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Abstract: Terrain classification is an important research direction in the field of remote sensing.
Hyperspectral remote sensing image data contain a large amount of rich ground object information.
However, such data have the characteristics of high spatial dimensions of features, strong data
correlation, high data redundancy, and long operation time, which lead to difficulty in image data
classification. A data dimensionality reduction algorithm can transform the data into low-dimensional
data with strong features and then classify the dimensionally reduced data. However, most clas-
sification methods cannot effectively extract dimensionality-reduced data features. In this paper,
different dimensionality reduction and machine learning supervised classification algorithms are
explored to determine a suitable combination method of dimensionality reduction and classification
for hyperspectral images. Soft and hard classification methods are adopted to achieve the classifica-
tion of pixels according to diversity. The results show that the data after dimensionality reduction
retain the data features with high overall feature correlation, and the data dimension is drastically
reduced. The dimensionality reduction method of unified manifold approximation and projection
and the classification method of support vector machine achieve the best terrain classification with
99.57% classification accuracy. High-precision fitting of neural networks for soft classification of
hyperspectral images with a model fitting correlation coefficient (R2) of up to 0.979 solves the problem
of mixed pixel decomposition.

Keywords: hyperspectral images; data dimensionality reduction; feature extraction; machine learning;
cell decomposition

1. Introduction

Since the 20th century, the widespread application of remote sensing technology re-
flects various surface information such as that related to agriculture, forestry, water, soil,
minerals, energy, and oceans [1–3]. Hyperspectral remote sensing imaging promotes the
development of precision agriculture [4]. Hyperspectral remote sensing images usually
contain hundreds of bands with small wavelength intervals between each band. These
images provide a large amount of extremely rich data for the target area [5], as well as facil-
itate considerable finer ground object information [6]. However, in some specific practical
applications, a higher amount of data does not necessarily result in an increased amount of
information because excessive information redundancy exists in hyperspectral images [7].
To extract all characteristic terrain data from hyperspectral data, dimensionality reduction
must be performed according to data characteristics and band types. Hyperspectral image
downscaling methods focus on feature extraction based on the linear and nonlinear, super-
vised and unsupervised, spatial and spectral features of the images. Hyperspectral images
are processed by downscaling and classification. Deep learning has been a powerful feature
extraction tool widely used for hyperspectral image classification, and convolutional neural
networks (CNN) are capable of extracting nonlinear features [8,9].

Current hyperspectral dimensionality reduction methods are classified into feature
extraction [10] and band selection [11]. Hyperspectral feature extraction refers to the
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recombination and optimization of the original spectral–spatial features to extract new
features that are most suitable for the application requirements. Feature extraction is usu-
ally performed in terms of feature vectors [12] and feature kernels [13] of hyperspectral
data for dimensionality reduction. Dimensionality reduction attempts to retain local and
global features. The global feature transforms the entire remote sensing data, and the
local feature extracts the part of the data with obvious data features. Many methods of
hyperspectral image data classification have been developed; for example, hyperspectral
data classification based on deep learning [14], hyperspectral remote sensing image clas-
sification using the support vector machine (SVM) [15], semi-supervised learning image
classification [16], and dimensionality reduction methods for image classification [17]. The
most popular application is deep learning for remote sensing image classification; deep-
learning-based hyperspectral image classification methods [18] are based on two main
directions. The first is basic spectral classification methods such as SVMs [19,20], k-nearest
neighbor (KNN) [21,22], decision trees [23] and other classification algorithms based on
spectral features and appropriate feature transformations. The second is to link image
contextual features for classification. For example, spatial context and spectral correlation
are utilized to enhance hyperspectral image classification [24], and a residual network [25]
is employed to obtain features at each level and fuse deep features to the classification of
the network [26]. In most dimensionality reduction classification methods, the data features
retained by data dimensionality reduction are indistinguishable in classification, produc-
ing poor classification results. Determining the most suitable model for dimensionality
reduction and classification of hyperspectral remote sensing data is crucial because the
resolution of each pixel of hyperspectral remote sensing data is extremely high. Each pixel
represents a large real area and mixes multiple terrains. If hard classification alone is too
decisive, the model may fail to classify what proportion of terrain a single pixel occupies.

To solve these problems and improve the combination method of data dimension-
ality reduction and classification, this paper classifies hyperspectral urban terrain data
that are subjected to various data dimensionality reduction algorithms. The supervised
machine learning-based classification algorithm is used to observe which feature data
after dimensionality reduction is sensitive to produce a strong classification effect. In
addition, this study evaluates the overall accuracy of the combination of hyperspectral
image dimensionality reduction and classification methods. Despite redundant data of
hyperspectral remote sensing, the proportion of hyperspectral data features is preserved by
different dimensionality reduction methods. The dimensionality reduction data retain the
difference of the original features, and the supervised machine learning-based classification
method is used to determine which data classification effect is better. The classification
process is generally divided into hard and soft classification methods. This study also
determines which dimensionality reduction and classification methods for hyperspectral
remote sensing data are suitable for soft and hard classification.

The method determined in this study can quickly and accurately determine the terrain
information of remote sensing images. Furthermore, the dimensionality of the overall data
can be greatly reduced and redundant bands can be filtered, thereby increasing the calcula-
tion speed of remote sensing terrain analysis and retaining its maximum characteristics.
Using lower-dimensional data to effectively express original high-dimensional features is
conducive to the rapid extraction of information while compressing the amount of data.
Soft classification and hard classification can be used for distinguishing pixel singularity
for hyperspectral remote sensing terrain classification. In summary, this paper has two
targets: (1) For the high-dimensional characteristics of hyperspectral data, various dimen-
sionality reduction methods are applied to retain all the data features; then, it is verified
whether unified manifold approximation and projection (UMAP) dimensionality reduction
and SVM classification can both remove redundant data and maintain good classification
accuracy. (2) For large-resolution hyperspectral images leading to hard pixel classification,
a neural network model is applied to obtain the best fit of the pixel class decomposition.
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2. Hyperspectral Dimensionality Reduction
2.1. Feature Extraction Dimensionality Reduction

Hyperspectral remote sensing images contain spectral information of all bands as
well as considerable spatial and band redundancy. Hyperspectral feature extraction refers
to the recombination and optimization of the original spectral–spatial features to extract
new features that are most suitable for current application requirements. Hyperspectral
feature extraction is based on the principle of reducing the data dimension to a lower level
to achieve improved feature selection performance.

Based on the above, traditional machine learning methods can be applied for dimen-
sionality reduction of hyperspectral image data because of the high number of spectra they
contain and the high dimensionality of the data. Graph learning can effectively reveal the
intrinsic relationships of data and is currently widely applied to hyperspectral imaging. For
example, a hybrid graph learning method is applied to separate the intra-class compactness
and inter-class separability of sample data and obtain the optimal spatial transformation for
dimensionality reduction [27]. Graph learning considers only the individual information
of each sample in certain features, and discriminant analysis-based hyperspectral image
classification for dimensionality reduction [28] adds domain, tangential, and statistical
features of samples to achieve feature complementarity and improve the classification per-
formance of hyperspectral images. The difficulty of applying graph embedding methods to
dimensionality reduction of hyperspectral images lies in choosing the appropriate neighbor-
hood construction to explore spatial information. Spatial spectral manifold reconstruction
preserving embedding [29] utilizes a new spatial and spectral combination distance (SSCD)
to fuse spatial structure and spectral information to extract discriminative features. While
deep learning convolutional neural networks can reduce the dimensionality of spectral and
spatial data, the adoption of autoencoders in convolutional neural networks reduces the
dimensionality [30], using pooled hyperspectral images [31].

This paper mainly focuses on the method of feature extraction based on machine
learning for hyperspectral images. The existing feature extraction methods mainly include
principal component analysis (PCA) [32], linear discriminant analysis (LDA) [33], factor
analysis (FA) [34], singular value decomposition (SVD) [35], independent component
analysis (ICA) [36], local linear embedding (LLE) [37], t-distributed stochastic neighbor
embedding (t-SNE) [38], UMAP [39], and other dimensionality reduction methods. The data
features retained by each method are different, and based on these differences, the feature
extraction methods can be divided into linear dimensionality reduction and nonlinear
dimensionality reduction. Nonlinear dimensionality reduction can be divided into global
feature and local feature methods.

2.2. Linear Dimensionality Reduction

PCA is a linear transformation unsupervised dimensionality reduction algorithm. It
maintains data information and simplifies the dimension of hyperspectral remote sensing
data by transforming data information of all bands into a new coordinate system. In this
method, the eigenvalue with the largest variance contribution is selected, which reduces
the dimension of the dataset without much classification accuracy loss and achieves faster
calculation. In view of the high-dimensional characteristics of hyperspectral data, the PCA
algorithm selects multiple eigenvectors for feature extraction. The eigenvector selection rule
based on experience is that when the number of principal components is greater than 1, the
data with an eigenvalue greater than 1 and a variance ratio greater than 85% are selected.

LDA is a supervised linear dimensionality reduction algorithm; it projects high-
dimensional pattern samples into the optimal discriminant vector space to extract clas-
sification information and compress the dimension of feature space. After projection, it
is ensured that the pattern samples have the largest inter-class distance and the shortest
intra-class distance in the new subspace; that is, the pattern has the best separability in
this space. Classification aims to achieve the farthest possible distance between different
categories and the shortest distance between the same category. Compared with the PCA
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dimensionality reduction algorithm, LDA is more concerned with classification rather than
maintaining data information. After dimensionality reduction, the intra-class variance of
the data is the smallest, and the inter-class variance is the largest. The retained dimension is
smaller than the classification category. When the number of layers of dimension reduction
is three, the test dataset retains 99.9% of the original data features.

SVD dimensionality reduction is another feature extraction method similar to PCA.
The method of considering the largest eigenvalue for Eigen decomposition is only suitable
for the decomposition of square matrices but not for non-square matrices. Singular values,
such as an m × n matrix, construct an m × m square matrix on the left, an n × n square
matrix on the right, and an m × n singular matrix with non-zero diagonals in the middle;
then, the values of the singular matrix are sorted by size for feature extraction. In the
process of singular value decomposition, the singular value is reduced particularly fast,
and fewer dimensions can be selected to retain more feature data.

ICA is another type of linear dimensionality reduction algorithm. It is suitable for
the dimensionality reduction of non-Gaussian data because the signal obtained after the
Gaussian distribution is mixed is Gaussian, and the mixed data show no difference. ICA
is suitable for the separation of such mixed signals. For hyperspectral data, the mixed
multiple spectra can be separated by ICA, extracting mutually independent attributes and
thus reducing the dimension. The purpose of ICA is to extract mutually independent
attributes and reduce dimensionality. It considers the data after dimensionality reduction
to be a linear combination of several statistically independent components. It only focuses
on independence and not the size of the data and the variance between them; therefore, it
is more conducive to data separation.

2.3. Nonlinear Dimensionality Reduction

LLE is a nonlinear dimensionality reduction algorithm that preserves the local fea-
tures of the data, allowing the dimensionality-reduced data to maintain a good manifold
structure; hence, it is a manifold learning technology. LLE first measures the degree of
linear correlation between each training instance and its nearest neighbors; then, the low-
dimensional vector to represent the features of the training set is determined such that
the local relationships are best preserved. When the LLE algorithm is used to reduce the
dimensionality of the dataset to three-dimensional data, the dimensionality reduction error
is 5.5 × 10−18.

t-SNE is a nonlinear dimensionality reduction method. It usually pays more attention to
maintaining similarity such that the distance between similar points in the low-dimensional
space is smaller. The t-distribution has the characteristics of long tail; that is, when there
are outliers, the entire distribution will not be separated from most of the original data
because of the outliers. While t-distribution mapping is used for low-dimensional data,
normal-distribution mapping is used for high-dimensional data. The t-SNE algorithm uses
Gaussian distribution in a high-dimensional space and t-distribution in a low-dimensional
space. The t-distribution satisfies the requirement for t-SNE that the distances between
points in the same cluster are similar, whereas those between points in different clusters are
large. t-SNE converts the similarity between data points into probabilities.

2.4. UMAP

UMAP is a nonlinear dimensionality reduction algorithm. It is based on the principle
of manifold and projection technology to achieve dimensionality reduction. First, the
distances between points in a high-dimensional space are calculated and projected to a
low-dimensional space. Then, the distances between points in that low-dimensional space
are calculated. Subsequently, stochastic gradient descent is used to minimize the difference
between these distances. The most prominent feature of the UMAP output is the balance
between local and global structure; UMAP tends to preserve the global structure in the
final projection. It is used to analyze high-dimensional data of any data type, providing
fast running time and high repeatability.
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The UMAP dimensionality reduction algorithm mainly involves two steps—learning
the manifold structure in the high-dimensional space and determining the low-dimensional
representation method of the manifold.

Step 1: For a given original hyperspectral image dataset X = (X1, X2, X3 · · ·Xn), di-
mension reduction is initialized to obtain a low-dimensional dataset Y = (Y1, Y2, Y3 · · ·Yn)~
N (0,10−4 × In). Then, pij and initial qij are calculated.

The conditional probability of i for j is given by

pi|j = e
d(xi ,xj)

σi (1)

The symmetric formula of the similarity matrix P for X is as follows:

pij = pi|j + pj|i − pi|j·pj|i (2)

The similarity matrix Q of Y is

qij =
[
1 + a

(
yi − yj

)2b
]−1

(3)

where a ≈ 1.93 and b ≈ 0.79 for default UMAP hyperparameters.
pij measures the similarity between Xi and Xj; qij measures the similarity between Yi

and Yj.
Step 2: The cost loss is calculated using binary cross entropy (CE):

CE(p, q) = ∑
i

∑
j
[pij·log

pij

qij
+
(
1− pij

)
· log

(
1− pij

1− qij

)
] (4)

Step 3: The parameters are optimized, and the number of iterations t, learning speed
v, and momentum a are set. The target result is a low-dimensional data representation
Y = Y1, Y2, Y3 · · ·Yn.

Step 4: Optimization is started: Yt = Yt−1 + v· dC
dY + a·

(
Yt−1 −Yt−2), where dC

dY is the

gradient vector of the loss function with respect to Y; dC
dY =

(
∂C
∂yi

)
1×n

.

In the field of remote sensing, PCA is commonly used for feature dimensionality
reduction and machine learning for classification. Considering the diversity of different
regions of a superpixel-level PCA for dimensionality reduction [40], a novel collapsed PCA
was developed [41], in which the spectral vector is collapsed into a matrix to effectively
determine the covariance matrix for better dimensionality reduction of hyperspectral image
data. The results of different types of PCA and their linear variants were compared, and
it was found that the segmented PCA has better accuracy than the collapsed PCA, which
has a lower spatial complexity [42]. Because PCA projection looks for the direction that
maximizes the variance, it usually ignores the local structure and the variance in other
directions. UMAP in machine learning, on the other hand, differs from PCA in that not
only local features but also global features are preserved when clustering.

Remote sensing data contains hundreds of bands, and the combination of each band
constitutes the pixel point category of image data. The input image is categorized ac-
cording to the type of each pixel point, and the UMAP algorithm is applied to reduce
the dimensionality of hyperspectral linear data. UMAP maps the original band data to
the low-dimensional space, for which it first learns the popular structure of hyperspectral
nonlinearity to determine the low-dimensional representation of the stream shape. The
optimal low-dimensional data are found by utilizing the least cost function, which results
in dimensionality reduction. Unlike other dimensionality reduction algorithms, such as
PCA and t-SNE, which only consider the local structure and lose many features, UMAP
considers the global structure.
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3. Hyperspectral Image Classification Methods

The current difficulties to be overcome by feature extraction methods in the field of
remote sensing image research are the large spatial feature span of hyperspectral images
and the limited number of samples. CNNs are widely applied for hyperspectral image
classification [43], and the insufficient number of samples of hyperspectral images is a
bottleneck that limits the deep learning training, for example, utilizing knowledge mi-
gration [44] and domain generalization [45] approaches to address the characteristics of
the insufficient number of samples. Hyperspectral image classification using deep neural
networks with inadequate samples and feature learning [46]. A new method was pro-
posed for hyperspectral image classification based on multi-view deep neural networks,
which fuses spectral and spatial features, employing only a small number of labeled sam-
ples [47]. Multi-level discontinuous features are extracted from remote sensing images [48].
Moreover, hyperspectral images are classified using a regularized subspace of Manhattan
distances [49] by introducing a deep hybrid multi-view neural network that implements
information interaction, making excellent utilization of different graph filters [50].

In the face of hyperspectral image classification, both hard classification and soft clas-
sification are applied. Hard classification mainly involves deep dimensionality reduction of
hyperspectral images first, followed by supervised classification by machine learning. Soft
classification is the probability obtained from image classification using logistic regression
and neural networks and represents the decomposition of hyperspectral image elements.

3.1. Hard and Soft Classification for Hyperspectral Images

Hard classification and soft classification are common strategies for hyperspectral
remote sensing image classification. Figures 1 and 2 show the flowcharts of hard and soft
classification, respectively. Hard classification assigns each pixel in a remote sensing image
a single category, and the classification is based on the similarity of pixel features, spectral
features, texture features, or a mixture of multiple features with known statistical features
of each category.
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In soft classification, the surface area corresponding to the pixel is often composed
of multiple categories of ground objects according to the actual situation, therefore it is
assumed that each pixel belongs to multiple categories or is composed of multiple categories.
Then, the relationship between the pixel and each category is calculated according to a
specific algorithm. The classification output is the probability fuzzy classification that the
pixel belongs to each category or the proportion of each category of objects in the pixel.

Soft classification and hard classification have their own advantages in the classifi-
cation of hyperspectral remote sensing images. Hard classification focuses only on the
maximum value of the corresponding classification probability of each pixel, ignoring the
relationship between other surrounding pixels and the corresponding relationship. Soft
classification can divide a single pixel into the proportion of target objects. The hard classi-
fication method is absolute; therefore, it determines the category of an object according to
the category of its adjacent objects.

The dimensionality reduction operation is performed on the basis of the distribution
characteristics of hyperspectral data. In this study, the data are obtained from public
datasets with data labels. The terrain classification methods of hyperspectral images mainly
include supervised machine learning, KNN, Bayesian classification, logistic regression,
neural network, SVM, and decision tree classification methods. Bayesian and logistic
regression usually have better classification effect on linear features. The KNN algorithm
determines the object category according to the distance of adjacent nearest points and
provides a high classification speed and good prediction effect. The decision tree algorithm
can process multiple continuous fields and can effectively classify according to the intensity
of hyperspectral bands. The SVM can solve the nonlinear problem of hyperspectral light
intensity, providing relatively strong generalization ability and handling high-dimensional
data effectively. The neural network can be fitted by multi-dimensional parameters and
has strong learning ability and high classification accuracy.

Soft classification of hyperspectral images is a probabilistic model in which the
reduced-dimensional data features are classified by a logistic regression or neural net-
work model, yielding a probability that a single pixel on the image can be simultaneously
classified into multiple categories; this yields a probability that the pixel is classified into
each category, which can be decomposed by the probability for image elements. The hard
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classification of hyperspectral images is a non-probabilistic model, i.e., the results are
derived by a decision classification function, and the exact classification of each pixel point
is learned by a supervised classifier of machine learning for image distribution features.

3.2. Neural Networks

Feedforward neural networks are also known as multi-layer perceptrons, in which
different neurons belong to different layers, namely an input layer, a hidden layer, and an
output layer, which are fully connected to each other. Figure 3 illustrates a neural network
structure. The neural network contains functions such as activation and loss functions.
For the classification of hyperspectral images, the activation function is selected as tanh,
the Adam gradient descent function is used, the number of nodes in the hidden layer is
selected as 50, and the number of iterations is selected as 5000 for training. The neuron is
directly connected to the following formula:

yi = ∑
j

wijxj + b (5)

where W is the weight and b is bias.
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The tanh activation function is obtained as

tanh(x) =
ex − e−x

ex + e−x (6)

3.3. Support Vector Machine

SVM is one of the classification algorithms in supervised learning, whose core idea is
to determine a divided hyperplane that separates sample points in space; the plane with
the largest distance to the nearest point among the samples of different categories with the
best generalization ability is selected as the divided hyperplane.

The point-to-plane distance γ is obtained as

γ =

∣∣wTxi + b
∣∣

||w|| (7)

where w is the weight and b is the bias.
The point with the smallest sample interval is found to have the largest distance to

the plane.
The nonlinear data of hyperspectral images are not in the same low-dimensional space

and need to be mapped to the high-dimensional space by applying kernel functions so that
linearly indistinguishable sample points can be made linearly distinguishable.
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4. Experimental Results and Analysis
4.1. Hyperspectral Image Description

The dataset used in this study is a public dataset comprising hyperspectral images
of a city obtained by the HYDICE sensor. The image size is 307 × 307 pixels. The urban
dataset originally has a total of 210 bands; after removing noise and water absorption
bands, 162 bands remain for subsequent dimensionality reduction processing and analysis.
There are four types of ground objects: asphalt, roof, grass, and tree. The training set and
test set are in the ratio of 8:2. The test set is (75,399, 18,850). The number of pixels in each
test set and training set is shown in Table 1. An original hyperspectral remote sensing
image and its label image showing different terrains are shown in Figure 4.

Table 1. Train and test sets of the dataset.

Asphalt Grass Tree Roof

Number 29,954 32,328 24,805 7162

Train set 23,963 25,910 19,766 5760

Test set 5991 6418 5039 1402
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Figure 4. (a) Hyperspectral remote sensing image; (b) label image showing different terrains.

Hyperspectral images have high resolution and rich spectral information; however,
the band interval between each spectrum is small, a nonlinear relationship exists between
each spectrum, and the large amount of data results in abundant redundant data, making
identification difficult. Through dimensionality reduction of hyperspectral remote sens-
ing images, data that retains the overall feature correlation according to the distribution
characteristics of the data can be extracted, thereby drastically reducing the data dimension.

4.2. Results and Analysis
4.2.1. PCA

PCA is applied to the urban hyperspectral image data, with 162 bands and features, to
reduce the dimension, and the ratio of the features is sorted from the largest to the smallest.
The data dimension retained by PCA dimensionality-reduced data and the variance ratio
of the occupied features are shown in Figure 5.
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The figure indicates that the first and second vectors account for more than 60% and
30% of the total proportion. A PCA dimensionality reduction dimension of the largest three
features accounts for 98% of the total variance ratio. For each additional dimension, the
proportion of features occupied by data increases slowly. When the classification dimension
is four, the proportion of features reaches 99%. Thus, the purpose of reducing the amount
of data and preserving the overall characteristics is met.

4.2.2. KNN Proximity Classification

The choice of the k value of the KNN will have a considerable effect on the algorithm
classification. When k = 1, the test instance is related to the closest sample, and the training
error is small. By contrast, when the test sample has noise, the test error will be large. While
a small k value results in overfitting, when the k value is large, it is equivalent to training
with a large range of data, and the test result is the class with the most instances in the
range, which will cause underfitting. Thus, selecting an appropriate k value is important.
As the test sample, we consider the overall data of the test set without dimensionality
reduction. The k value and the segmentation accuracy are selected as shown in Table 2.

Table 2. Selection of KNN classification k.

KNN k = 3 k = 4 k = 5

AA 0.9587 0.9754 0.9751

OA 0.9564 0.9770 0.9762

KAPPA 0.9382 0.9675 0.9664

RECALL 0.9600 0.9755 0.9752

F1-SCORE 0.9593 0.9754 0.9751

When k = 4, the feature ratio reaches 99%, and the overall classification accuracy
is somewhat improved compared with that when k = 3. When the k value increases,
the calculation amount increases and the classification accuracy decreases. In the KNN
proximity algorithm, four nearby points are selected as the criteria for their classification.

4.2.3. Gaussian Maximum Likelihood Classifier

The KNN proximity algorithm only considers the distance from the sample to be
classified to the center of each sample, ignoring the overall distribution of the sample. By
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contrast, the Gaussian maximum likelihood classifier additionally considers the distribution
characteristics of known classes as well. The classifier is run on the hyperspectral image
dataset to train the reduced principal components and classify them according to the
training data. The classified images are shown in Figure 6. The classification accuracy of
each terrain is shown in Table 3.
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Table 3. Accuracy of Gaussian Maximum Likelihood Classification.

Asphalt Grass Tree Roof

PA 0.8502 0.9029 0.8968 0.9139

OA 0.9234 0.8814 0.9137 0.7108

F1-Score 0.8853 0.8920 0.9051 0.7996

As the figure shows, in the classification result of the Gaussian maximum likelihood
classifier after dimensionality reduction, the black pixels are points that are classified
incorrectly. Overall, a reasonable classification effect is achieved. The table indicates
that the best classification accuracy of Gaussian maximum likelihood estimation for each
terrain is 91.39%. However, the accuracy required for terrain segmentation of hyperspectral
remote sensing data is insufficient, and the Gaussian maximum likelihood classifier cannot
distinguish the spectral features retained by PCA dimensionality reduction well.

4.2.4. Dimensionality Reduction Method Combined with Classification

Next, we determine an effective classification algorithm to identify dimensionality-
reduced data with multiple features retained by different dimensionality reduction methods.
After dimensionality reduction, the data features include linear features, local features,
manifold features, and non-popular features. In addition, the classifiers are divided into
linear and nonlinear classifiers. A suitable method for dimensionality reduction and classi-
fication of hyperspectral images can be determined through experiments. The classification
results of various dimensionality reduction and classification methods are shown in Table 4,
and the classification accuracy is shown in Figure 7.



Remote Sens. 2022, 14, 4579 12 of 18

Table 4. Classification accuracy of hyperspectral images with different dimensionality reduction
classification methods.

None Dimensionality
Reduction PCA LDA LLE T-SNE SVD ICA FA UMAP

k-Nearest
Neighbor

Kappa 0.9612 0.9674 0.9126 0.9460 0.9322 0.9659 0.9401 0.9479 0.9938

Recall 0.9690 0.9755 0.9314 0.9642 0.9468 0.9745 0.9617 0.9608 0.9957

AA 0.9736 0.9754 0.9297 0.9631 0.9499 0.9750 0.9604 0.9593 0.9987

F1-score 0.9712 0.9754 0.9306 0.9636 0.9483 0.9747 0.9610 0.9600 0.9957

OA 0.9729 0.9770 0.9382 0.9618 0.9521 0.9759 0.9577 0.9631 0.9956

P 0.1445 2 × 10−5 0.044 0.0005 0.2471 0.0205 0.0114 4 × 10−6

Naive Bayesian
Classifier

Kappa 0.5269 0.8200 0.8181 0.5237 0.4931 0.8190 0.4751 0.7392 0.2816

Recall 0.6128 0.8702 0.8859 0.6346 0.5271 0.8692 0.6346 0.7843 0.3961

AA 0.6358 0.8441 0.8253 0.6923 0.4901 0.8436 0.6661 0.7902 0.3972

F1-score 0.6070 0.8551 0.8410 0.6405 0.5035 0.8544 0.5998 0.7833 0.3369

OA 0.6617 0.8721 0.8692 0.6708 0.6494 0.9714 0.6285 0.8165 0.5167

P 9 × 10−6 1 × 10−6 0.5411 0.0767 6 × 10−5 0.8466 0.0001 0.0011

Support Vector
Machine

Kappa 0.9790 0.9796 0.9228 0.4850 0.9127 0.9819 0.7803 0.9763 0.9937

Recall 0.9852 0.9855 0.9371 0.5092 0.9312 0.9862 0.7492 0.9839 0.9958

AA 0.9845 0.9832 0.9375 0.7552 0.9328 0.9855 0.8908 0.9822 0.9957

F1-score 0.9848 0.9843 0.9373 0.4542 0.9319 0.9859 0.7795 0.9831 0.9957

OA 0.9851 0.9856 0.9455 0.6544 0.9384 0.9872 0.8485 0.9833 0.9955

P 0.8780 1 × 10−6 0.0001 2 × 10−6 0.2953 0.0002 0.3226 1 × 10−5

Decision Tree

Kappa 0.9374 0.9562 0.8855 0.9300 0.9116 0.9483 0.9208 0.9488 0.9890

Recall 0.9540 0.9682 0.9075 0.9546 0.9346 0.9627 0.9477 0.9316 0.9923

AA 0.9520 0.9656 0.9049 0.9504 0.9331 0.9596 0.9464 0.9589 0.9927

F1-score 0.9529 0.9669 0.9062 0.9525 0.9338 0.9612 0.9469 0.9603 0.9925

OA 0.9558 0.9691 0.9191 0.9506 0.9376 0.9635 0.9441 0.9639 0.9922

P 0.0065 9 × 10−5 0.6285 0.0078 0.0806 0.1688 0.7430 2 × 10−6

Logistic
Regression

Kappa 0.9491 0.9451 0.9167 0.4480 0.4663 0.9459 0.5427 0.9468 0.5121

Recall 0.9597 0.9569 0.9326 0.4804 0.5416 0.9569 0.5372 0.9571 0.5308

AA 0.9588 0.9576 0.9325 0.6262 0.5754 0.9574 0.5875 0.9582 0.4935

F1-score 0.9592 0.9572 0.9326 0.3946 0.5483 0.9572 0.4979 0.9576 0.5106

OA 0.9641 0.9613 0.9412 0.6308 0.6283 0.9618 0.6923 0.9624 0.6650

P 0.5074 0.0004 2 × 10−5 3 × 10−7 0.5353 3 × 10−6 0.6350 1 × 10−8

Multi-layer
Perceptron

Kappa 0.9701 0.9666 0.9197 0.8274 0.8924 0.9784 0.9154 0.9749 0.9748

Recall 0.9814 0.9772 0.9362 0.8042 0.9142 0.9854 0.9281 0.9832 0.9786

AA 0.9751 0.9743 0.9330 0.9002 0.9194 0.9835 0.9441 0.9819 0.9809

F1-score 0.9782 0.9757 0.9346 0.8322 0.9168 0.9844 0.9356 0.9826 0.9797

OA 0.9789 0.9764 0.9432 0.8798 0.9241 0.9847 0.9404 0.9823 0.9822

P 0.3516 8 × 10−6 9 × 10−5 5 × 10−6 0.0222 4 × 10−5 0.1249 0.3116

We analyzed the adaptation of different classification algorithms to the features re-
tained by the dimensionality reduction methods. For the KNN proximity algorithm, the
data features retained by UMAP dimensionality reduction can be well captured. Com-
parison of the classification accuracy of FA and SVD dimensionality reduction with the
classification accuracy of logistic regression indicates that they are comparable to unreduced
dimensionality; therefore, it can be concluded that the dimensionality reduction not only
reduces the amount of data but also achieves good classification accuracy. The Naive Bayes
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algorithm and SVD have the best classification accuracy of hyperspectral data compared
with other dimensionality reduction methods. The classification accuracy of SVM and
UMAP dimensionality reduction is the best among all dimensionality reduction algorithms.
The multi-layer perceptron algorithm is not sensitive to LLE dimensionality reduction.
The combination of multi-spectral classification with SVD dimensionality reduction has
the best effect compared with other combination methods. The combination method of
decision tree classification and UMAP dimensionality reduction shows superior results.
The accuracy of classification with the dimensionality reduction algorithm and that without
dimensionality reduction were statistically analyzed, and the p-value was less than 0.05,
indicating a significant difference.
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4.2.5. Accuracy of Various Dimensionality Reduction Methods for Each
Terrain Classification

The accuracy of each terrain classification obtained by the dimensionality reduction
method and the classification method is shown in Figure 8.

Clearly, the Naive Bayes data classification effect on dimensionality reduction is not as
good as that of other classification algorithms. Compared with the classification accuracy
of algorithms without dimensionality reduction, the dimensionality reduction algorithms
achieve the expected goal of not only reducing the amount of calculation but also preserving
the original classification effect.

The dimensionality reduction mode of UMAP preserves the integrity of the data
features. In the case of the Naive Bayes algorithm, the classification accuracy based on
t-SNE dimensionality reduction for roof terrain is 0, because the remote sensing spectra
are nonlinear, independent, and discrete. According to the results, the Bayesian classifier
is not highly effective for handling the nonlinear problem of hyperspectral data. The
comparison chart of terrain classification accuracy by UMAP dimensionality reduction is
shown Figure 9.



Remote Sens. 2022, 14, 4579 14 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 8. Comparison chart of terrain classification accuracy by different dimensionality reduction 
methods. 

Clearly, the Naive Bayes data classification effect on dimensionality reduction is not 
as good as that of other classification algorithms. Compared with the classification accu-
racy of algorithms without dimensionality reduction, the dimensionality reduction algo-
rithms achieve the expected goal of not only reducing the amount of calculation but also 
preserving the original classification effect. 

The dimensionality reduction mode of UMAP preserves the integrity of the data fea-
tures. In the case of the Naive Bayes algorithm, the classification accuracy based on t-SNE 
dimensionality reduction for roof terrain is 0, because the remote sensing spectra are non-
linear, independent, and discrete. According to the results, the Bayesian classifier is not 
highly effective for handling the nonlinear problem of hyperspectral data. The compari-
son chart of terrain classification accuracy by UMAP dimensionality reduction is shown 
Figure 9. 

 
Figure 9. Comparison chart of terrain classification accuracy by UMAP dimensionality reduction. 

The nonlinear local features retained by UMAP are not sensitive to the classification 
effect of linear logistic regression for some linear classifiers such as the Bayesian classifier. 
However, the classification accuracy obtained by UMAP dimensionality reduction with 

Figure 8. Comparison chart of terrain classification accuracy by different dimensionality reduc-
tion methods.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 8. Comparison chart of terrain classification accuracy by different dimensionality reduction 
methods. 

Clearly, the Naive Bayes data classification effect on dimensionality reduction is not 
as good as that of other classification algorithms. Compared with the classification accu-
racy of algorithms without dimensionality reduction, the dimensionality reduction algo-
rithms achieve the expected goal of not only reducing the amount of calculation but also 
preserving the original classification effect. 

The dimensionality reduction mode of UMAP preserves the integrity of the data fea-
tures. In the case of the Naive Bayes algorithm, the classification accuracy based on t-SNE 
dimensionality reduction for roof terrain is 0, because the remote sensing spectra are non-
linear, independent, and discrete. According to the results, the Bayesian classifier is not 
highly effective for handling the nonlinear problem of hyperspectral data. The compari-
son chart of terrain classification accuracy by UMAP dimensionality reduction is shown 
Figure 9. 

 
Figure 9. Comparison chart of terrain classification accuracy by UMAP dimensionality reduction. 

The nonlinear local features retained by UMAP are not sensitive to the classification 
effect of linear logistic regression for some linear classifiers such as the Bayesian classifier. 
However, the classification accuracy obtained by UMAP dimensionality reduction with 

Figure 9. Comparison chart of terrain classification accuracy by UMAP dimensionality reduction.

The nonlinear local features retained by UMAP are not sensitive to the classification
effect of linear logistic regression for some linear classifiers such as the Bayesian classifier.
However, the classification accuracy obtained by UMAP dimensionality reduction with
other classifiers can reach more than 99%. UMAP has the ability to infer local and global
structures while maintaining the relative global distance in the low-dimensional space.
UMAP not only has high classification accuracy but also reduces the running time. With
its high accuracy, UMAP provides favorable technical support for the classification of
hyperspectral remote sensing terrains.

4.3. Soft Classification of Hyperspectral Images

The classification of hyperspectral remote sensing images is restricted by its spatial
resolution. The spatial resolution refers to the size of the smallest target object that the
sensor can distinguish; it is the ground range corresponding to one pixel in the actual
satellite observation image. Each pixel of the image represents the real area of land, and
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the image will face various terrains on its pixels. Most of the classification prioritizes the
type of land, ignoring the texture and structure of the remote sensing image feature. The
topography of pixel elements is decomposed into probabilities for soft classification of
hyperspectral images.

The following two methods are used to fit the correct classification model. First, the
soft classification model of pixels is trained according to the overall spectral data, and then
the multiple logistic regression and neural network models will be fitted. One pixel of the
image contains the range of the square of the real object, and the side length of the square
depends on the image resolution at the time of capturing the image. For a pixel mixed with
multiple terrains, the proportion of each type of terrain in a single pixel is obtained. The
topographic ratio of the pixel classification determines the local image classification.

Using a linear logistic regression function with hyperspectral remote sensing data
as input, the targets are classified into terrain types. Multi-variate logistic regression is
performed, and the output is the probability ratio of each class. Logistic regression and
neural network training are performed for 162 bands of remote sensing data as input
parameters. In the original dataset, each pixel is divided into proportions of target objects,
and the error calculation and fitting are performed between the probability result of logistic
regression and the true proportion. The fitting results and errors obtained are shown in
Table 5.

Table 5. Soft classification fitting accuracy.

RMSE R2 p-Value

Linear Logistic Regression 0.103 0.709 0.869

Neural Networks 0.042 0.979 0.071

Table 5 indicates that the fitting degree of the neural network is smaller than that
of the linear logistic regression. The multi-layer neurons of the neural network can fit
the nonlinear data characteristics between the spectra well, and the pixel classification of
the hyperspectral image can obtain the proportion of terrain categories through the soft
classification probability of the output of the neural network. The spatial characteristics of
hyperspectral images can be enhanced according to the adjacent pixel types, thus providing
support for efficient classification accuracy improvement in hyperspectral images.

The statistical significance test comparing the classification results of different methods
also suggests that linear regression downscaling is not relevant for hyperspectral downscal-
ing analysis, and the linear regression fit is insufficient because of the nonlinearity of the
spectra. However, the neural network has the best fit and correlation effect.

5. Discussion

The UMAP dimensionality reduction and SVM classification methods for hyper-
spectral images can retain and extract the main features. Statistical significance tests are
performed for the results. The computational effort of UMAP dimensionality reduction
and SVM classification of hyperspectral images is low and their accuracy of classification is
improved. Considering the high pixel resolution of hyperspectral images and the complex-
ity of image elements, the pixel decomposition of the image and the fitting of the neural
network model can solve the problem of excessive classification errors of image pixels due
to a high image resolution.

The nearest regularized subspace (NRS) classification method is applied to determine
the residuals between the approximation and the corresponding pixels, and the Tikhonov
matrix of each class and the pixels to be classified into the corresponding classes. In
determining the best distance metric [51], this method achieves a maximum accuracy of
96% but fails to reduce the number of parameters computed for hyperspectral images.
When the combined hyperspectral image and LiDAR data are used, LiDAR data help
to better characterize the elevation information of the same measurement area, thereby
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improving the classification performance [52]. The fusion of CNN networks and LiDAR
data to fuse feature- and decision-level classification achieved good accuracy in the test
set [53]. Thus, this fusion strategy can be applied for pixel classification of hyperspectral
images. Hyperspectral dimensionality reduction classification using QPCA [54] and deep
learning networks combined with meta-learning, as well as population intelligence and
evolutionary algorithms (SIEA), can be used to solve the feature selection problem for
hyperspectral images [55]. Although all the above-mentioned methods preserve the main
features of hyperspectral data, they are inferior to UMAP, which preserves the global
features of the images.

Here, we selected supervised classification methods that are highly dependent on the
quality of the sample labels of the dataset and require a small sample size and training
feature classification for fewer samples. All the dimensionality reduction methods involve
feature transformation and extraction of data by ignoring the connection between spectra.
Deep learning networks can help both dimensionality reduction and image classification of
hyperspectral images. In our future work, we will consider combining deep learning for
hyperspectral information classification.

6. Conclusions

In this study, the combination of feature extraction dimension reduction and classi-
fication of hyperspectral remote sensing images was investigated. The analysis results
indicate that the UMAP data dimension reduction algorithm and the SVM classification
algorithm achieve superior performance in the terrain classification of hyperspectral im-
ages. A classification accuracy of 99.57% could be achieved. The SVM algorithm effectively
captures the classification features after dimensionality reduction, and it not only reduces
the amount of calculation but also improves the classification accuracy. For the single-pixel
classification problem of hyperspectral images, it is advisable to not rely solely on the maxi-
mum probability. The neural network fitting classification model was found to be the most
effective for fitting the classification probability of pixels according to the spectral features;
it achieved a fitting correlation coefficient (R2) of 0.979. It can provide a method for solving
the single-pixel classification problem. To prepare for the classification and recognition of
hyperspectral data and ground objects, the topographic and edge features of ground objects
can be identified on the basis of the results of soft classification, which improves identifica-
tion and classification accuracy. This study emphasizes that deep learning neural networks
for image classification are expected to be widely applied to hyperspectral images.
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