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Abstract: The energy problem has become one of the critical factors limiting the development of
underwater wireless sensor networks (UWSNs), and cooperative multiple-input–multiple-output
(MIMO) technology has shown advantages in energy saving. However, the design of energy-efficient
cooperative MIMO techniques does not consider the actual underwater environment, such as the
distribution of nodes. Underwater magnetic induction (MI)-assisted acoustic cooperative MIMO
WSNs as a promising scheme in throughput, signal-to-noise ratio (SNR), and connectivity have been
demonstrated. In this paper, the potential of the networks to reduce energy consumption is further
explored through the joint use of cooperative MIMO and data aggregation, and a cooperative MIMO
formation scheme is presented to make the network more energy efficient. For this purpose, we
first derive a mathematical model to analyze the energy consumption during data transmission,
considering the correlation between data generated by nodes. Based on this model, we proposed a
cooperative MIMO size optimization algorithm, which considers the expected transmission distance
and transmission power constraints. Moreover, a competitive cooperative MIMO formation algorithm
that jointly designs master node (MN) selection and cooperative MIMO size can improve energy
efficiency and guarantee the connectivity of underwater nodes and surface base station (BS). Our
simulation results confirm that the proposed scheme achieves significant energy savings and prolongs
the network lifetime considerably.

Keywords: heterogeneous underwater wireless sensor networks; cooperative MIMO; data aggregation;
energy efficiency

1. Introduction

Nowadays, with the skyrocketing demands for underwater and marine exploitation,
researchers have set out to explore more possibilities of applying underwater wireless
sensor networks (UWSNs) [1–3]. This requires not only reliable and real-time communica-
tions within underwater sensor nodes, but also long-range, high-throughput, and reliable
communication between the underwater sensor nodes and the remote surface base station
(BS) [4]. The traditional underwater networks based on acoustic signals cannot meet the
above requirements [5,6]. Additionally, since battery-constrained nodes determine the
network lifetime, energy conservation and energy efficiency are also critical factors in the
design of new UWSNs [7].

In contrast to single-input–single-output (SISO) systems, multiple-input–multiple-
output (MIMO) systems employ more than one antenna at both the transmitter and the
receiver. Thus, MIMO provides two main advantages for wireless communications: spa-
tial diversity gain and spatial multiplexing gain, which can satisfy the long-range, high-
throughput, and reliable requirements of UWSNs [8]. However, the large wavelength
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makes it challenging to place multiple acoustic transducers on a single underwater device
to guarantee spatial independence. Under the premise of the perfect synchronization of
nodes, the cooperative MIMO technique can achieve MIMO communication by grouping
multiple devices as virtual antenna arrays [9]. Many works have focused on theoretical fea-
sibility analysis of underwater distributed acoustic MIMO communications. However, the
work on implementing cooperative MIMO communications in underwater environments
is very limited, since it is challenging to synchronize the received signal [10,11].

The synchronization strategies for distributed transmitters can be classified as close-
loop synchronization and open-loop synchronization. However, due to the complex and
time-delayed acoustic channel between the BS and the transmitting nodes, the close-loop
synchronization based on the feedback cannot be applied in the underwater scenario [12].
Synchronizing the transmitters before joint transmission (i.e., open-loop synchronization)
can significantly mitigate the problem of multiple carrier frequency offsets and time offsets
at the receiver and simplify the receiver design [13]. In addition, magnetic induction (MI)
communication has been proposed as a promising technique in extremely unconventional
environments such as underwater and underground [14–16]. High-speed MI communica-
tion between transmitters can decrease the synchronization error caused by a slow acoustic
propagation speed between cooperative MIMO nodes. Therefore, by combining the MI and
acoustic techniques, the underwater cooperative MIMO system can be truly realized and
can provide better overall system performance [17]. The system overview of the UWSNs
that adopt the MI-assisted acoustic cooperative MIMO technique is shown in Figure 1.
Underwater nodes form multiple cooperative MIMOs to communicate with surface BS. A
master node (MN) is responsible for synchronizing the clock and frequency of its slave
nodes (SNs) and aggregating the monitoring data of the SNs. MI is adopted for local
communication (between underwater sensor nodes), and acoustic is adopted for long-haul
communication (between underwater sensor nodes and surface BS) in cooperative MIMO.

MI channel

Master node

Acoustic channel

Figure 1. The system overview of the underwater MI-assisted acoustic cooperative MIMO WSNs.

The performance of the underwater MI-assisted acoustic cooperative MIMO, including
the signal-to-noise ratio (SNR), bit-error rate (BER), effective communication time, and
the upper bound of the throughput, are evaluated through numerical analysis [13,17].
Additionally, its feasibility has been proven through real-world experiments based on a
software-defined testbed built in-house. A mathematical model is proposed to analyze the
connectivity of the underwater MI-assisted acoustic cooperative MIMO networks [18,19].
However, as an emerging technology, the networks still face many challenges from energy
efficiency and networking, among others.
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1.1. Related Works

One of the most critical issues in UWSNs is the nodes’ energy efficiency, due to the
energy supply of the underwater sensor nodes being limited. In traditional wireless sensor
networks, many techniques and protocols to solve the energy problem have been inves-
tigated, such as reducing the transmission power, condensing the data for transmission,
or combining the two approaches. In many applications of WSNs, such as environment
monitoring, the sensing data from neighboring nodes may be spatially correlated [20]. Data
compression technology minimizes data redundancy to reduce transmission data, resulting
in lowered energy consumption [21]. In general, some studies that combine data aggrega-
tion with other techniques for saving energy in WSNs, such as cluster-based routing [22],
channel assignment [23], and power scheduling [24] protocols, have been reported. In
addition, some articles have proven the effectiveness and feasibility of cooperative MIMO
in saving energy in wireless sensor networks. Cooperative MIMO can achieve spatial
diversity in fading channels, which can dramatically reduce the required transmission
power for a fixed throughput or BER requirements. Based on the summary, a mathematical
model that can be developed to reduce energy consumption is further explored through
the joint use of cooperative MIMO and data aggregation.

In the last decade, a variety of research studies have been conducted on the relationship
between cooperative MIMO and energy efficiency. Ref. [25] first proposed that, over certain
distances, the total energy consumption can be reduced by joint information transmission
and reception in fixed cooperative MIMO systems compared with noncooperative or SISO
systems.

However, the energy model ignored the energy spent on training, since the knowledge
of channel state information (CSI) is crucial for the proper operation of MIMO techniques.
Then, ref. [26] refined the results in [25] by taking into account the training overhead
required in any MIMO-based system, and further proved the superiority of cooperative
MIMO in energy efficiency when under different channel propagation conditions.

However, for different energy levels, distances, and BERs, different MIMO schemes
could maximize the network energy efficiency, and therefore, the network lifetime. Ref. [27]
derived that properly balancing the power allocation between local and long-haul trans-
missions can further reduce the overall energy consumption of the cooperative MIMO.
Based on this conclusion, ref. [28] proposed a novel selective single-relay cooperative
scheme, which is easy to implement. It combined selective-relay cooperative communi-
cation with physical-layer power control. Alternatively, the number of antennas can be
chosen dynamically for each node, based on their transmission distance, to minimize the
total energy consumption [29], or based on the CSI [30]. However, ref. [31] pointed out that
the cooperative MIMO size cannot be huge for long-distance communication. Otherwise,
no benefit could be achieved, or even more energy could be consumed. Hence, multi-hop
technology is used in long-distance communication, and [32] investigated the tradeoff
between hop distance optimization and cooperative MIMO size optimization.

Based on the above conclusions, the two research approaches that the total energy
consumption can be further reduced are (1) optimizing the size of cooperative MIMO and
(2) properly balancing the power allocation between local and long-haul transmissions.
Then, these two approaches are adjusted appropriately for some specific network applica-
tion requirements. Ref. [33] considered applying the simultaneous wireless information
and power transfer (SWIPT) technique to cooperative clustered wireless sensor networks
and optimized the power splitting ratio. Ref. [34] proposed a cross-layer protocol (MAC
and physical layer) and dynamically adjusted the size of cooperative MIMO to maximize
the number of received packets. Reinforcement learning is applied to underwater acoustic
cooperative networks for the complex and dynamically varying underwater environment,
and [35] designed a reasonable cooperative selection strategy for efficient cooperation with
reinforcement learning.

However, all of these works analyze the energy consumption of cooperative MIMO in
the ideal homogeneous network. In underwater MI-assisted acoustic cooperative MIMO
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WSNs, acoustic and MI communication is used for local and long-distance transmission
respectively, and the limitation of the maximum transmission power must be considered.
Thus, it is not easy to properly balance the power allocation between the two types of trans-
missions. An integrated algorithm is needed that can judge whether to adopt cooperative
transmission according to the expected transmission distance and to obtain the optimal
cooperative MIMO size by considering the two types of transmission power limitations.

Furthermore, the existing research on forming cooperative MIMO is mainly based on
ideal scenarios without considering the effect of actual node distribution. Because the MN
is responsible for the tasks of synchronization and data aggregation, the proper selection of
the MN can balance the nodes’ energy consumption and prolong the network life. Then,
the nodes within the optimal cooperative MIMO size of the MN constitute cooperative
MIMO as SNs. Meanwhile, to ensure the basic detection requirements of UWSNs, the
connectivity of underwater sensor nodes and the network’s coverage must be guaranteed.
Due to the sensor nodes having been deployed underwater, the formation of multiple
cooperative MIMOS also affects each other. In underwater MI-assisted acoustic cooperative
MIMO WSNs, the choice of MN and cooperative MIMO size need to be jointly designed to
improve the energy efficiency and to guarantee the nodes’ connectivity. The research of
an energy-efficient cooperative MIMO formation strategy that can be adaptively adjusted
according to the theoretical optimal solution and the node distribution based on actual
scenarios is still a blank field.

1.2. Contributions and Characteristics

In this paper, we design an energy-efficient cooperative MIMO formation and explore
the potential of underwater MI-assisted acoustic cooperative MIMO networks to reduce the
energy consumption per bit via the joint use of cooperative MIMO and data aggregation
techniques. Specifically, our main contributions are summarized as follows:

• A mathematical model is developed to analyze the energy consumption of underwater
MI-assisted acoustic cooperative MIMO networks, which considers the heterogeneity of
local and long-haul transmissions, and the data aggregation to reduce spatial correlation.

• A cooperative MIMO size optimization (CMSO) algorithm based on the energy con-
sumption model is proposed, to determine whether to adopt cooperative MIMO and to
derive the optimal cooperative MIMO size in theory. It is worth noting that the power
allocation for MI and acoustic communication under the maximum transmission
power constraint is especially considered.

• In the underwater MI-assisted acoustic cooperative MIMO networks, the expected
transmission distance is determined by the distance between the node and the surface
BS. Under the requirement of ensuring the network’s connectivity, we propose a com-
petitive cooperative MIMO formation (CCMF) algorithm to select appropriate MN and
form cooperative MIMO to prolong network lifetime, in which the optimal cooperative
MIMO size determined by the CMSO algorithm is taken as an essential parameter.

The remainder of this article is organized as follows. The scenario is set, and the
relevant model is given in Section 2. The optimal cooperative MIMO size can be calculated
in Section 3. Section 4 describes our cooperative MIMO formation scheme. The simulation
results and performance analysis are discussed in Section 5. Finally, Section 6 concludes
the paper.

2. Preliminaries
2.1. Scenario and Notation

As shown in Figure 1, we consider one possible underwater sensor network architec-
ture in practical underwater applications. It consists of a surface BS and many underwater
sensor nodes. The surface BS is equipped on ships or buoys to aggregate the data from
underwater nodes for environment sensing or to release the control information. These
sensor nodes are scattered at the bottom of the monitoring waters and are distributed
according to a Poisson Point Process with density λn. Each node is equipped with MI



Remote Sens. 2022, 14, 3641 5 of 21

and acoustic modules. They communicate with each other through MI modems, and the
underwater nodes cooperatively transmit information to the BS through acoustic modems
due to the limited antenna physical size. This paper is based on the following assumptions:

• The underwater environment is basically stable.
• Sensors nodes and surface BS are not affected by water flow.
• Their locations are known with the help of localization techniques.

Because the underwater nodes are closely spaced, the data that the nodes sensed
are correlated. Through aggregation, data are compressed due to the exploitation of
their spatial correlation, and consequently, much fewer data need to be transmitted from
underwater to the remote surface BS [31]. During local communication, underwater nodes
need to share the same data and clock to prepare for cooperative transmission in the next
step. At the same time, the data need to be compressed and distributed to individual nodes.
Therefore, a node is selected as an MN in a cooperative MIMO to coordinate the local
synchronization and aggregate data, and other nodes participating in cooperative MIMO
act as SNs. The transmission scheme of underwater MI-assisted acoustic cooperative MIMO
WSNs is described in detail in Section 2.2.

2.2. Transmission Scheme

To ensure the quality of communication, the operation of the transmission scheme
is divided into rounds by the effective communication time [13]. Firstly, a Set-up phase
provides the basis for the normal operation of the network, which mainly includes the
formation of a cooperative MIMO and synchronization, as seen in Figure 2. It is worth
noting that the channel identification is the same as in Figure 1

• Phase 1 (Cooperative MIMO formation) The MN is selected according to the location
of the nodes and the number of nodes required to form cooperative MIMO in theory.
Then, the remaining nodes are chosen by MN as SN to form a cooperative MIMO. The
process is described in detail in Section 4.

• Phase 2 (Synchronization) The SNs adjust their clocks and frequencies to that of
MN by Timing-Sync Protocol for Sensor Networks (TPSN) [36]. For beamforming
communications, the CSI of the MN also needs to be delivered to the SNs to compute
the beamforming codebook. By considering the optimal phase control, the channel
delay can be compensated for by the phase control, and the SNR at the received side
can be maximized.

Sequentially, suppose that the node wants to communicate with surface BS in the form
of a cooperative MIMO, and this process takes place in the Steady-state phase, as seen in
Figure 3.

• Phase 3 (Aggregation). The MN collects the detection information of SNs and com-
presses the data according to the spatial correlation of the information.

• Phase 4 (Broadcast). The MN broadcasts the compressed data to their SNs.
• Phase 5 (Communication). Individual nodes concurrently transmit the compressed

data over the acoustic channel to the surface BS using a beamforming scheme.

SN 1

MNSN 2

SN n

…

Cooperative MIMO

formation
Synchronization

time

Surface

BS

underwater environment

Figure 2. The process diagram of the Set-up phase.
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SN 1

MN

data 1

data 2

data n

SN 2
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……

Aggregation

MN

SN 1

SN 2

SN n

…

DATA

DATA

DATA

…

data 1

data 2

data n

DATA

MN

SN 1

SN n

Surface

BS
DATA

Broadcast Communication

time

Figure 3. The process diagram of the Steady-state phase.

2.3. Channel Characteristics

There are two types of channels in the underwater MI-assisted acoustic cooperative
MIMO WSNs, namely the underwater acoustic channel and MI channel [19].

In underwater MI-assisted acoustic cooperative MIMO WSNs, acoustic communica-
tion is adopted for long-haul communication in terms of cooperative MIMO. Attenuation
A(d, fac) in an underwater acoustic channel for a signal of frequency fac over a distance d
is given by [37]

A(d, fac) = A0dθa( fac)
d, (1)

where A0 is the normalizing constant and θ is the spreading factor. The spreading factor θ
is between 1 and 2, depending on the depth. The absorption coefficient a( fac) can not be
expressed theoretically but is given empirically by Throp’s formula

10 log a( fac) = 0.11 f 2
ac

1+ f 2
ac
+ 44 f 2

ac
4100+ f 2

ac
+ 2.75× 10−4 f 2

ac + 0.003, (2)

where fac is in kHz and 10 log a( fac) is in dB/km.
Hence, the transmission power model is formulated as

Pr
ac =

Pt
ac

A(d, fac)
, (3)

where Pr
ac is received power and Pt

ac is the transmitted power in acoustic communications.
The underwater acoustic ambient noise can be modeled using four sources: turbulence

Nt, shipping Ns, waves Nw, and thermal noise Nth. Most of the ambient noise sources can
be described by Gaussian statistics and a continuous power spectral density (p.s.d.). The
following empirical formulae give the p.s.d. of the four noise components:

10 log Nt( fac) = 17− 30 log fac
10 log Ns( fac) = 40 + 20(s− 0.5) + 26 log fac − 60 log( fac + 0.003)

10 log Nw( fac) = 50 + 7.5ω0.5 + 20 log fac − 40 log( fac + 0.4)
10 log Nth( fac) = −15 + 20 log fac.

(4)

Turbulence noise influences only the very low frequency region, fac < 10 Hz. Noise
caused by distance shipping is dominant in the frequency region of 10 Hz–100 Hz, and it is
modeled through the shipping activity factor s, whose values range between 0 and 1 for
low and high activity, respectively. Surface motion, caused by wind-driven waves (ω is the
wind speed in m/s), is the major factor contributing to the noise in the frequency region of
100 Hz–100 kHz (the operating region used by the majority of acoustic systems). Finally,
thermal noise becomes dominant for fac > 100 kHz.

MI is adopted for information aggregation and synchronization between sensor nodes
in underwater MI-assisted acoustic cooperative MIMO WSNs. With the mutual inductance
M and the optimized load impedance ZL, the transmit power Pt

MI and the receiving
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power Pr
MI can be easily derived based on the basic circuit theory. The path loss of MI

communication can be expressed as [38]

PLMI = −10 log
Pr

MI
Pt

MI

= −10 log
R2

Lω2M2

Rt(RL + Rr)
2 + Rt(XL + ωLr)

2 ,
(5)

where ω is the angular frequency of the signal, and RL and XL are the real part and
imaginary part of the load impedance ZL, respectively. The mutual inductance M and
optimized load impedance ZL can be calculated as:

M =
µπNtNra2

t a2
r

2
√(

a2
t + r2

)3
, (6)

ZL = Rr +
ω2M2Rt

R2
t + ω2L2

t
+ j
(

ω3M2Lt

R2
t + ω2L2

t + ω2L2
t
−ωLr

)
, (7)

where µ is permeability, and some related notations about the circuit are summarized in
Table 1.

Table 1. Circuit parameters.

Parameter Notation

at The radius of the transmitting coil
ar The radius of the receiving coil
Nt The number of turns of the transmitting coil
Nr The number of turns of the receiving coil
Lt The self inductance of the transmitting coil
Lr The self inductance of the receiving coil
Rt The resistance of the transmitting coil
Rr The resistance of the receiving coil
Zt The impedance of the transmitting coil
Zr The impedance of the receiving coil
Zrt The reflected impedance of the receiver on the transmitter
Ztr The reflected impedance of the transmitter on the receiver
ZL The load impedance

Highly conductive sea water induces a significant eddy current that incurs very high
path loss. Therefore, in seawater, the path loss of MI communication also needs to consider
the influence of medium loss [39]. The attenuation coefficient α is

α =
√

π fMIµ0δ, (8)

where fMI is the operation frequency, µ0 is vacuum permeability, and δ represents the
medium conductivity that varies with different water types.

Therefore, the path loss caused by the influence of seawater medium PLα (dB) is

PLα = 20 log eαr ≈ 8.69αr. (9)

Finally, the path loss of MI communication in seawater is

PLsea = PLMI + PLα

= −10 log Pr
Pt
+ 8.69αr.

(10)
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3. Cooperative MIMO Size Optimization

In this section, we first present an energy model for underwater MI-assisted acoustic
cooperative MIMO WSNs in Section 3.1. This model reduces the energy consumption of
information transmission by reducing the spatial correlation of monitoring data through
data aggregation and considering the power control. We then proposed an optimization
framework in Section 3.2. The average energy consumption per node required to send a
given number of bits is minimized by optimizing the cooperative MIMO size.

3.1. Energy Model

We now analyze the overall energy consumption of the proposed cooperative scheme.
We consider both the transmission energy and the associated circuit energy consumption.
According to [31], energy consumption per symbol can be defined as:

E = (Pelec + Pt)t + Pelec · t
= (2Pelec + Pt)t,

(11)

where t is transmission time, Pelec is the power consumed by the transmitter and receiver
circuits, and Pt is the transmission power.

Assuming that there are n SNs participating in cooperative MIMO. According to the
transmission scheme mentioned in Section 2.2, the average total energy consumption Etotal
in the Steady-state phase in the network is

Etotal = q(n) · (Ea + Eb) + Ec (12)

where Ea, Eb and Ec are node energy consumption in the Aggregation, Broadcast, and
Communication phase, respectively, and q(n) is a binary function to determine whether
cooperative transmission is carried out.

q(n)=
{

0 n = 0
1 n ≥ 1

(13)

At the Aggregation phase, MN receives the collected information from SNs in terms
of MI communication and compresses the data according to the spatial correlation of
the information.

Ea = EMN,a + ESN,a + Ecom

= nTa(2Pelec + PMI) + nLaEcomp
(14)

where, EMN,a and ESN,a are the energy consumption of MN and SN during the Aggregation
phase, respectively, and Ecom denotes the energy cost for data compression. Ta = La/RMI
is the time for each SN communication with MN, La is the data length of each SN, RMI
denotes the MI’s data transmission rate, PMI is the MI’s transmission power, and Ecomp
denotes the energy cost per bit for data compression.

The MN broadcasts information within a cooperative MIMO by MI communication
through the Broadcast phase, and the energy consumed Eb is

Eb = EMN,b + ESN,b

= Tb(Pelec + PMI + nPelec)
(15)

where, EMN,b and ESN,b are the energy consumption of MN and SN during the Broadcast
phase, respectively. The time of broadcast Tb = Lb/RMI ; Lb is the total amount of com-
pressed data generated by a set of n SNs after lossless compression and can approximately
be calculated by [20]:

Li = Li−1 +

[
1− 1(

di
/

c + 1
)]La, i = 2, 3, · · · , n (16)
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where Li is the i-th node’s compressed data amount, L1 = La, c is a constant and represents
the degree of spatial correlation in the data, and di is the minimum distance between the
node i and the other nodes in the cooperative MIMO.

At the Communication phase, the energy consumed of all nodes within the cooperative
MIMO when it communicates with surface BS by acoustic can be expressed as

Ec = EMN,c + ESN,c

= Tc(n+1)(Pelec + Pac)
(17)

where, EMN,c and ESN,c are the energy consumption of MN and SN during the Communica-
tion phase, respectively. The transmission time Tc = Lb/Rac related to Lb, the acoustic data
rate is Rac, and Pac is the acoustic’s transmission power.

3.2. Cooperative MIMO Size Optimization

To evaluate the connectivity of nodes, we adopt the connectivity definition in [19].
Assume that the distance between two nodes is x, and the maximum transmission distance
of the node is Rmax. Then, the connectivity probability of the node is

Pconnectivity =

{
1 x ≤ Rmax
0 x > Rmax

(18)

where Rmax is can obtained by

Rmax=max
{

d :
Pr

Pn
≥ SNRth

}
, (19)

where Pr is the received power that is related to the channel state, Pn is the power of
environment noise, and SNRth indicates the minimum SNR that the receiving node can
receive and recover the transmitted signal sent by the transmitting node. Therefore, two
constraints must be satisfied to ensure communication between the underwater node and
the surface BS in the underwater MI-assisted acoustic cooperative MIMO WSNs. Firstly, to
ensure that MN and SNs within a cooperative MIMO are connected, we have:

Pr
MI
Pn
≥ SNRth, (20)

where Pr
MI is the power of the received MI signal. To ensure the number of participating

nodes n, Pr
MI is the received power of MN receiving the signal transmitted by the node that

is farthest from MN in the cooperative MIMO.
Then the cooperative MIMO connects with the surface BS:

Pr
cMIMO

Pn
≥ SNRth, (21)

where Pr
cMIMO is the transmitted power of acoustic communication in terms of the coop-

erative MIMO, and it is related to the number of participating nodes n. Meanwhile, the
nodes are distributed according to the homogeneous Poisson point process of intensity λn;
Pr

cMIMO can be derived as:

Pr
cMIMO =

∞
∑

k=0

(λnπr2)
k

k! e−λπr2
k · Pt

ac
A(d, fac)

= λnπr2 · Pt
ac

A(d, fac)
,

(22)

where r and d are the expected transmission distance of the node and cooperative MIMO,
respectively.
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Based on the above analysis, the energy consumption of nodes is mainly related to the
size of the cooperative MIMO n, and the transmitting power of local Pt

MI and long-haul
communication Pt

ac. However, in the actual underwater monitoring scenario, the joint
optimization of these factors is also affected by the expected transmission distance d and
the maximum transmitting power of nodes Pmax.

We now look at the optimization problem for the energy model, which can be ex-
pressed as:

min
n,Pt

MI ,Pt
ac

Etotal

s.t. C1 : n =
⌈
λnπr2⌉ or 0

C2 : Pr
MI
σ2 ≥ SNRth

C3 : λnπr2 · Pt
ac

A(d, fac)·σ2 ≥ SNRth

C4 : Pt
MI ≤ Pmax

C5 : Pt
ac ≤ Pmax,

(23)

where C1 indicates that the number of cooperative MIMO n is an integer, C2 makes sure
that SNs can connect with the MN, and C3 makes sure that the cooperative MIMO can
achieve the expected transmission distance d. C4, and C5 limit the transmitted power of
the node.

We can easily illustrate the tradeoff between the transmission power of acoustic and
MI as follows: When the Pt

MI is large, a large number of nodes can concurrently transmit
the data to the surface BS using a beamforming scheme, and a lower transmission power
Pt

ac is needed to satisfy the connection constraint due to the larger cooperative diversity. On
the other hand, if Pt

MI is small, only a few nodes can cooperatively transmit. The limited
spatial diversity leads to a larger Pt

ac. Thus, the MN can control the diversity characteristics
of the cooperative scheme via power control [27], and the three variables Pt

MI , Pt
ac and n

constrain each other in the optimization problem. Moreover, due to the data compression
technology that is adopted to minimize data redundancy, the optimization problem (23)
contains an iterative function of n, Lb [31]. Thus, the minimum Etotal can not obtain a
closed-form solution. Under the limitation of different expected transmission distances,
the CMSO algorithm based on numerical search is proposed, to determine whether to
adopt cooperative MIMO and to derive the optimal cooperative MIMO size in theory. It is
described in detail in Algorithm 1.

The algorithm starts with the input of the expected transmission distance d, the
maximum transmission power of MI, the acoustic communication Pmax, and the SNR
threshold SNRth. Firstly, by substituting Pmax into (20), the maximum transmission distance
of MI, rmax, can be obtained. Due to the MI’s power limit, the SNs can only be selected
within rmax. As the nodes {nj, j = 1, 2 · · · } are distributed according to the homogeneous
Poisson point process of intensity λn, there is nmax =

⌈
λnπr2

max
⌉

in theory, and we obtain
the interval of cooperative MIMO size [1, nmax] (line 1). Then, in each loop, the search
range of the cooperative MIMO’s size N(i) is determined, and the corresponding acoustic’s
transmitting power can be calculated in the interval according to (21). Finally, the search
range shown by the Index is determined, and the optimal value is searched in it (line 2–11).
When output Index = 1, it can be achieved. Otherwise, it cannot. Due to the number of
nodes that form the cooperative MIMO must be an integer, the search step is 1. Meanwhile,
the cooperative scheme has no advantage in short transmission-distance scenarios. We
compare the energy consumption without cooperative MIMO and Emin to judge whether
to adopt cooperative MIMO (line 12–19). When output Index = 2, the cooperative scheme
is cumbersome and rejected.
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Algorithm 1 Cooperative MIMO size optimization (CMSO) algorithm.

Input:
d, Pmax, SNRth.

Output:
n∗, P∗MI , P∗ac, Emin, Index.

1: Initialization: Determine the interval N = [1, nmax] by Pmax via (20).
2: i = 1.
3: while i ≤ nmax do
4: With the fixed N(i), obtain the optimal E(i) and PMI(i), Pac(i) via (23).
5: if Pac(i) ≤ Pac,max then
6: Index = 1.
7: else
8: Index = 0.
9: end if

10: i = i + 1.
11: end while
12: if Index = 1 then
13: Get the optimal Emin = min(E), and get P∗MI , P∗ac correspondingly.
14: Calculate the energy consumption without cooperative MIMO E0 by n = 0 via (12).
15: if E0 ≤ Emin, update P∗MI , P∗ac then
16: Index = 2.
17: Emin = E0.
18: end if
19: end if

When the expected transmission distance of a node is determined, Algorithm 1 can
determine whether the cooperative transmission is required. This is because when the
expected transmission distance is short, the energy consumed by communication between
nodes is greater than the energy saved by cooperative MIMO. In addition, when the
expected transmission distance is long, due to the limitation of node transmission power,
even if cooperative transmission is adopted, long-distance communication cannot be
achieved. At this time, other methods, such as relay, need to be considered. Noted that the
cooperative MIMO size obtained by Algorithm 1 is a theoretical reference as it is based
on the uniform distribution of nodes. In fact, the distribution of nodes could affect the
cooperative MIMO’s formation and the setting of the transmitting power. Therefore, the
cooperative MIMO is ultimately formed by the CCMF algorithm.

4. Cooperative MIMO Formation Procedure

It can be seen from Section 3 that the expected transmission distance of the different
nodes corresponds to different sizes of cooperative MIMOs and the power allocation of
balanced local and long-haul communication. Therefore, the underwater nodes forming
cooperative MIMOs according to their locations can save node energy consumption and
ensure the network’s connectivity. So, in this section, we propose a competitive cooperative
MIMO formation algorithm, which considers the MN election to balance the overall energy
consumption and apply the theoretical optimal size to the actual network.

4.1. MN Selection

Firstly, the value of node (VoN) has been proposed as a metric to evaluate the potential
of nodes as MNs by jointly considering the residual energy of the node and the number of
neighbor nodes. A node with higher VoN is more likely to be elected as the MN. Let Enow,i
denote the current energy of node i, and let E0 be the initial energy of the node; Ni denotes
the number of the neighbor node, which is defined as within the optimal cooperative
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MIMO size determined by Algorithm 1, and N is the total number of the nodes. Then, the
VoN can be given as:

Vi = α
Enow,i

E0
+ (1− α)

Ni
N

, (24)

where α is the weighting parameter to measure the tradeoff between the node’s residual
energy and the number of neighbor nodes. Due to MN consuming more additional energy
at the expense of undertaking tasks such as data aggregation, time synchronization, and
so on, it will run out of its energy first and die, resulting in an energy hole in the network,
which will significantly reduce the network lifetime. Regarding (24), the node with more
residual energy has higher VoN. Similarly, the node with more neighbor nodes can adjust
the transmission power of communication according to the distribution of the actual node
to reduce energy consumption, so that the VoN value is higher. Such measures will balance
the energy consumption between MN and SNs to extend the network’s lifetime.

4.2. Competitive Cooperative MIMO Formation Algorithm

The main idea of the CCMF algorithm is that we first find a list of MN candidates.
Then, the nodes run for MN in turn, and the node with enough neighbor nodes can ensure
that long-haul communication with surface BS succeeds in the election as MN. The detail
of the CCMF algorithm is described in the Algorithm 2. Firstly, the MN candidate list U
is derived by sorting VoN according to (24) (line 1 in Algorithm 2). Then, the candidates
compete in turn according to U. Based on the above analysis, if the node with a higher
VoN is selected as MN, it will balance the energy consumption between MN and SNs
to prolong the network’s lifetime. For example, the i-th candidate’s optimal cooperative
MIMO range and member number is R∗i and n∗i , respectively. Within R∗i , its available
neighbor node set that does not join other cooperative MIMO is C. After that, we judge the
competition result (line 4–7 in Algorithm 2). If |C| = n∗i , the candidate i is selected as MN
and the cooperative MIMO is determined. Otherwise, the Tire inflation process (Algorithm 3)
is adopted to adaptively adjust the cooperative MIMO size. There are two processes in
Algorithm 3; the deflation process decreases the size of cooperative MIMO to reduce energy
consumption in areas with high node density (line 2–8 in Algorithm 3), and the inflation
process increases the size of cooperative MIMO to ensure the connectivity between nodes
and surface BS in areas with low node density (line 9–19 in Algorithm 3). It is worth noting
that when the number of available neighbor nodes within the maximum communication
range of MN candidate Ui is less than n∗i , that means it can not become an MN, but it still
has the potential to be SN. We delete Ui from the list U (line 16 in Algorithm 3). When the
candidate Ui is selected as MN, delete it, and its SNs from the list U and the next round of
competition begins (line 8–12 in Algorithm 2).

The CCMS algorithm not only keeps the nodes with high remaining energy to have a
priority to be elected as the MN, but also guarantees that the MN is located in the area with
high node density and in the center of the cooperative MIMO, which leads to the smaller
transmission power. Thus, it balances the total energy consumption and thus prolongs the
network lifetime.
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Algorithm 2 Competitive cooperative MIMO formation (CCMF) algorithm.

Input:
Sensor nodes’ location {nj, j = 1, 2 · · ·N} and residue energy

Output:
MN, SN

1: Initialization: Each node runs Algorithm 1 to get its own optimal size n∗i , then calculates
and sorts its VoN in the descending order as U.

2: i = 1.
3: while U 6= ∅ do
4: Set Ui as the MN of the cooperative MIMO i, and the nodes within the optimal range

of Ui are C
5: if |C| 6= n∗i then
6: Tire inflation process
7: end if
8: if nj ∈ C and nj ∈ U then
9: Delete nj from the list U

10: end if
11: MN← Ui, SN(i, :)← C
12: i = i + 1
13: end while
14: MN, SN

Algorithm 3 Tire inflation process.

Input:
{nj, j = 1, 2 · · ·N}, C, n∗i , R∗, ε, Rmax, U

Output:
C, U

1: Ri = R∗

2: Deflation process:
3: if |C| > n∗i then
4: while |C| > n∗i do
5: Ri = Ri − ε
6: Update the neighbor nodes C using Ri
7: end while
8: end if
9: Inflation process:

10: if |C| < n∗i then
11: while |C| < n∗i do
12: if Ri < Rmax then
13: Ri = Ri + ε
14: Update the neighbor nodes C using Ri
15: else
16: Delete Ui from the list U
17: end if
18: end while
19: end if

5. Results and Analysis

This part provides simulation results to evaluate the performance of the proposed
scheme and algorithms. We first introduce the scenario setup for simulations. Similar
to [40], we consider a 3D underwater network with sensors that are initially deployed
in a two-dimensional plane at a fixed depth. The distribution of nodes on this plane
conforms to a homogeneous Poisson point process with density λn. The surface BS is
placed on the center of the surface. Other detailed parameters are summarized in Table 2
based on several underwater communication channel models and energy consumption
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models [13,41]. Besides, to equally inspect the influences of all factors, we set the weight
parameters to be 0.5, but they can be adjusted in practice.

Table 2. Simulation parameters.

Parameter Value

Maximal transmission power of MI PMI,max [41] 50 W
Maximal transmission power of acoustic Pac,max [41] 50 W

Circuits’ power consumed Pelec [41] 0.158 W
Frequency of MI fMI [13] 1 MHz

Data transmission rate of MI RMI [13,31] 40 kbit/s
Data transmission rate of acoustic Rac [13,31] 20 kbit/s

Frequency of ac fac [13] 10 kHz
Circuits’ size rc [13] 0.1 m

Total noise for MI [13] 9.81× 10−3 mW
Shipping activity factor s [35] 0.5

Wind speed ω [35] 0 m/s
Packet lengths D 50 bits

To show how much energy consumption we have saved in a long-haul communication
by combining cooperative MIMO and data aggregation from the previous work, Figure 4
illustrates the overall energy consumption per packet with the different number of coopera-
tive MIMO members under four scenarios: (1) No power control and no data aggregation
(NP&NA), (2) No power control but with data aggregation (NP&A), (3) Power control but
with no data aggregation (P&NA), and (4) Power control and data aggregation (P&A). The
fixed transmission power is 50 W. Note that at the expected transmission distance of 100 m,
a single node cannot realize long-haul communication under the constraint of the acoustic’s
maximum expected transmission power of 50 W. At the same time, the transmission range
of MI communication limits the number of cooperative MIMO nodes under this network
setting. In all four scenarios, P&A showed a significant advantage in overall energy con-
sumption per packet for different numbers of cooperative MIMO nodes. In addition, the
influence of the cooperative MIMO nodes’ number on energy consumption is also shown.
Hence, it is desirable to find an energy-efficient way by choosing the appropriate size, and
the CMSO algorithm is proposed.
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Figure 4. The overall energy consumption per packet with different numbers of cooperative
MIMO members.

Figure 5 shows the results of the CMSO algorithm. When the long-haul transmission
distance is fixed, the optimal cooperative MIMO size can be derived, which can effectively
deal with the energy-efficient problems by combining data aggregation with cooperative
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communication. The CMSO algorithm determines whether nodes need a cooperative
transmission. Take Figure 5a as an example; when the SNR threshold is 5 dB, and the
expected transmission distance exceeds 66 m, the advantage of cooperative communication
is revealed. A single node can not complete direct communication with BS when the
expected transmission distance is more than 66 m. In addition, with the increase in the
expected transmission distance, the energy consumption of nodes increases exponentially.
Therefore, when the expected transmission distance is too large, the energy problem could
be solved through an appropriate routing design, which is our follow-up research direction.
At the same time, we compared the influence of different SNR thresholds on the CMSO
algorithm. The larger the SNR threshold, the smaller the expected transmission distance
that the same node can achieve. In the actual application of USWN, specific requirements
can be considered, and the results provide the guideline for the design of underwater
MI-assisted acoustic cooperative MIMO WSNs.
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Figure 5. The results of the CMSO algorithm. (a) The optimal number of cooperative MIMO members
at different expected transmission distances. (b) The energy consumption per node at different
expected transmission distances.

The optimal transmission power of MI and the acoustic under different system pa-
rameter settings are depicted in Figure 6. The SNR threshold is 5 dB. To clearly show
the variation of optimal transmission power with the expected transmission distance, we
express it in dB. It can be seen from the figure that when the expected transmission distance
has not reached 66 m, the energy consumed by direct communication between a single
node and surface BS is less. In this case, the expected transmission distance is increased by
continuously increasing the transmission power of the acoustic. The cooperative MIMO
can save more energy when the expected transmission distance exceeds 66 m. There is a
trade-off between the increased optimal transmission power of MI and the acoustic until
the limitation of maximum transmission power is reached. Thus, the growth trend is
ladder-shaped. Once the acoustic’s transmission power increases to 50 W, it is necessary to
increase the size of the cooperative MIMO to increase the expected transmission distance.
Therefore, the transmission power of MI increases rapidly until the threshold is reached,
and the maximum transmission power limits the maximum transmission distance of the
cooperative MIMO. The calculation shows that number of nodes is same to achieve the
minimum energy consumption, despite the different densities. The number of optimal coop-
erative MIMO nodes is determined when the expected transmission distance is determined.
Therefore, the greater the node density, the smaller the optimal transmit power.

The evaluation mechanism is key to measuring the performance of cooperative MIMO
formation. This paper evaluates the performance of CCMS formation by using nodes’
energy consumption and network coverage. Meanwhile, the connectivity of nodes is an
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essential requirement that must be met. The energy consumption can be calculated by (12).
Then, the coverage of the network can be formulated as

Pcoverage =

N
∑

i=1
Pi,connectivity

N
, (25)

where N is the number of nodes.
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Figure 6. Transmission power of MI and acoustics under different system parameter settings.

Figure 7 shows the average energy consumption and the coverage under 500 Monte
Carlo tests attained by the CCMF algorithm, LEACH-C algorithm [22], and single node.
Since there is no related cooperative MIMO formation algorithm, the low energy adaptive
clustering hierarchy centralized (LEACH-C) algorithm with a similar principle is adopted
for comparison. In the clustering algorithm, a cluster is regarded as a cooperative MIMO,
and all nodes in the cluster participate in cooperative communication. Compared with
Figure 5a, Figure 7 shows that the transmission distance of a single node can only reach
66 m, and the coverage is 0 after that. Meanwhile, the CCMF algorithm proposed by us
considers whether cooperative communication is adopted. So that when the transmission
distance is short (0∼66 m), the coverage can be guaranteed by the CCMF algorithm while
with the same energy consumption as that of a single node. When the expected transmission
distance exceeds the maximum transmission distance of a single node, the CCMF algorithm
can grow at the expense of the smaller average node energy consumption in exchange for
more long-distance communication. With the decrease in network coverage, the energy
consumption of nodes fluctuates wildly. It indicates that few nodes can communicate
with the surface BS, which has already failed to meet the requirements for the monitoring
purposes of UWSNs. Since the LEACH-C algorithm does not consider the constraint
of node connectivity in the design process, it is only designed from the perspective of
balancing the overall energy consumption of the network. Depending on the cluster’s size
setting, the cluster nodes may not connect with the cluster head, due to the limitation of the
MI’s transmission distance. So, the network coverage is not 1 in the interval of (0∼66 m).
The size of the cooperative MIMO related to the transmission distance affects the network’s
coverage, and so the curve of network coverage in Figure 7 appears as ladder-shaped,
corresponding to Figure 5a. In a word, Figure 7 shows that the CCMF algorithm has
advantages over the LEACH-C algorithm in energy consumption and coverage.
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Figure 7. Perfomance comparison between CCMF algorithm, LEACH-C algorithm, and other bench-
marks. (a) Average energy consumption per node versus expected transmission distance. (b) The
coverage versus expected transmission distance.

We randomly generated a network in which the nodes are located at a depth of 150 m
from the surface. Figure 8 shows the top view of this network with 31 nodes that are
uniformly distributed. The surface BS is placed in the center of the surface. Each node
competes for MN in turn, according to its residual energy and the distribution of other
nodes around it. The nodes are denser, a smaller MI transmit power of the node as MN is
needed, and less energy is consumed. However, when the nodes around itself join other
cooperative MIMOs, the MN candidate has to increase the radius of the cooperative MIMO
to meet the requirement of the number of cooperative MIMO members, so as to realize
the communication with surface BS. If the radius exceeds the transmit power limit of MI,
the node cannot be selected as MN, but it still has the opportunity to participate in other
cooperative MIMOs as SN. Otherwise, the node could be left without a MIMO and be
unable to communicate with the surface BS, such as nodes 22, 30, and 31 in Figure 8. Other
cluster algorithms do not consider the influence of the number of nodes on clustering.
The LEACH-C algorithm takes into account the position of nodes. However, due to the
distribution of nodes, the cluster with fewer nodes cannot communicate with surface BS,
such as the cluster with nodes 1, 8, and 13 as MN in Figure 8b. Additionally, the network
coverage is very low. At the same time, the energy consumption of nodes in some dense
regions is very high.
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Figure 8. The examples of the two algorithms. (a) An example of CCMF algorithm. (b) An example
of LEACH-C algorithm.
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Moreover, in Figure 7a, there are drops in energy consumption with the increase in
expected transmission distance. This is because Figure 7 shows the Monte Carlo simulation
results of the CCMF algorithm in the actual network scenario. The energy consumption
of nodes is affected by node distribution. For example, considering the influence of other
cooperative MIMOs, node 10 in Figure 8a must increase the MI transmitting power to
ensure the connection with surface BS. Therefore, its energy consumption may exceed
the theoretical optimal value. Switching to a larger MIMO will completely change the
composition of the network, and the energy consumption of nodes may be reduced, but
the corresponding network coverage could be significantly reduced. Figure 7 shows the
energy consumption and network coverage versus the expected transmission distance. In
network design, a tradeoff between the two parameters needs to be considered according
to the actual requirements.

Figure 9 shows the relationship between the number of live nodes and the lifetime.
We randomly generated a network in which 18 nodes are located at a distance of 100 m
from the surface BS. The initial energy of each node is 40 J. When the remaining energy of
the node is less than 20 J, the node is judged to be dead. We adopt the setting because it
can intuitively show the influence of different system parameters on the scheme. Figure 5a
shows that when the SNR thresholds are 5 dB and 10 dB, the optimal cooperative MIMO
numbers are 2 and 6, respectively. Additionally, the expected transmission distance can
not reach 100 m with SNRth = 15 dB. When the requirement for communication quality is
relaxed, the SNR threshold is small, and the energy consumed by nodes to transmit the
same distance is small, so that the network lifetime is extended. Meanwhile, Figure 9 shows
that the nodes almost died at the same time, which indicates that all nodes in the whole
network consume very evenly, and this helps to reduce the probability of energy holes and
extend the network lifetime. It is worth noting that we tried to compare the CCMS and
LEACH-C algorithms, but since the LEACH-C algorithm does not consider the constraints
of the expected transmission distance of nodes when forming cooperative MIMOs, the
coverage of this network cannot be guaranteed, and there is no comparability. Moreover,
the network lifetime can be extended according to the design needs by appropriately setting
the SNR threshold, initial node energy, and node death criteria.
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Figure 9. Lifetime versus number of nodes alive.

6. Conclusions

In this paper, an energy-efficient cooperative MIMO formation mechanism based
on data aggregation is proposed for underwater MI-assisted acoustic cooperative MIMO
networks. For this purpose, we firstly derive a mathematical energy consumption model.
Compared with a traditional MIMO without data aggregation or physical-layer power
control, the proposed strategy has demonstrated its performance superiority. It explores the
potential of underwater MI-assisted acoustic cooperative MIMO networks in energy saving
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in long-haul communication. The optimal cooperative MIMO size is obtained based on the
derived energy model, which ensures the expected transmission distance. Then, the CCMS
algorithm is proposed to form a cooperative MIMO according to the nodes’ geographical
location and distribution, so that the nodes’ energy consumption can be reduced under the
condition of satisfying the connectivity with the surface BS. The simulation results show
that the proposed scheme achieves significant energy savings and prolongs the network
lifetime considerably in long-haul communication.

Our proposed scheme can provide a guideline for the design of underwater MI-
assisted acoustic cooperative MIMO WSNs. The performance of the network has been
evaluated, including energy-efficient, long-range, and high-throughput communication,
and other aspects. Therefore, it is suitable for some underwater applications with large
ranges, difficult node replacement, and high requirements for underwater communica-
tion, such as real-time pollution monitoring, deep sea mining, tsunami early warning,
tracking underwater animals, dam structure health monitoring, and mapping the sea
bottom. Deploying the nodes at the target area, the underwater MI-assisted acoustic co-
operative MIMO network will work according to the transmission mechanism mentioned
in Section 2.2, including the Set-up and Steady-state phases. For future work, we plan to
research the following two aspects further: (1) It is observed that, as the expected transmis-
sion distance increases, simply increasing the size of cooperative MIMO cannot solve the
energy problem and guarantee network coverage. The routing strategy should be designed
appropriately. (2) Due to the complex underwater environment, if there are damaged
underwater sensor nodes, the cooperative MIMO formed by the proposed method cannot
connect with surface BS. Therefore, another future work involves designing a cooperative
MIMO formation mechanism that can provide fault tolerance without violating the full
coverage and connectivity requirements.
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