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Abstract: Because of the unique physical and chemical properties of water, obtaining high-quality
underwater images directly is not an easy thing. Hence, recovery and enhancement are indispensable
steps in underwater image processing and have therefore become research hotspots. Nevertheless,
existing image-processing methods generally have high complexity and are difficult to deploy on
underwater platforms with limited computing resources. To tackle this issue, this paper proposes
a simple and effective baseline named UIR-Net that can recover and enhance underwater images
simultaneously. This network uses a channel residual prior to extract the channel of the image to
be recovered as a prior, combined with a gradient strategy to reduce parameters and training time
to make the operation more lightweight. This method can improve the color performance while
maintaining the style and spatial texture of the contents. Through experiments on three datasets
(MSRB, MSIRB and UIEBD-Snow), we confirm that UIR-Net can recover clear underwater images
from original images with large particle impurities and ocean light spots. Compared to other state-
of-the-art methods, UIR-Net can recover underwater images at a similar or higher quality with a
significantly lower number of parameters, which is valuable in real-world applications.

Keywords: underwater image restoration; underwater image enhancement; lightweight network;
channel residual prior

1. Introduction

Underwater optical imaging is an important tool enabling humans to understand,
exploit and protect the ocean. It has the advantages of intuitive detection of targets, high
imaging resolution and high information content. Underwater images are applied in
multiple research areas, such as marine biology, archaeology [1,2], fisheries [3], marine
resource surveys, underwater target detection [4], etc. However, in high-turbidity waters
such as coastal waters or lakes, scatterers in the water (including bubbles, suspended
sediment, plankton, etc.) will cause reductions in and scattering of visible light. Severely
scattered light enters the imaging system and causes a veiling light effect, producing a lot of
noise in the image. As a result, the quality of the captured images is degraded, and the edges
and contours of the scene and the targets are blurred. Thus, the features and information in
degraded images cannot be effectively extracted and utilized by downstream tasks, such as
underwater target detection, segmentation and recognition. This makes the enhancement
and restoration of degraded underwater images necessary for marine applications.

There are a great number of solutions, including formation-model-based methods [5]
and deep-learning-based methods [6], for enhancing or recovering images on land, but
translating these methods for use on underwater images is not an easy task. On one hand,
these two kinds of imaging models face different problems; on the other hand, there are
no training samples of underwater images for these methods. For these reasons, there
exists an urgent need to build relevant high-quality datasets and design enhancement
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and reconstruction algorithms specifically for underwater images. A number of methods
have been proposed for underwater image recovery, which can be broadly classified into
traditional methods and depth-based methods. Traditional methods are based on physical
models and non-physical models. Non-physical image enhancement methods include
white-balancing methods, histogram-equalization methods, Retinex-based methods, etc.
Physical image restoration methods construct a mathematical model for the underwater
image degradation process and then reverse it to obtain an undegraded image in an
ideal state.

With the development and applications of deep neural networks in various scenarios,
generative adversarial networks have become increasingly used for image restoration
and have achieved impressive visual results [7–11]. Recent work on underwater image
recovery using UGAN-P [12], for example, trains a CycleGAN [13] with unpaired clear and
degraded underwater images and then generates a training set of degraded underwater
images corresponding to the clear underwater images using CycleGAN [13]. To obtain the
underwater image training dataset, Water-GAN [14] uses a generative adversarial network
to generate images. Jiang [15] has designed a two-stage underwater image recovery
network. The first stage is a two-line parallel encoder and decoder structure, and then
a dual-channelwise attention operation is carried out. Jiao [16] used Dark channel prior
to enhance the image, and refined the rough transmission mapping with the proposed
adaptive non-convex non-smooth variational algorithm. The current deep-learning-based
approach using generative adversarial networks has three main problems: The first is that it
ignores the optical properties of underwater images, thereby easily introducing color biases
and artifacts and thus not being ideal for color correction of underwater images. The second
is that a CNN often constitutes a neural network with a very large number of parameters
and a long training time, making it difficult to achieve a lightweight deployment. The third
and most essential problem is that there is no algorithm that combines both tasks, forcing
researchers to choose between image enhancement and image restoration.

In order to solve the problems mentioned above, this paper proposes a self-supervised
network for underwater image restoration and image enhancement named UIR-Net. In this
paper, we consider both tasks as domain-to-domain conversion problems, for which we can
achieve high-quality restoration and enhancement of underwater images by mapping high-
dimensional features to low-dimensional features through an encoder–decoder structure
while preserving the images’ spatial and color features. Firstly, regarding the problem
of lacking datasets of clear and degraded underwater images, we created the Marine
Spot Impurity Removal Benchmarking (MSIRB) dataset based on the MSRB dataset [17]
with scene extension. We also employed UIEBD-Snow, a UIEBD-based dataset [18] that
integrates both underwater image enhancement and underwater image restoration to
fuse the spots with underwater images. Secondly, to address the GAN-based underwater
image restoration methods’ inability to solve the underwater image degradation well, we
present a gradient-based policy update scheme and a channel residual prior to extract
the channel of the image to be recovered as a prior. Thirdly, to reduce parameters and
training time, we introduce a gradient strategy to make the gradient descent algorithm
trainable, thus obtaining a more lightweight method. Specifically, we combine a gradient
estimation strategy with proximal gradient descent (PGD) algorithm with a learnable step
size. Unknown degradation issues in real-world scenarios are solved by combining flexible
gradient descent and informative proximal mapping using a deep neural network. Overall,
the contributions of this paper are:

1. In this paper, we present a novel, end-to-end, lightweight underwater image restora-
tion network named UIR-Net, which can generate context-rich and spatially accu-
rate outputs.

2. UIR-Net is the first network that combines underwater image enhancement and
underwater image restoration, which means this can be considered a pioneering study
with great significance for practical applications and deployments.
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3. This article proposes the Marine Spot Impurity Removal Benchmarking (MSIRB)
dataset and UIEBD-Snow.

4. Extensive experiments have been carried out on the underwater MSRB [17], the
MSIRB dataset, and UIEBD-Snow that demonstrate the effectiveness of our UIR-Net.
Our method is able to achieve better results than other state-of-the-art methods. The
results of UIR-Net are shown in Figure 1.

Figure 1. Results of UIR-Net on MSRB and MSIRB datasets.

2. Related Works
2.1. Underwater Image Restoration

Marine pollutants are one of the main causes of the degradation of underwater im-
ages. These pollutants include sinking organic particles, zooplankton remnants, floating
excrement, suspended silt and other inorganic materials [19]. They vary in size, shape
and transparency. When taking photos (or filming) underwater, the light is scattered by
these tiny particles before being reflected back to the camera, resulting in low-contrast and
blurry images. Light reflections from these underwater scatterers cause random near-white
stains in various shapes, sizes, and opacities in underwater images/videos, decreasing
scene perception [20]. It is worth noting that these particles fall to the seafloor in the same
way that snow does in atmospheric conditions. There are many existing methods in this
area. The authors of [21–24] proposed a modified median filter to remove the effects of
underwater pollutants in these images. Wang et al. [25] advocated for machine vision in
marine fisheries and presented an integrated two-channel model to improve underwater
picture quality, along with a marine network model for impurity elimination.

DB-ResNet [26] is a “deep detail network” structure designed to remove natural
raindrop patterns from captured images. A deep residual network (ResNet) is used as a
parameter layer to obtain deeper picture features and to simplify the network’s structure by
effectively shortening the mapping distance between input and output features. Other au-
thors [27] proposed a progressive optimization residual network called progressive ResNet
(PRN) and a progressive recurrent network (PReNet) to perform image de-raining, which
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can achieve good de-raining results without increasing network parameters. Maxim [28]
is the latest MLP-based U-Net backbone network that implements both global and local
perceptual fields and can be applied directly to high-resolution images. Restormer [29] is an
efficient transformer that achieves several key improvements in the design of its improved
multi-head attention and feed-forward networks MPRNet [30] is a novel collaborative
design with a multi-stage structure designed to learn the recovery features of degraded
inputs concurrently to decomposing the entire recovery process. Specifically, MPRNet
first learns context-dependent features using an encoder–decoder architecture, and then
combines it with high-resolution branches that preserve local information better. Compared
to the original proximal gradient descent (PGD) algorithm, DGUNet [31] introduces a Deep-
Network-based gradient estimation method into its gradient descent progress without loss
of interpretability, allowing it to handle complex and real-world image degradation.

All of these methods are very competitive in natural image restoration, but land-
based and underwater imaging models are not interchangeable, which means that directly
translating image enhancement methods from land-based to underwater image restoration
cannot achieve satisfying results; underwater imaging models are simply more complicated.

2.2. Underwater Image Enhancement

Many image enhancement and recovery methods based on marine scenes, such as
Neural Networks (NNs) and Dark Channel Priors (DCP) based on Image Formation Model
(IFM) class algorithms, have evolved in recent years [32]. In the machine learning litera-
ture [33], high-quality restored image data can be generated from a single picture, and the
neural network’s generalization was tested using different images. A Convolutional Neural
Network (CNN)-based algorithm [34] was proposed in this publication. A Convolutional
Neural Network (CNN)-based framework for underwater image improvement implements
a pixel interruption method for color correction and defogging. The authors of [14] utilized
a Generative Adversarial Network (GAN) to produce a real IFM imaging model. The
authors of [35] proposed an underwater image enhancement CNN model based on under-
water scene prior, called UWCNN.The authors of [5] generated a huge training dataset
encompassing real underwater photos in depth using a GAN for underwater image color
correction. An IFM-based method to enhance underwater images by removing background
light (BL) based on light transmission parameters is developed in the literature. The authors
of [36] simplified the full underwater optical transmission model to extract the transmission
map (TM) from the degraded underwater images. Optimal enhancement performance is
also guaranteed based on regional background estimation. In [37], the background light
is estimated by using a color variable that changes with depth. In [6], Drewa obtains the
transmission map with an underwater Dark Channel Prior (UDCP) model by reducing the
R channel’s effect on the dark channel. In [38] Carlevaris et al. used a Maximum Intensity
Prior (MIP) model to estimate the transmission map to recover underwater images. In [39],
Song offered an Underwater Light Attenuation Prior (ULAP) model in order to obtain the
scene depth of underwater images. The authors of [40] proposed an Image Blurriness and
Light Absorption (IBLA) algorithm, which achieves the estimation of the system parame-
ters by selecting the background light and depth map from different scene regions. The
S-model is used to fuse the parameters and estimate the system parameters to complete
the image’s recovery.Recently, attention mechanisms have been successfully used in image
processing tasks, such as image denoising [41], image super-resolution [42] and image
segmentation [43]. The performance of the image enhancement model can be effectively
improved by leveraging the focus of the attention mechanism.

However, the existing underwater image enhancement methods only achieve enhance-
ment (color correction). Restoring underwater images degraded by visual impurities to a
satisfactory level still remains a challenge.
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3. Method

UIR-Net is inspired by DGUNet [31]. Achieving high-quality image restoration and
color correction is an essential part of utilizing underwater optical images. The biggest
advantage of self-supervised learning is that the results generated by our trained model
can match the labels to a greater extent. This paper takes advantage of the self-supervised
method, divides the images to be enhanced and the original ones into two domains and
forms a domain-to-domain conversion to achieve image restoration and image enhance-
ment after a lot of learning. UIR-Net conforms to the U-Net encoder and decoder principle,
as shown in Figure 2. UIR-Net mainly consists of two parts: the first part is the residual
prior module, which guides the subsequent underwater image recovery by subtracting the
maximum and minimum features as a prior, and the second part is the strategy gradient
network, which integrates PGD strategies for iterative training.

Figure 2. The structure of UIR-Net. It follows the encoder–decoder rule.

In addition, perceptual loss is added to the generator to further constrain the detail
and semantic information of generated images. In the discriminator, we use a fully con-
volutional block-based discriminator to learn the loss of the structure. A great number of
approaches combining traditional optimization algorithms with DNNs have been proposed.
These methods usually require predefined degradation processes or artificial assumptions
and are therefore difficult to handle complex underwater real-world applications.

The structure of UIR-Net is shown in Figure 2.

3.1. Channel Residual Prior

This part refers to Kaiming He’s dark channel defogging algorithm, which can restore
the color and visibility of an image and which also uses the fog concentration to estimate the
distance of an object. He’s work focuses on the statistical features of fog-free images. It was
found that, in a fog-free image, every local region is likely to have shaded areas, something
in black or something in pure color. Therefore, it is highly likely that there always exists
at least one color channel with very low light values. He named this statistical law Dark
Channel Prior or Dark Primary Color Prior. Intuitively, Dark Channel Prior assumes that
there is always something very dark in every local area, and it is the essential fundamental
law in their study of defogging problems. Since fog is always grayish, once the image
is affected by fog, then these features that are supposed to be dark will become grayish.
Moreover, based on the physical fog formation formula, they can also determine the
fog’s concentration based on how gray these features are. Therefore, their proposed Dark
Channel Prior can remove the effect of fog very effectively while using the concentration of
features to estimate the distance (depth) of objects.
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For dark tones and ocean impurity occlusion, if we think about it, we can identify
a statistical rule for underwater images: for most underwater images without impurity
particles, at least one of the R, G and B values of any pixel is very low (this is quite
understandable, as if all the three values are all high, then that pixel obviously has a
tendency to be overly white). The “darker” values (channels) are arranged in a certain way
to form a dark channel map corresponding to the original image. Based on this idea and the
laws of statistics, the basic model of the image can be reconstructed more clearly without
any streaks in the image, but we found that the structures of some constantly changing
objects in the reconstructed image are deformed. To address this problem, we propose
introducing a channel residual prior (CRP) model. Furthermore, the CRP lacks spots and
bubbles, which is beneficial to derive altered background information from the residuals of
the maximum and minimum channel values of the picture.

Referring to Li et al. [44], we can express the color intensity of the rainband image
as follows:

G̃(x) = tγrs(x)Aα + (T − t)Rπ (1)

where G̃(x) is the intensity of the color vector indicating the presence of color, and γrs
consists of the refraction coefficient, the specular reflection coefficient and the internal
reflection coefficient of the spot [45]. A = (Ar, Ag, Ab)T expresses the luminance,R = Rr +
Rg + Rb · α = A/A and π = R/R denotes the the reflection coming from the background,
R = Rr + Rg + Rb. α = A/A and π = R/R are the A and R chromaticity, respectively. The
exposure duration is T, and the time it takes for raindrops to flow over pixel x is t. The first
term in Equation (1) is the rain streak term, and the second term is the backdrop term. We
can achieve the following normalization steps when predicting α using any known color
constancy algorithm:

G(x) =
G̃(x)

α
= Grs(x)l + Gbg(x) (2)

where l = (1, 1, 1) in Equation (2), T, Grs = tβrsA, and Gbg = (T − t)R/α.
When we normalize the image, the chromaticity of the light deteriorates, erasing the

color, and the spectrum’s sensitization impact is likewise eliminated. Therefore, according
to equation (2), given an underwater bubble image G, one can define a residual channel
prior P for G:

Pprior(x) = max
c∈r,g,b

Gc(x)− min
d∈r,g,b

Gd(x). (3)

3.2. Gradient Strategy

From a Bayesian maximum a posteriori perspective, the traditional model-based
approach defines image reconstruction as follows:

x̂ = argmax
x

logPprior(x | y) = argmax
x

logPprior(y | x) + logPprior(x) (4)

where logPprior(y | x) represents the data fidelity term and logPprior(x) represents the
prior term. Usually, the L2 loss function is used as the data fidelity term. Therefore, the
above equation can be further deformed as:

x̂ = argmin
x

1
2
‖y− Bx‖2

2 + λJ(x) (5)

Based on the proximal gradient descent (PGD) algorithm [31], the above equation can be
developed as an iterative solution process:

x̂k = argmin
x

1
2

∥∥∥x−
(

x̂k−1 − θ∇g
(

x̂k−1
))∥∥∥2

2
+ λJ(x) (6)
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The first part represents the gradient descent, and the second part represents the
proximal mapping. In turn, the above equation can be decomposed into:

vk = x̂k−1 − θB>
(

Bx̂k−1 − y
)

x̂k = proxλ,J

(
vk
) (7)

where A represents the degradation matrix, and prox is the known degradation matrix B.
It is difficult to deal with the real scenes where the degradation is not known. In this paper,
based on the PGD algorithm, we expand it with a deep network. In detail, the degradation
matrix A and the proximal mapping equation are replaced by a deep network, and the step
size θ of the gradient descent is set as a learnable parameter. Thus, the gradient descent
process is redefined as:

vk = x̂k−1 − ρkF k
B>
(
F k

B

(
x̂k−1

)
− y

)
(8)

The proximal mapping module also incorporates inter-stage information to overcome
the inter-stage information loss in the deep unfolding network:

x̂k, Fk = proxωk

(
vk, Fk−1

)
(9)

and the structure of PGD is shown in Figure 3, from the structure, the gradient is first
passed through a residual layer, then by doing the difference with itself, and then summed
with the prior feature, then we assigned a dynamic based on 0–0.5 parameters θ and the
output feature matrix just multiplied, after the residual layer output.

Figure 3. The structure of gradient strategy

3.3. Loss Function

We apply the perceptual loss [46] Lperctual and Edge loss [30] Ledge in the network. As
the name implies, Lperctual penalizes outcomes that are not close to the references in the
sense of activation in the pretrained network by defining distance measurement. Lperctual is
defined as:

Lperctual = E
[
∑

i

1
Ni

∥∥φi
(
Igt
)
− φi(Iout)

∥∥
1

]
(10)

where φi is the activation map of the i-th layer of the pre-trained network. For our work, φi
corresponds to activating the VGG-19 network pre-trained on the ImageNet dataset from
the layers relu1-1, relu2-1, relu3-1, relu4-1 and relu5-1. The edge loss is defined as follows:

Ledge =

√
|∆(XS)− ∆(Y)|2 + ε2 (11)

where ε is empirically set as 10−3, and ∆ means Laplacian (for extracting edges). Thus, the
final loss is:
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L f inal = Ledge + λperctual ×Lperctual (12)

There the λperctual equal 0.01, the ablation study of λperctual is shown in Section 4.7.2.

4. Experimental
4.1. Datasets of Underwater Restoration

1. Marine Snow Removal Benchmarking Dataset (MSRB)
In this section, we present the specifications of the ocean snow artifacts synthesized
by the MSRB dataset [17], which has been mainly built for two general tasks of marine
snow artifacts removal: MSR task 1 is dedicated removing small-size artifacts, while
MSR task 2 is used to cope with various artifacts of different sizes.
Obviously, it would be much more difficult to handle multiple sizes of underwater
snow than just focusing on small-sized ones. Corresponding to each MSR task, each
sub-dataset is composed of a training set with 2300 pairs of images and a test set
with 400 pairs, all with a pixel resolution of 384 × 384. Each image pair includes
an original underwater collected picture and one containing synthetic marine snow
artifacts, original underwater collected picture is the ground truth of the dataset. Each
composite image is added with N marine snow particles, while N, which is the number
of added particles, is generated by a discrete uniform distribution of U{100,600}. Based
on our preliminary observations, in each synthetic image, H-type and V-type ocean
snow spots are randomly generated with a probability of 0.7 for H-type and 0.3 for
V-type. Most of our parameters are chosen based on our observations of real-world
collected images and the corresponding artificial influence of ocean snow.

2. Marine Spot Impurity Removal Benchmarking Dataset (MSIRB)
At present, there is no accessible underwater dataset of ocean snow images that can be
used to train and test deep neural networks to eliminate ocean snow particles, which
represents a major inconvenience to relevant ongoing research on marine light spot
removal algorithms. In order to present the diverse morphological features of the
real-world ocean snow particles and the complex composition of ocean snow scenes,
we propose a new dataset called the Marine Spot Impurity Removal Benchmarking
Dataset (MSIRB). The MSIRB dataset contains (1) synthetic ocean light spot images, (2)
the corresponding real images and (3) an ocean light spot mask. We reference [47] and
use its mask to produce underwater light spot images, each basic mask corresponds
to small, medium, and large grain sizes. The dataset is shown in Figure 4.
It is important to focus on the fact that inside the MSIRB dataset’s ground truth and
input binary images, there is no difference in color, only the presence or absence of
light spot impurities.

3. An underwater image enhancement benchmark dataset and beyond with Snow
(UIEBD-Snow)
To explore the generalization of our work in image enhancement tasks, the same
operation that was applied on the MSIRB dataset is performed in this paper on the
UIEBD dataset, a dataset with its potential ground truth generated by adopting a
dozen of cutting-edge image improvement methods. Various morphological features
of real snow particles of the ocean are fused inside the UIEBD to make our new dataset
called UIEBD-Snow, which contains 890 underwater images with corresponding
reference maps.
It is worth noting that the difference between UIEBD-Snow and MSIRB is mainly in
the color correction, and the dataset example can be referred to Figure 4
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Figure 4. Examples from MSRB, MSIRB and UIEBD-Snow.

4.2. Training Parameter Settings

Our UIR-Net is trained end-to-end, and our training strategy is to use the same
setting as MPRNet and DGUNet [30,31] in our experiments. Specifically, we use the Adam
optimizer with an initialized learning rate of 2× 10−4. A typical warm-up strategy [43]
is adopted to gradually increase the learning efficiency considering the depth of our
network. Our model is trained with images which are randomly cropped into 256 × 256
image patches from our training set. Our batch size is set to 16 and 4× 105 iterations.
In image compression perception, the network is trained on 32 × 32 image patches with
a learning rate of 1 × 10−4. For 200 epochs, the batch size is set to 128. Our model
training is performed on 3090 GPU and can be completed in 4 hours. Our experimental
results are shown in Figures 5 and 6. The source code for UIR-Net can be obtained from
https://github.com/meixinkui/UIR-Net, accessed on 1 November 2022.

https://github.com/meixinkui/UIR-Net
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Figure 5. Image restoration results of UIR-Net on MSRB and MSIRB datasets.

Figure 6. Image enhancement results of UIR-Net on UIEDB-Snow.
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4.3. Evaluation Metrics

1. Full-Reference Evaluation
We adopt the standard metrics (PSNR, SSIM and RMSE [48]) as full-reference
evaluation.
PSNR is short for Peak Signal to Noise Ratio. The better the PSNR, the less the image
distortion. We can obtain the PSNR as follows:

PSNR = 10 ∗ log10

(
(2n − 1)2

MSE

)
(13)

Assume that the current image I and the reference images K, H and W are the height
and width of the image respectively. MSE can be calculated as follows:

MSE =
1

H ∗W

H

∑
i=1

W

∑
j=1

[I(i, j)− K(i, j)]2 (14)

SSIM is short for Structural Similarity, we can obtain the SSIM of the two images
(image x and image y) as follows:

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (15)

where µx, µy are the means of x and y, and σx, σy, σxy represent the variance and
covariance of x and y, respectively. C1 and C2 are used to maintain stable constants.
RMSE is short for Root Mean Square Error. We can obtain RMSE as follows:

RMSE =

√
1
N

n

∑
i=1

(Yi − f (xi))
2 (16)

2. Non-Reference Evaluation
UIR-Net is supervised network, there is an image pair for input and the corresponding
target, but we also adopt the UCIQE [49] and UIQM [50] as non-reference evaluation,
which are commonly used for underwater image quality assessment.
UCIQE is a linear combination of color intensity, saturation and contrast, used to
quantitatively evaluate the non-homogeneous color shift, blurring and low contrast of
underwater images. The better the UCIQE, the better the underwater image quality,
we can obtain UCIQE as follows:

UCIQE = c1 ∗ σc + c2 ∗ conl +c3 ∗ µs (17)

where c1,c2 and c3 are the weight factors of each measurement component in the linear
combination, σc is image chromaticity measurement component, conl is image contrast
measurement component and µs is image saturation measurement component.
UIQM is short for underwater image quality measurement. We can obtain it as follows:

UIQM = c1 ∗UICM + c2 ∗UISM + c3 ∗UIconM (18)

where c1,c2 and c3 are the weight factors of each measurement component in the linear
combination, UICM is underwater image colorfulness measure, UISM is underwater
image sharpness measure and UIconM is underwater image contrast measure. The
better the UIQM, the more consistent the results are with human visual perception.

4.4. Comparison with State-of-the-Art Methods on Underwater Image Restoration

We compared UIR-Net with existing methods, including natural image restoration
methods: AirNet [51], DB-ResNet [26], PReNet [27], DGUNet [31], Maxim [28], Restormer [29],
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and MPRNet [30]. In AirNet, the network structure consists of a base layer and a detail
layer. The detail layer is fed into this two-layer convolutional neural network, and then,
the detail image after de-raining is obtained by deconvolution. The enhanced base layer
and the enhanced detail layer are superimposed linearly to obtain the de-rained image.
We think this is similar to the underwater image recovery process, and most underwater
images are enhanced, so we chose this method for comparison with our proposed method.

4.5. Comparison with State-of-the-Art Methods on Underwater Image Enhancement

We compared UIR-Net with existing methods, including PUIE [52], CWR [53], IFM [54]
and FUnIE-GAN [55]. PUIE [52] is a multi-color space encoder network in which the
adaptively selected features of different color spaces are fused based on the attention
mechanism. A decoder network based on medium transmission guidance is used to guide
the model to give more attention to degraded regions. The complementary benefits between
underwater imaging domain knowledge and DNNs are discussed in this work. CWR [53]
introduces contrast learning into underwater image enhancement, takes the original image
as a reference and restores the underwater image through TV loss. FUnIE-GAN [55]
uses a structure called FUNI-Gan. The generator uses a five-layer U-net structure. The
discriminator part uses PatchGAN, which can check the quality of the generated pictures
in blocks. IMF [54] proposes a network consisting of two modules. One aims to estimate
backscatter, and the other is used for estimating the direct transmission of light. A carefully
designed reconstruction module follows the above two and uses their previous outputs to
produce the enhanced underwater image.

4.6. Qualitative Evaluations
4.6.1. Quantitative Comparisons of Underwater Image Restoration on the MSRB Dataset

As we can see in Figure 7, AirNet [51] and PReNet [27] barely remove most of the
small near-white spots. PReNet [27] removes the ocean snow grains while placing some
dark particles near the original stained location, resulting in an overall darker picture as a
result. DB-ResNet [26], maxim [28] and Restormer [29] can remove a small portion of the
ocean snow grains while preserving the boundaries of other objects. However, these three
methods still perform poorly when removing large ocean snow particles. Our method
and MPRNet [30], DGUNet [31] can remove large particles in the ocean very well. In
terms of the existing multi-stage techniques, we believe that MPRNet [30] structurally uses
an encoder–decoder architecture (the encoding stage effectively propagates contextual
information, but does not do much to preserve spatial details) using single scales at the
same time. The spatial accuracy and semantic information are also well-preserved, and
using both structures at the same time is effective for underwater image restoration.

As we can see in Table 1, UIR-Net achieves the best results at the values of SSIM RMSE
and UICQE. The values of PSNR and UIQM are second.

Table 1. Comparison results of UIR-Net with other SOTA methods on the MSRB dataset.

Method PSNR SSIM RMSE UIQM UICQE

Nature image restoration

AirNet [51] 24.359 0.954 6.745 3.418 0.549

DB-ResNet [26] 23.258 0.920 9.060 3.531 0.553

PReNet [27] 21.837 0.899 13.932 3.722 0.524

Maxim [28] 24.578 0.931 7.836 3.606 0.553

Restormer [29] 24.411 0.954 6.783 3.977 0.550

DGUNet [31] 33.292 0.977 3.408 3.755 0.567

MPRNet [30] 35.322 0.984 2.659 3.715 0.566

Our 34.464 0.984 2.649 3.877 0.576
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Figure 7. Comparison results of UIR-Net with the seven other methods on the MSRB dataset.

4.6.2. Quantitative Comparisons of Underwater Restoration on MSIRB Dataset

The results of the ocean light spot removal example are shown in Figure 8. AirNet [51],
PReNet [27], maxim [28] and Restormer [29] still have defects in their ocean light spot
removal tasks. We believe that the rain streak removal task is a little easier than the
underwater image recovery task because there is little need to take into account lighting
effects and background factors, and as clearly observed, PReNet [27] removes some of the
ocean light spots by replacing them with dark patches. Although the Restormer [29] model
alleviates the drawbacks of CNNs (i.e., limited perceptual field and maladaptation to the
input content), it cannot be directly applied to design recovery tasks for underwater images
considering its quadratically increased computational complexity with spatial resolution.

Figure 8. Comparing the results of UIR-Net with those of seven other methods on the MSIRB dataset.

MPRNet [30] shows better performance than Restormer [29] and maxim [28] in under-
water image recovery, and we believe that MRNet’s multi-stage progressive restoration is
helpful in restoring underwater images. MPRNet first divides the feature map into four
copies and then into two copies after restoration by U-Net. It then performs a residual
network to complete the refinement. DGUNet [31] is an N-stage progressive generation
network that also shows good results for underwater images with dark backgrounds. We
attribute this success to its gradient strategy and the encoder and decoder components in
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each stage, as we can see in Table 2. UIR-Net achieves the best results at the values of PSNR
SSIM and RMSE, in terms of UIQM and UICQE, UIR-Net approximate the best results.

Table 2. Comparison results of UIR-Net with other SOTA methods on the MSIRB dataset.

Method PSNR SSIM RMSE UIQM UICQE

Nature image restoration

AirNet [51] 20.536 0.922 9.878 3.761 0.575

DB-ResNet [26] 20.506 0.897 10.743 3.758 0.574

PReNet [27] 20.310 0.888 14.237 4.075 0.550

Maxim [28] 23.599 0.924 8.316 3.832 0.565

Restormer [29] 20.396 0.927 9.817 3.810 0.574

DGUNet [31] 33.785 0.984 2.584 3.911 0.562

MPRNet [30] 33.561 0.985 2.592 3.725 0.554

Our 34.513 0.986 2.391 3.837 0.565

4.6.3. Quantitative Comparisons of Underwater Enhancement on UIEBD-Snow Dataset

The results of the ocean light spot removal and image enhancement example are
shown in Figure 9. We can see that UIR-Net achieves better results in both underwater
image enhancement and underwater image restoration tasks.

As we can see from Table 3, UIR-Net achieves better performance and outperforms
the other methods at PSNR SSIM and RMSE, in terms of UIQM and UICQE, UIR-Net
approximate the best results. Specifically, the CWR [53] method based on contrast learning
relies on the real image used and only takes the color correction problem into account. It
performs poorly when confronted with fused light spot impurities in image enhancement,
showing unnatural color and saturation and blurred image details. A multi-color space
coding proposed by PUIE [52] proves to be effective in image enhancement alone, yet has
little effect in the face of light spots, which leads use to believe that IFM [54] is relatively
ineffective in image enhancement and restoration and does not improve the contrast,
which is severely degraded by these colors. The objective function is also formulated
to evaluate the perceptual quality based on global content, color, local texture and style.
We believe that FUnIE-GAN [55] is superior to our method in image correction. The
results of FUnIE-GAN are obviously different from those of other methods in terms of
color, being more colorful and more consistent with the judgment of UIQM in terms of
non-reference evaluation indicators, but FUnIE-GAN can only achieve image enhancement
and cannot be used for image recovery. It can be seen that while most of the methods can
perform contrast enhancement, some of the deficiencies cause severe visual defects such
as unsatisfactory colors; our method, on the other hand, works well in all these cases, and
our results look cleaner and more natural with fine-grained textures. MPRNet [30] and
DGUNet [31] can achieve image enhancement to some extent, but they are not effective
in image restoration. In addition, there is still a large portion of blur and missing textures
in their outcomes. We believe that MPRNet and DGUNet focus on space in the task of
domain-to-domain conversion and are unable to remove light spot occlusion, which is
similar to image inpainting.
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Figure 9. Comparison results of UIR-Net with four other methods on UIBED-Snow. The underwater
color images range from 1 to 4, which represent the difficulty of enhanced color correction: 1
represents the smallest color difference between the image to be corrected and the original image, and
5 represents the largest color difference between the image to be corrected and the original image.

Table 3. Comparison results of UIR-Net with other SOTA methods on the UIEBD-Snow dataset.

Method PSNR SSIM RMSE UIQM UICQE

Underwater image enhancement

PUIE [52] 16.926 0.723 18.030 3.594 0.606

CWR [53] 15.374 0.556 23.276 4.620 0.507

IMF [54] 17.006 0.707 18.904 3.354 0.633

FUnIE-GAN [55] 15.619 0.486 24.762 5.106 0.596

Nature image restoration

MPRNet [30] 20.027 0.775 15.048 3.400 0.598

DGUNet [31] 20.711 0.795 14.068 3.363 0.597

Our 21.200 0.807 13.142 3.610 0.596

4.6.4. FLOPs and Params Comparisons with MPRNet and DGUNet

For a better quantitative comparison, we performed a fairer comparison with MPR-
Net [30] and DGUNet [31] in terms of FLOPs and Params, i.e., time complexity and space
complexity, respectively. According to Table 4, we can see that UIR-Net has one-tenth the
number parameters of MPRNet in terms of FLOPs, and there is not much difference in the
amount of data in Params. We thus measured the training time again. We set the epoch
to 200, the batch-size to 8 and the patch size to 128, and all methods adopted the warm
up strategy. It can be seen that our training time is half that of MPRNet, and the inference
speed is also better, so the operation method and convergence time of this paper are much
better than MPRNet, which is very helpful for practical applications.
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Table 4. FLOPs and Params comparisons.

Method FLOPs Total Params Training Time

DGUNet [31] 8.4278× 1011 12,176,119 94,600 s

MPRNet [30] 2.1946× 1012 3,637,249 41,400 s

UIR-Net 2.4120× 1011 3,632,740 22,000 s

4.7. Ablation Study
4.7.1. Ablation Study of Channel Prior and Gradient Descent

As shown in Figure 10, while using only the gradient strategy, proximal gradient
descent or the residual prior can obtain an improvement over the baseline, combining
all of the above strategies can achieve the best performance, and the integration of these
components can generate realistic results and restore details in the case of oceanic light
spots and large grain impurities. The channel residual prior, based on the observation of
the absorption rate of the red channel in a great many of underwater images, is suggested
to be able to remain sensitive to low-illumination images.

Figure 10. Ablation study of UIR-Net on the MSIRB dataset.

As we can see in Table 5, after adding the residual prior, the PSNR, SSIM and RMSE
were effectively improved to 33.656, 0.983 and 2.954, respectively, enhancing the significant
texture features. When only adding the gradient strategy, PSNR climbed to 34.356 and
SSIM rose to 0.981, proving the superiority of our model in underwater image restoration.
The process of gradient descent is essentially the same as the operation of a neural network,
except that when training a neural network, the samples and the parameters to be trained
are known. Gradient descent has explicit variables so that it can rely on such variables
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to complete the iterations when training a neural network, instead of relying purely on
samples and parameters. After adding the residual prior and the gradient strategy, PSNR,
SSIM and RMSE reached 34.464 and 0.984 and 2.649, respectively.

Table 5. Ablation study of UIR-Net on the MSRB and MSIRB datasets.

residual prior proximal gradient descent PSNR SSIM RMSE

33.319 0.981 2.953
√

33.319 0.981 2.953
√

34.356 0.981 2.931
√ √

34.464 0.984 2.649

residual prior proximal gradient descent PSNR SSIM RMSE

32.477 0.982 2.912
√

33.295 0.983 2.649
√

34.121 0.984 2.765
√ √

34.513 0.986 2.391

4.7.2. Ablation Study of λperctual

We need to analyze the paramater of the Loss Function. As we can see from Figure 11,
we can obtain that when λperctual equal 0.01, the information of the image is preserved
more completely. Moreover we can see in Table 6 we can clearly deduce that when λperctual
equal 0.01, all of the paramaters(PSNR SSIM and RMSE) are the best, so there the λperctual
equal 0.01.

Figure 11. Ablation study of λperctual on UIEBD-Snow dataset.
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Table 6. Ablation results of paramater of λperctual on the UIEBD-Snow dataset.

Paramater PSNR SSIM RMSE

λperctual = 0.1 20.203 0.781 14.030

λperctual = 0.05 19.371 0.791 13.301

λperctual = 0.02 20.039 0.797 13.904

λperctual = 0.01 21.200 0.807 13.142

5. Conclusions

In this paper, we propose a simple and effective baseline named UIR-Net that inte-
grates underwater image restoration and enhancement. For dark tones and ocean impurity
occlusion, UIR-Net uses a channel residual prior to extract the channel of the image to be
recovered as a prior, combined with a gradient strategy to reduce the number of parameters
and training time to achieve a lightweight deployment. Our experimental results prove
that UIR-Net can effectively improve images with both large ocean particle impurities and
ocean light spots on these datasets (MSRB, MSIRB and UIEBD-Snow). In addition, our
approach is able to achieve color correction on image enhancement, maintain the style and
spatial texture of the content. In addition, the network in this paper outperforms many
existing methods with less computational complexity and faster training speed, which is
very useful for practical applications.
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