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Abstract: Fast and accurate semantic scene understanding is essential for mobile robots to operate in
complex environments. An emerging research topic, panoptic segmentation, serves such a purpose
by performing the tasks of semantic segmentation and instance segmentation in a unified framework.
To improve the performance of LiDAR-based real-time panoptic segmentation, this study proposes a
spatiotemporal sequential data fusion strategy that fused points in “thing classes” based on accurate
data statistics. The data fusion strategy could increase the proportion of valuable data in unbalanced
datasets, and thus managed to mitigate the adverse impact of class imbalance in the limited training
data. Subsequently, by improving the codec network, the multiscale features shared by semantic and
instance branches were efficiently aggregated to achieve accurate panoptic segmentation for each
LiDAR scan. Experiments on the publicly available dataset SemanticKITTI showed that our approach
could achieve an effective balance between accuracy and efficiency, and it was also applicable to other
point cloud segmentation tasks.

Keywords: point cloud data processing; panoptic segmentation; “thing classes” point fusion;
Polar-UNet3+

1. Introduction

A prerequisite for an intelligent robot to perform an assigned task efficiently is an
accurate “understanding” of the working environment and the expected impact. Achieving
such understanding involves investigating a series of theoretical and technical issues, such
as environmental perception, environment representation, and spatial inference of intel-
ligent machines, which are key common technologies for the new generation of artificial
intelligence (AI) and open up a new research territory for the surveying and mapping
community [1]. Due to its fundamental role in the enabling technologies, environmental
perception has attracted much attention in recent years. With the rapid development of
AI and robotics, such abilities need to be transformed from processing two-dimensional
space-time, static past time, and abstract and abbreviated symbolic expression to processing
three-dimensional space-time, dynamic present time, and fine and rich three-dimensional
reproduction of realistic scenes [2]. Furthermore, the revolution of deep learning for robotic
vision and the availability of large-scale benchmark datasets have advanced research on the
key capabilities of environmental perception, such as semantic segmentation [3], instance
segmentation [4], object detection and multi-object tracking [5]. However, most research
focuses on category/object-wise improvement for the individual tasks (e.g., reasoning of a
single category in semantic segmentation, recognition of an individual object in instance
segmentation), which falls short of the practical need to provide a holistic environment un-
derstanding for intelligent robots. Therefore, many researchers aim to bridge the gap with
panoptic segmentation and multi-object detection and tracking. Panoptic segmentation was
originally proposed by combining semantic segmentation with instance segmentation in a
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unified framework [6], which aims to unify point-wise semantic annotation of “stuff classes”
(background classes) and instance ID annotation of “thing classes” (foreground classes).

Though panoptic segmentation has garnered extensive attention in the image domain,
it is still in its infancy for point cloud processing. Depending on the scene and the sensor,
point cloud panoptic segmentation methods can be categorized into indoor RGB-D-based
methods and outdoor LiDAR-based methods. As for indoor scenes, some progress has
been made in terms of algorithms and benchmark datasets for panoptic segmentation of
dense and homogeneous point clouds that are obtained from RGB-D sensors. The typical
approach is to voxelize the point clouds and then extract or learn features directly point
by point for clustering. However, on the one hand, it is difficult to apply the idea of
indoor RGB-D-based methods to outdoor tasks because of sparsity, disorder, and uneven
distribution of LiDAR point clouds in outdoor scenes. On the other hand, the small number
of LiDAR point cloud datasets with accurate annotation information has constrained
otherwise flourishing research on point cloud panoptic segmentation in outdoor scenes.
Since LiDAR is less susceptible than vision sensors to light and weather conditions, it is
now extensively used in environmental perception applications, such as robotic mapping,
autonomous driving, 3D reconstruction, and other areas [3]. To pave way for research on
LiDAR-based scene understanding, Behley et al. introduced the SemanticKITTI dataset [7]
that provides point-wise annotation of each LiDAR scan in the KITTI dataset. The authors
also set up qualification tasks, such as semantic segmentation, panoptic segmentation,
semantic scene complementation, and dynamic object segmentation. For clarification, we
illustrate panoptic segmentation as well as related tasks using sample data (sequence 08)
from SemanticKITTI in Figure 1.
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Figure 1. Visualization of typical LiDAR-based outdoor scene understanding tasks: (a) raw scan 
using viridis as a colormap, (b) semantic segmentation of environmental elements for category-level 
understanding, (c) instance segmentation of environmental elements in specific categories for ob-
ject-level understanding, (d) panoptic segmentation for comprehensives understanding of the envi-
ronmental element categories and specific category entities, and (e) legends for visualizing segmen-
tation results; the segmentation results of the stuff classes below also follow this legend. Note that 
the number of entities varies in each scan, and thus the corresponding color for each entity in the 
thing classes is randomly generated. The color coding of thing classes in instance segmentation and 
panoptic segmentation do not apply to the remainder sections. (a) Raw Scan. (b) Semantic segmen-
tation. (c) Instance segmentation. (d) Panoptic segmentation. (e) Legend of segmentation results. 
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real-time data processing, the downscaled projection method inevitably loses some infor-
mation and thus needs accuracy improvement. In general, several recently proposed Li-
DAR-based panoptic segmentation methods suffer from either low efficiency (resulting 
from the high computational complexity of point clouds) or low accuracy (due to 
downscaling point clouds to achieve real-time performance). It seems that efficiency and 
accuracy cannot be balanced. However, the applications of LiDAR, such as autonomous 
driving and mobile mapping, require real-time processing of point cloud data. The char-
acteristics of LiDAR point cloud, the realistic need for real-time processing, and the accu-
racy requirements for scene understanding motivate the research on real-time panoptic 
segmentation of LiDAR point clouds in this study. In other words, how to improve the 
accuracy of panoptic segmentation while meeting the requirements of real time is the goal 
of our research. Specifically, this study proposes a spatiotemporal sequential data fusion 
strategy based on “thing classes” point fusion and considers that the LiDAR point cloud 
is sparse, susceptible to occlusion, and distance-dependent (i.e., dense in close range and 
sparse in far range), thereby yielding high-density data of “thing classes” objects. To meet 
the real-time requirements, the point cloud was downscaled and projected as a 2D bird’s-
eye view (BEV) image and represented in polar coordinates instead of cartesian coordi-
nates. Furthermore, multiscale features were efficiently extracted and aggregated by im-
proving the codec network with UNet as the backbone, called PolarUNet3+. Within the 

Figure 1. Visualization of typical LiDAR-based outdoor scene understanding tasks: (a) raw scan
using viridis as a colormap, (b) semantic segmentation of environmental elements for category-
level understanding, (c) instance segmentation of environmental elements in specific categories
for object-level understanding, (d) panoptic segmentation for comprehensives understanding of
the environmental element categories and specific category entities, and (e) legends for visualizing
segmentation results; the segmentation results of the stuff classes below also follow this legend.
Note that the number of entities varies in each scan, and thus the corresponding color for each
entity in the thing classes is randomly generated. The color coding of thing classes in instance
segmentation and panoptic segmentation do not apply to the remainder sections. (a) Raw Scan.
(b) Semantic segmentation. (c) Instance segmentation. (d) Panoptic segmentation. (e) Legend of
segmentation results.

Currently, panoptic segmentation of LiDAR point clouds is achieved by either voxeliz-
ing the point clouds (with cubes or cylinders) for 3D convolution [8] or downscaling the
point clouds into images for 2D convolution [9]. Voxelization usually yields high accuracy,
but its intensive memory consumption and expensive computation cost make it impractical
for real-time applications [10]. Downscaled point cloud projections represent each frame as
a regular image of the same scale, and a variety of mature 2D image convolution methods
are available for panoptic segmentation [11]. Although it is feasible for real-time data
processing, the downscaled projection method inevitably loses some information and thus
needs accuracy improvement. In general, several recently proposed LiDAR-based panoptic
segmentation methods suffer from either low efficiency (resulting from the high compu-
tational complexity of point clouds) or low accuracy (due to downscaling point clouds to
achieve real-time performance). It seems that efficiency and accuracy cannot be balanced.
However, the applications of LiDAR, such as autonomous driving and mobile mapping,
require real-time processing of point cloud data. The characteristics of LiDAR point cloud,
the realistic need for real-time processing, and the accuracy requirements for scene under-
standing motivate the research on real-time panoptic segmentation of LiDAR point clouds
in this study. In other words, how to improve the accuracy of panoptic segmentation while
meeting the requirements of real time is the goal of our research. Specifically, this study
proposes a spatiotemporal sequential data fusion strategy based on “thing classes” point
fusion and considers that the LiDAR point cloud is sparse, susceptible to occlusion, and
distance-dependent (i.e., dense in close range and sparse in far range), thereby yielding
high-density data of “thing classes” objects. To meet the real-time requirements, the point
cloud was downscaled and projected as a 2D bird’s-eye view (BEV) image and represented
in polar coordinates instead of cartesian coordinates. Furthermore, multiscale features
were efficiently extracted and aggregated by improving the codec network with UNet as
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the backbone, called PolarUNet3+. Within the proposed network, semantic and instance
branches shared the features for semantic and instance predictions, respectively. Finally,
the semantic segmentation predictions were fused with the instance segmentation pre-
dictions to remove the ambiguity in point-wise segmentation, thereby yielding panoptic
segmentation prediction for a single scan. As for the choice of benchmark dataset, the
nuScenes dataset [12] does not provide ground truths for panoptic segmentation, thus
the experimental evaluation was performed only with the SemanticKITTI dataset. The
experimental results show that our method could achieve an effective balance between
accuracy and time efficiency.

The major contributions of this study are as follows:

(1) A data fusion strategy based on “thing classes” points was proposed, which increased
the proportion of valuable data in the unbalanced datasets. It could be combined
with random sampling to balance the size of input data for training. This data fusion
method could alleviate the adverse impact caused by the uneven category distribution
of a point cloud. The experiments showed that this pattern was also applicable to
other LiDAR point cloud segmentation tasks.

(2) An improved UNet based on polar coordinate representation was used as a strong
shared backbone, which could effectively aggregate shallow and deep features at
full scales. The polar coordinate representation could minimize the negative impact
caused by the inherent “the farther, the sparser” feature of LiDAR point clouds.

The remainder of this paper is organized as follows: Section 2 presents a review of
related work. Section 3 elaborates the details of our method. The experimental results
on the SemanticKITTI datasets are presented in Section 4. Finally, Section 5 gives a brief
conclusion and outlooks.

2. Related Work

Point cloud segmentation is fundamental to scene understanding, which requires
an understanding of both global geometry and a combination of fine-grained features
at each point to enable point-wise segmentation. This section presents research work
related to semantic, instance, and panoptic segmentation for scene understanding with
varying focuses, namely category prediction of environmental elements, object recognition
of environmental elements, and an overall understanding of the environment, respectively.

2.1. Semantic Segmentation of Point Clouds

Early semantic segmentation of point clouds usually employed methods such as sup-
port vector machines, conditional random fields or random forests, which offered limited
semantic annotation classes and low accuracy rates. Deep learning, with its powerful
learning capabilities at the feature level, has progressively become the dominant approach
for semantic segmentation of point clouds. In terms of application scenarios, point cloud
semantic segmentation can be divided into indoor and outdoor applications; segmentation
methods can be divided into four types: point convolution, image convolution, voxel con-
volution, and graph convolution [13]. Point clouds of an indoor scene are usually acquired
by RGB-D sensors and characterized by limited spatial coverage, dense data points, and
evenly distributed point clouds. For indoor scenes, PointNet [14] and PointNet++ [15],
the most representative point convolution methods, extract local feature information for
semantic segmentation through multiscale domain information of points. Researchers
in [16] voxelized the point cloud to achieve indoor semantic segmentation by extracting
aggregated voxel features. In [17], the point cloud was represented as a set of intercon-
nected simple shapes with hyper points and directed graphs with attributes were used to
capture the results with contextual information for semantic segmentation. For outdoor
scenes, image convolution methods are more often used when real-time performance is
considered. This category of methods downscales the 3D point cloud data by projecting
them onto a 2D image plane, which is semantically segmented and then projected back
onto the 3D data. In [18], images of the point cloud data were captured from all angles, and
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the 3D data were reduced in a multi-view format, for which the difficulty lays in selecting
the viewpoint. Some studies [19–21] subjected the point cloud data to spherical projection
to yield the range image for semantic segmentation. PolarNet [22] used a projection of the
point cloud as a BEV and employed circular convolution to achieve semantic segmenta-
tion. If the requirement of real-time is not considered, voxel convolution dominates while
rasterizing the point cloud and convolving it in the form of voxels to address the effects
of disorder in the point cloud data. 3DCNN-DQN-RNN [23] and VolMap [24] were early
works, but their performance was limited by the choice of voxel size and thus needs to be
improved. Cylinder3D [25] considered the data distribution characteristics of the LiDAR
point cloud, subjected the point cloud to cylindrical partitioning, and applied 3D sparse
convolution to yield impressive segmentation performance. Objectively speaking, the
characteristic of LiDAR point clouds, “the farther, the sparser”, is still a challenge to the
voxel convolution methods.

2.2. Point Cloud Instance Segmentation

Similar to image instance segmentation methods, point cloud instance segmentation
methods can be divided into two groups: proposal-based methods and proposal-free meth-
ods. Proposal-based methods first perform 3D object detection and then generate instance
mask predictions for every object. Three-dimensional semantic instance segmentation (3D-
SIS) [26] learns color and geometry features from RGB-D scans to achieve indoor semantic
instance segmentation. Generative shape proposal networks (GSPNs) [27] develop a shape-
aware module by enforcing geometric understanding to generate proposals. 3D-Bonet [28]
formulates the bounding box generation task as an optimization problem and uses two in-
dependent branches to generate proposals and mask predictions. Proposal-based methods
require multistage training and encounter the challenge of redundant proposals, which
make it difficult to obtain real-time instance segmentation results.

Proposal-free methods usually regard instance segmentation as a clustering task based
on semantic segmentation, and the research efforts focus on feature learning and clustering
of instance points. The similarity group proposal network (SGPN) [29] is a pioneering
development in which highly similar points are clustered by constructing a similarity
matrix for the learned point features. A variety of instance segmentation methods based on
similarity assessment have emerged immediately after that report. Reference [30] described
2D–3D hybrid feature learning based on a global representation of 2D BEVs combined
with local point clouds and clustered instance points by using the mean shift algorithm.
PointGroup [31] uses 3D sparse convolution to extract semantic information and guides
instance generation through the offset prediction branch. As a subsequent clustering step to
semantic segmentation, proposal-free methods are usually not computationally intensive,
but the accuracy of their instance segmentation is limited by the performance of semantic
feature extraction and the effect of sparse point clustering. At this stage, the challenge
of the proposal-free methods is to improve the accuracy of instance partitioning while
maintaining the efficiency of partitioning.

2.3. Point Cloud Panoptic Segmentation

As for feature extraction, point cloud panoptic segmentation puts semantic segmen-
tation and instance segmentation under a unified framework in accordance with the four
segmentation methods (i.e., point convolution, image convolution, voxel convolution, and
graph convolution), and the proposal-based or proposal-free methods are used for instance
point inference. Building on existing approaches of semantic and instance segmentation,
research on panoptic segmentation focuses on aspects such as the disambiguation between
semantic and instance predictions and the efficient clustering of instance points. Multi-
object panoptic tracking (MOPT) [32] and EfficientLPS [33] downscale point cloud data
into distance images for feature extraction and fuse semantic predictions with instance
prediction results based on confidence levels to remove point-by-point prediction ambi-
guities. Panoptic-DeepLab [34] clusters neighboring points according to a prediction of
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the regression centers of the instances. DSNet [8] incorporates a learnable dynamic shift
module based on Cylinder3D [25] to select different bandwidths for clustering sparse
instance points. Panoptic-PolarNet is based on PolarNet [22] to downscale point clouds to
BEV images to predict regression centers and offsets for real-time panoptic segmentation.
Based on KPConv [35], 4D-PLS [5] achieves panoptic segmentation and target tracking by
fusing multi-frame point clouds and using a density-based clustering method.

3. Method

Our work was inspired by Panoptic-PolarNet [9] and aimed to achieve improvement
from four perspectives: The “thing classes” point data were fused in specific spatial and
temporal domains; a robust shared backbone network, namely, Polar-UNet3+, was created
by improving the codec network; a parallel semantic segmentation branch and instance
segmentation branch were used to generate separate predictions; and finally, the semantic
segmentation predictions and instance segmentation predictions were merged to yield
the panoptic segmentation results. This section describes in detail the modules and the
workflow of our method.

3.1. Overview

Our method draws on the panoptic segmentation process in Panoptic-PolarNet [9],
and the design of each component was inspired by various distinguished methods, which
resulted in the methodological framework shown in Figure 2. The spatiotemporal se-
quential data fusion module enabled the fusion of “thing classes” points in a specific
spatiotemporal domain. This module worked with the random sampling module to reduce
the amount of data input to the backbone network. The cylindrical partitioning module
transformed the point cloud data from a cartesian coordinate representation into a polar
coordinate representation and combined the point-wise features obtained through mul-
tilayer perceptron (MLP) processing with cylindrical voxelized partitioning to generate
the cylindrical partitioning features. The backbone network module obtained a robust
backbone network, Polar-UNet3+, by using full-scale skip connections, and the seman-
tic segmentation branch shared the features extracted from the backbone network with
the instance segmentation branch to generate predictions. The prediction fusion module
fused the panoptic segmentation results using majority voting to eliminate the semantic
segmentation ambiguity within instances caused by point-wise segmentation.
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Figure 2. Overview of our proposed method. We first aligned “thing classes” point clouds together
within the temporal window. After fusing them with the current scan, random sampling was
performed as input (Section 3.2). Then, a network called Polar-UNet3+ (Section 3.4) was introduced, a
strong backbone used for semantic segmentation and instance detection based on cylinder partitioning
(Section 3.3). Finally, the panoptic prediction was obtained by fusing the above predictions.

3.2. Multi-Scan Fusion via Foreground Point Selection

In panoptic segmentation, movable environmental elements are usually assigned to
the “thing classes”, and immovable environmental elements are assigned to the “stuff
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classes”. In the SemanticKITTI dataset, for example, the number of “thing classes” was
set to eight (“car”, “truck”, “bicycle”, “motorcycle”, “other-vehicle”, “person”, “bicyclist”,
“motorcyclist”), while that of “stuff classes” was set to 11 (‘road”, “sidewalk”, “parking”,
“other-ground”, “building”, “vegetation”, “trunk”, “terrain”, “fence”, “pole”, “traffic-
sign”). To better analyze the distribution of various environmental elements in a single
scan of point cloud data, we sampled every 100 frames in the sequence 00 data and counted
the average percentage of various environmental elements in 46 frames of data, as shown
in Table 1. (Considering the size of the table, we selected the proportion of 10 frames of
data for display and the average proportion of 46 frames of data sampled in the last row.)

Table 1. Statistics on the proportion of various environmental elements in each scan.
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000 3.40 0 0 0 0 0 0 0.07 27.46 2.62 21.14 0 14.65 0.30 21.76 0.96 2.38 0.43 0.08 4.76
500 10.71 0 0 0 0 0 0 0 10.95 0 23.05 0 26.97 3.08 22.14 0 0.05 0.13 0.05 2.87

1000 9.97 0 0 0 0 0.01 0 0 11.92 0 19.92 0 15.71 1.39 27.90 2.95 9.09 0.03 0 1.12
1500 12.15 0.54 1.23 0 0 0 0 0 21.83 10.78 3.74 0 38.10 0.04 7.94 2.26 0.18 0.16 0 1.05
2000 8.94 0 0 0 0 0 0 0 12.29 0 9.77 0 14.57 11.72 31.05 3.02 6.75 0.70 0.01 1.19
2500 7.34 0 0 0 0 0 0 0 12.08 0 7.80 0 27.71 4.75 13.29 0.92 22.35 0.20 0.02 3.54
3000 18.13 0 0 0.70 2.83 0 0.13 0 28.09 2.44 9.38 0 6.31 0.32 20.55 1.30 5.03 0.24 0 4.55
3500 7.01 0 0.04 0 0 0 0 0 12.01 0.01 20.82 0 24.31 4.88 25.54 0 0.14 0.31 0.05 4.88
4000 17.85 0 0 0 0 0 0 0 14.62 0 5.85 0 4.62 2.01 48.23 0.02 5.44 0.23 0 1.13
4500 7.55 0 0 0 1.02 0 0 0 19.74 6.54 16.19 0 35.92 0.98 7.66 2.55 0 0.18 0.10 1.55

Average 8.51 0.03 0.14 0.02 0.15 0.02 0.01 0 16.81 1.44 14.50 0 20.91 3.66 23.74 0.88 6.29 0.34 0.04 2.52

As the table shows, the average percentage of environmental elements in the “thing
classes” was 8.9%, while the average percentage of environmental elements in the “stuff
classes” was 91.1%. It was challenging to achieve accurate instance segmentation of the
“thing classes” environmental elements with less than 10% of the data while still meeting
real-time requirements. Inspired by the Range Sparse Net (RSN) [36], we proposed a
spatiotemporal sequential data fusion strategy based on “thing classes” point fusion to
improve the performance of panoptic segmentation by fusing multiple scans of “thing
classes” point data to yield a relatively complete portrayal of the “thing classes” of instances.
RSN achieves real-time object detection by predicting the “thing classes” points. RSN first
downscales the LiDAR point cloud into an image, then segments the “thing classes” points
and “stuff classes” points, and finally applies a convolution operation to the chosen “thing
classes” points to yield 3D object detection.

As for autonomous driving in urban environments, where LiDAR collects environ-
mental information at a fixed position relative to the vehicle, only part of the instance-level
environmental elements can be captured in a single scan of data. In other words, the
complete information on the instance-level environmental elements cannot be acquired in
a single scan of data. As the position of the LiDAR acquisition changes, multiple views
of the environment are continuously collected. By fusing multiple scans of data within
a certain time window, theoretically, a relatively complete picture of the instances can be
acquired. Our goal was to improve the panoptic segmentation performance by integrating
the “thing classes” data in a specific spatial and temporal domain during training. For
point cloud data St and a time-window threshold n for the current moment t, we fused
the “thing classes” point data ThSm(t − n < m < t − 1) located within time window
(t− n, t− 1) and the point cloud data St for the current moment. The fused point cloud
data were taken as input for single-frame panoptic segmentation. Point cloud fusion was
performed based on the pose description and coordinate transformation method in simul-
taneous localization and mapping (SLAM). Firstly, each point Pi = (x, y, z, i) contained
in the point cloud data St was represented in the form of a homogeneous coordinate,
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namely Pi = (x, y, z, 1), where (x, y, z) is the cartesian coordinate of Pi and i is the intensity
value. Then, the adjacent frame data were transformed into the same coordinate system
for fusion based on the pose description matrix TSt−1St ∈ R4×4 for fusion, where TSt−1St

consists of a rotation matrix RSt−1St ∈ SO(3) and a translation vector kSt−1St ∈ R3. The
pose description matrix for any two frames of data transformed by coordinates could be
expressed as TSmSt = TSmSm+1 TSm+1Sm+2 · · · TSt−2St−1 TSt−1St , and the coordinate transforma-
tion process could be expressed as St

i = {TSmSt Pi | Pi ∈ Sm}. Figure 3 shows a schematic
diagram of instance-level point cloud fusion based on multiple scans of data (taking a car
as an example).
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Figure 3. Schematic diagram of instance-level point cloud fusion based on multiple scans of data.

Considering that in the environment there are elements that are either stationary or
moving at different speeds, the quality of the point cloud data fusion might be degraded
when the “thing classes” elements are moving too fast or when a large time-window
threshold is selected. Hence, the time-window threshold n was set to 3 in this study.
Figure 4 shows a schematic diagram of foreground environmental element point cloud
data fusion based on the past three scans.

The fusion of multiple scans of “thing classes” point data increased the amount of input
data for a single frame during the training, which resulted in an increase of the amount
of input data by approximately 10% for each additional frame of “thing classes” point
data fused. Moreover, only the current frame could be used in the panoptic segmentation
test for single scan data, and it was impossible to fuse multiple frames from the past. To
improve the performance and robustness of our approach, we randomly sampled training
data after a certain number of epochs of initial training were performed with input data
integrated with multiple scans’ “thing classes” points. In other words, the amount of input
data that was fused with multiple scans’ “thing classes” points was randomly sampled
to a single-frame data size, thereby ensuring that the amount of training data in a single
scan was guaranteed to match the amount of validation and test split. Figure 5 shows a
schematic diagram of random sampling of the fused point cloud data. The point cloud
data became sparse, especially the environmental elements in “stuff” classes with high data
proportions (such as roads).
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3.3. Polar–Cylindrical Partitioning

When aiming to analyze the characteristics of the LiDAR point clouds, on the one
hand, we easily found that if the point cloud was viewed from an overhead perspective, the
2D aerial view showed an approximate circular distribution of point data [22]. However,
the LiDAR point cloud also showed a cylindrical distribution centered on the sensor [25].
On the other hand, the inherent “the farther, the sparser” feature of LiDAR point clouds
causes the density of point cloud data to be inversely proportional to distance. That is, point
density decreases as distance increases. Due to the “the farther, the sparser” feature, the
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cube-voxelization method that is suitable for homogeneous and dense indoor point clouds
is not applicable to outdoor LiDAR point clouds. Based on the cylindrical distribution
characteristics of point cloud data and the “the farther, the sparser” feature, PolarNet [22]
and Cylinder3D [25] apply cylindrical voxelization of point clouds and achieve semantic
segmentation by using two-dimensional convolution and three-dimensional sparse con-
volution, respectively. We took full advantage of the above-noted research findings and
adopted cylindrical partitioning of the point cloud data according to polar coordinates.

With respect to the commonly used regular cubic voxelization method, each equal-
sized grid contains significantly fewer data points as the distance increases, while the grids
close to the center of the sensor contain more data points. Moreover, the polar coordinate
system-based cylindrical voxelization method generates equal-angle sectors of different
sizes with varying radii, while the volume of the sector closer to the sensor center is smaller
than that of the sector farther away. Compared with conventional voxelization, benefiting
from equal-angle division, cylindrical partitioning contains fewer data points in closer grids
and more data points in more distant grids. Overall, the point data becomes increasingly
evenly distributed within the grid as the distance varies. Each point CPi = (x, y, z, i) in
the input data Ft at the current moment t is transformed into a polar coordinate point
PPi = (ρ, θ, z, i) by the following function: ρ

θ

 =

 √
x2 + y2

arctan
( y

x
)
. (1)

After the coordinate transformation, the position of the point in the cylindrical partition
is determined based on the point distance z, axis radius ρ, and azimuth θ. Then, the points
within each sector in the partition are given a fixed length feature vector by MLP. This
vector is used as an input feature for the backbone network.

3.4. Backbone Design

The design of the backbone network is central to achieving fast and accurate panoptic
segmentation. Considering the research progress in real-time panoptic segmentation at the
current stage, we chose the lightweight and efficient UNet [37] as the infrastructure and
considered the contribution of UNet3+ [38] in improving network performance to create
our backbone network, Polar-UNet3+. Figure 6 illustrates a schematic comparison of UNet
and Panoptic-PolarNet.
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The key concern to network design is the model’s ability to efficiently extract and
integrate features at all levels. As a classical “U-type” codec architecture, UNet integrates
the features extracted from encoding and decoding sessions by using skip connections;
UNet’s idea of feature integration is to integrate deep features upon the completion of
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coding without paying attention to shallow features. To fully integrate shallow features,
UNet++ [39] uses nested joins to integrate shallow features from the first coding round,
thereby improving performance, but the nested join approach may impair the real-time
performance. UNet3+ goes a step further by using full-scale skip connections instead of
nested joins, complemented by a deep supervision strategy. This enables the integration of
feature information at full scale, thereby further improving performance while ensuring
real-time performance. We proposed Polar-UNet3+ for LiDAR point cloud segmentation
based on UNet3+. Polar-UNet3+ consists of four encoders and three decoders. Each
decoder integrates multiscale features from the encoder or other decoders by upsampling
or maximum pooling, thereby allowing each decoder to gain shallow and deep features at
full scale, as shown in Figure 7. In contrast to UNet and Panoptic-PolarNet, Polar-UNet3+
integrates multiscale features through full-scale skip connections.
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The features extracted by Polar-UNet3+ are shared by parallel semantic and instance
branches. The semantic branches provide point-wise prediction annotations, and the
instance branches offer regression centers for prediction instances. In the semantic branch,
the unbalanced amount of data containing various environmental elements in the point
cloud data poses a challenge for the semantic segmentation of small categories. Each
scan contains a significantly higher proportion of “stuff classes” environmental elements
than “thing classes” environmental elements. The imbalance in the data frequently causes
the semantic segmentation network to tend to learn a high proportion of environmental
element categories in training, and it is difficult to fully learn a very low proportion of
environmental element categories. To minimize the performance loss of the semantic
segmentation network due to the imbalance in the data, we chose a weighted cross-entropy
loss function in the semantic branch Lsem:

Lsem = −∑
i

δi·p(yi)· log(p(ŷi)), δi =
1

log( fi + ε)
(2)
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where δi denotes a weight value that depends on the inverse of the frequency of occur-
rence fi of each category of environmental elements, p(yi) denotes the predicted value for
category i, and p(ŷi) represents the true value for category i.

Concerning the instance branch, based on the regression center with comprehensive
consideration given to the clustering effect and running time, this study employed the
mean shift clustering algorithm to cluster the “thing classes” data points to generate the
instance ID. 4D-PLS [5] and Panoptic-PolarNet [9] employ a density clustering algorithm,
while DSNet [8] incorporates a dynamic shifting algorithm by improving the mean shift
clustering algorithm. Compared with the density clustering algorithm, the mean shift
clustering algorithm is less sensitive to density variations and noise points and is thus more
suitable for sparse LiDAR point clouds. Moreover, unlike the dynamic shifting algorithm,
the mean shift clustering algorithm does not require iterative operations of bandwidth and
kernel functions and differentiation operations, thus effectively reducing the clustering
time. We first chose the mean squared error loss as the loss function Lmse for the regression
center prediction in the instance branch and then used the Lins function as the loss function
for the instance ID:

Lins = ∑
i
(p(yi)− p(ŷi))

2. (3)

In summary, we used the loss function L to train Polar-UNet3+:

L = Lsem + λmseLmse + λinsLins. (4)

3.5. Prediction Merging

Ideally, the inner points of the predicted instance ID should have consistent semantic
labels. In other words, the same instance ID should share the same semantic label, and
the same point should not be assigned to a different instance ID. However, in the class-
independent instance segmentation method, it is inevitable that the semantic labels of
the inner points of the same instance ID are inconsistent because the clustering of points
into instances in the instance branch cannot consider the predicted values of the semantic
categories in the semantic branch. To resolve the ambiguity between point-wise semantic
annotations and shared instance IDs within each instance, we followed the majority voting
strategy in the class-independent panoptic segmentation method to choose the semantic
annotation value with the higher percentage of internal points of the same instance as the
semantic annotation value of the instance ID, thereby correcting the points with inconsistent
semantic annotations. The simple and efficient majority voting strategy ensured consistency
between instance segmentation and semantic segmentation with minimal consumption of
computational resources.

4. Experiments

In this section, we evaluate our approach on the public dataset SemanticKITTI. We
performed the training on a hardware platform with eight GeForce RTX™ 2080 TI graphic
processing units (GPUs) (11 GB of video memory) with 80 epochs. After 50 epochs of
training, the random sampling strategy was applied. After all training, validation and
testing were performed with a single graphics card after training.

4.1. Dataset and Metrics

To fully evaluate the performance of our method and to benchmark it against other
panoptic segmentation algorithms, the SemanticKITTI dataset was chosen in this study for
training validation and testing. The SemanticKITTI dataset provided 43,442 frames of point
cloud data (sequences 00–10 were point cloud ground truths with point-wise annotations).
Moreover, challenges for multiple segmentation tasks were launched at the dataset’s official
website, where participants’ methods were assessed with uniform metrics. In reference to
the requirements on the use of other algorithms and datasets, 19,130 frames of point cloud
data from sequences 00–07 and 09–10 were used as the training dataset, 4071 frames of data
from sequence 08 were used as the validation dataset, and 20,351 frames of point cloud
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data from sequences 11–21 were used as the test dataset. For the semantic segmentation
and panoptic segmentation of single-frame data, 19 categories needed to be labeled. For
the semantic segmentation of multiple scans, 25 categories needed to be annotated (six
additional mobile categories). The evaluation metrics for semantic segmentation were
mean intersection-over-union (mIoU):

mIoU =
1
C

C

∑
i

TPi
TPi + FPi + FNi

(5)

where C denotes the number of categories, TPi, FPi, and FNi denote true positive, false
positive, and false negative values for category i, respectively.

The evaluation metrics for panoptic segmentation [6,40] were the panoptic quality,
recognition quality, and semantic quality, denoted as PQ, RQ, and SQ, respectively, for all
categories; PQTh, SQTh, and RQTh, respectively, for the “thing classes”; and PQSt, SQSt, and
RQSt, respectively, for the “stuff classes”. Additionally, only SQ was used as PQ† for PQ in
the “stuff classes”. PQ, RQ, and SQ were defined as follows:

PQ = RQ× SQ

RQ =
|TP|

|TP|+ 1
2
|TN|+ 1

2
|FP|

SQ =
∑TP IoU
|TP| .

(6)

4.2. Performance and Comparisons

Table 2 presents the results of the quantitative evaluation of the method proposed in
this study on the test dataset. We took FPS = 10 Hz as the grouping criterion to compare
the panoptic segmentation performance of each algorithm to verify the effectiveness of the
method proposed in this study. Note that the results of the comparison methods were ob-
tained from the competition, and taking 10 Hz as the grouping criterion complied with the
data acquisition frequency, which is usually used as the criterion of real-time performance.

Table 2. Comparison of LiDAR-based panoptic segmentation performance on the test split of
SemanticKITTI. Metrics are provided in [%], and FPS is in [Hz].

Method PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU FPS Runtime Publication

RangeNet [20] +
PointPillar [41] 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5 52.4 2.4 417

ms
IROS/CVPR

2019
KPConv [35] +
PointPillar [41] 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0 58.8 1.9 526

ms
ICCV/CVPR

2019
SalsaNext [21] +
PV-RCNN [42] 47.6 55.3 58.6 79.5 39.1 45.9 82.3 53.7 67.9 77.5 58.9 — — CVPR 2020

MOPT [32] 43.1 50.7 53.9 78.8 28.6 35.5 80.4 53.6 67.3 77.7 52.6 6.8 147
ms CVPR 2020

Panoster [43] 52.7 59.9 64.1 80.7 49.9 58.8 83.3 55.1 68.2 78.8 59.9 — — IEEE RAS
2021

DS-Net [8] 55.9 62.5 66.7 82.3 55.1 62.8 87.2 56.5 69.5 78.7 61.6 3.4 294
ms CVPR 2021

GP-S3Net [10] 60.0 69.0 72.1 82.0 65.0 74.5 86.6 56.4 70.4 78.7 70.8 3.7 270
ms ICCV 2021

4D-PLS [5] 50.3 57.8 61.1 81.6 45.3 53.2 84.4 54.0 66.8 79.5 61.3 — — CVPR 2021

LPSAD [11] 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2 50.9 11.8 85 ms IROS 2020
Panoptic-PolarNet [9] 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5 11.6 86 ms CVPR 2021

Ours 54.6 61.5 65.5 81.7 54.0 61.9 86.7 55.1 68.2 78.1 60.6 12.7 79 ms —

Panoptic-PolarNet uses cylindrical partitioning for instance segmentation with UNet
as the backbone network, 4D-PLS adopts multi-scan data fusion to achieve panoptic seg-
mentation of single-scan data, and DS-Net applies 3D sparse convolution of cylindrical
partitioning and the dynamic shifting clustering algorithm with multiple iterations. The
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method proposed in this study drew to varying degrees on these three panoptic segmen-
tation methods. Compared with Panoptic-PolarNet, our approach improved PQ by 0.5%
and FPS by 1 Hz. Compared with 4D-PLS, our approach improved PQ by 4.3%. The PQ
obtained by DS-Net is 1.3% higher than that obtained by our method, but the FPS obtained
by DS-Net is merely 3.4 Hz, which does not allow for real-time panoptic segmentation.

Furthermore, we investigated the key components for performance improvements
based on the experiment results. As discussed in the related work (Section 2), a robust
panoptic segmentation can be realized using either a strong backbone, excellent clustering
methods, or smart data fusion strategies. Firstly, based on the powerful backbone named
Cylinder3D, DS-Net proposes a dynamic shifting clustering method to improve the perfor-
mance of panoptic segmentation. Cylinder3D adopts 3D sparse convolution and obtains a
67.8% mIoU score in single scan semantic segmentation competitions. Therefore, DS-Net
can get a 55.9% PQ score. However, our backbone only got less than a 60% mIoU score in
single scan semantic segmentation competitions. Thanks to the way of “thing classes” data
fusion, we could approach the performance of DS-Net under the condition of meeting the
requirements of real time. Secondly, 4D-PLS performs panoptic segmentation by fusing
multi-scan data. Although multi-scan data are fused, the proportion of “thing classes”
data remains unchanged. In our method, only the “thing classes” data were fused, which
improved the proportion of valuable data for instance segmentation, and then improved
the performance of panoptic segmentation. Finally, compared with Panoptic-PolarNet, our
method adopted a strong backbone that could aggregate features at full scales, called Polar-
UNet3+, which could achieve better performance in the case of shortening the panoptic
segmentation time.

Table 3 shows, on a semantic category-by-semantic category basis, the quantitative
evaluation results obtained by our proposed method on the test dataset. The quantitative
evaluation results demonstrate that this method achieved a balance between accuracy and
efficiency in panoptic segmentation.

Table 3. Class-wise results on the test split of SemanticKITTI by our approach. Metrics are provided
in [%].
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PQ 91.0 43.3 46.6 28.3 33.3 62.3 70.4 56.7 88.4 29.7 59.6 3.02 82.4 48.1 79.0 56.6 42.4 53.2 63.6 54.6
RQ 97.4 60.2 55.9 32.0 37.7 73.1 77.7 61.4 96.4 39.4 75.3 5.01 88.8 63.6 95.5 75.9 57.3 72.2 80.4 65.5
SQ 93.4 71.9 83.4 88.4 88.4 85.3 90.6 92.4 91.7 75.2 79.2 60.4 92.8 75.6 82.7 74.6 74.0 73.7 79.1 81.7
IoU 95.1 49.3 42.9 37.8 38.1 60.1 63.1 29.1 90.7 57.6 73.2 18.7 90.1 61.9 84.3 69.3 67.8 60.0 62.4 60.6

The visualizations of panoptic segmentation results on the validation split of Se-
manticKITTI are shown in Figure 8. The figure consists of five subfigures, which corre-
spond to the panoptic segmentation results of the five scanned frames sampled at 800-frame
intervals in the validation split. Each subfigure consists of four parts: the ground truth
of the panoptic segmentation, the semantic segmentation predictions, the instance seg-
mentation predictions, and the panoptic segmentation predictions. Note that we used
semantic-kitti-api [44] to visualize the panoptic ground truths and predicted labels. During
each visualization, the color corresponding to each instance was given randomly. Therefore,
in Figure 8, each instance’s color of the ground truths and predicted labels is inconsistent.
The qualitative comparison results show that we could accurately predict each instance
and that the error mainly came from the point-wise annotations inside the instance, which
will be a direction of improvement in the future.
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Figure 8. Visualization of our approach on the validation split of SemanticKITTI—sequence 08. To
better distinguish instances, we used red rectangular boxes for identification. From left to right:
panoptic ground truth, semantic prediction, instance prediction, panoptic prediction. The colors of
the stuff classes are consistent with the legends shown in Figure 1e, and the color of each instance
of the thing classes in each subfigure is given randomly. (a) Scan 800. (b) Scan 1600. (c) Scan 2400.
(d) Scan 3200. (e) Scan 4000.

The visualization results of panoptic segmentation on the test split of SemanticKITTI
are shown in Figure 9. The figure consists of eleven subfigures, which correspond to
the panoptic segmentation results of each sequence sampled at the 500th scan in the test
split (since the 500th scan of sequence 16 contained only a few pedestrians and sequence
17 only had 491 scans, the 300th scan was selected in sequence 16–17). Each subfigure
consists of four parts: the raw scan, the semantic segmentation predictions, the instance
segmentation predictions, and the panoptic segmentation predictions. Because the test
split did not provide ground truths for comparison, we did not use red rectangular boxes
for identification.
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Figure 9. Visualization of our approach on the test split of SemanticKITTI—sequence 11–21. From
left to right: raw scan, semantic prediction, instance prediction, panoptic prediction. The colors of the
stuff classes are consistent with the legends shown in Figure 1e, and the color of each instance of the
thing classes in each subfigure is given randomly. (a) Sequence 11. (b) Sequence 12. (c) Sequence 13.
(d) Sequence 14. (e) Sequence 15. (f) Sequence 16. (g) Sequence 17. (h) Sequence 18. (i) Sequence 19.
(j) Sequence 20. (k) Sequence 21.

4.3. Ablation Study

We present an ablation analysis of our approach, which considers the “thing classes”
point cloud fusion, random sampling, Polar-Unet3+, and grid size. All results were com-
pared on the validation set, sequence 08. Firstly, we set the grid size to (480, 360, 32) and
investigated the contribution of each key component of the method. The results are shown
in Table 4. As a key part of the performance improvement, Polar-Unet3+ boosted PQ by
0.8%, a further 0.9% performance improvement was achieved for the “thing classes” point
fusion, and the random sampling module improved the stability of the method.
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Table 4. Ablation study of the proposed approach with key components (using √ to represent each
component) on the validation split of SemanticKITTI. Metrics are provided in [%].

Architecture Polar-UNet3+ Data Fusion Random Sample PQ mIoU

Baseline: Polar-UNet – – – 55.4 62.8

Proposed

√ 56.2 63.2
√ √ 57.1 62.9
√ √ √ 57.5 63.0

After analyzing the performance of each component, we explored the effect of vox-
elization size on segmentation time and performance, and the results are shown in Table 5.
For the LiDAR point cloud featuring “dense in close range and sparse in far range”, finer
voxels did not deliver significant performance gains but rather compromised segmenta-
tion efficiency.

Table 5. Ablation study of the proposed approach with different grid sizes on the validation split of
SemanticKITTI. Metrics are provided in [%], and FPS is in [Hz].

Grid Sizes PQ mIoU FPS

360 × 360 × 32 56.4 62.6 15.1
480 × 360 × 32 57.5 63.0 12.7
600 × 360 × 32 57.7 63.1 9.3

4.4. Other Applications

The improvement of panoptic segmentation performance benefited from the “thing
classes” data fusion and random sampling strategies. To fully evaluate the effectiveness
and generalization of our method, we chose the more challenging semantic segmentation
task and the moving object semantic segmentation task to verify our method. The semantic
segmentation of moving objects involves training on the basis of multiple scans as input and
labeling the semantic on a single scan (the environmental elements of 25 categories need to
be predicted, and the environmental elements of specific categories need to be distinguished
whether they are moving or not). Compared with moving object segmentation, moving
object semantic segmentation not only distinguishes the state of environmental elements
(moving or static) but also needs to accurately label all environmental elements. Compared
with the semantic segmentation of a single scan, moving object semantic segmentation adds
six categories: moving car, moving truck, moving other vehicle, moving person, moving
bicyclist, and moving motorcyclist.

On the basis of ensuring real-time performance, we expanded Polar-Unet3+ for panop-
tic segmentation, including four encoders and three decoders, to MS-Polar-Unet3+, includ-
ing five encoders and four decoders. The main reason for deepening the network was that
semantic segmentation does not need to predict the instance ID, and the reduced amount
of calculation can be used to deepen the network structure, as shown in Figure 10.

In the process of multiple-scan fusion, we defined “thing classes data” as moving-class
data, including “moving car”, “moving truck”, “other moving vehicle”, “moving person”,
“moving bicyclist”, and ‘moving motorcyclist”. In addition, “1 + P + M” was used to
represent the multiple-scan fusion mode, in which P is the number of complete previous
scans and M is the number of scans in which only moving-class points are fused. In the
selection of P, due to the limitation of the hardware platform, it was difficult for us to
integrate the past four scans, as in SemanticKITTI [7], and we set P to 2. In the selection
of M, because the number of points in the moving classes accounts for a small proportion,
we referred to the conclusion in Lidar-MOS [45] and set M to 8. In the training process,
referring to the training parameter setting of the panoptic segmentation task, the grid size
was (480, 360, 32), the number of training epochs was 80, and the random sampling strategy
was applied at the 50th epoch.
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Table 6 shows the quantitative evaluation results of our method on the test split of
SemanticKITTI. Our method could obtain 52.9% mIoU on the basis of ensuring real-time
performance. The moving object semantic segmentation results of Cylinder3D [25] come
from the official evaluation website of SemanticKITTI [46], and we could not confirm its fu-
sion quantity. Note that the existence of moving objects improves the difficulty of semantic
segmentation. Cylinder3D [25] obtains 67.8% mIoU in a single scan semantic segmentation
task, while it obtains only 52.5% mIoU in a multiple-scan semantic segmentation task. Our
method obtained 52.9% mIoU on the basis of ensuring real-time performance.

The quantitative evaluation results of our proposed approach in panoptic segmenta-
tion and moving object semantic segmentation on the test split of SemanticKITTI show that
our method achieved an effective balance between segmentation accuracy and efficiency,
and the foreground data fusion and random sampling strategies could be popularized and
applied to other LiDAR-based point cloud segmentation networks.

Furthermore, we combined the segmentation results of dynamic objects with SLAM to
evaluate the effectiveness of our method. Moving objects in the environment will produce
a wrong data association effect, which will affect the pose estimation accuracy of SLAM
algorithms. If moving objects can be removed accurately, it will undoubtedly improve the
performance of SLAM algorithms. We chose the MULLS [47] as the SLAM benchmark.
We used three kinds of input data for experiments: raw scan, the scan which filtered out
dynamic objects according to the semantic ground truth (abbreviated as Dynamic Moving
GT), and the scan which filtered out dynamic objects according to the semantic predictions
obtained by our method (abbreviated as Dynamic Moving).

For the evaluation of the SLAM algorithm, the quantitative evaluation index of abso-
lute pose error (APE) was applied, using Sim (3) Umeyama alignment in the calculation.
We then used the evo tool [48] to evaluate the estimated pose results, including the root
mean square error (RMSE), the mean error, the median error, and the standard deviation
(Std.). Table 7 is a comparison of the APE used for the translation component of different
inputs based on the MULLS. Figure 11 shows the APE visualization results for different
inputs. This figure consists of eleven subfigures, which correspond to the sequence 00–10
in the SemanticKITTI dataset, respectively. According to Table 7 and Figure 10, it is ob-
vious that filtering out dynamic objects could significantly improve the accuracy of pose
estimation. Considering that most of the dynamic objects in the KITTI dataset were static
in the environment, the experimental results strongly demonstrate the effectiveness of our
method in segmenting dynamic objects, which improved the accuracy of pose estimation
and enhanced the performance of different SLAM algorithms.



Remote Sens. 2022, 14, 1775 23 of 31

Table 6. Comparison of LiDAR-based moving object semantic segmentation performance on the test split of SemanticKITTI. Metrics are provided in [%].

Method C
ar

B
ic

yc
le

M
ot

or
cy

cl
e

Tr
uc

k

O
th

er
-V

eh
ic

le

Pe
rs

on

B
ic

yc
li

st

M
ot

or
cy

cl
is

t

R
oa

d

Pa
rk

in
g

Si
de

w
al

k

O
th

er
-G

ro
un

d

B
ui

ld
in

g

Fe
nc

e

V
eg

et
at

io
n

Tr
un

k

Te
rr

ai
n

Po
le

Tr
af

fic
-S

ig
n

M
ov

in
g

C
ar

M
ov

in
g

Tr
uc

k

M
ov

in
g

O
th

er
-V

eh
ic

le

M
ov

in
g

Pe
rs

on

M
ov

in
g

B
ic

yc
li

st

M
ov

in
g

M
ot

or
cy

cl
is

t

m
Io

U

Cylinder3D Single 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6 — — — — — — 67.8
Multiple 94.6 67.6 63.8 41.3 38.8 12.5 1.7 0.2 90.7 65.0 74.5 32.3 92.6 66.0 85.8 72.0 68.9 63.1 61.4 74.9 0 0.1 65.7 68.3 11.9 52.5

Ours
1 + 2 + 0 95.4 46.9 47.3 38.0 33.9 12.8 0 0 91.8 68.2 75.3 6.9 90.7 64.3 84.5 70.8 66.0 62.7 62.2 81.9 5.6 3.7 55.5 66.9 27.4 50.4
1 + 2 + 8 94.4 57.2 47.5 42.5 32.4 14.0 0 0 91.3 63.2 74.4 16.5 91.2 66.6 85.7 70.9 67.0 63.6 65.4 78.5 8.1 5.9 74.3 65.9 46.3 52.9

Table 7. Comparison of APE for translation part (unit: m).

Sequences
Raw Scan Dynamic Moving GT Dynamic Moving (Our Method)

RMSE Mean Median Std. RMSE Mean Median Std. RMSE Mean Median Std.

00 1.58 1.32 1.01 0.87 1.40 1.09 0.81 0.88 1.32 1.10 0.94 0.73

01 5.71 5.25 5.56 2.23 2.05 1.93 1.91 0.70 2.14 2.03 1.94 0.68

02 11.41 10.23 8.70 5.07 5.70 4.79 4.10 3.09 5.95 5.24 4.26 2.82

03 0.56 0.50 0.48 0.25 0.51 0.46 0.42 0.23 0.54 0.49 0.46 0.23

04 0.45 0.41 0.41 0.18 0.40 0.37 0.35 0.15 0.44 0.41 0.38 0.16

05 0.80 0.67 0.53 0.45 0.60 0.48 0.37 0.36 0.71 0.60 0.51 0.37

06 0.64 0.40 0.25 0.50 0.38 0.29 0.23 0.24 0.49 0.34 0.26 0.35

07 0.89 0.78 0.63 0.44 0.50 0.44 0.43 0.23 0.54 0.48 0.50 0.25

08 2.32 1.99 1.85 1.19 2.12 1.78 1.58 1.16 2.16 1.84 1.62 1.13

09 2.10 1.68 1.38 1.26 1.95 1.58 1.14 1.14 2.03 1.62 1.15 1.22

10 1.22 1.17 1.13 0.33 1.20 1.15 1.12 0.35 1.17 1.12 1.07 0.33
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5. Conclusions

This study contributes to achieving fast and accurate scene understanding for au-
tonomous driving in urban environments. Specifically, this study proposes a spatiotempo-
ral sequential data fusion strategy based on the statistical analysis of the characteristics of
LiDAR point cloud data. This strategy improved the segmentation performance of “thing
classes” fusion while incorporating only a few valuable data points and allowed control
of the training input by random sampling. Moreover, this strategy greatly mitigated the
adverse effects caused by the uneven distribution of categories caused by the inherent
characteristics of urban environment in the limited training data. We believe that this
strategy is also applicable to other LiDAR point cloud segmentation tasks. The codec
network was further improved by establishing full-scale skip connections to efficiently
aggregate the multiscale features shared by semantic and instance branches and to enable
accurate panoptic segmentation of a single scan in the consistency fusion module.

To evaluate the proposed method, the SemanticKITTI dataset with point-wise annota-
tions of semantic and instance information was chosen for the experimentation. Experimen-
tal results on the SemanticKITTI dataset suggest that our proposed method could achieve
an effective balance between accuracy and efficiency. To summarize, this study is an active
exploration into the research on scene understanding for intelligent robots with real-time
panoptic segmentation of LiDAR point clouds as the core. In the future, we will focus on
the fast and accurate scene understanding of complex dynamic environments.
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