝐺஻஺(𝑏)) ≈ 𝑏. As for the identity 
mapping loss ℒ௜ௗ௘(𝐺஺஻, 𝐺஻஺), it guarantees hue associativity between the generated image 
and the original image. 

Since adversarial loss can cause texture distortion in the generated image, we added 
the perceptual loss item to make the generated image texture more realistic. Thus, percep-
tual loss calculates the ℓଶ distance between the feature maps obtained by the convolution 
of the generated image and the feature maps obtained by the convolution of the real im-
age, so that their high-level semantic information is closer. Referring to [23], we use the 
pre-trained VGG-16 network on the ImageNet dataset [24] as a feature extractor, and the 
perceptual loss is expressed in Equation (2):   ℒ௣௘௥(𝐺஺஻, 𝐺஻஺) = 𝛦௔~௣೏ೌ೟ೌ(௔)ሾ‖𝑣𝑔𝑔16(𝐺஻஺(𝑏)) − 𝑣𝑔𝑔16(𝑎)‖ଶሿ  +𝛦௕~௣೏ೌ೟ೌ(௕)ሾ‖𝑣𝑔𝑔16(𝐺஺஻(𝑎)) − 𝑣𝑔𝑔16(𝑏)‖ଶሿ (2)

Since the VGG-16 network is pre-trained and its input must be a three-channel image, 
while TIR and GV are single-channel images, we copy the single channel into a three-
channel image and use it as the input of VGG-16. 

The final loss function of the model is a weighted combination of each loss, and the 
formula is expressed as follows: ℒ(𝐺, 𝐹, 𝐷௑, 𝐷௒) = ℒீ஺ே(𝐺஺஻, 𝐷஻, 𝐴, 𝐵) + ℒீ஺ே(𝐺஻஺, 𝐷஺, 𝐵, 𝐴) + 𝜆௖௬௖ℒ௖௬௖(𝐺஺஻, 𝐺஻஺) + (3)
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ℒ௜ௗ௘(𝐺஺஻, 𝐺஻஺) + 𝜆௣௘௥ℒ௣௘௥(𝐺஺஻, 𝐺஻஺) 

where 𝜆௖௬௖, 𝜆௜ௗ௘, 𝜆௣௘௥, 𝜆௣௬௥ are the weight coefficients used to adjust the ratio of the cy-
cle-consistency loss, identity mapping loss, and perceptual loss, respectively. 

4. Experiments 
4.1. Experimental Platform and Dataset 

All experiments in this paper were performed using a Dell PowerEdge T640 tower 
server with 1080Ti GPUs, and all neural networks were trained and validated using the 
Pytorch framework. 

Most thermal infrared visible datasets are used primarily for object detection and 
tracking. One of the most well-known datasets is KAIST [25], which does not store TIR 
TIFF images with the original temperature radiation value because its TIR JPEG or PNG 
format image is obtained by preprocessing, such as affine transformation of TIFF files, and 
the original temperature radiation value cannot be retrieved. Published in 2018, the FLIR 
dataset, taken on streets and highways, contains TIRs in 14-bit TIFF format images and is 
sharper than KAIST; however, 9620 pairs of infrared-visible images from the original FLIR 
dataset are not aligned, which results in the semantic mask extracted from the dataset 
being misaligned with the temperature mask. Therefore, we experimented using the 
aligned FLIR dataset published by Zhang et al. [26], which was selected and aligned from 
the original FLIR dataset, where 4129 pairs were deployed for training data and 1013 pairs 
for testing the system. Moreover, TIR and CV, having a resolution of 640 × 512, and taken 
by the FLIR Tau2 camera, contain approximately 80% (4130) daytime images and 20% 
(1012) nighttime images. 

4.2. Evaluating Metrics and Parameter Configuration 
We evaluate the quality of the translated image from both faithfulness and realism 

points of view. For faithfulness, we calculate the two most commonly used image distance 
measurements, including the average of the structural similarity (SSIM) and the peak sig-
nal-to-noise ratio (PSNR) metrics for each pair of generated and real images. Higher SSIM 
and PSNR indicate that the translated image is more similar to the real image. As for re-
alism, we quantitatively calculate the widely used FID (Frechet inception distance) metric 
to measure the distance between two distributions of real and generated images, and its 
expression is as follows: 𝐹𝐼𝐷(𝑔, 𝑟) = ||𝜇௥ − 𝜇௚||ଶ + 𝑇𝑟(∑௥ + ∑௚ − 2ට∑௥∑௚) (4)

where 𝜇௥ and 𝜇௚ represent the mean of the 2048-dimensional feature vectors obtained 
by importing the real images and the translated images into the Inception v3 model [27], 
respectively. Moreover, ∑௥ and ∑௚ represent the covariance matrices of real images and 
generated images, respectively, and 𝑇𝑟 indicates the trace of a matrix. The smaller the 
FID is, the closer the feature vectors are, and the more realistic the translated image will 
be. 

In temperature mask extraction, since the FLIR dataset did not label the weather con-
ditions, we manually classified the aligned FLIR dataset into three categories: sunny day, 
cloudy day, and night. For these three types of illumination conditions, according to the 
parameter settings in [22], we set the corresponding threshold windows as 7500–7700, 
7300–7500 and 7200–8000 to extract the temperature masks of the salient objects from TIR 
TIFF files. 

During the training, we scale the input images of resolution 640 × 512  to 256 × 256. Using Adam optimizer for backward propagation [28] and setting the Adam 
momentum parameter 𝛽ଵ = 0.5 and 𝛽ଶ = 0.999, as well as the batch size to one, the ini-
tial learning rate to 0.0002, and the training epochs to 200 (where the learning rate of the 
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first 100 epochs is unchanged and the learning rate of the last 100 epochs is linearly de-
cayed to 0). For the loss function weights, we follow the experimental parameters pre-
sented in [11], and we set the cycle-consistency factor 𝜆௖௬௖ to 10 and the identity mapping 
factor 𝜆௖௬௖ to 1. Referring to the experimental parameters proposed in [23], the perceptual 
loss uses the feature maps of the 3rd, 8th, 15th, and 22nd layers from VGG-16 pre-trained 
on ImageNet and sets the factor 𝜆௣௘௥ to 5. 

5. Results and Discussion 
First, when the mask attention is used in different positions of the generator encoder, 

the FID of the corresponding six models of different mask attention parameters w is cal-
culated as shown in Table 1. Referring to this table, when the mask attention is added to 
the first two convolutional layers, the FID is the smallest, i.e., the image translation effect 
of the GMA-CycleGAN_4 model is the best. We believe that the first two convolutional 
layers extract low-level features of the TIR image, such as edge information, and then the 
mask attention can guide the network to distinguish between the boundaries of an object 
and those of a background. As for the third convolutional layer, it extracts more compli-
cated image global features, and using mask attention may destroy the extracted global 
features. As can be seen from the table, it is better to set the parameter w to 0.6, a smaller 
w will overly suppress the characteristics of the background area, and a larger w does not 
distinguish between the background and the object enough. 

Table 1. Results of the FID after that the mask attention was inserted into different layers. 

Name 
Mask Attention w = 0.2 w = 0.4 w = 0.6 w = 0.8 

Layer 1 Layer 2 Layer 3 FID FID FID FID 
GMA-CycleGAN_1 ✓   71.68 71.42 71.19 71.67 
GMA-CycleGAN_2  ✓  71.82 71.58 71.36 71.71 
GMA-CycleGAN_3   ✓ 72.61 72.50 72.03 72.29 
GMA-CycleGAN_4 ✓ ✓  71.05 70.77 70.62 70.85 
GMA-CycleGAN_5  ✓ ✓ 72.99 72.54 72.06 73.15 
GMA-CycleGAN_6 ✓  ✓ 72.46 72.21 71.88 72.13 
GMA-CycleGAN_7 ✓ ✓ ✓ 72.25 71.76 71.65 72.03 

Since few studies have used FLIR datasets for TIR translation, we selected five typical 
and popular unpaired image translation models to compare with our model, including 
CycleGAN [11], U-GAT-IT [12], NICE-GAN [13], CUT [14], and QS-attn [3], and their 
open-source code was implemented for model training and testing. Table 2 displays the 
quantitative evaluation metrics of each model on the testing set, where our model outper-
forms the other models across the board. In the typical model, QS-attn has the highest 
realism indicator and NICE-GAN has the highest faithfulness indicator. Compared to 
these two state-of-the-art (SOTA) models, our model’s FID is reduced by 2.42, the PSNR 
is increased by 1.43, and the SSIM is basically unchanged. Moreover, our model is twice 
as fast as CycleGAN in terms of training time but faster than the other models, where QS-
attn takes the longest training time of about 9 days.  

Table 2. Results of different models. 

Name FID PSNR SSIM Training Time (Day) 
cyclegan 84.78 38.44 0.9258 1 
UGATIT 83.44 38.59 0.9239 6 

NICE-GAN 80.23 39.33 0.9309 2 
CUT 77.73 39.01 0.9270 3 

QSGAN 73.04 38.99 0.9253 9 
GMA-CycleGAN_4 70.62 40.76 0.9417 2 
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To sum up, we provide three nighttime TIR images, four daytime TIR images, and 
their corresponding translated CV images to subjectively evaluate the different models, 
as shown in Figure 5. Since all models in Figure 5 were trained with the unpaired dataset, 
in which daytime CV images accounted for the majority (about 80%), these models can 
easily translate the night images into the day images; this does mean these models are 
overfitted for the night image translation; however, the loss curves did not show overfit-
ting during the model training. In fact, in order to obtain better RGB visual effects, we 
expect to translate all these TIR images into day images regardless they were captured at 
day or night. In the future work, we consider to supplement extra information to augment 
the translation effect from night TIR images to day CV images. 

        

        

        

        

        

        
(a) TIR (b) CycleGAN (c) U-GAT-IT (d)NICE-GAN (e) CUT (f) QS-Attn (g) GMA- 

CycleGAN_4 (h) CV 

Figure 5. Translation results of different models. 

Whether it is a daytime scene or a nighttime scene, the translated image of the typical 
models has different degrees of color chaos, and the proposed model does not have this 
feature, which shows the superiority that TIR is translated to GV first and then translated 
from GV to CV. Moreover, while computing the translated images of the typical models, 
the edges of the sky and the roads are clear, but the edges of the ground scene are more 
blurred (such as pedestrians and vegetation), while the translated images of our model 
have less blurred edges. Overall, the proposed model’s translated images have a better 
overall effect, with more realistic textures and better distinction between salient objects 
(people and vehicles) and backgrounds. 

We also explore the impact of each component in ablation studies. Comparison re-
sults are shown in Figure 6. As can be seen, removing the perceptual loss leads to distorted 
details, such as the white circles with blue edges (marked in green rectangles) in the two 
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rows of Figure 6b and the abnormal red color around the two pedestrians in the second 
row of Figure 6b. Additionally, removing the mask attention leads to semantic confusion 
between salient objects and the background, such as the two pedestrians and the pick-up 
truck in the second row of Figure 6c. Therefore, each component is indispensable for gen-
erating high-quality CV images. 

     

     
(a) TIR (b) w/o perceptual loss (c) w/o mask attention (d) GMA-CycleGAN_4 (e) CV 

Figure 6. Comparisons of different ablation studies for GMA-CycleGAN_4. 

Table 3 displays the quantitative evaluation metrics of different ablation studies for 
GMA-CycleGAN_4. The translated TIR images produced by GMA-CycleGAN_4 with full 
structures achieve the best quantitative metrics. The lack of perceptual loss and mask at-
tention causes performance degradation, in which omitting perceptual loss reduces the 
FID, PSNR, and SSIM by 2.66, 1.07, and 0.0086 and omitting mask attention reduces the 
FID, PSNR, and SSIM by 2.02, 0.92, and 0.0062. 

Table 3. Results of different ablation studies for GMA-CycleGAN_4. 

Name FID PSNR SSIM 
w/o perceptual loss 73.28 39.69 0.9331 
w/o mask attention 72.64 39.84 0.9355 

GMA-CycleGAN_4 (full) 70.62 40.76 0.9417 

6. Conclusions 
To solve the problem of color distortion and edge blurring in the images generated 

by the existing end-to-end TIR to CV translation model, we propose an improved Cy-
cleGAN (GMA-CycleGAN) consisting of the translation from TIR to GV first, then using 
the original CycleGAN to translate from GV to CV. Thus, for temperature domain to color 
domain translation, the one-to-one mapping relationship is only considered, that is, the 
TIR to GV translation, which reduces the color ambiguity caused by the different domain 
translation. We also take the temperature mask of TIR and the semantic mask of CV as 
prior knowledge to add the edge information of salient objects. In addition, to mitigate 
texture distortion caused by adversarial loss, perceptual loss is added to the CycleGAN 
loss function. In terms of objective evaluation, compared to the existing SOTA methods, 
our model training time is shorter, the FID is reduced by 2.42, and the PSNR is increased 
by 1.43. In terms of subjective evaluation, experimental results show that the texture and 
color of the translated image, obtained by our method, are more realistic, and the salient 
object edge information is richer. The results also validate the effectiveness of the pro-
posed method and indicate its importance for many fields, such as autonomous vehicles, 
emergency rescue, robot navigation, and nighttime video surveillance. 

Further work is threefold. First, in order to apply our method to versatile datasets, 
extraction of the temperature mask from JPG or PNG format image files is needed. Second, 
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semantic segmentation of TIR and GV images, which can be used to maintain semantic 
consistency between real and generated images, is needed to further improve the trans-
lated image quality. Third, when using test datasets that are quite different from the 
aligned FLIR dataset, the generalization ability of our model is not ideal, and we consider 
solving this problem in further research works. 
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