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Abstract: Short-term precipitation prediction through abundant observation data (ground observa-
tion station data, radar data, etc.) is an essential part of the contemporary meteorological prediction
system. However, most current studies only use single-modal data, which leads to some problems,
such as poor prediction accuracy and little prediction timeliness. This paper proposes a multimodal
data fusion precipitation prediction model integrating station data and radar data. Specifically, our
model consists of three parts. Firstly, the radar feature encoder comprises a shallow convolution
neural network and a stacked convolutional long short term memory network (ConvLSTM), which
is used to extract the spatio-temporal features of radar-echo data. The weather station data feature
encoder is composed of a fully connected network and an LSTM, which is used to extract the sequen-
tial features of the weather station data. Then, the cross-modal feature encoder obtains cross-modal
features by aligning and exchanging the feature information of the radar data and the weather station
data through the cross-attention mechanism. Finally, the decoder outputs the quantitative short-term
precipitation prediction value. Our model can integrate station and radar data characteristics and
improve prediction accuracy and timeliness, and can flexibly add other modal features. We have veri-
fied our model on four short-term and impending rainfall datasets in South Eastern China, achieving
the best performance among the algorithms.

Keywords: short-term precipitation; multimodal data fusion; cross-attention mechanism

1. Introduction

Due to the need to provide early warnings and guide the arrangement of production
activities in urban commerce, social security, disaster prevention and mitigation, infras-
tructure construction, and other fields [1], the task of quantitative short-term precipitation
prediction has become a major focus of research in recent years. However, due to the
intricacy of meteorological analysis, the application of artificial intelligence in weather
forecasting is still in its infancy. In recent years, researchers have become increasingly
interested in employing artificial intelligence to produce reliable, quantitative forecasts of
short-term precipitation.

Short-term precipitation prediction utilizes historical multi-source radar data and
measurements of meteorological variables from ground-based weather stations to forecast
rainfall over the next several hours. Short-term precipitation prediction research approaches
can be classified into two categories: numerical weather prediction (NWP) and data-driven
models based on artificial intelligence. After years of development, the NWP approach
now plays a crucial role in the long- and short-term forecasting of meteorological systems
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in several nations. However, the NWP approach struggles to produce accurate forecasts
for small-scale weather systems with short generation and extinction periods. With the
continued application of various new forms of detection equipment and methods to the
field of weather forecasting, the types of detection data have expanded to include all types
of meteorological radar and ground meteorological station data. Additionally, their spatio-
temporal resolution has also been significantly enhanced, providing data support for the
application of artificial intelligence technology. One of these methods is the use of a spatio-
temporal sequence prediction model driven by several radar-echo data types. These models
predict future radar-echo data and invert precipitation using the potential movement law
learned from radar-echo data, such as ConvLSTM [2] and its variants [3–5]. However, such
models suffer from gradient disappearance and poor long-term forecast accuracy, and the
complicated nonlinear connection between precipitation and radar reflectivity creates new
inaccuracies in the retrieval of precipitation.

Another type of spatio-temporal prediction model based on data driven by ground-
observation stations utilizes meteorological elements, such as temperature, humidity, pres-
sure, and precipitation, to predict impending rainfall. Machine-learning methods include
random forest [6], the autoregressive integrated moving average model (ARIMA) [7], k-
nearest neighbor (KNN) [6], and other machine-learning methods [8–11]. Deep-learning
methods include LSTM [12] and gate recurrent unit (GRU) [13]. These models have made
some progress in short-term precipitation prediction based on single-station data. In order
to improve these models, a number of researchers have proposed a spatio-temporal graph
convolutional neural network (GCN) [14–16] for short-term precipitation prediction, where
the GCN network is utilized to capture unstructured spatial correlations and an LSTM
or GRU is used to capture temporal correlations. Deep neural networks then transfer the
collected spatio-temporal data to rainfall values. However, such networks often require
an extra input-adjacency matrix and feature a certain temporal latency. Some studies
incorporated a radar-echo map into the GCN network to aid in the building of an adjacency
matrix in order to determine the spatio-temporal correlation in the precipitation region [17].
The question of how to fully utilize the spatio-temporal properties of radar-echo sequence
to examine the dissipation and movement of precipitation clouds has therefore become
a core issue in the research on short-term precipitation forecasting. In addition, combin-
ing multi-source ground-observation data and radar-echo data to study the geographical
distribution of and temporal changes in precipitation during imminent precipitation is a
significant challenge.

The most recent advancements in the field of multimodal fusion offer novel solutions
for the aforementioned challenges, among which, the cross-modal fusion model based
on transformer has been effectively used in Visual Question Answering (VQA), Visual
Reasoning in the Real World (GQA), and other fields [18–21]. This type of model typically
consists of multiple encoders, including an object-relation encoder, a language encoder, and
a cross-modal encoder. Inspired by this, this paper proposes a new general framework for
data fusion between radar-echo maps and ground meteorological station data, called the
model based on multimodal data fusion and cross-attention mechanism for precipitation
(MFCA). It performs the inductive analysis of the intensity and movement trend of precipi-
tation clouds in the radar-echo map, and combines the past precipitation of the station to
realize the short-term and imminent precipitation prediction. Our model overcomes the
problems of the time lag and single-data mode in past forms of artificial-intelligence-based,
quantitative short-term precipitation and improves prediction accuracy. In the proposed
model, we extract the feature vectors of the radar-echo map and the station data at each
time step through different encoders and stack the feature vectors at all times in the past
as the input of the cross-modal feature encoder. Then, we use the transformer and cross-
attention mechanism to model the spatio-temporal rainfall process and predict the future
precipitation through the deep neural network. Our main contributions to the forecasting
of quantitative short-term precipitation are as follows:
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• We propose a new framework called MFCA. MFCA can fuse radar-echo data with
station-rainfall data, analyze the spatio-temporal dependence of radar reflectivity and
rainfall in the process of rainfall, and predict quantitative short-term precipitation.
To our knowledge, we are the first to propose a multimodal-fusion, quantitative
short-term precipitation prediction model based on a cross-attention mechanism.

• We present a new feature encoder for radar-echo and station data that uses ConvLSTM,
LSTM, and a transformer to extract coded features from different modal weather data.
We use the implicit state of each time step as the feature of the time step, and use
a transformer to further encode it, and then exchange features through the cross-
attention mechanism.

• We validated our model on four real datasets from southeastern China, and compared
it with a current, mainstream, advanced, single-mode rainfall prediction model. The
results of the experiments confirm the superiority of our model.

2. Related Work

The first section of this chapter introduces the relevant uses of ConvLSTM and LSTM in
the prediction of short-term and imminent precipitation. The second section introduces the
recent development of a multimodal fusion algorithm based on the transformer architecture.
The third section introduces the convection-allowing forecast model (CMA).

2.1. Spatio-Temporal Model

Precipitation prediction is a task of spatio-temporal sequence modeling. The model
learns potential change rules from many spatio-temporal sequence data through training.
By evaluating a period of historical spatio-temporal data, the trained model can predict the
future changes in spatio-temporal data. Numerous studies have investigated this endeavor.
Zhang proposed a multi-channel 3D-cube successive convolution network (3D-SCN) [22]
to predict the emergence and development of convective storms utilizing multi-source
meteorological data. Studies revealed that the prediction accuracy of the model is higher
than that of the conventional model. Researchers presented the geospatial-temporal convo-
lutional neural network (GT-CNN) based on a 3D convolution neural network (3D-CNN)
and LSTM [23]. In this model, 3D-CNN is used to construct the geospatial relationships
between various sampling points. LSTM is used to grab the precipitation features with time
information. Shi creatively enhanced LSTM, put forward ConvLSTM [2], and created a
spatio-temporal sequences prediction model that could be trained end-to-end. ConvLSTM
replaced the full connection procedure in LSTM with convolution; this will establish the
temporal relationship of the local spatial features extracted by convolution. After that, Shi
proposed Trajectory GRU (TrajGRU) [24], which can actively learn the position changes
of objects in spatio-temporal motion, and created an encoder-–forecaster structure. Based
on this, researchers proposed a number of spatio-temporal sequence prediction models
by designing new modules to improve the accuracy of prediction, such as Predictive
RNN (PredRNN) [25], PredRNN++ [26], Memory In Memory (MIM) [27], Self-Attention
ConvLSTM (SAConvLSTM) [28], etc. These models learn potential atmospheric motion
laws from a large number of data to deduce radar-echo images and predict short-term
precipitation through radar images. The nonlinear mapping link between the radar-echo
rate and precipitation must also be investigated in models of this sort. However, the
development of this sort of method provides a broad concept through which to create
multimodal meteorological data encoders.

2.2. Multimodal Fusion Algorithm

Fusion methods can be broadly categorized into three categories based on distinct
fusion operations: basic fusion methods based on splicing and linear combinations [29,30];
basic fusion methods based on the attention mechanism [31–33]; and basic fusion methods
based on bilinear pooling [34]. The fusion method used in this paper belongs to the second
type. Researchers from Google put forward the transformer model in [35], which uses the
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self attention structure to replace the recurrent neural network (RNN) network structure
commonly used in natural language processing (NLP). The transformer has achieved
good results in many text and sequence tasks. Moreover, the stacked multi-header self
attention structure is widely used in the multimodal fusion model. These multimodal fusion
models generally include three encoders: a cross-modal encoder, an object–relationship
encoder, and a language encoder. The self-attention layer and cross-attention layer form the
foundation of the three encoders. The object–relationship encoder and language encoder
are single-mode encoders that focus, respectively, on visual and linguistic data. Each single-
mode encoder contains a self-attention layer and a feedforward layer. Each cross-mode
encoder consists of two self-attention layers, one bidirectional cross-attention layer, and
two feedforward layers.

2.3. Convection-Allowing Forecast Model

The advent of convection-allowing models with sufficiently fine horizontal resolution
now enables explicit, deep, moist convection, providing more accurate forecasts of high-
impact weather. In addition, the rapidly updated NWP system can use the latest weather
observations to provide situational awareness for rapidly evolving weather events, which
is a key component of short-term (0–48 h) prediction guidance. The design of HRRR
initialization is very important for its application in short-term prediction. HRRR system
has made progress in using radar reflectivity observation and hybrid ensemble variational
data assimilation. The CAM initialized by the assimilation of both radar and conventional
observations is adopted in most operational centers. The successful practice of radar
reflectivity in CAM systems shows that considering radar reflectivity in short-term and
imminent precipitation forecasting will bring more abundant information.

3. Methods
3.1. Problem Description

Our goal is to combine the last 12 h of meterlogical-station data with radar-echo
data in an area to predict short-term precipitation. The site data in the region can be
represented as Xt = [x1

t , . . . , x2
t , . . . , xN

t ] ∈ R1×N , where xi
t is the precipitation of the station

i at time t. yt represents the actual ground-observation value at the current location,
yt = [y1

t , . . . , y2
t , . . . , yN

t ] ∈ R1×N , where N represents the number of ground meteorological
stations. The corresponding predicted value is represented by ŷt. The radar-echo data at
time t in this area are represented by matrix Rt ∈ RDW×DH , where DH represents the height
and DW represents the width of the radar-echo data. Therefore, the task of quantitative
short-term precipitation can be summarized as learning a function yTp = f (XTi , RTi ), where
Ti represents the input time slice length, and Tp represents the predicted time slice length.
Next, we optimize the following problems:

min
Tp

∑
t=1

N

∑
n=1

[L(yn
t , ŷn

t )] (1)

where L represents `2 loss function.

3.2. Network Structure

First, the basic operation of this network is described. This network contains single-
mode-feature encoders, cross-mode feature encoders, meteorological-station-sequence fea-
ture encoders, and radar-echo-sequence feature encoders. Firstly, the radar-echo-sequence
feature coder and the meteorological-station-sequence feature coder extract the features of
radar-echo data and the meteorological station data at the past time Ti. Then, the features
are encoded and aligned via the single-mode feature coder and the cross-mode feature
coder. Finally, the precipitation data of N stations at the future time Tp are obtained via the
multi-layer perceptron (MLP). The network flow chart of MFCA in shown in Figure 1.
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ŷ

SARadar
F

SASiteDa
F

...
...

T=1

T=12

T=1

T=12

12xC

12XC

Radar 

Encoder

Multi-Head

Self 

Attention

MLP

Q

K

V

Multi-Head

Self 

Attention

MLP

Q

K

V

Multi-Head

Self 

Attention

MLP

Q

K

V

SiteData 

Encoder

inF outF

Cross-

modality 

Encoder

RadarFeat
F

SiteDataFeat
F

SARadar
F

SASiteDa
F

Cross-modality Encoder

Multi-Head

Cross

Attention

Multi-

Head

Self 

Attention

K

V

Q

Multi-Head

Cross 

Attention

Multi-

Head

Self 

Attention

Q

K

V

MLP

MLP

MLP

CARadar
F

CASiteDa
F

pT
ŷ
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Figure 1. Flowchart of the proposed MFCA.

3.2.1. Sequence Feature Encoder

The structure of radar-echo-data feature extractor is shown in Figure 2. In the original
radar-echo data Rt, each pixel value represents the radar reflectivity of the point and reflects
the size and density distribution of precipitation particles within the meteorological target.
To extract the properties of radar-echo data, we apply the inception structure, as shown in
Figure 3, owing to the size of the picture. In inception, we employ three convolution kernels
of varying sizes (1 × 1, 3 × 3, and 5 × 5) and a pooling layer, which increases network
sparsity, decreases picture size, and decreases computation. In prior studies, ConvLSTM
demonstrated its stability and effectiveness in extracting spatio-temporal dependence,
which is of great significance for radar-echo data. Therefore, we use a stacked three-layer
ConvLSTM, as shown on the right of Figure 2. (∗ represents the convolution operator and
� represents the Hardman product in the following.)

xt = Incp(Rt) (2)

gt = tanh
(
Wxg ∗ Xt +Whg ∗ Hl

t−1 + bg

)
(3)

it = σ
(
Wxi ∗ Xt +Whi ∗ Hl

t−1 + bi

)
(4)

ft = σ
(
Wx f ∗ Xt +Wh f ∗ Hl

t−1 + b f

)
(5)

C l
t = ft � C l

t−1 + it � gt (6)

ot = σ
(

Wxo ∗ Xt + Who ∗ Hl
t−1 + Wco ◦ C l

t + bo

)
(7)
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Ht = ot ◦ tanh
(
C l

t

)
(8)

RadarFeatt = AvgPool(MLP(H3
t )) (9)

where Incp indicates the inception drop sampling network, l indicates the number of layers,
W indicates convolution kernel, and b indicates bias. We input the hidden state H3

t , the
output of the third layer ConvLSTM, into the MLP and the pooling layer. After that, we get
the spatio-temporal feature vector of the radar-echo data RadarFeatt at time t.
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Figure 2. Radar-echo-data feature extractor. This figure shows the structure of the radar-echo-data
feature extractor in this model, taking the datasets of Guangdong Province as an example. The right
side of the figure shows the structure of a 3-layer-stack ConvLSTM, where xt represents the output of
Incp, and Hl

t and Cl
t represent the hidden statue of the l-th ConvLSTM at time t. The image in the

first line of the figure is a visual image of radar echo. We extract the characteristics of radar-echo
data from the past 12 h; only half of the timesteps are shown, and ellipses replace the other half.
The practical steps are the same. In the figure, C represents the extracted feature dimension of each
timestep. In this experiment, we used C = 1024.
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Figure 3. Inception structure diagram.

The structure of site-data feature extractor is shown in Figure 4. The data of the
meteorological stations are the real rainfall yt of Guangdong and Guangxi Province, China.
In this network, we use only one meterlogical obsevation element, rainfall, so the data of
stations at each time form a vector with the size of 1xN. The meteorological station data
encoder is composed of LSTM and a full connection layer. LSTM models the temporal
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dependency of time-series data using memory cells and a gating mechanism. If input gate
it is engaged for each new input, its information is stored in the memory cell; if a forgetting
gate is activated, the previously stored information ct−1 is forgotten, and the most recent
unit output is propagated by output gate ot to the final state Ht. Ht outputs the time feature
vector of meteorological station data at time t as SiteDataFeatt through a two-layer fully
connected network.

LSTM

T=1

LSTM

T=3

LSTM

T=5

LSTM

T=7

LSTM

T=9

LSTM

T=12
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12xC
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Figure 4. Site-data feature extractor. The figure shows the structure of the site-data feature extractor
in the model, taking the Guangdong dataset as an example. The image in the first line of the figure is
the visual image of the precipitation data interpolated to the station. It is a vector with a size of 1XN
when used as the input in the experiment. We extracted the characteristics of the precipitation data
from the past 12 h. In the figure, we display only half of the timesteps, and the ellipsis replaces the
other half. The actual steps are the same. In the figure, C represents the extracted feature dimension
of each time step. In this experiment, we use C = 1024, N is the number of meteorological stations.

3.2.2. Single-Mode Feature Encoder

Each sub-layer of the single-mode feature encoder consists of a multihead attention
sub-layer and a MLP with two fully connected sub-layers. As depicted in the top half of
Figure 1, residual connection and normalizing layer were added after each sub-layer to
mitigate gradient disappearance and enable faster training. The inputs of the single-mode
feature encoder are matrix FRadarFeat ∈ RTa×D f and FSiteDataFeat ∈ RTa×D f , where D f is the
dimension of feature and Ta is the total length of the input radar-echo data. FRadarFeat and
FSiteDataFeat contain the feature vectors of each modal data extracted by the feature extractor
at each moment. The outputs of single-mode feature encoder are coding feature FSARadar ∈
RTa×D f of radar-sequence data and coding feature FSASiteDa ∈ RTa×D f of site sequence data.
In the multi-attentional sub-layer, we calculate the matching between the feature vectors
of each moment and the feature vectors of other moments SAX→X(xt, {x0, . . . xk}). We
multiply eigenvector xt through three matrices, WQ, WK, and WV , and obtain queries Qt,
keys Kt, and values Vt. The point product of Qt and Kj is used to calculate the similarity
score between the feature vector at this time and the feature vector at time j. We divide the
score by

√
dk and multiply it by Vj through softmax, and add the weighted values of all

the features at time αjVj to obtain the new feature vector through the attention-operation
mapping of feature vector xt and matrix {x0, . . . , xk}, and the size is the same as xt after
attention operation. The formula is as follows:

aj = QtKT
j /
√

dk (10)

αj = exp
(
aj
)
/∑

k
exp(ak) (11)
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Zt = ∑k αjVj (12)

SA = [Z0, . . . Zt] (13)

Multi-head attention can be understood as the use of multiple non-interfering self-
attention mechanisms, and the outputs of each self-attention mechanism are spliced to
obtain multiple outputs [SA1, . . . SAk]. The outputs FSARadar and FSASiteDa of the single-
mode feature encoder are multiplied by a learnable weight matrix WSA. The formula is
as follows:

FSA = [SA1, . . . SAk]WSA (14)

where W ∈ Rh×dk×dw and h are the attention mechanisms in multiple attention, and dk is
the dimension count of Kt.

In the single-mode feature encoder, we employ a multi-head self-attention mechanism
so that feature vectors of radar data and site data can be projected to different representation
subspaces via multiple weight matrices. This increases the model’s ability to focus on
different features at different times, while maintaining the same size for input and output.
Each encoder for a single modal feature concentrates on a single modal feature (radar-echo
data or weather-station data).

3.2.3. Cross-Modal Feature Encoder

Each cross-modal layer of the cross-modal feature encoder consists of a bidirectional
cross-attention sub-layer (CA), two self-attention sub-layers (SA), and two MLPs. Sim-
ilarly to the single-modal feature encoder, we use a normalization layer and residual
connection. Depending on the objective, various numbers of cross-modal layers can be
stacked. The output of each layer is the input for the subsequent layer. The bidirectional
cross-attention sub-layer consists of two one-way cross-attention sub-layers: radar data
to site data (CAR→S) and site data to radar data (CAS→R). In layer l, we calculate the
similarity between radar-data feature Rl−1

t and site-data feature Sl−1
t output from layer

l − 1, and output the cross-modal feature of layer L:

R̂l
i = CAR→S

(
Rl−1

i ,
{

Sl−1
1 , . . . , Sl−1

m

})
(15)

Ŝl
j = CAS→R

(
Sl−1

j ,
{

Rl−1
1 , . . . , Rl−1

m

})
(16)

In order to further establish the internal connections of cross-modal features, we
connect a self-attention sub-layer after the cross-modal layer:

R̃l
i = SAR→R

(
R̂l

i ,
{

R̂l
1, . . . , R̂l

n

})
(17)

S̃l
i = SAR→R

(
Ŝl

i ,
{

Ŝl
1, . . . , Ŝl

n

})
(18)

Finally,
{

R̃l
i

}
and

{
S̃l

i

}
output cross modal features FCARadar =

{
Rl

i

}
and FCASiteDa ={

Sl
i

}
through the MLP. Our model has two outputs, as shown in the bottom right of Figure 1:

feature similar to radar data and another feature similar to site data. As our goal is quantitative
short-term precipitation, which is more similar to site data, we use site data as the input to the
MLP and decode the linear layer to output the rainfall for the next 3 h or 6 h.

3.3. Implementation

We use the 3 h quantitative short-term precipitation dataset of Guangdong to illustrate
the proposed MFCA model. Each batch of training samples consists of a radar-echo data
sequence {Rt} with dimensions of 12 × 1 × 280 × 360, where 12 is the number of time
steps separated by 1 h, 1 is the number of channels, and 280 × 360 is the size of a single
radar images. The size of meteorological-station data series {Xt} is 12 × 1 × 85, where
12 is the time step with an interval of 1h, 85 is the number of meteorological stations,
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and 1 represents the 1-dimensional real rainfall observation of each station. The size of
the training label is 3 × 1 × 85, 3 is the prediction-step size, the interval is 1 h, 1 is the
number of channels, and 85 is the number of meteorological stations. First, the radar map
sequence was down-sampled through the inception network to obtain a set of feature maps
with a size of 12 × 256 × 35 × 45. The 3-layer ConvLSTM network was then inputted in
chronological sequence, and the output H3

t of the third layer for each time step was taken as
the temporal and spatial characteristics of the 512× 35× 45 radar-echo data. After stacking
the characteristics of twelve time steps, the dimensions were 12 × 512 × 35 × 45. Next,
we input the MLP and pooling layer to produce the 12 × 1024 dimensional space-time
feature vector FRadarFeat of radar-echo data. Simultaneously, meteorological-station data
were fed into the LSTM network based on the time step, and time-feature vector FSiteDataFeat
of meteorological-station data was produced via two complete connection layers with a
size of 12 × 1024.

Next, we input FRadarFeat and FSiteDataFeat into the single-mode feature encoder to en-
hance semantic feature representation, and then input the output of the single-mode feature
encoder into the cross-mode encoder to align and exchange different modal-feature infor-
mation. The input and output dimensions of these two modules are identical: 12 × 1024.
The station-data characteristics provided by the cross-mode encoder were fed into the
multilayer perceptron network and the complete connection layer to produce the projected
values, with a size of 3 × 85, in order to acquire the expected rainfall values of 85 stations in
the next 3 h expressed by

{
ŷTp

}
. The algorithmic flow of MFCA is shown in Algorithm 1.

Algorithm 1 Algorithmic flow of MFCA.
Input: {Rt},{Xt}
Output:

{
ŷTp

}
1: for t < T (T is the total number of input frames) do
2: Inputting {Rt},{Xt} into the sequence feature encoder and output FRadarFeat.
3: Inputting

{
ŷTp

}
into the sequence feature encoder and output FSiteDataFeat.

4: end for
5: Inputting FRadarFeat, FSiteDataFeat into the single-mode feature encoder and output

FSARadar, FSASiteDa.
6: Input FSARadar and FSASiteDa to the cross modal feature encoder and output

FCARadar,FCASiteDa.
7: Input FCASiteDa to the multilayer perceptron network and output

{
ŷTp

}
.

8: return
{

ŷTp

}
4. Data and Experimental Configuration

To evaluate the effectiveness of the MFCA network in predicting short-term precip-
itation, we separated the radar data and meteorological-station data of Guangdong and
Guangxi provinces from June to September between 2016 and 2019 into four datasets.
We compared the quantitative precipitation prediction of the future 3 h and 6 h between
MFCA and the current mainstream spatio-temporal sequence prediction model on the
real datasets of Guangdong Province and Guangxi Province. In this section, we begin by
outlining the data’s origin and format, and segmentation of the training set and test set.
After that, we introduce the comparison models. Finally, we introduce the experiment’s
evaluation criteria.

4.1. Data Description and Pretreatment

The original meteorological station data were obtained from National Automatic
Station numerical files (http://data.cma.cn/, accessed on 14 April 2022). According to
the Chinese automatic station-numbering system, we first checked all the station numbers
in the provinces of Guangdong and Guangxi. Next, we extracted the column of hourly

http://data.cma.cn/
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precipitation data from each station and stored it as a table according to the station number
and time. After cleaning up the retrieved hourly precipitation data, we discovered that
certain precipitation data were missing. As our research focused on the continuous rainfall
process, we interpolated the missing data based on the station’s previous and subsequent
data by linear interpolation. In view of the current requirements for weather forecasting,
the 1 h accumulated precipitation is of more practical value. We picked the hourly precipi-
tation of all automated stations in Guangdong Province (as shown on the left of Figure 5)
Guangxi Province from June to September 2016 to 2019 as the original meteorological
station dataset. The numbers of meteorological stations in Guangdong and Guangxi are 85
and 90, respectively. The meteorological station data interval is one hour, and the data sizes
are 11,712 × 85 and 11,712 × 90, respectively. In order to pay more attention to the rainfall
process, we used the sliding window to intercept the samples containing the precipitation
process. We selected the sample with the average number of precipitation stations at each
time of more than 15% of the total. We believe that precipitation was present in this sample.
The initial radar mosaic data were 6 min interval radar mosaic data from southeastern
China. We cropped the radar mosaic above China’s Guangdong and Guangxi provinces
with sizes of 280 × 360 and 263 × 355, as shown on the right of Figure 5, according to the
sample time in the selected meteorological station samples. The cropped radar mosaics
cover Guangdong or Guangxi and include all the meteorological stations in the provinces of
Guangdong and Guangxi. Due to the tiny number of samples missing from the radar map,
we decided to exclude the samples missing from the radar map. We obtained the datasets
for the multimodal 3 h quantitative short-term precipitation prediction for Guangdong
and Guangxi, including 2735 and 2453 groups of samples, respectively. Similarly, we made
the datasets for the multimodal 6 h quantitative short-term precipitation prediction for
Guangdong and Guangxi, which comprised 2684 and 2397 sample groups, respectively. In
the experiment, eighty percent of the data were used as the training set and the remained
twenty percent as the test set. We did not use test sets during model training. We predicted
the cumulative hourly precipitation for the next 3 or 6 h using precipitation and radar-echo
data from the preceding 12 h.

(a)

(b) (c)

W
D

H
D

N

Figure 5. In figure (a), taking the observation data of Guangdong Province at 12:00 on 10 June 2016 as
an example, the style of station data is shown, where N is the number of stations. The number in the
first row is the number of stations. The number in the second row is the hourly accumulated rainfall,
in millimeters (mm). Figure (b) is the grid point visualization result of (a) by linear interpolation.
Figure (c) is the visualization of the radar-echo of Guangdong Province. In the figure, DW and DH

represent the pixel size of the image (c).



Remote Sens. 2022, 14, 5839 11 of 19

4.2. Comparing Models and Settings

To analyze the performance of our model, we compared it with a number of models
that are frequently used in weather-forecasting activities, including:

DCRNN (ICLR2018) [36]: A GCN network that uses a bidirectional random walk
on a graph to model spatial dependence and that deploys GCN and GRU for multi-step
prediction in coding-–decoder mode.

GWNN (ICLR2019) [37]: A graph neural network based on wavelet basis. By trans-
forming a Fourier basis into a wavelet basis in SpectralCNN, an efficient feature extraction
method is implemented. GWNN can effectively learn localized and sparse feature expres-
sion and improve the expression effect and operation efficiency of the network.

ConvLSTM (NIPS2015) [28]: A classical spatio-temporal sequence prediction network,
which, by extending the fully connected LSTM, features a convolution structure in both
input-to-state and state-to-state transitions. A convolution LSTM (ConvLSTM) was used to
establish a short-term precipitation forecast model. Extensive studies have demonstrated
that ConvLSTM networks can better capture temporal and spatial correlations.

PredRNN (NIPS2017) [25]: A recursive neural network using a unified memory pool to
remember spatial representations and temporal variations. Specifically, the memory state is
no longer limited within each LSTM cell. Instead, it can zigzag in two directions: vertically,
through stacked RNN layers, and horizontally, through the states of all the RNN layers.
The core of the network is a new spatio-temporal LSTM (ST-LSTM), which simultaneously
extracts and remembers spatial and temporal representations.

A3T-GCN (ISPRSINTJGEO-INF2021) [38]: The model learning the short-term trend in
time series using gated recurrent units and the spatial dependency based on the topology
is presented to facilitate traffic forecasting. Additionally, the attention mechanism was
included to modify the relevance of various time intervals and compile overall temporal
data to enhance prediction precision.

PredRNN-V2 (T-PAMI2022) [39]: A recursive neural network which models the struc-
tures of visual dynamics by decoupling a pair of memory cells, operating in nearly inde-
pendent transition manners, and finally forming unified representations of the complex
environment. Concretely, besides the original memory cell of LSTM, this network features a
zigzag memory flow that propagates in both bottom–up and top–down directions across all
layers, enabling the learned visual dynamics at different levels of RNNs to communicate.

GRAPES_MESO: With a geographical resolution of 10 km and a temporal resolution of
3 h, the GRAPES_MESO model predicts precipitation with good accuracy. The maximum
time restriction for a forecast is 72 h. Researchers conducted a series of standard and
simulation tests, including the analysis and application of conventional data, and the
direct analysis and application of nonconventional data, such as radar and satellite data, to
validate the accuracy and efficacy of the graphs system. The system has been operational
in national and regional meteorological operation centers and has played a significant role
in meteorological operations in practice. The model has certain predictive ability for heavy
precipitation and other intense weather processes, especially for products with high spatial
and temporal resolution, and it can more accurately explain the presence and evolution of
the phenomenon.

In this experiment, DCRNN, GWNN, and A3T-GCN predicted the short-term pre-
cipitation using the data from the meteorological stations. ConvLSTM, PredRNN, and
PredRNN-V2 predicted the short-term precipitation based on the radar data. The Pytorch
framework was used to implement all six models, and the GRAPES_MESO model data
were obtained from the China National Meteorological Data Center.

4.3. Evaluation Criteria

For the predicted precipitation value, the mean square error (MSE), mean absolute
error (MAE), and threat score (TS) were utilized for the quantitative evaluation. The
TS score is the World Meteorological Organization’s grading standard for quantitative-
precipitation-prediction accuracy and one of the scales used to quantify the accuracy of
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rainstorm forecasts. The formula for calculating the TS 0.1 threshold at 0.1 mm/h is
as follows:

TS 0.1 =
TP

TP + FN + FP
(19)

MSE =
1

Tp ∗ N

Tp

∑
t=1

N

∑
n=1

(yn
t − ŷn

t )
2 (20)

MAE =
1

Tp ∗ N

Tp

∑
t=1

N

∑
n=1
|yn

t − ŷn
t | (21)

TP represents true positive, FN represents false negative, FP represents false positive,
and TN represents true negative, as shown in Table 1.

Table 1. Confusion matrix of TS.

Ground Truth (GT)
Positive (GT ≥ 0.1) Negative (GT < 0.1)

Prediction (PD) Positive (PD ≥ 0.1) TP FP
Negative (PD < 0.1) FN TN

5. Experimental Results and Analysis
5.1. Performance Comparison

Our comparative experimental results are summarized in Table 2. In general, the
deep learning method was superior to the NWP approach. GRAPES_MESO, with a grid
spacing of 10 km, is unable to resolve convective systems. The poor performance of
GRAPES_MESO could be caused by the use of coarse resolution in GRAPES_MESO. In
addition, the data assimilation may limit its quality of analysis and forecasting. More
refined model numerical prediction data of the Grapes Model may improve performance.
Since we could not obtain more refined data, we did not compared it. In meteorological
prediction, the numerical forecast approach must be analyzed and merged with other
models after the fact. In this work, the deep-learning models focused on the summer
rainfall in Guangdong and Guangxi. The predictive power of the deep-learning model
based on the radar data was superior to that of the model based on the site data, particularly
with regard to the forecasting of heavy precipitation. We believe this was due to the fact
that the correlation between the larger echo value in the radar-echo data and the heavy
precipitation is simpler to identify. The main architectures of our radar-echo-data feature
extractor and site data extractor both adopt the most original models in their respective
directions. As our experimental results show, after entering the radar-echo data and site
data, the effect did not decline because of more input data, but induced better performance.
We think this shows that the model has good feature extraction and alignment ability
for data of two modes. We can see that in terms of TS0.1 and TS3, our results are not
much better than the suboptimal value, but our model shows more significant advantages
when predicting greater precipitation. Compared with the suboptimal network, we have
added precipitation observation data’s input and integration strategy. The precipitation
observation data have a very intuitive response to the heavy rainfall process, which gives
the model a more precise judgment of the heavy rainfall process. Our model has a more
significant accuracy advantage than single-mode site data because the radar-echo data can
well reflect the intensity and area of precipitation. We can see that these single-mode models
using site data perform better on TS0.1 and TS3 indicators but produce poor prediction of
heavy precipitation. For the heavy precipitation, the station data are clear. However, these
single-mode models using site data produced poor scores in forecasting heavy precipitation,
as shown in Figures 6 and 7. This is because these single-mode models using site data tend
to bias the prediction value to the median to achieve less MSE Loss.
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Ground Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNNGround Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Ground Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Figure 6. Three-hour Guangdong site-data visualization: (a) shows the predicted and true values of
3 h accumulated precipitation at 0:00 on 11 June 2019, (b) shows the predicted and true values of 3 h
accumulated precipitation at 12:00 on 11 June 2019, and (c) shows the predicted and true values of
3 h accumulated precipitation at 0:00 on 27 August 2017.

Ground Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNNGround Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Figure 7. Six-hour Guangdong site-data visualization: (a) the predicted and true values of 6 h
accumulated precipitation at 12:00 on 6 June 2017, (b) the predicted and true values of 6 h accumulated
precipitation at 12:00 on 10 June 2016, and (c) the predicted and true values of 6 h accumulated
precipitation at 12:00 on 25 June 2019.

Table 2. Quantitative comparison of accumulated precipitation in Guangdong and Guangxi. The
optimal (or suboptimal) results are marked in bold (or underlined).

Methods
Guangdong (3 h) Guangdong (6 h)

TS0.1 TS3 TS10 TS20 TS50 MSE MAE TS0.1 TS3 TS10 TS20 TS50 MSE MAE

Ours 0.37 0.44 0.62 0.61 0.44 12.1 1.96 0.54 0.48 0.63 0.67 0.59 14.5 2.75
GRAPES_MESO 0.26 0.18 0.14 0.12 0 72 3.43 0.104 0.06 0.04 0.05 0 119 4.82

DCRNN 0.36 0.24 0.10 0.02 0 47.48 2.9 0.53 0.30 0.03 0.01 0 87.38 4.5
GWNN 0.36 0.25 0.09 0 0 47.84 3.3 0.53 0.26 0.05 0.03 0 88.81 4.52

A3T-GCN 0.38 0.22 0 0 0 49.56 3.20 0.54 0.33 0.14 0.02 0 115.23 5.81
ConvLSTM 0.36 0.39 0.52 0.44 0.1 20.96 2.5 0.53 0.40 0.59 0.56 0.48 24.7 3.55
PredRNN 0.37 0.29 0.27 0.12 0 34.04 2.8 0.54 0.39 0.52 0.49 0.3 31.27 3.89

PredRNN-V2 0.38 0.35 0.37 0.29 0.06 26.82 2.7 0.52 0.42 0.52 0.50 0.3 28.22 3.71

Guangxi (3 h) Guangxi (6 h)

Ours 0.41 0.52 0.63 0.54 0.53 9.25 1.78 0.55 0.6 0.72 0.71 0.62 14.17 2.38
GRAPES_MESO 0.36 0.23 0.16 0.06 0 51.91 2.88 0.22 0.1 0.08 0.15 0 105.99 4.48

DCRNN 0.34 0.21 0.03 0.01 0 39.38 2.7 0.50 0.27 0.03 0 0 103.11 5.59
GWNN 0.34 0.24 0.04 0.01 0 39.37 3.12 0.50 0.27 0.04 0 0 103.89 5.41

A3T-GCN 0.35 0.21 0.01 0 0 40.71 2.90 0.50 0.29 0.07 0 0 102.16 5.54
ComvLSTM 0.39 0.37 0.51 0.35 0.22 16.37 2.49 0.53 0.47 0.58 0.53 0.42 29.83 3.57
PredRNN 0.37 0.27 0.18 0.06 0.01 32.42 2.87 0.51 0.39 0.39 0.27 0.17 48.26 4.2

PredRNN-V2 0.38 0.32 0.30 0.21 0.09 25.73 2.8 0.51 0.40 0.43 0.35 0.21 39.13 3.889
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To illustrate the effect of the method more intuitively, we interpolated the site data into
grid data and performed a visualization based on the longitude and latitude of the sites, as
shown in Figure 6. In example (b) of Figure 6, only our model predicted the heavy rainfall
above the visualization map. In example (a) of Figure 6, our model also made accurate
predictions for the two heavy rainfall regions on the right side of the visualization map.
The examples in Figures 7–9 also demonstrate this.

From Table 2, it can be seen that our model was closer to the actual precipitation in
terms of precipitation intensity and range, and as the forecast time increased, it outper-
formed the models based on site data and radar data. In the forecast of the 6 h cumulative
rainfall, the DCRNN and GWNN had a greater tendency toward the median value. In
order to assess the accuracy of different models’ predictions of the 3 h and 6 h short-term
and imminent-precipitation datasets with more precision, we studied the hourly forecast
findings further.

Ground Truth MFCA（ours） GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Ground Truth MFCA（ours） GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Figure 8. Three-hour Guangxi site data visualization: (a) the predicted and true values of 3 h accu-
mulated precipitation at 12:00 on 13 June 2016, (b) the predicted and true values of 3 h accumulated
precipitation at 12:00 on 26 June 2017, and (c) the predicted and true values of 3 h accumulated
precipitation at 12:00 on 1 July 2017.

Ground Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Ground Truth MFCA(ours) GRAPES_MESO ConvLSTM PredRNN DCRNN GWNN

（a）

（b）

（c）

Figure 9. Six-hour Guangxi site data visualization: (a) the predicted value and true values of 6 h
accumulated precipitation at 00 on 31 July 2018, (b) the predicted value and true values of 6 h
accumulated precipitation at 12:00 on 30 August 2018, and (c) the predicted value and true values of
6 h accumulated precipitation at 12:00 on 7 July 2019.

Figure 10 depicts the histogram of the MSE errors between the predicted and actual
hourly values for five distinct models. In the forecasts of the 3 h and 6 h short-term and
impending precipitation, the two models based on the radar data were superior to those
based on the station data, and the MFCA model was superior to those based on the radar
data. As the output characteristics of all the time steps were used to produce precipitation
values after the decoder, recurrent neural networks did not accumulate errors. We found
that the majority of the networks produced poor prediction results in the intermediate stage,
which represented the difficulty of prediction in the intermediate stage of the precipitation
prediction process, and our model demonstrated some superiority in the intermediate
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stage of the precipitation prediction process. The results indicate that the MFCA model
incorporates radar-echo information, alleviates the difficulty of precipitation prediction in
the intermediate stage.
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Figure 10. Hourly forecast MSE histogram. The x-axis of the Figure is the number of hours, and
the y-axis is the value of MSE. (a) The MSE of hourly predicted precipitation and true values on
the 3 h quantitative short-term precipitation prediction dataset in Guangdong. (b) The MSE of
hourly predicted precipitation and true values on the 3 h quantitative short-term precipitation
prediction dataset in Guangxi. (c) The MSE of hourly predicted precipitation and true values on the
6 h quantitative short-term precipitation prediction dataset in Guangdong. (d) The MSE of hourly
predicted precipitation and true values on the 6 h quantitative short-term precipitation prediction
dataset in Guangxi.

5.2. Ablation Experiment

In the preceding trials, the performance of the MFCA in 3 h and 6 h quantitative
short-term precipitation prediction tasks was evaluated. In order to demonstrate the
efficacy of this strategy in its entirety, we conducted ablation tests based on various module
combinations. After that, we examined the major modules by analyzing the impacts of
various convolution kernel combinations in the inception of the sequence feature encoding,
evaluating the impact of the feature fusion technique, and analyzing the effect of the
number of self-attention-layer stacking layers.

Effects of different combinations of inception structures. As shown in Table 3, dur-
ing the downsampling of the radar-echo data, the inception comprised many layers of
standard 3 × 3 convolution. The combination of one layer and three layers of 3 × 3 convo-
lution provided the best effect on the radar-echo-data feature extraction. As the number of
inception layers increased, the complexity of the model increased, and the training became
increasingly challenging.
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Table 3. Ablation experiment on the modal-characteristic encoder.

Type Patch Size/Stride Input Size Output Size MSE MAE

Inceptionx1 MaxPool As in Figure 3 B × S × 1 × 280 × 360 B × S × 32 × 140 × 180

14.50 2.75Conv2d 3 × 3/2 B × S × 32 × 140 × 180 B × S × 64 × 70 × 90
Conv2d 3 × 3/1 B × S × 64 × 70 × 90 B × S × 32 × 70 × 90
Conv2d 3 × 3/2 B × S × 32 × 70 × 90 B × S × 32 × 35 × 45

Inceptionx1 MaxPool As in Figure 3 B × S × 1 × 280 × 360 B × S × 32 × 140 × 180

20 2.91Inceptionx1 MaxPool As in Figure 3 B × S × 32 × 140 × 180 B × S × 64 × 70 × 90
Conv2d 3 × 3/2 B × S × 64 × 70 × 90 B × S × 32 × 35 × 45
Conv2d 3 × 3/1 B × S × 32 × 35 × 45 B × S × 32 × 35 × 45

Inceptionx1 MaxPool As in Figure 3 B × S × 1 × 280 × 360 B × S × 32 × 140 × 180

27 3.1Inceptionx1 MaxPool As in Figure 3 B × S × 32 × 140 × 180 B × S × 64 × 70 × 90
Inceptionx1 MaxPool As in Figure 3 B × S × 64 × 70 × 90 B × S × 32 × 35 × 45

Conv2d 3 × 3/1 B × S × 32 × 35 × 45 B × S × 32 × 35 × 45

Conv2d 3 × 3/2 B × S × 1 × 280 × 360 B × S × 32 × 140 × 180

17.58 2.80Conv2d 3 × 3/2 B × S × 32 × 140 × 180 B × S × 64 × 70 × 90
Conv2d 3 × 3/1 B × S × 64 × 70 × 90 B × S × 32 × 70 × 90
Conv2d 3 × 3/2 B × S × 32 × 70 × 90 B × S × 32 × 35 × 45

The influence of feature fusion strategy. In order to examine the ability of the cross-
attention sub-layer to align and exchange information across the modal features, we
replaced the cross-attention sub-layer with the features of the two modes directly after the
self-attention sub-layer in order to verify the effectiveness of the feature-fusion strategy.
The alignment and interchange of the characteristic data between the radar-echo data and
the station data had a beneficial effect on the accuracies of the quantitative short-term
precipitation prediction forecasts. After deleting the cross-attention sub-layer, as indicated
in Table 4, the MSE index was 6.5% higher than that of the next-best model.

The effect of stacking self-attention layers. To examine the influence of the number
of self-attention layers on the single-mode feature encoder, we combined different layers for
the two-mode feature encoder. First, we fixed the site-data characteristics: the cross-modal
encoder sub-layer number was 2, the test characteristics of the radar encoder sub-layers
were 1 to 3, and we determined that the best effect was achieved when the radar encoder
sub-layers numbered 3. Therefore, we fixed the radar-encoder layer number to 3 and
then adjusted the site-data-encoder and cross-modal-encoder layer tests. Table 4 below
displays the findings, showing that the three-layer radar-data feature encoder, the two-layer
station-data encoder, and the two-layer cross-mode encoder had the greatest effect.

To sum up, the multimodal feature-fusion model effectively integrated the features of
the two modes in the quantitative short-term precipitation prediction task and improved
the prediction accuracy.

Table 4. Ablation experiment on the modal-characteristic encoder.

Radar_Layers Site_Layers Cross_Layers MSE MAE

1 2 2 18.9 3.08
2 2 2 16.58 3.02
3 2 2 14.50 2.75
4 2 2 17.87 3.17
3 1 1 18.60 3.24
3 3 3 19 3.21
3 2 0 21 3.4

6. Discussion

Based on the experimental results, it can be seen that ConvLSTM performed better
on our dataset than newer networks, such as PredRNN and PredRNN-v2. We think this
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is because the goal of predrnn series is to predict long-term graphs, so it is more aimed
toward improving the performance of dependence. However, in this paper, in order to
avoid the new errors introduced by the modeling of the nonlinear relationship between
radar reflectivity and precipitation, we used the high-dimensional features extracted in each
time step as the input of the prediction network directly, so the advantages of PredRNN
cannot be reflected. On the contrary, because of the complexity of the network, the result is
not satisfactory.

We found that the MSE values of our model on the four real datasets are better
than those of the precipitation prediction model based on a single mode. In the diagram
shown in Figure 7, our model is more accurate at predicting the precipitation area. The
experimental results show that our model completed the extraction and feature alignment
of different modal features in feature extraction and feature fusion. The extracted features
can better reflect the precipitation situation in the past 12 h and the high-dimensional
features of radar-echo data, which makes it possible to complete the quantitative prediction
of short-term precipitation through external neural networks.

The prominent advantage of our model is the prediction of short-term heavy rainfall,
so it can provide early warnings for urban flood prevention, power supply companies, and
transportation, thereby providing good application value for smart cities. In this study, we
only used the precipitation data among the meteorological station data. In future studies,
we can consider adding other meteorological elements, such as wind, wind direction,
pressure, and temperature. We believe that adding these meteorological elements will
improve the prediction of precipitation and precipitation distribution.

7. Conclusions

In conclusion, we presented a multimodal fusion model for short-term precipitation
forecasting. The model initially employs an inception framework and a cyclic convolutional
neural network to extract spatio-temporal sequence characteristics, and then encodes single-
mode sequence information via a self-attention sub-layer. The characteristics of the two
modals are then exchanged and aligned through the cross-attention sub-layer in order
to learn the joint cross-mode representation, and the self-attention sub-layer is used to
construct the internal link. Multilayer perceptron then outputs the short-term precipitation
prediction value. Our experiments demonstrated that the model can successfully increase
the prediction performance. The multimodal fusion strategy’s efficacy in the short-term
heavy-precipitation forecasting task was also demonstrated. Future research will focus on
the effect of alternative fusion techniques in short-term precipitation prediction challenges
and the addition of other precipitation-related elements (such as wind speed and altitude).
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