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Abstract: Land-use change is supposed to exert significant effects on the spatio-temporal patterns
of ecosystem carbon storage in arid regions, while the relative size of land-use change effect under
future environmental change conditions is still less quantified. In this study, we combined a land-use
change dataset with a satellite-based high-resolution biomass and soil organic carbon dataset to
determine the role of land-use change in affecting ecosystem carbon storage from 1980 to 2050 in the
Gansu province of China, using the MCE-CA-Markov and InVEST models. In addition, to quantify
the relative size of the land-use change effect in comparison with other environmental drivers, we
also considered the effects of climate change, CO2 enrichment, and cropland and forest managements
in the models. The results show that the ecosystem carbon storage in the Gansu province increased
by 208.9 ± 99.85 Tg C from 1980 to 2020, 12.87% of which was caused by land-use change, and the
rest was caused by climate change, CO2 enrichment, and ecosystem managements. The land-use
change-induced carbon sequestration was mainly associated with the land-use category conversion
from farmland to grassland as well as from saline land and desert to farmland, driven by the grain-
for-green projects in the Loess Plateau and oasis cultivation in the Hexi Corridor. Furthermore, it
was projected that ecosystem carbon storage in the Gansu province from 2020 to 2050 will change
from −14.69 ± 12.28 Tg C to 57.83 ± 53.42 Tg C (from 105.62 ± 51.83 Tg C to 177.03 ± 94.1 Tg C)
for the natural development (ecological protection) scenario. By contrast, the land-use change was
supposed to individually increase the carbon storage by 56.46 ± 9.82 (165.84 ± 40.06 Tg C) under
the natural development (ecological protection) scenario, respectively. Our results highlight the
importance of ecological protection and restoration in enhancing ecosystem carbon storage for arid
regions, especially under future climate change conditions.

Keywords: land-use change; carbon density dynamics; satellite-based carbon datasets; MCE-CA-
Markov; InVEST; arid regions

1. Introduction

With the increasing emissions of carbon dioxide since the onset of industrialization,
greenhouse gas (GHG) concentration in the atmosphere has soared, resulting in global
climate change and a series of environmental issues, threatening ecosystems’ health and
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social and economic development [1–3]. In 2016, the Paris Agreement reached a political
consensus that global warming should not exceed 2 ◦C or 1.5 ◦C [4–6]. The Intergovern-
mental Panel on Climate Change (IPCC) Special Report on Global Warming of 1.5 ◦C,
which was released in 2018, once again highlighted that the limiting of global warming
to 1.5 ◦C rather than 2 ◦C could avoid a series of climate change impacts (such as the
10 cm reduction in sea level rising and higher survival rates of coral reefs) [7,8]. Moreover,
this special report also placed a demand on the rapid and far-reaching transition across
industries in countries around the world [9]. Notably, as the world’s largest developing
country and carbon dioxide (CO2) emitter [10], China’s rapid economic development also
resulted in massive energy consumption. Accordingly, the Chinese government proposed
the goals of “2030 carbon peak” and “2060 carbon neutrality” [11,12], which called for
lower carbon emissions and stronger carbon storage (CS) capacity. Enhancing the carbon
storage of ecosystems is considered as one of the most economically viable and environ-
mentally friendly ways to mitigate the greenhouse effect and climate change [10,13,14].
As an ecological province in the arid region of northwest China, the Gansu province is
characterized by complex landscapes, diverse ecosystem types, and large potential carbon
sequestration capacity, acting as an important region to achieve China’s goals of “carbon
peak” and “carbon neutrality”.

The terrestrial ecosystem CS are mainly divided into four major carbon pools (above-
ground biomass carbon pool, below-ground biomass carbon pool, soil organic carbon pool,
and dead organic matter carbon pool) [2,15,16]. The land use/cover change (LUCC) is an
essential feature reflecting environmental changes [17] and a prime influencing factor of
terrestrial ecosystem carbon storage [18,19]. Therefore, it is of great significance to quantify
the effects of land-use change on ecosystem CS under climate change over the past and
in the future [20]. Leh et al. [21] used the InVEST (Integrated Valuation of Ecosystem
Services and Trade-offs) model to quantify the land-use change effects on CS in west
Africa. Dargains and Cabral [22] evaluated the CS on a cattle ranch from 2007 to 2017 and
then created four alternative land-use scenarios with the InVEST Scenario Generator for
2027 to simulate LUCC and forecast future CS dynamics. Wang et al. [10] constructed an
urban-level framework of future LUCC and CS simulation under the context of CMIP6
climate change scenarios, integrating system dynamics (SD) model, patch-generating
land use simulation (PLUS) model, and the InVEST model. It can be found that more
and more studies have been focusing on future carbon storage dynamics, especially the
impact of future land-use type conversion (LUTC) on carbon storage. Previous studies
generally assumed that the biomass and soil organic carbon density were constant during
the quantification of ecosystem carbon storage dynamics over time by the InVEST model.
However, under the background of global climate change, the changes in climatic factors,
atmospheric CO2 concentrations, and managements practices can also exert large effects on
vegetation growth and soil respiration, and further alter the vegetation biomass and soil
organic carbon density, even the land-use category keeps constant. Thus, to quantify the
relative size of the land-use change effect in comparison with other environmental drivers,
the effects of climate change, CO2 enrichment, and cropland and forest managements on
biomass and soil organic carbon density should also be considered in the InVEST model.

There are many types of models used to simulate and predict the evolution of future
land-use patterns, among which the CA-Markov [23,24], FLUS [25–27], PLUS [28,29],
CLUMondo [30], and CLUE-S [31,32] are widely employed. Taking the Shiyang River Basin
in the arid region of northwest China as an example, Wang et al. [19] concluded that the
LR-CA-Markov and FLUS models performed better in the arid region than other land-use
simulation models. The CA-Markov model has been widely used in many fields, such as
land use, urban growth, and diffusion in arid regions [33,34]. The model integrates the
ability of the Cellular Automata (CA) model in simulating the spatial changes of complex
systems and the advantages of the Markov model in long-term prediction. It can effectively
simulate the spatial change in land-use pattern and improve the accuracy of land-use
type conversion prediction, with good scientificity and practicality [35,36]. Based on the
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LUCC patterns of east Nepal during 1989–2016, Rimal et al. [37] used the CA-Markov to
predict the urban expansion from 2026 to 2036 and found that the area of dry farmland
was supposed to continuously shrink in future, implying that food security crisis and
environmental degradation may occur in this region. Mokarram et al. [34] employed the
CA-Markov combined with 12 parameters to predict the drought map of Fars in Iran for
2030 and 2040, which demonstrated that the drought index would continue to increase and
the way of local farming should change over time to cope with the increasingly dry climate.
Along with the speeding up of ecological construction, China has implemented a series of
ecological protection projects, such as the grain for green, degraded grasslands restoration,
desertification controls, and soil erosion prevention. Therefore, the simulation of future
land use needs to consider the ecological protection scenario (EPS) and compare it with
the spatial pattern of land use under the natural development scenario (NDS) to explore
the characteristics of the spatial and temporal dynamics of carbon storage under the two
scenarios, so as to provide a reference for policy makers.

The carbon storage estimations at a regional scale mostly rely on the carbon density
data of different land-use types derived from site-level measurements or the published
literature. However, due to the large spatial heterogeneity of biomass and soil organic
carbon density, limited site-level measurements may not fully capture the high variability
of carbon even within the same land-use type over space, leading to uncertainties in the
carbon storage change estimations [38,39]. Hence, it is needed to obtained biomass and soil
carbon datasets with high-spatial resolution and quality for the evaluation of ecosystem
carbon dynamics [40]. Over the past decade, with the rapid development of remote sensing
and machine learning techniques, increasing aboveground and belowground biomass
as well as soil organic carbon density maps were created based on a large amount of
field measurements and satellite-derived covariates. The commonly used soil organic
carbon dataset included the SoilGrids 250 m product, which was seemed to be quite coarse
in resolution and quality for regional studies. Recently, Liu et al. [41] developed soil
organic carbon gridded datasets at a resolution of 90 m in China based on the digital
soil mapping framework, which used remote-sensing-derived spectral indexes and other
climatic, topographic, and pedologic covariates to predict the spatial distribution of soil
organic carbon at a national scale. However, the efficiency of this satellite-based carbon
products in quantifying the spatio-temporal dynamics of ecosystem carbon storage as
affected by land-use change is still less evaluated, especially in regions such as the Gansu
province being characterized by complex landscapes. In addition, most of the previous
studies concerning the land-use change effects on ecosystem carbon storage dynamics only
considered the historical changes, while the impact of future evolution of LUCC on carbon
storage should be considered in terms of ecosystem carbon management under future
climate change conditions.

Therefore, based on the sub-categories of LUCC from 1980 to 2020 and the high-
precision carbon density dynamic data of the Gansu province, this study firstly analyzed
the changing characteristics of land use in the historical period (Section 3.1) and discussed
the terrestrial ecosystem carbon storage changes as affected by land-use change and other
environmental drivers (Section 3.2). Secondly, the MCE-CA-Markov model was used to
predict the spatial distribution of land use in 2030 and 2050 under NDS and EPS scenarios,
and the spatial patterns of terrestrial ecosystem carbon storage by 2030 and 2050 under land-
use change scenarios (NDS and EPS) and future climate change scenarios were analyzed
(Section 3.3). Finally, the relationship between land-use changes and terrestrial ecosystem
carbon storage changes was discussed (Section 4) to provide suggestions for future land use
and carbon management in arid regions, and for effectively managing ecosystem carbon
pools under future climate change.
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2. Materials and Methods
2.1. Study Area

The Gansu province is located in the inland hinterland of Northwest China, ranging
from 32◦11′ to 42◦57′N in latitude and 92◦13′ to 108◦46′E in longitude, with a total area
of 45.59 × 104 km2 (Figure 1). The geographical shape of Gansu is narrowly distributed
in the northwest to southeast direction, with a length of 1659 km from east to west and
a width of 530 km from north to south. Moreover, the Gansu province is located at the
intersection of three main plateaus of China (i.e., the Loess Plateau, Qinghai-Tibet Plateau,
and Inner Mongolia Plateau) [42], with a wide range of elevations ranging from 1000
to 3000 m. In addition, the spatial distribution of precipitation in the Gansu province is
uneven, which decreases from southeast to northwest with annual means ranging from
40 to 800 mm [43], creating very fragmented landscapes and diverse types of ecosystems,
leading to different land-use types from east to west of the Gansu province. The western
part is the Hexi Corridor being characterized by a desert-oasis landscape due to dry climate,
scarce precipitation, and strong evapotranspiration [44]. The eastern part includes the
Gannan Plateau and part of the Loess Plateau, with complex landform types (dominates by
mountains and hills) and rich forest and grass resources.

Figure 1. Geographical location of the Gansu province.

2.2. Data Sources
2.2.1. Land-Use Data

The land-use data of Gansu province used in this study were obtained from the
National Land-Use/Cover Database of China (NLUD-C) on the Resource and Environment
Science Data Center of the Chinese Academy of Sciences (RESDC) (https://www.resdc.cn,
accessed on 6 October 2021), which were interpreted based on Landsat-MSS, Landsat-TM,
and Landsat 8 images with the human–machine interaction method. Through random
verification at the field surveys, the accuracy of LUCC interpretation was more than
90% [40,45], which meet the experimental requirements. After that, the land-use types
in the Gansu province were classified with reference to the National Ecological Remote
Sensing Monitoring Land Use/Land Cover Classification System. As the area of paddy
fields in the Gansu province only accounts for 0.05% of the total area, it was combined with
drylands as dry farmland. In addition, related research results have shown that the carbon
density of water is close to 0 [30,46,47]. Therefore, the land-use types of water, such as lakes

https://www.resdc.cn
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and permanent glacials, were classified and combined into river and glacier in this study.
Finally, the land types of the Gansu province were divided into 19 land-use types.

2.2.2. Satellite-Derived Carbon Maps

In this study, the datasets being employed to estimate carbon storage primarily in-
cluded vegetation carbon density (above- and below-ground biomass), soil carbon den-
sity, and dead organic matter carbon density (Figures 2 and S1). The carbon density
data of above- and below-ground biomass were provided by Spawn and Gibbs [48],
who published the earth datasets in the National Aeronautics and Space Administra-
tion (NASA) Oak Ridge National Laboratory Distributed Active Archive Center (ORNL
DAAC) with 300 m resolution in 2020. Maps reporting the accumulated uncertainty
of pixel-level biomass carbon density estimates were also provided. The uncertainty
here represents the cumulative standard error, which was propagated through the har-
monization process using summation in quadrature [48]. The soil carbon density was
extracted from the Chinese High-Resolution National Soil Information Grid Basic Dataset,
which was published by Liu et al. [41] on the National Earth System Science Data Cen-
ter (http://soil.geodata.cn/data/datadetails.html?dataguid=36810085119113, accessed on
18 October 2021). This soil dataset with a 90 m resolution of multi-properties was gener-
ated by integrating efficient machine learning techniques with predictive soil mapping
paradigms in a high-performance computing environment, with soil environmental char-
acterization information obtained from remote sensing data processing. These datasets
also provided uncertainty maps of SOC content and bulk density, which could be further
used to quantify the uncertainties of SOC storage in this study under different climate and
land-use change scenarios. The uncertainty of initial soil predictions, being expressed as
upper and lower limits of 90% prediction interval, was simultaneously estimated at every
pixel and depth based on bootstrap method. The limits were identified using the 0.05 and
0.95 quantiles of empirical distribution. To facilitate comparison with the uncertainty of
vegetation biomass carbon density, we further converted the initial quantile interval of soil
predictions to standard error based on their statistical relationships and used the standard
error as the uncertainty of SOC in this study (Figure S1).

Figure 2. Spatial distribution of terrestrial ecosystem carbon density of the Gansu province.

The soil carbon density data used in this study were soil organic carbon density at
0–100 cm (Figures 2 and S1), which were obtained by multiplying the SOC content at 0–5,

http://soil.geodata.cn/data/datadetails.html?dataguid=36810085119113
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5–15, 15–30, 30–60, and 60–100 cm with the corresponding bulk density at each layer from
the dataset according to the following equations:

SOCD =
n

∑
i

SOCCi × BDi ×Di (1)

where SOCD is the density of soil origin carbon (kg C m−2), n is the count of layers, SOCCi
is the concentration of soil organic carbon (g C kg−1), and BDi and Di denote the bulk
density (g cm−3) and the depth (m), respectively. The dead organic carbon density (DOC)
for the Gansu province was obtained by an empirical equation (Figure 2). We first regressed
the linear relationships between SOC and DOC in the Gansu province (y = 0.0041x + 5.1899,
R2 = 0.6897) based on the 50 km resolution dataset of “A dataset of organic carbon storage
and carbon dynamic in arid and semiarid China from 1980 to 2014”, which was provided by
Fang et al. [49] (https://www.scidb.cn/en/detail?dataSetId=633694461100032002, accessed
on 3 January 2022). Then, we obtained the DOC maps of the Gansu province by applying
the equation to the SOC maps.

2.2.3. Environmental Variables

In the simulation of future land-use scenarios, the relationships between environ-
mental variables and land types need to be separately explored according to regional
characteristics. In this study, the types of spatial datasets can be divided into topography,
climate, and human activity. The driving factors may not be enumerated utterly, but the
aggregation of the land-use simulations can be improved from multiple perspectives. The
list of data is as follows (Table 1).

Table 1. Datasets used in this study.

Type Variables Original Resolution Source

LUCC Land-use map in 1980, 2000 and 2020 1:100,000 https://www.resdc.cn, accessed on 6 October 2021

Carbon

Above-ground biomass carbon 300 m Spawn et al. [50]
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763,
accessed on 18 October 2021Below-ground biomass carbon 300 m

SOC content at 0–5, 5–15, 15–30, 30–60,
and 60–100 cm 90 m Liu et al. [41] http://soil.geodata.cn/data/datadetails.

html?dataguid=36810085119113, accessed on
18 October 2021

Bulk density at 0–5, 5–15, 15–30, 30–60,
and 60–100 cm 90 m

Carbon dynamics in arid and semiarid
China from 1980 to 2014 50 km https://www.scidb.cn/en/detail?dataSetId=63369446

1100032002, accessed on 3 January 2022

Topography

Elevation 30 m ASTER GDEM (https://earthdata.nasa.gov/,
accessed on 3 January 2022)

Aspect 30 m Calculated by SAGA GIS
Slope 30 m Calculated by SAGA GIS
Topographic wetness 30 m Calculated by SAGA GIS
Multi-scale topographic position 30 m Calculated by SAGA GIS

Climate
Historical and future temperature 1000 m

Peng et al. [51–58]
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-
4fd1-a004-b2a541c4d5bf/, accessed on 3 January 2022
https://data.tpdc.ac.cn/zh-hans/data/7f0fce77-2cba-
4bdc-ab02-b2d7c69e8e4b/, accessed on 3 January 2022

Historical and future precipitation 1000 m

Peng et al. [51–58]
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4
d18-b28f-5cee413766a2/, accessed on 3 January 2022
https://data.tpdc.ac.cn/zh-hans/data/a9cd4a09-51a9
-433b-9540-0376c6134cf6/, accessed on 3 January 2022

CO2
concentrations

Historical and future concentrations
of CO2

0.5◦ https://greenhousegases.science.unimelb.edu.au/#!
/ghg?mode=downloads, accessed on 7 February 2022

Human
activity

River network density 1:1 million National Basic Geographic Database (2015)
(https://mulu.tianditu.gov.cn/, accessed on
1 October 2021)

Road density 1:1 million

Population 1000 m Chinese Academy of Sciences (2015)
(http://www.resdc.cn/, accessed on 1 October 2021)Gross domestic product 1000 m

2.3. LUCC Modelling

The MCE-CA-Markov model consists of a CA filter, Markov chain, and MCE mod-
ule [59]. The MCE module uses limiting and driving factors as independent variables to

https://www.scidb.cn/en/detail?dataSetId=633694461100032002
https://www.resdc.cn
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1763
http://soil.geodata.cn/data/datadetails.html?dataguid=36810085119113
http://soil.geodata.cn/data/datadetails.html?dataguid=36810085119113
https://www.scidb.cn/en/detail?dataSetId=633694461100032002
https://www.scidb.cn/en/detail?dataSetId=633694461100032002
https://earthdata.nasa.gov/
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/
https://data.tpdc.ac.cn/zh-hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/
https://data.tpdc.ac.cn/zh-hans/data/7f0fce77-2cba-4bdc-ab02-b2d7c69e8e4b/
https://data.tpdc.ac.cn/zh-hans/data/7f0fce77-2cba-4bdc-ab02-b2d7c69e8e4b/
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2/
https://data.tpdc.ac.cn/zh-hans/data/a9cd4a09-51a9-433b-9540-0376c6134cf6/
https://data.tpdc.ac.cn/zh-hans/data/a9cd4a09-51a9-433b-9540-0376c6134cf6/
https://greenhousegases.science.unimelb.edu.au/#!/ghg?mode=downloads
https://greenhousegases.science.unimelb.edu.au/#!/ghg?mode=downloads
https://mulu.tianditu.gov.cn/
http://www.resdc.cn/


Remote Sens. 2022, 14, 3164 7 of 25

establish an atlas of land-use change suitability rules for each category, providing a decision
aid for the change in future land use. CA-Markov based on the MCE module can not only
improve the simulation accuracy, but also be more reliable for LUCC simulation results in
future projections [60]. CA filter is a discrete model in time and space, and each cell of the
CA filter is affected both by neighboring cells and its own changes in cell characteristics. Be-
cause of the presumed ability of the CA filter in simulating the spatio-temporal evolution of
complex spatial patterns, it is widely used in the study of land-use simulation, population
migration, and urbanization. The CA model can be expressed by the following equation:

St1 = f(St, N) (2)

where S is the set of cellular states, t and t1 are the moments before and after the cellular is
located (respectively), f is the transition rule, and N is the cellular neighborhood.

The Markov chain is a method to predict the probability of event occurrence based on
the transfer probability matrix. The transfer probability matrix is only related to the states
of periods t0 and t1. The expressions are as follows.

St1 = Pij· St (3)

Pij =


P11 P12 · · · P1n
P21 P22 · · · P2n

...
...

...
...

Pn1 Pn2 · · · Pnn

 (4)

where St and St1 are the land use of periods t and t1, Pij is the transfer probability matrix, n
is the land-use type, and i, j = 1, 2, . . . , n represents the land-use types before and after the
transfer, respectively.

In this study, based on the MCE-CA-Markov model of the IDRISI Selva 17.0 platform,
the simulated land-use data of the Gansu province in 2020 were predicted with a period of
10 and 20 years to compare with the actual data of 2020 to verify the simulation reliability
of MCE-CA-Markov. After that, the land-use data in 2030 was predicted with 2020 as the
base period, and then the spatial distribution data of land use in 2050 was predicted with
2030 as the start year. The main steps were as follows: (1) Production of suitability atlas.
According to the requirements of unique geographical conditions and the land resource
conservation of the Gansu province, the MCE module was used to set restrictive factors
(including dry farmland, woodland, grassland, water, and unused land) and impact factors
(including 11 driving factors of topography, climate, human activity, and default suitability
atlas) for each land types. (2) Land-use prediction of future. The number of CA filter cycles
was set to 10 for predicting the 2030 land-use distribution based on the 2020 land-use data.
Similarly, the number of cycles was set to 20 for predicting the 2050 land-use distribution
based on the land use of 2030.

To determine the effects of the ecological conservation policies implementation on
LUCC and CS, this study set two possible land-use change scenarios and the corresponding
constraints. Scenario 1: Natural development scenario (NDS), which assumed that the
trend of LUTC from 2020 to 2030 was consistent with the change from 2010 to 2020, the
actual 2020 was used as the base year to simulate 2030. It was also assumed that the change
from 2030 to 2050 was consistent with the change from 2010 to 2030, so that 2030 was
used as the starting year to simulate 2050. Scenario 2: Ecological protection scenario (EPS),
which referred to the policy of grain for green, the Ecological Protection and Construction
Plan of Gansu province (2014–2020), the 14th Five-Year Plan for National Economic and
Social Development of Gansu province, the Outline of Long-Term Goals in 2035, and
other ecological protection documents. For the EPS, strict controls were implemented
on the transfer out of each land use type, and a new suitability image for each land use
was generated together with the 11 impact factors and the suitability image generated by
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default as impact factors. Then, the transformation probability matrix was modified in a
certain proportion to better meet the policy requirements.

The accurate 2020 land-use map of the Gansu province was used as the baseline to
verify the simulation accuracy in 2020 under NDS and EPS with the period of 10- and
20-year cycle, respectively. The simulated kappa coefficients for 2020 are all greater than 0.9,
FoM (Figure of Merit) coefficient is larger than 0.25, indicating that the MCE-CA-Markov
model can be used to predict the future land-use patterns of the Gansu province.

2.4. InVEST Model

The Carbon module of the InVEST model divides the carbon storage of ecosystems
into four basic carbon pools [35,61]: above-ground biomass carbon (AGC: carbon in all
surviving plants above the soil), below-ground biomass carbon (BGC: carbon present in
living root system of plants), soil organic carbon (SOC: organic carbon distributed in organic
and mineral soils), and dead organic matter carbon (DOC: carbon in dead plants and fallen
matter) [62]. The carbon storage of the cell (i, j) can be calculated by its corresponding
land-use carbon density [22].

CSm,i,j = A×
(
Cam,i,j + Cbm,i,j + Csm,i,j + Cdm,i,j

)
(5)

where CSm,i,j is the carbon storage (t) of a given cell (i, j), and A is the actual area of
a single cell. Cam,i,j, Cbm,i,j, Csm,i,j, and Cdm,i,j are AGC, BGC, SOC, and DOC carbon
density (t ha−1) of land-use type m, respectively. The InVEST model assumes that the
carbon density of each land-type is constant over time, and this assumption may bring
uncertainties to the estimation of ecosystem carbon storage at a decadal scale. To consider
the effects of climate change and vegetation growth on carbon sequestration capacity, we
deduced past and future AGC, BGC, SOC, and DOC dynamics based on empirical equations
(Tables S1 and S2). The detailed procedure and results of carbon density estimation at
different periods can be found in Supplementary Materials (Tables S3–S6). The mean values
of terrestrial ecosystem carbon density (sum of above- and below-ground biomass, soil
carbon and dead organic carbon density) corresponding to land-use types in different
periods are shown in Table 2. The carbon storage and its uncertainty for each period
and scenario were also estimated in the InVEST model by integrating both the mean and
uncertainty of carbon density to the land-use dataset.

Table 2. The mean carbon densities of terrestrial ecosystem across the Gansu province of historical
periods (1980, 2000, and 2020) and future periods (2030 and 2050) under SSP126, SSP245, and SSP585
scenarios. Note: SSP represents the shared socio-economic pathways in CMIP6 models.

Top-Level
Categories Sub-Categories

Mean Carbon Densities of Terrestrial Ecosystem (kg C m−2)

1980 2000 2020
SSP126 SSP245 SSP585

2030 2050 2030 2050 2030 2050

Farmland Dry farmland 9.72 9.36 9.51 9.48 9.52 9.51 9.45 9.47 9.36
Forest Wood land 20.76 21.26 23.41 23.44 24.00 23.50 24.07 23.47 24.10

Shrubbery land 19.42 19.76 21.36 21.28 21.57 21.35 21.65 21.32 21.69
Sparsely forested woodland 13.47 13.97 16.32 16.40 17.09 16.46 17.04 16.42 17.06
Other forest land 15.22 14.17 14.71 13.95 13.19 13.99 12.91 13.92 12.71

Grassland High coverage grassland 20.66 19.39 20.20 19.57 18.76 19.61 18.72 19.60 18.84
Middle coverage grassland 12.36 11.34 12.44 12.11 11.75 12.12 11.62 12.12 11.77
Low coverage grassland 6.25 6.04 6.64 6.60 6.53 6.63 6.63 6.64 6.84

Water River and glacier 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Built-up land Cities and towns 6.46 6.23 6.38 6.21 5.96 6.23 6.01 6.23 6.07

Rural settlements 9.96 9.46 9.37 8.94 8.38 8.97 8.34 8.94 8.27
Industry and traffic land 5.89 5.50 5.84 5.56 5.19 5.58 5.17 5.56 5.21

Unused land Sandy land 1.76 1.89 2.31 2.35 2.35 2.38 2.53 2.40 2.69
Gobi 1.81 1.82 2.09 2.07 2.00 2.10 2.14 2.11 2.25
Saline-alkali land 3.47 3.33 3.24 3.06 2.75 3.10 2.91 3.10 2.99
Swampland 16.80 16.13 16.76 16.56 16.18 16.65 16.62 16.71 17.10
Bare land 3.31 3.23 3.54 3.46 3.33 3.49 3.43 3.49 3.54
Rock and gravel 2.55 2.64 3.15 3.22 3.22 3.26 3.48 3.28 3.71
Alpine desert 0.54 1.26 3.20 4.23 5.42 4.24 5.95 4.36 6.71
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3. Results
3.1. LUCC during 1980–2020

The land-use type in the Gansu province was characterized by Gobi, dry farmland,
middle coverage grassland, low coverage grassland, and rock and gravel (Table 3), ac-
counting for 16.99%, 15.21%, 14.17%, 13.35%, and 10.78% of the total area, respectively.
The large areas of Gobi, rock and gravel, and low coverage grassland reflected the fragile
ecological environment of the Gansu province with arid climate and scarce water resources.
In 1980–2020, the areas of grasslands grew significantly, with an increase of 1517.58 km2 in
high and mid-coverage grasslands and a decrease of 1139.49 km2 in low coverage grass-
land. The water area increased from 3470.22 km2 to 3845.25 km2 over the past four decades.
The built-up land of the Gansu province also expanded considerably, with the total area
increasing from 592.83 km2 in 1980 to 2146.05 km2 in 2020. Meanwhile, the dry farmland
shrunk considerably, with a total shrinkage of 730.17 km2 in 1980–2020. In addition, the
unused land shrank from 172,845 km2 in 1980 to 169,988.63 km2 in 2020, with a decrease of
2856.73 km2. Except for rock and gravel, which increased by 2612.88 km2, the rest of the
unused land types showed a decreasing trend.

Table 3. Land-use changes in the Gansu province from 1980 to 2020.

Top-Level Categories Sub-Categories
Area (km2)

1980 2000 2020 Change (1980–2020)

Farmland Dry farmland 64,658.52 65,602.26 63,928.35 −730.17

Forest

Wood land 14,033.79 14,012.55 14,167.35 133.56
Shrubbery land 16,022.97 15,820.65 16,255.62 232.65
Sparsely forested woodland 7340.76 7237.08 7206.84 −133.92
Other forest land 538.02 554.58 874.35 336.33

Grassland
High coverage grassland 25,864.74 25,809.66 26,488.44 623.7
Middle coverage grassland 60,089.22 59,758.92 60,983.1 893.88
Low coverage grassland 57,255.21 57,029.22 56,115.72 −1139.49

Water River and glacier 3470.22 3297.96 3845.25 375.03

Built-up land
Cities and towns 370.62 407.07 904.77 534.15
Rural settlements 2732.04 2945.43 3443.4 711.36
Industry and traffic land 222.21 228.78 1241.28 1019.07

Unused land

Sandy land 28,889.91 28,842.21 28,120.41 −769.5
Gobi 72,811.08 72,579.6 71,410.05 −1401.03
Saline-alkali land 8339.13 8357.94 7575.75 −763.38
Swampland 2612.16 2606.49 2519.6 −92.56
Bare land 3945.69 3721.59 38,92.14 −53.55
Rock and gravel 44,878.32 45,266.76 47,491.2 2612.88
Alpine desert 11,369.07 11,364.75 8979.48 −2389.59

The Gansu province has a long and narrow geographical region with large differences
in spatial distribution of LUCC (Figure 3a–c). The vegetation in the southeast was lush,
dominated by forest, high coverage grassland and middle coverage grassland, while in
the northwest, it was dominated by the Gobi and desert, with less precipitation. The dry
farmland was mainly distributed in the oasis area of the Hexi Corridor and the southeast of
Gansu province. Analyzed from the perspective of the spatial distribution of major LUTC
(Figure 3d), in the southeast, the converted regions were mainly concentrated in middle
coverage grassland, low coverage grassland, and dry farmland, while in the northwest, the
conversion among rock and gravel, Gobi, and low coverage grassland was dominant.

From 1980 to 2000, there was less LUTC in the Gansu province, with 188 conversion
types and 4446.09 km2 shifted-outward area, only accounting for 1.05% of the total area
of the province. Dry farmland, middle coverage grassland, low coverage grassland, and
Gobi were the main land-use types of conversion (Figure 4), shifting outward 513.63 km2

(11.55%), 717.21 km2 (16.13%), 823.32 km2 (18.52%), and 568.44 km2 (12.79%), respectively.
Among them, the dry farmland mainly converted into rural settlements with the transferred
area of 204.48 km2, while the high coverage grassland, middle coverage grassland, and
low coverage grassland mostly converted into dry farmland, and Gobi mostly converted
into rock and gravel. Other land types were relative stable, with fewer types and areas
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of conversion. Between 2000 and 2020, the land-use types of the Gansu province shifted
more frequently, with 322 conversion types and the area of 36898.4 km2 (8.67% of the
total area) transferred outward. The conversion areas of dry farmland, middle coverage
grassland, and low coverage grassland were larger (Figure 4), of which dry farmland
shifted outward by 8939.52 km2, accounting for 24.23% of the shifted area. Additionally,
most of the rural settlements were converted from dry farmland, with the converted area
reaching 440.82 km2.

Figure 3. The spatial-distribution of LUCC (a–c) and LUTC (d) in Gansu from 1980 to 2020. DRF: dry
farmland; WL: wood land; SHL: shrubbery land; SPL: sparsely forested woodland; OFL: other forest
land; HCG: high coverage grassland; MCG: mid-coverage grassland; LCG: low coverage woodland;
WB: river and glacier; CTS: cities and towns; RSS: rural settlements; ITS: industry and traffic land; SD:
sandy land; GB: Gobi; SA: saline-alkali land; SP: swampland; BL: bare land; RG: rock and gravel; and
AD: alpine desert.
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Figure 4. LUTC Sankey diagram of Gansu in 1980–2000 and 2000–2020.

3.2. Effects of LUCC on Carbon Storage during 1980–2020

Based on the InVEST model, the carbon storage of the Gansu province was estimated
to reach 3393.2 ± 935.54 Tg C, 3290.54 ± 919.97 Tg C, and 3602.1 ± 1035.39 Tg C in 1980,
2000, and 2020, respectively (Tables 4 and S7), with a decrease from 1980 to 2000 (−3.03%),
and an increase from 2000 to 2020 (9.47%). Furthermore, the CS of dry farmland, forest,
and grassland reached 617.07 Tg C, 746.2 Tg C, and 1608.13 Tg C, respectively, accounting
for about 86.66% of the total storage. Generally, the carbon storage of forestland, grassland,
and unused land increased by time, while CS in dry farmland decreased.
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Table 4. Carbon storage changes in the Gansu province from 1980 to 2020.

Top-Level Categories Sub-Categories
Carbon Storage (Tg C)

1980 2000 2020 Change (1980–2020)

Farmland Dry farmland 628.71 614.34 608.14 −20.57
Forest Wood land 291.35 297.90 331.69 40.34

Shrubbery land 311.22 312.67 347.28 36.06
Sparsely forested woodland 98.85 101.13 117.60 18.75
Other forest land 8.19 7.86 12.86 4.67

Grassland High coverage grassland 534.33 500.54 535.06 0.73
Middle coverage grassland 742.78 677.87 758.73 15.95
Low coverage grassland 358.00 344.34 372.71 14.71

Water River and glacier 0.00 0.00 0.00 0.00
Built-up land Cities and towns 2.39 2.53 5.78 3.38

Rural settlements 27.21 27.87 32.26 5.05
Industry and traffic land 1.31 1.26 7.25 5.94

Unused land Sandy land 50.85 54.40 64.91 14.06
Gobi 131.55 132.18 149.18 17.63
Saline-alkali land 28.95 27.84 24.55 −4.40
Swampland 43.89 42.03 42.24 −1.65
Bare land 13.05 12.00 13.76 0.71
Rock and gravel 114.41 119.46 149.36 34.95
Alpine desert 6.15 14.29 28.74 22.58

During 1980 to 2020, the spatial distribution of CS in the Gansu province was less
varied (Figure 5a–c). Generally, regions with high values of CS were concentrated in Qilian
Mountains and Gannan Plateau, where the precipitation favored the growth of forest
and the temperature was low, enabling carbon accumulation in ecosystems. While the
low values of CS were mainly distributed in Jiuquan city and the lower reaches of the
Shiyang River Basin, where the main land-use type was dominated by Gobi, sandy, and
other land-use types characterized by very low carbon density. In particular, the lower
reaches of the Shiyang River Basin are surrounded by the Badain Jaran Desert and Tengger
Desert, with strong solar radiation, low precipitation (<150 mm), and strong evaporation
(2000–2600 mm), resulting in extremely sparse vegetation and low CS. It can be seen that
the spatial distribution of CS in the Gansu province was closely related to the distribution
of LUCC. The region dominated by forest and grassland has a high CS, while the region
dominated by unused land, such as sandy, has a low CS. In 1980–2020, the CS in the Central
Gansu province decreased significantly, while increased in western parts, and the alpine
desert exhibited the most significant changes in carbon storage (Figure 5d).

To quantify the individual effect of LUTC on carbon storage changes, we assumed
that the carbon density of each land-type was constant, and the difference between actual
change and the land-use change-induced change can be regarded as the effects of other
environmental drivers, such as climate change, CO2 enrichment, and ecosystems manage-
ments. After estimations, the carbon storage of terrestrial ecosystem in the Gansu province
increased by 208.9± 99.85 Tg C with a growth rate of 6.16% in 1980–2020, among which the
increment in carbon storage bring by LUTC effect was 26.89 ± 5.81 Tg C (Table S8), thus
the effect of multi-factor combination can reach to 182.01 ± 94.04 Tg C. Among them, the
main land-use types with carbon storage decreases included two categories: degradation
of high carbon density grassland and forest to low carbon density grassland (−17.06 Tg C)
and reclamation of middle and high coverage grassland to dry farmland (−9.87 Tg C).
Additionally, the LUTC that contributed to the increase in carbon storage included the
reclamation of unused land into dry farmland (12.61 Tg C) and the restoration of dry
farmland and low carbon density grassland to high carbon density grassland and forest
(36.47 Tg C) (Figure 6).



Remote Sens. 2022, 14, 3164 13 of 25

Figure 5. (a–c): The spatial distribution of CS across Gansu in 1980–2020; (d): The relative rates of CS
change in 1980–2020. Note: Carbon storage per pixel (300 m × 300 m).

Figure 6. Carbon storage change in the Gansu province from 1980 to 2020.

3.3. Carbon Storage Changes under Different LUCC Scenarios

Under the NDS, the CS showed a decrease trend from 2020 to 2030, while the changes
of CS in 2020–2050 were −14.69 ± 12.28 Tg C (−0.4%), 9.01 ± 29.12 Tg C (0.25%), and
57.83 ± 53.42 Tg C (1.6%) under the SSP126, SSP245, and SSP585, respectively. From 2020 to
2050, under EPS, the area of forests was supposed to increase by 13,409.19 km2 (an increase
of 34.83%), and the carbon storage was estimated to increase under all climate scenarios.
This indicated that ecological protection projects (suitable afforestation in barren hills
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and wasteland, protection and restoration of natural forest, and national forest reserves)
were vital to the growth of forest area, leading to carbon storage increase (Figure S2;
Tables 5, 6 and S9–S11).

Table 5. Area of LUCC in the Gansu province in 2030 and 2050 under the NDS and EPS scenarios.

LUCC 2020 (km2)
NDS EPS

2030
(km2)

2020–2030
(%)

2050
(km2)

2020–2050
(%)

2030
(km2)

2020–2030
(%)

2050
(km2)

2020–2050
(%)

Dry farmland 63,928.35 63,506.16 −0.66 68,885.19 7.75 55,827.81 −12.67 46,268.19 −27.62
Wood land 14,167.35 13,542.75 −4.41 13,468.86 −4.93 14,629.68 3.26 17,233.56 21.64
Shrubbery land 16,255.62 16,135.20 −0.74 15,940.62 −1.94 17,232.66 6.01 18,021.96 10.87
Sparsely forested woodland 7206.84 7342.29 1.88 7744.50 7.46 9420.30 30.71 10,658.34 47.89
Other forest land 874.35 787.32 −9.95 737.28 −15.68 3631.59 315.35 5999.49 586.17
High coverage grassland 26,488.44 25,344.72 −4.32 25,008.03 −5.59 25,763.76 −2.74 24,455.52 −7.67
Middle coverage grassland 60,983.10 63,719.01 4.49 60,708.87 −0.45 64,359.36 5.54 68,630.31 12.54
Low coverage grassland 56,115.72 58,050.99 3.45 65,219.85 16.22 58,320.36 3.93 63,200.43 12.63
River and glacier 3845.25 4280.31 11.31 4040.55 5.08 4424.67 15.07 5528.61 43.78
Cities and towns 904.77 1386.09 53.20 1729.35 91.14 1394.91 54.17 3052.26 237.35
Rural settlements 3443.40 3949.65 14.70 3910.14 13.55 3992.31 15.94 5810.13 68.73
Industry and traffic land 1241.28 3384.27 172.64 7718.31 521.80 3364.29 171.03 8127.36 554.76
Sandy land 28,120.41 27,747.27 −1.33 27,511.29 −2.17 27,773.37 −1.23 26,857.89 −4.49
Gobi 71,410.05 67,206.51 −5.89 58,971.15 −17.42 66,814.47 −6.44 58,547.97 −18.01
Saline-alkali land 7575.75 7534.44 −0.55 7289.91 −3.77 7323.39 −3.33 6841.35 −9.69
Swampland 2519.60 2426.58 −3.69 2534.76 0.60 2348.19 −6.80 2030.31 −19.42
Bare land 3892.14 4248.63 9.16 3699.54 −4.95 4166.91 7.06 4792.77 23.14
Rock and gravel 47,491.20 47,675.70 0.39 44,528.04 −6.24 47,593.08 0.21 44,971.11 −5.31
Alpine desert 8979.48 7152.12 −20.35 5773.77 −35.70 7038.90 −21.61 4392.45 −51.08

Table 6. Carbon storage changes in the Gansu province from 2020 to 2030 and from 2020 to 2050
under different LUTC Scenarios (NDS and EPS) and Future Climate Scenarios (SSP126, SSP245,
and SSP585).

LUCC 2020
(Tg C)

NDS (Tg C) EPS (Tg C)

SSP126 SSP245 SSP585 SSP126 SSP245 SSP585

2020–
2030

2020–
2050

2020–
2030

2020–
2050

2020–
2030

2020–
2050

2020–
2030

2020–
2050

2020–
2030

2020–
2050

2020–
2030

2020–
2050

Dry farmland 608.14 −6.19 47.90 −4.51 42.82 −6.65 36.68 −78.97 −167.50 −77.49 −170.91 −79.37 −175.03
Wood land 331.69 −14.29 −8.38 −13.38 −7.53 −13.83 −7.12 11.18 81.99 12.17 83.08 11.68 83.60
Shrubbery land 347.28 −4.00 −3.44 −2.85 −2.25 −3.30 −1.52 19.35 41.45 20.58 42.80 20.10 43.62
Sparsely forested
woodland 117.60 2.85 14.72 3.27 14.34 2.96 14.56 36.94 64.51 37.47 63.99 37.08 64.28

Other forest land 12.86 −1.88 −3.14 −1.84 −3.34 −1.90 −3.49 37.81 66.25 37.95 64.60 37.70 63.39
High coverage
grassland 535.06 −39.02 −65.84 −38.00 −66.93 −38.32 −63.87 −30.82 −76.21 −29.78 −77.28 −30.11 −74.28

Middle coverage
grassland 758.73 12.92 −45.47 13.62 −53.57 13.36 −44.43 20.67 47.60 21.39 38.44 21.12 48.77

Low coverage
grassland 372.71 10.58 53.22 12.24 59.81 12.95 73.15 12.36 40.03 14.03 46.42 14.74 59.35

River and glacier 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cities and towns 5.78 2.83 4.52 2.87 4.62 2.86 4.72 2.88 12.40 2.92 12.57 2.91 12.75
Rural settlements 32.26 3.06 0.52 3.19 0.37 3.06 0.06 3.45 16.45 3.57 16.22 3.44 15.77
Industry and
traffic land 7.25 11.55 32.77 11.64 32.69 11.58 32.97 11.44 34.90 11.53 34.80 11.47 35.10

Sandy land 64.91 0.41 −0.19 1.24 4.61 1.70 9.13 0.47 −1.72 1.30 2.96 1.76 7.37
Gobi 149.18 −9.97 −31.47 −8.17 −23.19 −7.58 −16.57 −10.78 −32.31 −8.99 −24.09 −8.41 −17.52
Saline-alkali land 24.55 −1.52 −4.47 −1.20 −3.30 −1.21 −2.77 −2.16 −5.71 −1.85 −4.61 −1.87 −4.11
Swampland 42.24 −2.05 −1.23 −1.83 −0.10 −1.68 1.10 −3.34 −9.39 −3.13 −8.48 −2.99 −7.53
Bare land 13.76 0.94 −1.45 1.06 −1.08 1.07 −0.67 0.66 2.19 0.77 2.67 0.78 3.20
Rock and gravel 149.36 4.08 −5.82 5.98 5.45 7.18 15.91 3.82 −4.39 5.71 6.99 6.91 17.55
Alpine desert 28.74 1.52 2.56 1.61 5.59 2.47 10.00 1.04 −4.92 1.13 −2.62 1.98 0.73
Carbon Storage
(Tg C) 3602.1 −28.17 −14.69 −15.06 9.02 −15.29 57.83 35.98 105.61 49.27 127.56 48.92 177.01

Under the NDS, the regions of carbon storage growth were mainly located in the
oases of the Hexi Corridor under the SSP126 and SSP245 scenarios, while the southwestern
Gansu was supposed to experience more carbon storage growth under the SSP585 scenario
(Figure S3). In 2050, the carbon storage changes in the Gansu province were expected to
increase in the west and decrease in the east under future climate scenarios. In particular,
the Qilian Mountains and Gannan Plateau had abundant carbon storage and were highly
sensitive to climate change. With the increase in temperature, soil carbon release will
increase. Therefore, these regions were characterized by the most intense carbon lose. Under
the EPS, the Hexi Corridor, Longnan, and Qingyang were the main regions characterized
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by carbon storage growth, and the area of CS reduction was smaller than that under the
NDS (Figure 7).

Figure 7. The spatial changes of the carbon storage across the Gansu province in the future periods
(2030 and 2050) under the LUTC Scenarios (NDS and EPS) and Future Climate Scenarios (SSP126,
SSP245, and SSP585) relative to 2020.

Under the NDS and EPS, AGC and BGC showed increasing trends with the rise
of radiative forcing. SOC was negatively correlated with the temperature under the
NDS, while the sequestration effect of SOC was enhanced as ecosystem management
and restoration under the EPS. This was mainly associated with the effects of precipitation
and CO2 fertilization, which promoted vegetation growth under the high carbon emission
and offset the negative effects of temperature on SOC [57,58]. Accordingly, the negative
effect of SOC under NDS will decrease by 2050, and SOC under EPS will increase by
26.98 Tg C (Figure 8).

Based on the assumption that land type carbon density was constant, the individual
effect of LUTC on carbon storage in terrestrial ecosystems was revealed for future three
decades. In 2020–2050, the carbon storage was estimated to increase by 56.46 ± 9.82 Tg C
(1.67%) and 165.84 ± 40.06 Tg C (4.9%) as results of LUTC effects under the NDS and EPS,
respectively (Figure 9). Under the scenario of NDS, the main cause of future carbon storage
reduction was the degradation of grasslands (−20.39 Tg C), and the main type of conversion
that caused carbon storage growth was the governance of unused land (e.g., conversion
of Gobi to low coverage grassland and dry farmland) (62.83 Tg C). Under the EPS, the
conversion land types that caused the decline in carbon storage were the degradation of
high coverage grassland to middle coverage grassland (−12.01 Tg C) and the conversion
of dry farmland to low coverage grassland, as well as cities and towns (−13.43 Tg C).
The LUTC for carbon storage growth mainly originated from ecological management
restoration. Except for the planned and management of unused land (58.25 Tg C), the
ecological restoration of dry farmland and low carbon density grassland to high carbon
density grassland and forest (110.26 Tg C) totally accounted for 65.43% of the carbon
increment from 2020 to 2050 under EPS.
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Figure 8. The change in the carbon storage of AGC, BGC, SOC, and DOC across the Gansu province
in the future periods (2030 and 2050) and Future Climate Scenarios (SSP126, SSP245 and SSP585)
relative to 2020. (a) NDS and (b) EPS are the different LUTC Scenarios.

Figure 9. The major LUTC for CS change under NDS and EPS scenarios from 2020 to 2050 in the
Gansu province.

4. Discussion
4.1. Terrestrial Ecosystem Carbon Storage in the Gansu Province

Based on the high-resolution standard carbon density dataset derived from remote
sensing indexes and machine learning algorithms, we quantified the high-precision vege-
tation and soil carbon density data of 19 land-use types in the Gansu province, and our
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results are similar with those obtained from field measurements. For example, the average
soil carbon density of the Gansu province calculated in this study was 7.53 kg C m−2,
which was close to the results of Liu et al. [63] with a soil carbon density of 0–100 cm in the
Loess Plateau of 7.70 kg C m−2. Although high-precision carbon density data were used to
estimate carbon storage with the InVEST model, carbon density might fluctuate due to the
influence of carbon deposition, climate change, and other factors, leading to uncertainty
for carbon storage change estimation over time. Therefore, this study also considered the
effects of these factors on vegetation, soil, and dead organic carbon to obtain the carbon
density dynamics of AGC, BGC, SOC, and DOC for different periods in the Gansu province.
These high-precision carbon density datasets and the carbon density dynamics should be
considered in future carbon storage calculation by the InVEST model, which can better
reflect the variability of the spatial and temporal distribution of carbon density with more
regional characteristics, rather than just based on literature statistics.

Before integrating the MCE-CA-Markov model and InVEST model to predict the evolu-
tion trends of land use and carbon storage of the Gansu province in 2030 and 2050 under the
NDS and EPS scenarios, the simulation results were validated with 10-year and a 20-year
cycles. The kappa coefficients were all greater than 0.9 and FoM coefficients were 0.25. Con-
sidering the large area, complex climatic conditions, and significant regional differences, the
simulation accuracy is satisfactory, indicating that MCE-CA-Markov can capture the spatial
evolution characteristics of each land-use type in the Gansu province. Wang et al. [19]
concluded that the CA-Markov and FLUS models had better simulation results in the arid
region after comparing multiple land-use prediction models. Ashraf et al. [64] also used
the CA-Markov model to validate the LUCC simulation in the arid zone of Pakistan. In
this study, we used dynamic carbon density data to estimate the actual changes in carbon
storage, while using time-static carbon density data to determine the individual impact of
land-use change on carbon storage. The results enabled us to better understand the influ-
encing role of LUCC in the changes in carbon, and provide guidance for future land-use
management and the designation of carbon emission reduction measures.

4.2. Effect of LUCC on CS during 1980–2020

From 1980 to 2020, the carbon storage of terrestrial ecosystem in the Gansu province
increased by 208.9 ± 99.85 Tg C, of which the increment in carbon storage brought by
the LUTC effect was 26.89 ± 5.81 Tg C. Therefore, the contribution of other elements to
carbon storage change could reach 182.01 ± 94.04 Tg C. Except for land-use elements,
this study also discussed the effects of temperature, precipitation, CO2 fertilization effects,
and the management of forest and agriculture on carbon storage changes. Firstly, the
spatial pattern distribution of carbon density in terrestrial ecosystems was significantly
correlated with climate (Tables S1 and S2), showing a negative correlation with temperature
and positive correlation with precipitation, which was consistent with the findings of
Tang et al. [65]. From 2000 to 2020, the change in average annual precipitation in the Gansu
province was 41.65 mm, which was much higher than that of 1980–2000 (−13.72 mm). The
significant increase in precipitation promoted the growth of vegetation, which increased
SOC and promoted the growth in carbon storage in the terrestrial ecosystem. During the
past 40 years, the Gansu province warmed by 1.33 ◦C. Referring to the study of [66], the
increased temperature enriched the input of organic matter to soil by increasing vegetation
productivity and then influenced the input and loss of SOC through enhanced microbial
activity to decompose organic matter in the presence of sufficient soil moisture. An increase
in CO2 concentration could increase biomass by promoting plant growth, which in turn
increased the dead organic matter returned to the soil, thus promoting carbon input to
soil and causing the accumulate of SOC. The transition from young growth forest to over-
mature forest improved the forest carbon sequestration capacity, contributing to the growth
in carbon storage [67]. Agricultural management (e.g., straw/stover return to soils) could
increase agricultural soil carbon sequestration by charring straw into biomass char for
application to agricultural fields [68].
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There were four main reasons for the carbon storage growth caused by the LUTC
effect: natural forest protection and restoration, grassland protection and restoration, the
grain for green on the Loess Plateau, and agricultural development in the Hexi Corridor
(Figures 5d and 6). In the Qilian Mountains and the Gannan Plateau, the conversion of mid-
dle and high coverage grasslands to forest increased the above-ground biomass, the amount
of plant residues of soil, and the content of the topsoil organic matter, which increased the
carbon storage of the forest ecosystem. The imbalance between grassland and livestock in
the Gansu province was quite serious over the last century, with overgrazing leading to
grassland degradation. However, after the implementation of forage-livestock balance, and
ecological management and restoration, low-carbon-density grasslands were transformed
into high-carbon-density grasslands. Different from forest ecosystems, the carbon pools of
grassland ecosystems were mainly concentrated in the subsurface and stored in the soil
and plant roots so that the soil organic carbon storage increased with the governance of
grassland, and significantly enhanced the carbon sink of grassland ecosystems.

The implementation of the grain for green promoted the growth of carbon storage
in the Loess Plateau, meanwhile the agricultural development in the Hexi Corridor also
contributed to the growth of carbon storage (Figure 5d). Regional differences were the
reason why the transfer into and out of dry farmland promotes the growth in carbon
storage. The Loess Plateau was richer in precipitation and more suitable for vegetation
growth, so the carbon density of natural vegetation was higher. However, the conversion
of natural vegetation to dry farmland destroyed the underground biomass and the carbon
sink capacity of soil organic matter. Since the implementation of the grain for green projects,
the dry farmland was restored to natural vegetation, and the carbon stock was increased
due to enhanced biomass input into soils. In arid desertification areas, the natural desert
soil was rich in sand particles and had a loose structure with very low organic carbon and
nutrient contents. After being reclaimed for cultivation, management measures such as
irrigation, fertilization, and tillage significantly increased the input of biomass, root carbon
as well as other organic substances, so that the carbon storage of the ecosystem showed an
increasing trend, which was similar to the results of previous studies [69].

4.3. Carbon Storage Changes under Different LUCC Scenarios

If we only consider the effects of LUTC, the carbon storage in 2050 was estimated to
reach 3440.08 ± 968.48 Tg C and 3549.46 ± 998.72 Tg C under the NDS and EPS, with an
increase of 56.24 ± 9.82 Tg C (1.63%) and 165.26 ± 40.06 Tg C (4.66%) in comparison with
2020, respectively (Table S11). If we additionally consider the effects of other environmental
drivers, the carbon storage in 2030 (SSP126, SSP245, and SSP585) and 2050 (SSP126) under
NDS was lower than that in 2020. We deduced that this was mainly associated the climate
warming, which strengthened the water pressure and accelerated soil carbon decomposition
rates, leading to lower carbon storage. From 2020 to 2050, the average precipitation
increment in the Gansu province was small, but the temperature increase was much
significant, which may cause the loss of SOC. Compared with SSP126 and SSP245, the CO2
concentration increases significantly under SSP585, which played a fundamental role in the
carbon storage growth in terrestrial ecosystem.

Moreover, under the same climate change scenario, carbon storage was higher under
EPS than that under NDS (Figure 10), indicating that terrestrial ecosystems have great
potential for carbon sequestration, especially based on the optimization of existing land
resources management. Therefore, the optimal management of land resources to increase
carbon storage should be a key concern of the government. At present, documents such as
the 14th Five-Year Plan for National Economic and Social Development of Gansu province
and the Outline of long-term Goals in 2035 pointed out that the Gansu province should
carry out a new-style urbanization construction under the premise of ecological protection,
which showed that the expansion of urban areas may occupy part of the cultivated land. In
addition, the future population concentration and urbanization will be more significant
than at present. Thus, the protection, restoration, and increase in high carbon density
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forests and grasslands, where possible, may be the inevitable way to achieve carbon peak
and carbon neutrality in China, which was also discussed in other research [29,70].

Figure 10. The carbon storage in the future periods (2030 and 2050) under the LUTC Scenarios (NDS
and EPS) and Future Climate Scenarios (SSP126, SSP245 and SSP585) in Gansu province.

Under the two scenarios, regions with decreasing carbon storage were mainly dis-
tributed in the southern part of Jiuquan, while regions with increasing carbon storage were
mostly located in the oases of the Hexi Corridor and the north-central part of Jiuquan.
Additionally, compared with NDS, the CS in the Qilian Mountains and Gannan Plateau
was expected to increase under the EPS. The increase in CS in central and northern part of
Jiuquan was mainly due to the conversion of unused land to low coverage grassland, while
the decrease in CS in the southern part was mainly because of the transfer of other unused
land to rock and gravel. Under the NDS, the conversion of unused land to dry farmland
and low coverage grassland in the Hexi Corridor will increase CS. Under EPS, in addition
to the conversion of unused land to low coverage grassland, the restoration of forests in the
Qilian Mountains and Gannan Plateau will also contribute to the increase in CS.

At present, there is still some distance from the goal of carbon peak and carbon neutral-
ity. In the contemporary era of new-style urbanization, we cannot reduce carbon emissions
at the expense of economic development. Therefore, carbon sequestration measures based
on ecological protection perspective are the main initiatives to be taken. Because of the
early damage of forest and grassland ecosystems in the Gansu province, the carbon accu-
mulated in vegetation and soil is lower. However, with the promotion and implementation
of ecological restoration projects, there is a strong potential for carbon sequestration in
the future, especially in the deep soil layer. Therefore, reasonable ecological restoration
measures to enhance carbon storage of terrestrial ecosystems remain important steps to
mitigate the increase in atmospheric CO2 concentration and improve the environment.

4.4. Implications for Carbon Management

In future, although the rise of temperature will bring negative effect to the increase
in ecosystem carbon storage, the vegetation growth recovery, CO2 fertilization effect, and
the management of forest and agriculture could offset the negative effect of temperature
to some extent. Therefore, the future carbon sequestration capacity of terrestrial ecosys-
tem mainly depends on the areas of ecological restoration. Due to the long and narrow
geographical area of the Gansu province, the landscapes varied tremendously over space,
so it is necessary to develop targeted initiatives according to local conditions and issues.
In the Loess Plateau, precipitation is richer, while the soil is porous and easy to erode. It
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is necessary to keep carrying forward the project of grain for green to return dry farm-
land to forest and grass in areas unsuitable for cultivation and need protection, such as
dry farmland with a slope of 25 degrees or more, sandy farmland, and important water
reserves. In addition, climate and environmental factors should be taken into account in
assessing the suitability of returning forests or grassland to prevent soil drought, which is
not only detrimental to the restoration of forests and grasses, but also reduces the stability
of the ecosystem.

In the Hexi Corridor, the issue of carbon storage is ultimately a matter of water
resources availability [40]. Precipitation in the Hexi Corridor is scarce, and the runoff
of the inland river basins (the Shule River, Heihe River, and Shiyang River) is limited,
making it difficult to supply the growth of extensive forest and grasslands. Especially,
the growth of forest requires a large amount of water resources. If the water supply
cannot sustain the vegetation development, it may endanger the safety of groundwater
quantity and lead to rapid degradation of the ecosystem, which in turn lead to the return
of carbon fixed in vegetation and soil to the atmosphere. Therefore, apart from effectively
utilizing water resources, it is also necessary to reasonably increase the amount of ecological
water consumption to improve the regional ecological environment and increase carbon
sequestration capacity.

For the Qilian Mountains and Gannan Plateau, we should focus on the protection and
restoration of forest and grassland to improve vegetation cover, and thus increasing carbon
sequestration capacity. In addition, with the influence of climate warming, the melting of
permafrost in alpine mountainous regions could cause the decomposition of organic matter,
which may release large amounts of carbon [71]. Li et al. [40] also suggested that, in alpine
regions, warming will accelerate the release rate of soil carbon, thus effective measures,
such as planting zonal shrub species to increase the coverage, should be taken into practice
to reduce the surface temperature.

4.5. Limitations and Uncertainties

There are some limitations as well as uncertainties in this study. First, although we
considered the effects of temperature, precipitation, CO2 fertilization, and managements
of forest and agricultural lands in estimating carbon density dynamics for each period
(Tables S3–S6), there may be some factors that we overlooked, such as the effects of natural
disasters as wildfires, floods, and droughts [72]. Based on global fire statistics, Shi et al.
concluded that total carbon emissions from forest fires increased by 26% in 2019 compared
to the previous year and believe that persistent fire events may alter vegetation composition,
leading to the reduction in carbon storage in terrestrial ecosystems [73]. However, based
on statistical yearbook, we counted forest fires in the Gansu province from 2000–2017
(Table S12) and concluded that the number of fires and the total burning area in the Gansu
province is quite small, and the area of affected forests was even smaller. Moreover, the
source of most fires was related to human activities, with fewer fire events related to
climate warming. Therefore, we believe that the effect of fire on carbon storage needs to be
considered at the global scale and region with frequent fires events, but the effect of fire on
carbon storage in regions with less forest fire can be negligible.

Secondly, in this study, the multiple linear regression between climate data (precipita-
tion and temperature) and above- and below-ground biomass carbon density were derived
from historical climate data and standard carbon density data, and then the carbon den-
sities of the four major carbon pools in different periods were measured by combining
temperature and precipitation data in the corresponding periods. Three Global Climate
Models (EC-Earth3, GFDL-ESM4, and MRI-ESM2-0) were used for ensemble averaging
when predicting future carbon density data under different scenarios. Although ensemble
averaging could minimize the uncertainties of single climate models, climate prediction
inevitably had certain uncertainties.

In addition, this study set up two development scenarios of natural development
and ecological protection based on the social development pattern. The MCE-CA-Markov
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model can reflect the spatial distribution of land-use changes under different scenarios
(Figure S2). However, it was difficult to accurately quantify and assess the effects of
temperature and precipitation on land types in the process of producing the suitability
atlas on each land type, and the future development patterns of special areas, such as
national forest parks and nature reserves, were not considered separately, which may lead
to uncertainty in future land-use simulations. By introducing deep learning algorithms to
explain the spatial relationship characteristics of geography, climate, social development,
and other elements with the land types, we can portray their intrinsic information more
richly, which is the direction of further research and optimization.

5. Conclusions

Based on the land-use and standard high-resolution carbon density data of 19 land
use types in the Gansu province from 1980 to 2020, this study integrated temperature,
precipitation, CO2 fertilization effect, and forest agriculture management to establish the
tables of carbon density dynamic data and simulated the spatial distribution of LUCC in
2030 and 2050 under NDS and EPS by MCE-CA-Markov. After that, two types of effect
(only LUTC effect and multi-factor combination effect) were used to assess the spatial
and temporal evolution of the carbon storage of historical and future periods. The main
conclusions are as follows:

(1) Throughout 1980–2020, the land-use type of Gansu was dominated by Gobi, dry
farmland, middle coverage grassland, low coverage grassland, and rock and gravel.
Additionally, the area changes of forests, grasslands, water, and constructions were
rising, while dry farmland and unused land showed a trend of decreasing. Besides,
LUTC in 2000–2020 has been more dramatic. The largest area of conversion types in
the southeastern Gansu was middle coverage grassland, low coverage grassland, and
dry farmland, while the northwestern part was dominated by the interconversion of
rock and gravel, Gobi, and low coverage grassland.

(2) The carbon storage of terrestrial ecosystem in the Gansu province increased by
208.9 ± 99.85 Tg C with a growth rate of 6.16% from 1980 to 2020. Among this, the
LUTC effect contributed 26.89 ± 5.81 Tg C, and other environmental controls together
contributed to another 182.01 ± 94.04 Tg C. As for the LUTC effect, the restoration
of dry farmland and low carbon density grassland to high carbon density grassland
and forest (36.47 Tg C) and degradation of high carbon density grassland and forest
to low carbon density grassland (−17.06 Tg C) were the main components of carbon
storage changes. The CS in Central Gansu decreased significantly, while that in west-
ern Gansu increased, and the alpine desert showed the most significant changes in
carbon storage.

(3) Under the NDS, carbon storage was expected to exhibit a decrease trend during
2020–2030, while the changes in carbon storage from 2020 to 2050 were−14.69± 12.28
Tg C (−0.4%), 9.01 ± 29.12 Tg C (0.25%), and 57.83 ± 53.42 Tg C (1.6%) under the
SSP126, SSP245, and SSP585 scenarios, respectively. Under the EPS, the carbon storage
corresponding to the future climate scenarios all showed an increasing trend. The
LUTC effects were predicted to increase ecosystem carbon storage by 56.46 ± 9.82 Tg
C (1.67%) and 165.84 ± 40.06 Tg C (4.9%) under the NDS and EPS from 2020 to 2050,
and the management of unused land was the main reason for the growth of carbon
storage. Therefore, future carbon sequestration capacity of terrestrial ecosystem may
mainly depend on ecological restoration efforts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133164/s1, Figure S1: The spatial distribution of uncertainty
(expressed as standard error) for each carbon density; Figure S2: Spatial distribution of LUCC of 2030
and 2050 in Gansu under NDS and EPS; Figure S3: Spatial distribution of CS in 2030 and 2050 in
Gansu under LUCC Scenarios (NDS and EPS) and Future Climate Scenarios (SSP126, SSP245 and
SSP585); Table S1: The coefficients of multiple linear regression equations for both above- and below-
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ground biomass carbon density as dependent variable of temperature and precipitation; Table S2:
The coefficients of multiple linear regression equations for soil carbon density as dependent variable
of precipitation, temperature, above- and below-ground biomass carbon density, temperature, and
precipitation; Table S3: The AGC density of different land types from 1980 to 2050; Table S4: The BGC
density of different land types from 1980 to 2050; Table S5: The SOC density of different land types
from 1980 to 2050; Table S6: The DOC density of different land types from 1980 to 2050; Table S7: The
CS of each land type in Gansu Province from 1980 to 2020; Table S8: The CS from 1980 to 2020 under
only LUTC effect; Table S9: The CS of each land type in Gansu Province of 2030 and 2050 with Future
Climate Scenarios (SSP126, SSP245, and SSP585) under NDS; Table S10: The CS of each land type in
Gansu Province of 2030 and 2050 with Future Climate Scenarios (SSP126, SSP245, and SSP585) under
EPS; Table S11: The CS of 2030 and 2050 under only LUTC effect; Table S12: Fire statistics of Gansu
Province from 2000 to 2017.
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