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Abstract: SAR Ship Detection Dataset (SSDD) is the first open dataset that is widely used to re-
search state-of-the-art technology of ship detection from Synthetic Aperture Radar (SAR) imagery
based on deep learning (DL). According to our investigation, up to 46.59% of the total 161 public
reports confidently select SSDD to study DL-based SAR ship detection. Undoubtedly, this situation
reveals the popularity and great influence of SSDD in the SAR remote sensing community. Neverthe-
less, the coarse annotations and ambiguous standards of use of its initial version both hinder fair
methodological comparisons and effective academic exchanges. Additionally, its single-function
horizontal-vertical rectangle bounding box (BBox) labels can no longer satisfy the current research
needs of the rotatable bounding box (RBox) task and the pixel-level polygon segmentation task.
Therefore, to address the above two dilemmas, in this review, advocated by the publisher of SSDD,
we will make an official release of SSDD based on its initial version. SSDD’s official release version
will cover three types: (1) a bounding box SSDD (BBox-SSDD), (2) a rotatable bounding box SSDD
(RBox-SSDD), and (3) a polygon segmentation SSDD (PSeg-SSDD). We relabel ships in SSDD more
carefully and finely, and then explicitly formulate some strict using standards, e.g., (1) the training-
test division determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition,
(4) the determination of the densely distributed small ship samples, and (5) the determination of the
densely parallel berthing at ports ship samples. These using standards are all formulated objectively
based on the using differences of existing 75 (161 × 46.59%) public reports. They will be beneficial for
fair method comparison and effective academic exchanges in the future. Most notably, we conduct
a comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD. Our analysis results
can provide some valuable suggestions for possible future scholars to further elaborately design
DL-based SAR ship detectors with higher accuracy and stronger robustness when using SSDD.

Keywords: SAR Ship Detection Dataset (SSDD); Synthetic Aperture Radar (SAR); dataset; ship
detection; deep learning (DL); data analysis
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1. Introduction

Detecting ships in the vast ocean, trade-bustling rivers, and important ports is con-
ducive to traffic control, trade activity monitoring, fishery surveillance, and defense de-
ployment. Many scholars have proposed various ship detection methods using different
sensors, e.g., optical satellites [1], multispectral satellites [2], video surveillance systems [3],
and Synthetic Aperture Radar (SAR) satellites [4]. In contrast to the first three types,
SAR can provide all-day and all-weather monitoring services, which is more suitable for
monitoring ships due to the changeable marine climate on Earth.

Since the United States launched the first SAR satellite on 28 June 1978 [5], a variety
of SAR ship detection methods have emerged [6] based, e.g., on constant false alarm rate
(CFAR) [7], generalized likelihood ratio test (GLRT) [8], visual saliency [9], super-pixel
segmentation [10], polarization decomposition [11], and some auxiliary features (e.g.,
oil spill clues and ships’ wake) [12,13]. At present, these methods are all attributed to
traditional ones because they always need to design ship features manually. In general,
there are four basic steps involved in them [14], i.e., (1) land masking, (2) preprocessing,
(3) prescreening, and (4) discrimination. These four steps are often executed in turn in
practical applications, troublesomely. However, for SAR images with different resolutions,
sea states (e.g., winds and waves), and satellites, these traditional methods are usually
not robust enough and are accompanied by troublesome model parameter adjustments.
Worse still, their detection speed is also not fast enough to meet real-time application
requirements.

With the rise of artificial intelligence (AI), more novel solutions begin to appear.
Since AlexNet, a novel deep convolutional neural network (CNN), achieved victory in
the 2012 ImageNet image classification competition, deep learning (DL) has been a new
research direction in the field of machine learning (ML). It is leading ML to be closer to
its original goal—AI. Nowadays, DL provides an increasing number of elegant solutions
for various communities, e.g., computer vision (image classification and object detection),
speech recognition, natural language processing, audio recognition, bioinformatics, and
medical science. It is no exception for the SAR remote sensing community. For object
detection in images, there have been many well-known CNN-based detectors that have
end-to-end training and inference, including (1) two-stage detectors, e.g., the region-
convolutional neural network (R-CNN) proposed by Girshick et al. [15] in 2014; the fast
region-convolutional neural network (Fast R-CNN) proposed by Girshick et al. [16] in 2015;
the faster region-convolutional neural network (Faster R-CNN) proposed by Ren et al. [17]
in 2015; and the Cascade R-CNN proposed by Cai et al. [18] in 2018. Also (2) One-stage
detectors, e.g., you only look once (YOLO) proposed by Redmon et al. [19] in 2016; single
shot multibox detector (SSD) proposed by Liu et al. [20] in 2016; the RetinaNet proposed by
Lin et al. [21] in 2017; and the anchor-free CenterNet proposed by Duan et al. [22] in 2019.

1.1. Deep Learning for SAR Ship Detection before SSDD

Taking SAR ship detection as an example, since the first public report was presented
at the conference of IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
in Beijing, China on 3 November 2016 by C.P. Schwegmann et al. [23], a large number of
studies based on DL have emerged for SAR ship detection. According to our statistics,
before 1 December 2017, there were four public reports in the SAR remote sensing commu-
nity that apply DL to SAR ship detection, including (1) three conference papers from the
IGARSS and the International Workshop on Remote Sensing with Intelligent Processing (RSIP)
and (2) one journal paper from Remote Sensing. See their list summary in Table 1.
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Table 1. List summary of four public reports using deep learning (DL) before 1 December 2017.

No. Publication Date † Authors Title Journal/Conference ††

1 2016-11-03 C.P. Schwegmann et al. [23]
Very deep learning for ship
discrimination in Synthetic

Aperture Radar imagery

IEEE International
Geoscience and Remote

Sensing Symposium
(IGARSS)

2 2017-06-26 Liu et al. [24]

SAR ship detection using
sea-land segmentation-based

convolutional
neural network

International Workshop on
Remote Sensing with

Intelligent Processing (RSIP)

3 2017-06-26 Kang et al. [25]
A modified Faster R-CNN

based on CFAR algorithm for
SAR ship detection

International Workshop on
Remote Sensing with

Intelligent Processing (RSIP)

4 2017-08-20 Kang et al. [26]

Contextual region-based
convolutional neural

network with multilayer
fusion for SAR ship detection

Remote Sensing

† First public time online. †† Conferences are italicized, and journals are not italicized. Note that different colors mean different years.

In the report of C.P. Schwegmann et al. [23], inspired by the work of Srivastava et al. [27]
from the computer vision community, a very deep High-Way CNN was established to achieve
SAR ship discrimination, i.e., ruling out false alarms. This work was presented at the confer-
ence of IGARSS in Beijing, China. Their work applied DL to the last step of the traditional
SAR ship detection workflow. Similarly, on 26 Junuary 2017, Liu et al. [24] designed a
CNN to achieve ship discrimination. Their network contains two convolution layers, two
maximum pooling layers, and three fully connected layers. Their workflow is inspired
by R-CNN, proposed by Girshick et al. [15] in 2014. Although the above two reports
drew support from the DL technology, they both still designed their detection methods
according to the standard four-step process. That is, CNN is only used to accomplish the
ship-background binary classification task. From their reports, the binary classification
accuracy of the proposed CNN achieved a huge process compared with several traditional
classifiers, e.g., decision trees, AdaBoost, and support vector machine (SVM). Nevertheless,
end-to-end detection was not completed in their work. Their methods are still troublesome.

In the report of Kang et al. [25], the famous Faster R-CNN [17] was first applied to SAR
ship detection. Moreover, the detection outputs of Faster R-CNN were modified according
to their corresponding classification confidences or scores. Here, the bounding box with
a score lower than 0.2 was transferred into CFAR to detect again to avoid the missed
detection. They hold the view that Faster R-CNN always missed small ships because its
deeper layers offered little small-ship information due to multiple max-pooling operations.
Without exaggeration, this work poses a significant impact on the follow-up scholars’
researches. If not considering the post-processing of CFAR, their work can achieve the full
end-to-end training and test, avoiding the traditional four-step process. In particular, the
exemption of the sea-land segmentation step can greatly reflect the greatest advantage of
DL. Later, Kang et al. [26] also further improved the network structure of Faster R-CNN, i.e.,
adding contextual information in the region of interest (ROI) and pooling and generating
proposals in multiple layers with different depths. As a result, their experimental results on
the Sentinel-1 SAR images revealed that their modified version could detect more ships and
remove more false alarms. This work reaches the goal of end-to-end SAR ship detection.

Regretfully, the four reports in Table 1 do not all provide public training datasets
for later possible scholars. This hinders the development of DL in the field of SAR ship
detection. It has been extensively shown that a huge amount of data is needed for DL to be
effective. Only big training data can ensure DL networks learn target features deeply and
accurately. Before 1 December 2017, there were no open datasets dedicated to SAR ship
detection based on DL available.
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1.2. Initial Release of SSDD

Fortunately, on 1 December 2017, Jianwei Li, a co-author of this article, made his own
collected dataset, i.e., SAR Ship Detection Dataset (SSDD), publicly available to everyone at
the conference of SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA) in
Beijing, China [28]. SSDD is the first open dataset in this community. See the list summary
of SSDD in Table 2. Detailed descriptions of SSDD are shown in Table 3.

Table 2. List summary of SSDD.

No. Publication Date † Authors Title Journal/Conference ††

1 2017-12-01 Li et al. [28]

Ship detection in
SAR images based

on an improved
Faster R-CNN

SAR in Big Data Era:
Models, Methods
and Applications
(BIGSARDATA)

† First public time online. †† Conferences are italicized, and journals are not italicized.

Table 3. Detailed descriptions of SSDD [28].

Sensors RadarSat-2, TerraSAR-X, Sentinel-1
Polarization HH, VV, VH, HV
Resolution 1 m–15 m

Places Yantai, China; Visakhapatnam, India
Scale 1:1, 1:2, 2:1
Ship Different sizes and materials

Sea condition Good and bad conditions
Scenes Inshore and offshore

Image number 1160
Ship number 2456

These descriptions are in line with the initial presentation of SSDD.

In his report [28], he applied the classical and famous two-stage detector Faster R-CNN
to complete the SAR ship detection task. In addition to this, he also proposed four strategies
to further improve the performance of the standard Faster RCNN algorithm when it is
used for SAR ship detection, including feature fusion, transfer learning, hard negative
mining, and other optimized implementation details. Finally, his proposed Improved-
Faster R-CNN enhanced the detection performance by ~8% mean average precision (mAP)
on the SSDD dataset.

In fact, the report of Li et al. [28] merely released an initial coarse version of SSDD.
Surprisingly, this first open dataset SSDD gained unprecedented attention from quite
a number of scholars, which was beyond the author’s imagination. According to our
investigation from 2016 to 25 August 2021 (the completion time of this manuscript), after
the release of SSDD, 46.59% of the total 161 public reports confidently choose SSDD to
study DL-based SAR ship detection. Obviously, this situation reveals the popularity and
great influence of SSDD in the SAR remote sensing community.

These 75 (161 × 46.59%) public reports [28–102] that used SSDD will be shown in
Section 2. Here, only reports in English are recorded. See the pie chart in Figure 1. In
Figure 1, the others include (1) the self-collected databases and (2) the other five open
datasets in Table 4, i.e., SAR-Ship-Dataset released by Wang et al. in 2019 [103], AIR-
SARShip-1.0 released by Sun et al. in 2019 [104], HRSID released by Wei et al. in 2020 [63],
LS-SSDD-v1.0 released by Zhang et al. in 2020 [105], and AIR-SARShip-2.0 [106].
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Figure 1. Pie chart of the used proportion of SSDD among all DL-based SAR ship detection public
reports. There are 161 public reports using DL for SAR ship detection. Among them, there are 75 that
used SSDD as their study data source, i.e., 46.6%.

Table 4. Summary list of six open datasets for SAR ship detection.

No. Dataset Publication Date † Authors Title Journal/Conference/Website ††

1 SSDD 2017-12-01 Li et al. [28]
Ship detection in SAR

images based on an
improved Faster R-CNN

SAR in Big Data Era: Models,
Methods and Applications

(BIGSARDATA)

2 SAR-Ship-Dataset 1 2019-03-29 Want et al. [103]

A SAR dataset of ship
detection for deep learning

under complex
backgrounds

Remote Sensing

3 AIR-SARShip-1.0 2 2019-12-01 Sun et al. [104]
AIR-SARShip-1.0:

High-resolution SAR Ship
Detection Dataset

Journal of Radars

4 HRSID 3 2020-06-29 Wei et al. [63]

HRSID: A high-resolution
SAR images dataset for ship

detection and instance
segmentation

IEEE Access

5 LS-SSDD-v1.0 4 2020-09-15 Zhang et al. [105]

LS-SSDD-v1.0: A deep
learning dataset dedicated
to small ship detection from

large-scale Sentinel-1
SAR images

Remote Sensing

6 AIR-SARShip-2.0 5 – Sun et al. [106] –
http://radars.ie.ac.cn/web/data/

getData?dataType=SARDataset_
en&pageType=en (accessed on 25

August 2021)
† First public time online. †† Conferences and websites are italicized, and journals are not italicized. 1 https://github.com/CAESAR-Radi/
SAR-Ship-Dataset (accessed on 25 August 2021). 2 http://radars.ie.ac.cn/web/data/getData?newsColumnId=d25c94d7-8fe8-415f-a897
-cb88657a8141&pageType=en (accessed on 25 August 2021). 3 https://github.com/CAESAR-Radi/SAR-Ship-Dataset (accessed on 25
August 2021). 4 https://github.com/TianwenZhang0825/LS-SSDD-v1.0-OPEN (accessed on 25 August 2021). 5 http://radars.ie.ac.cn/
web/data/getData?newsColumnId=74fe223a-0b01-4830-8d99-1ba276e67ad8&pageType=en (accessed on 25 August 2021).

1.3. Success of SSDD

We hold the view that the tremendous success of SSDD is due to the following seven
factors:

1. The public time of SSDD is the earliest. It is older than the second open dataset
SAR-Ship-Dataset by ~1.5 years. When no other datasets are available, SSDD becomes
the only option.

2. Many countries or organizations have launched various SAR satellites. Several
frequently used satellites for SAR ship detection include Sentinel-1 from the Euro-
pean Space Agency (ESA) [107], Gaofen-3 from China [108], TerraX-SAR from Ger-
many [109], COSMO-SkyMed from Italy [110], ALOS from Japan [111], and Kompsat-
5 from South Korea [112]. They are all commercial satellites. Except for Sentinel-1,
users need to pay to download data, increasing research and development costs.
However, the resolutions of Sentinel-1 are modest. In Sentinel-1 SAR images, ships
are universally small, with unclear geometric features. However, the emergence of
SSDD can solve the above dilemma.

3. The publisher of SSDD is active in the SAR remote sensing research community. Some
public media platforms promote the dissemination of this dataset.

http://radars.ie.ac.cn/web/data/getData?dataType=SARDataset_en&pageType=en
http://radars.ie.ac.cn/web/data/getData?dataType=SARDataset_en&pageType=en
http://radars.ie.ac.cn/web/data/getData?dataType=SARDataset_en&pageType=en
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
http://radars.ie.ac.cn/web/data/getData?newsColumnId=d25c94d7-8fe8-415f-a897-cb88657a8141&pageType=en
http://radars.ie.ac.cn/web/data/getData?newsColumnId=d25c94d7-8fe8-415f-a897-cb88657a8141&pageType=en
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://github.com/TianwenZhang0825/LS-SSDD-v1.0-OPEN
http://radars.ie.ac.cn/web/data/getData?newsColumnId=74fe223a-0b01-4830-8d99-1ba276e67ad8&pageType=en
http://radars.ie.ac.cn/web/data/getData?newsColumnId=74fe223a-0b01-4830-8d99-1ba276e67ad8&pageType=en
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4. The SAR image samples in SSDD are various with different resolutions from 1m
to 15 m, different sensors from RadarSat-2, TerraSAR-X, and Sentinel-1, different
polarizations (HH, VV, VH, and HV), different sea conditions, different ship scenes,
including inshore and offshore, and different ship sizes. Data diversity is one of the
major issues in building reliable regressive/predictive detection models. See Table 3.

5. When several reports using SSDD appeared, follow-up scholars chose to experiment
on this SSDD dataset in order to facilitate the comparison of methodologies with
previous scholars. As a result, there are gradually increasing public reports using this
SSDD dataset.

6. In the early stage, the GPU computing power of computers used by most scholars in
the SAR remote sensing community was limited. The sample number of SSDD is rela-
tively moderate, i.e., 1160, compared with large-scale datasets in the computer vision
community, e.g., ~9000 images in the PASCAL VOC dataset [113] and ~20 w images
in the COCO dataset [114]. This reduces the equipment cost of studies. This enables
ordinary researchers equipped with general performance GPUs to carry out research
and development. This point enables the community, using the SSDD dataset to study
DL-based SAR ship detection, to become rather active. As a result, the increase of
researchers may greatly lead to the increase of research results. Moreover, a relatively
moderate sample number also facilitates the debugging of models, improving work
efficiency, rather than a long time of training waiting. Of course, when using the
SSDD dataset, some few-shot strategies, e.g., data augmentation and transfer learning,
should be considered so as to avoid overfitting.

7. There are typical hard-detected samples in SSDD. These samples all need special con-
sideration in the practical application of SAR ship detection, e.g., (1) small ships with
inconspicuous features, (2) densely parallel ships berthing at ports with overlapping
ship hulls, (3) large scale-difference ships, (4) ship detection under severe speckle
noise, (5) ship detection under complex, and (6) multiple types of sea clutters. Ship
detection in these difficult samples is a research hotspot, regardless of traditional
hand-crafted methods or modern DL-based methods. Therefore, SSDD can provide a
possible data source to study these focus issues.

1.4. Motivations of This Review

Nevertheless, the coarse annotations and ambiguous using standards of SSDD’s initial
version have hindered fair methodological comparisons and effective academic exchanges.
Firstly, there are some coarse annotations in the initial version, e.g., missed ship annotations,
false ship annotations, and not compact bounding boxes. Therefore, the initial version
is “dirty”. The phenomenon of dirty data is widespread in the field of computer vision.
For huge data, deep networks can reduce the negative influence of dirty data through
batch training to improve the generalization ability of models. However, for the few-
shot SAR data, a training oscillation may occur in deep networks, which will lower the
detection performance. Therefore, it is necessary to correct them. Some scholars [51,52]
have corrected them partly, but their revised labels are not publicly available. Secondly,
in the original conference report of SSDD [28], the using standards are ambiguous, even
unreasonable. For example, the training-test division is random, but the cardinality of
the test set affects the resulting accuracy due to too few samples [90]. This results in
unfair methodological comparisons with different scholars. Moreover, the inshore–offshore
protocol was not provided in his raw report, leading to an unfair detection accuracy
comparison between inshore ships and offshore ones by later scholars. More importantly,
at the moment, there is still a lack of comprehensive data analysis of this dataset. This is
not conducive to further research by other scholars.

Moreover, the single-function horizontal-vertical rectangle bounding box (BBox) la-
bels of SSDD’s initial version can no longer satisfy the current research needs of both the
rotatable bounding box (RBox) task and the pixel-level polygon segmentation (PSeg) one.
Horizontal-vertical BBox is not suitable for ships with large aspect ratios and arbitrary ori-



Remote Sens. 2021, 13, 3690 7 of 41

entations. Furthermore, ships at ports are too closely packed to be effectively distinguished,
thereby resulting in missing detections [62]. There are lots of background clutters in the
BBox, reducing the ship feature learning benefits. On the contrary, RBox can better describe
the true shape of the target while providing better accuracy in ship detection. Therefore,
some scholars [31,36,46,56,59,62,79,80,91] have employed RBox to detect ships in SSDD.
Here, the rotatable bounding box ground truths are labeled by themselves, but these RBox
labels are not publicly available. Moreover, PSeg is the highest-level task because it is based
on pixel-level. Obviously, SAR ship detection using PSeg is the most ideal because PSeg can
almost completely suppress background clutter. Up to now, several scholars [52,54,98,99]
have drawn support from it to achieve SAR ship detection. PSeg ground truths are labeled
by themselves, but they are not publicly available, too.

Therefore, to address the above two dilemmas, advocated by the publisher of SSDD,
i.e., a co-author of this review, Jianwei Li, we will make an official release of SSDD based
on its initial version [28]. The official release version of SSDD will cover three types—(1)
bounding box SSDD (BBox-SSDD), (2) rotatable bounding box SSDD (RBox-SSDD), and (3)
polygon segmentation SSDD (PSeg-SSDD). These re-released three types of ship ground
truths labels will be convenient for future scholars to use, according to different task re-
quirements. With the participation of many researchers, we re-label SAR ships in SSDD
more carefully and finely. Furthermore, we explicitly formulate some strict using standards
for the sake of fair methodological comparisons and effective academic exchanges, includ-
ing (1) the training-test division determination, (2) the inshore–offshore protocol, (3) the
ship-size reasonable definition, (4) the determination of the densely distributed small ship
samples, and (5) the determination of the densely parallel berthing at ports ship samples.
To be clear, the determinations of these using standards are based on the using differences
of the existing 75 public reports [28–102].

Most notably, we also conduct a comprehensive data analysis on BBox-SSDD, RBox-
SSDD, and PSeg-SSDD, which is missing in its initial release version. Our analysis results
will be able to provide some valuable suggestions for possible future scholars to further
elaborately design DL-based SAR ship detectors with higher accuracy and stronger robust-
ness when using SSDD. We expect that this review will be useful for relevant scholars who
are studying SAR ship detection based on DL.

The main contributions of this review are summarized as follows:

1. The official version of SSDD is released, including three types: BBox-SSDD, RBox-
SSDD, and PSeg-SSDD. It will be convenient for future scholars to use according to
different task requirements.

2. A comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD is con-
ducted. It can provide some valuable suggestions for possible future scholars to
further design DL-based SAR ship detectors with higher accuracy and stronger ro-
bustness when using SSDD.

3. Some more reasonable and stricter using standards are formulated objectively based
on the using differences of existing 75 (161 × 46.59%) public reports. We also provide
some potential solutions to improve the detection performance of difficult-detected
ship samples.

The rest of this review is arranged as follows. Section 2 provides a summary of public
reports using SSDD. This is convenient for scholars to consult, analyze and summarize
the regularity. Section 3 shows the official ground truth ship labels in SSDD, including
BBox, RBox, and PSeg. This can provide potential scholars with a comprehensive browse
without querying in the data directory. Section 4 introduces the data directory of SSDD. In
the data directory, we also provide some useful tools in Python language for user-friendly
service. Data analysis is presented in Section 5. In this section, we provide some valuable
suggestions when using SSDD. Using standards are listed in Section 6. This will contribute
to the comparison of reasonable methods in the future. Finally, Section 7 summarizes the
whole article.
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Last but not least, the official release version of SSDD (i.e., BBox-SSDD, RBox-SSDD,
and PSeg-SSDD) is available at https://github.com/TianwenZhang0825/Official-SSDD
(accessed on 25 August 2021).

2. Summary of Public Reports Using SSDD

Table 5 shows the summary list of 75 public reports using SSDD. In Table 5, all public
reports are sorted according to the order of their publication time. In order to facilitate
readers’ browsing, the public reports of the same publication year are marked as uniform
color blocks. The number of public publications has increased year by year.

Moreover, we provide some statistical analysis in Figure 2. From Figure 2a, the number
of public publications has increased year by year. The highest growth rate was in 2019.
The growth rate slows down slightly in 2020, which may be because of the influence of
the successive releases of other datasets. By 25 August 2021 (the completion time of this
manuscript), there have been 24 public reports using SSDD. As one can imagine, there
must be >28 public reports from 2020 that will appear throughout 2021. From Figure 2b,
the studies using SSDD are active in both peer-review journals and conferences, showing
SSDD’s great influence. From Figure 2c, except for one conference report from the Indian
scholars’ Anil Raj et al. [87], all reports are from Chinese scholars. This may be because
(1) the publisher of SSDD Jianwei Li is from China; (2) SSDD was firstly released at the
conference of the BIGSARDATA in Beijing, China; (3) it was in Beijing, China, at the 2016
IGARSS conference where the first report from C.P. Schwegmann et al. [23] applied DL to
SAR ship detection, although they [23] did not use SSDD. Therefore, China has become the
most active country or region in research.

From Figure 2d, SSDD appears in a variety of mainstream remote sensing journals,
e.g., MDPI Remote Sensing (RS), IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing (JSTARS), IEEE Transactions on Geoscience and Remote Sensing (TGRS), and
IEEE Geoscience and Remote Sensing Letters (GRSL). This shows that SSSD is widely accepted
by academics in the remote sensing community.

Finally, we also counted the label types used among these 75 public reports in Figure 3,
i.e., BBox, RBox, and PSeg. As shown in Figure 3, there are 62 papers using Bbox and only
9 using RBox; there are only four papers using PSeg. The initial release version of SSDD
only provided BBox labels. This makes the number using BBox account for the majority
(82.7%). However, Bbox is not compact enough for ship detection, and there is a lot of
background clutter in it, resulting in insufficient ship feature extraction. Therefore, later,
Wang et al. [31], An et al. [36,80], Chen et al. [46], Pan et al. [56], Yang et al. [59,79], Chen
et al. [62], and He et al. [91] used RBox to detect ships in SAR ships. Their methods were
inspired by the rotational text detection in the deep learning community, e.g., R2CNN [115]
and EAST [116]. Compared with RBox, PSeg is better because it is based on the pixel
level. Obviously, SAR ship detection using PSeg is the most ideal because PSeg can almost
thoroughly suppress the background clutter. So far, there are only four papers adopting
these kinds of labels, including Su et al. [52], Mao et al. [54], Sun et al. [98], and Wu
et al. [99]. It should be noted that only one of the four realizes the ship segmentation
authentically, i.e., Su et al. [52]. The other three merely used the PSeg labels to guide the
ship detection of BBox. Specifically, Mao et al. [54] generated semantic feature maps to
generate the attention score so as to obtain better ship BBoxs. Sun et al. [98] designed
a semantic attention-based network for inshore ship detection. In this network, PSeg
labels were used to suppress cruciform sidelobes. Wu et al. [99] established the interaction
between instance segmentation and object detection. Finally, the BBox detection accuracy
on inshore scenes is improved greatly.

https://github.com/TianwenZhang0825/Official-SSDD


Remote Sens. 2021, 13, 3690 9 of 41

Table 5. Summary list of 75 public reports using SSDD.

No. Publication Date † Authors Title Journal/Conference ††

1 2017-12-01 Li et al. [28] Ship detection in SAR images based on an improved
Faster R-CNN

SAR in Big Data Era: Models, Methods and Applications
(BIGSARDATA)

2 2018-03-09 Chen et al. [29] Robust single stage detector based on two-stage
regression for SAR ship detection

International Conference on Innovation in Artificial
Intelligence (ICIAI)

3 2018-04-10 Jiao et al. [30] A densely connected end-to-end neural network for
multiscale and multiscene SAR ship detection IEEE Access

4 � 2018-08-29 Wang et al. [31]
Simultaneous ship detection and orientation

estimation in SAR images based on attention module
and angle regression

Sensors

5 2019-03-05 Liu et al. [32] Multi-scale proposal generation for ship detection in
SAR images Remote Sensing

6 2019-03-05 Gui et al. [33] A multilayer fusion light-head detector for SAR ship
detection Sensors

7 2019-04-02 Chang et al. [34] Ship detection based on YOLOv2 for SAR imagery Remote Sensing

8 2019-05-21 Zhang et al. [35] High-speed ship detection in SAR images based on a
grid convolutional neural network Remote Sensing

9 � 2019-06-26 An et al. [36] Drbox-v2: An improved detector with rotatable
boxes for target detection in SAR images

IEEE Transactions on Geoscience and Remote
Sensing

10 2019-07-15 Cui et al. [37] Dense attention pyramid networks for multi-scale
ship detection in SAR images

IEEE Transactions on Geoscience and Remote
Sensing

11 2019-07-20 Chen et al. [38] SAR ship detection under complex background
based on attention mechanism

Image and Graphics Technologies and Applications
(IGTA)

12 2019-07-24 Chen et al. [39]
A deep neural network based on an attention

mechanism for SAR ship detection in multiscale and
complex scenarios

IEEE Access

13 2019-08-05 Gui et al. [40] A scale transfer convolution network for small ship
detection in SAR images

IEEE Joint International Information Technology and
Artificial Intelligence Conference (ITAIC)

14 2019-08-21 Li et al. [41] Small targets recognition in SAR ship image based
on improved SSD

IEEE International Conference on Signal, Information
and Data Processing (ICSIDP)

15 2019-09-23 Zhang et al. [42] A lightweight feature optimizing network for ship
detection in SAR image IEEE Access

16 2019-10-07 Yang et al. [43] SAR image target detection and recognition based on
deep network

SAR in Big Data Era: Models, Methods and Applications
(BIGSARDATA)

17 2019-10-24 Zhang et al. [44] Depthwise separable convolution neural network for
high-speed SAR ship detection Remote Sensing

18 2019-10-24 Chen et al. [45] Regional attention-based single shot detector for
SAR ship detection IET International Radar Conference (IRC)
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Table 5. Cont.

No. Publication Date † Authors Title Journal/Conference ††

19 � 2019-11-04 Chen et al. [46]
MSARN: A deep neural network based on an

adaptive recalibration mechanism for multiscale and
arbitrary-oriented SAR ship detection

IEEE Access

20 2019-11-14 Wang et al. [47] An improved Faster R-CNN based on MSER decision
criterion for SAR image ship detection in harbors

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

21 2019-11-14 Li et al. [48] SAR ship detection based on Resnet and transfer
learning

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

22 2019-11-14 Li et al. [49] Multiscale ship detection based on dense attention
pyramid network in SAR images

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

23 2019-11-14 Liu et al. [50] Scale-transferrable pyramid network for multi-scale
ship detection in SAR images

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

24 2020-01-02 Wei et al. [51] Precise and robust ship detection for high-resolution
SAR imagery based on HR-SDNet Remote Sensing

25 �� 2020-03-19 Su et al. [52] HQ-ISNet: High-quality instance segmentation for
remote sensing imagery Remote Sensing

26 2020-03-30 Su et al. [53] Ship detection based on RetinaNet-plus for
high-resolution SAR imagery

Asia-Pacific Conference on Synthetic Aperture Radar
(APSAR)

27 �� 2020-04-03 Mao et al. [54] Efficient low-cost ship detection for SAR imagery
based on simplified U-Net IEEE Access

28 2020-04-16 Zhang et al. [55] High-speed ship detection in SAR images by
improved YOLOv3

International Computer Conference on Wavelet Active
Media Technology and Information Processing

(ICCWAMTIP)

29 � 2020-04-20 Pan et al. [56] MSR2N: Multi-stage rotational region-based network
for arbitrary-oriented ship detection in SAR images Sensors

30 2020-04-22 Zhang et al. [57] ShipDeNet-20: An only 20 convolution layers and
<1-MB lightweight SAR ship detector IEEE Geoscience and Remote Sensing Letters

31 2020-04-30 Dai et al. [58]
A novel detector based on convolution neural
networks for multiscale SAR ship detection in

complex background
Sensors

32 � 2020-05-25 Yang et al. [59] A novel false alarm suppression method for
CNN-based SAR ship detector IEEE Geoscience and Remote Sensing Letters

33 2020-05-28 Zhao et al. [60] Attention receptive pyramid network for ship
detection in SAR images

IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing

34 2020-06-23 Han et al. [61] Analysis of detection preference to CNN based SAR
ship detectors

Information Communication Technologies Conference
(ICTC)

35 � 2020-06-24 Chen et al. [62] R2FA-Det: Delving into high-quality rotatable boxes
for ship detection in SAR images Remote Sensing
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Table 5. Cont.

No. Publication Date † Authors Title Journal/Conference ††

36 2020-06-29 Wei et al. [63] HRSID: A high-resolution SAR images dataset for
ship detection and instance segmentation IEEE Access

37 2020-07-07 Fu et al. [64]
An anchor-free method based on feature balancing

and refinement network for multiscale ship detection
in SAR images

IEEE Transactions on Geoscience and Remote
Sensing

38 2020-07-21 Zhang et al. [65]
HyperLi-Net: A hyper-light deep learning network
for high-accurate and high-speed ship detection from

Synthetic Aperture Radar imagery

ISPRS Journal of Photogrammetry and Remote
Sensing

39 2020-08-21 Han et al. [66] Small ship detection in SAR images based on
modified SSD

IEEE International Conference on Signal, Information
and Data Processing (ICSIDP)

40 2020-08-21 Han et al. [67] Asymmetric and square convolutional neural
network for SAR ship detection from scratch

International Conference on Biomedical Signal and Image
Processing (ICBIP)

41 2020-08-31 Han et al. [68] Multi-size convolution and deep learning network
for SAR ship detection from scratch IEEE Access

42 2020-10-06 Zhou et al. [69] Lira-YOLO: A lightweight model for ship detection
in radar images Journal of Systems Engineering and Electronics

43 2020-10-14 Mao et al. [70] An anchor-free SAR ship detector with only 1.17M
parameters

International Conference on Aviation Safety and
Information Technology (ICASIT)

44 2020-10-14 Mao et al. [71] Network slimming method for SAR ship detection
based on knowledge distillation

International Conference on Aviation Safety and
Information Technology (ICASIT)

45 2020-10-30 Han et al. [72] Asymmetric convolution-based neural network for
SAR ship detection from scratch

International Conference on Computing and Pattern
Recognition (ICCPR)

46 2020-11-16 Zhang et al. [73] Balance scene learning mechanism for offshore and
inshore ship detection in SAR images IEEE Geoscience and Remote Sensing Letters

47 2020-12-02 Li et al. [74] A lightweight Faster R-CNN for ship detection in
SAR images IEEE Geoscience and Remote Sensing Letters

48 2020-12-03 Zhu et al. [75] Rapid ship detection in SAR images based on
YOLOv3

International Conference on Communication, Image and
Signal Processing (CCISP)

49 2020-12-04 Zhang et al. [76] Balanced feature pyramid network for ship detection
in Synthetic Aperture Radar images IEEE Radar Conference (RadarConf)

50 2020-12-07 Chen et al. [77] Learning slimming SAR ship object detector through
network pruning and knowledge distillation

IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing

51 2020-12-28 Guo et al. [78] A Centernet++ model for ship detection in SAR
images Pattern Recognition

52 � 2021-01-08 Yang et al. [79] A novel CNN-based detector for ship detection
based on rotatable bounding box in SAR images

IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing
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Table 5. Cont.

No. Publication Date † Authors Title Journal/Conference ††

53 � 2021-02-03 An et al. [80]
Transitive transfer learning-based anchor free

rotatable detector for SAR target detection with few
samples

IEEE Access

54 2021-02-03 Zhao et al. [81] A dense connection based SAR ship detection
network

IEEE Joint International Information Technology and
Artificial Intelligence Conference (ITAIC)

55 2021-02-03 Mao et al. [82] Ship detection for SAR imagery based on deep
learning: A benchmark

IEEE Joint International Information Technology and
Artificial Intelligence Conference (ITAIC)

56 2021-02-12 Wang et al. [83] Soft thresholding attention network for adaptive
feature denoising in SAR ship detection IEEE Access

57 2021-02-17 Hou et al. [84] SAR image ship detection based on scene
interpretation

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

58 2021-02-17 Zhang et al. [85]
ShipDeNet-18: An only 1 MB with only 18

convolution layers light-weight deep learning
network for SAR ship detection

IEEE International Geoscience and Remote Sensing
Symposium (IGARSS)

59 2021-03-01 Kun et al. [86] SAR image ship detection based on deep learning International Conference on Computer Engineering and
Intelligent Control (ICCEIC)

60 2021-03-01 Anil Raj et al. [87] A novel ship detection method from SAR image with
reduced false alarm

International Conference on Computational Intelligence
and Energy Advancements (ICCIEA)

61 2021-03-11 Li et al. [88] A novel multidimensional domain deep learning
network for SAR ship detection

IEEE Transactions on Geoscience and Remote
Sensing

62 2021-03-17 Jin et al. [89] An approach on image processing of deep learning
based on improved SSD Symmetry

63 2021-03-23 Chen et al. [90] End-to-end ship detection in SAR images for
complex scenes based on deep CNNs Journal of Sensors

64 � 2021-03-24 He et al. [91] Learning polar encodings for arbitrary-oriented ship
detection in SAR images

IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing

65 2021-03-31 Tian et al. [92]
Image enhancement driven by object characteristics

and dense feature reuse network for ship target
detection in remote sensing imagery

Remote Sensing

66 2021-04-05 Li et al. [93] SAR image nearshore ship target detection in
complex environment

IEEE Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC)

67 2021-04-27 Zhao et al. [94] Ship detection from scratch in Synthetic Aperture
Radar (SAR) images International Journal of Remote Sensing

68 2021-05-13 Jiang et al. [95]
High-speed lightweight ship detection algorithm
based on YOLO-v4 for three-channels RGB SAR

image
Remote Sensing

69 2021-06-09 Zhu et al. [96] An effective ship detection method based on
RefineDet in SAR images

International Conference on Communications,
Information System and Computer Engineering (CISCE)
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Table 5. Cont.

No. Publication Date † Authors Title Journal/Conference ††

70 2021-06-30 Yu et al. [97] TWC-Net: A SAR ship detection using two-way
convolution and multiscale feature mapping Remote Sensing

71 �� 2021-06-30 Sun et al. [98] Semantic attention-based network for inshore SAR
ship detection

International Conference on Digital Image Processing
(ICDIP)

72 �� 2021-07-01 Wu et al. [99]
A deep detection network based on interaction of

instance segmentation and object detection for SAR
images

Remote Sensing

73 2021-07-13 Sun et al. [100]
DSDet: A lightweight, densely connected sparsely

activated detector for ship target detection in
high-resolution SAR images

Remote Sensing

74 2021-07-14 Zhang et al. [101] Quad-FPN: A novel quad feature pyramid network
for SAR ship detection Remote Sensing

75 2021-07-26 Sun et al. [102] An anchor-free detection method for ship targets in
high-resolution SAR images

IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing

† First public time online. †† Conferences are italicized, and journals are not italicized. � Rotatable bounding box (RBox) is used. �� Polygon segmentation (PSeg) is used. Note that different colors mean
different year.

Figure 2. Statistical analysis of 75 public reports using SSDD. (a) Number of public reports according to publication year; (b) distribution proportion between journal reports and conference
ones; (c) national and regional distribution of researchers; (d) distribution of peer-reviewed journals.
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Figure 3. Statistical distribution of label types (i.e., BBox, RBox, and PSeg) used in existing 75 public
reports.

The fact that there are rather few scholars using RBox and PSeg labels for SAR ship
detection comes from the lack of ground truths. The initial release version of SSDD did not
provide the two. This defect hinders more research by relevant scholars when using RBox
and PSeg. Motivated by this, therefore, this article will handle this defect.

3. SSDD

In this section, we will display the ship ground truths and descript label formats
of BBox-SSDD, RBox-SSDD, and PSeg-SSDD in Section 3.1, Section 3.2, and Section 3.3,
respectively. In order to facilitate the reader’s overall browsing, all images in the test set
(i.e., images with the name suffix of 1 and 9) are displayed.

3.1. BBox-SSDD

Figure A3 in Appendix A shows the bounding box ground truths in the test set of
BBox-SSDD. The inshore samples are marked in magenta.

Figure 4 shows the label format of BBox-SSDD, where we use the PASCAL VOC
format to explain. The initial release version of SSDD adopted this format. One BBox is
described by two points in the x-y image coordinates, i.e., A(xmin, ymin) and B(xmax, ymax).
Thus, the width (w) and height (h) of the BBox are

w = xmax− xmin (1)

h = ymax− ymin (2)

Some CNN-based detectors adopt some other descriptions of BBox, e.g., (xmin, ymin,
w, h) of YOLO [19]. Users can flexibly convert them according to the labels we provide.
Of course, we also provide conversion tools in Python language. In fact, this review can
be used as a detailed tutorial of SSDD for beginners. To be clear, in Figure 4a, the image
channel number is the default 3, where 3 refers to RGB. Considering that SAR images only
have a gray-level channel, we copy this channel twice to obtain RGB 3-channel images.
This is to facilitate the use of detectors in the field of computer vision. Moreover, the current
ImageNet pre-training weights are all based on 3-channel inputs. According to experience,
using the pre-training weights can accelerate the convergence speed of networks and
reduce the risk of overfitting with fine-tuning. Of course, one can extract the data of
one channel to use for designing the “specialized” SAR ship detectors from scratch. This
practice is worth advocating since it can eliminate learning bias between different data
domains.
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Figure 4. The label of BBox-SSDD where we take the PASCAL VOC format to introduce. (a) BBox in a SAR image; (b) xml
annotation details.

3.2. RBox-SSDD

Figure A1 in Appendix A shows the rotational bounding box ship ground truths in the
test set of RBox-SSDD. The inshore samples are marked in magenta. In Figure A1, boxes
are rectangles, not parallelograms. Some do not look like right angles because images are
scaled (the aspect ratio is not maintained) for tidiness and beauty.

Figure 5 shows the label format of RBox-SSDD. The initial release version of SSDD
did not provide such labels for scholars. One RBox can be described by four vertices, i.e.,
A(x1, y1), B(x2, y2), C(x3, y3), and D(x4, y4). We call this scheme four-point type. Here, the
four corners of a quadrilateral are right angles, i.e., ∠A = ∠B = ∠C = ∠D = 90◦. Thus, the w
and h of RBox are

w =

√
(x2− x3)2 + (y2− x3)2 (3)

h =

√
(x1− x2)2 + (y1− x2)2 (4)

The above representation may be the most intuitive, but some detectors adopt different
coding modes. Therefore, we also provide another description mode of one RBox, i.e.,
(x, y, w, h, θ) in Figure 5a, where x, y is the coordinate of the center P, and θ is the direction
angle. We call this scheme center-angle type. In fact, this center-angle type is equivalent to
four-point one.
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Figure 5. The label of RBox-SSDD where we take the PASCAL VOC format to introduce. (a) RBox in a SAR image; (b) xml
annotation details.

In RBox-SSDD, θ ∈ [0◦, 90◦] is based on the angle system rather than the radian
system. Of course, one can convert it easily into the radian system according to application
requirements. Furthermore, θ is the angle between the principal ship axis and negative
y-axis. It is more in line with human visual habits, based on the counter-clockwise direction.
One can also use 90◦ − θ to represent the ship direction angle.

It should be noted that Wang et al. [31], An et al. [36,80], Chen et al. [46], Pan et al. [56],
Yang et al. [59,79], Chen et al. [62], and He et al. [91] used RBox to detect ships in SAR
ships, but their angle estimation results are discrete, e.g., 30◦, 60◦, 90◦, and so on. Their
angular clearance is too large to describe the direction of the ship finely. However, the
angle labels we provide are the continuous float-type rather than the discrete int-type, which
will lead to better direction estimation accuracy. Obviously, RBox-SSDD has the potential
to promote greater progress for ship direction estimation in the future. Scholars need to
design stronger regression models to achieve such fine angle regression.

Given the above, according to the labels we provide, scholars can use RBox-SSDD
more flexibly.

3.3. PSeg-SSDD

Figure A2 in Appendix A shows the ship polygon segmentation labels in the test set
of PSeg-SSDD. The inshore samples are marked in magenta. In Figure 3, different ships are
covered with different colors for clarity. The outline of the ship polygon is marked in green.
From Figure A2, obviously, it is the most satisfactory to adopt polygon segmentation labels
to detect ships. This task is at the pixel level, similar to traditional CFAR detections.

Figure 6 shows the label format of PSeg-SSDD. The initial release version of SSDD
did not provide such labels for scholars. From Figure 6, there are a series of points used to
describe the outline of the ship. These points can be connected into a closed polygon. We
use a famous and open annotation tool, LabelMe [117], to obtain these points. To be clear,
due to scale differences of ships in SSDD, ships with different scales or sizes must result in
different numbers of outline points. Large ships offer more points while small ones offer
fewer points. Moreover, in Figure 6b, the order of these points is counterclockwise.

Based on PSeg-SSDD, one can study the semantic segmentation task by using a fully
convolutional network (FCN) [118] or U-Net [119]. Semantic segmentation refers to classify
each pixel in the image. For SAR ship detection, that will be a ship-background binary
pixel-level classification task. If one pixel is predicted with a “1” label, then it will be
regarded as one ship pixel. On the contrary, for a “0” label, it is the background. Taking
the PASCAL VOC dataset format as an example, we provide the semantic segmentation
mask in Figure 7. In Figure 7b, the black regions in the mask belong to background pixels
meanwhile the green ones belong to ship pixels. Because there is only one ship category,
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the colors in the mask are only black and green. This is different from the 20 colors in the
PASCAL VOC dataset.

Figure 6. The label of PSeg-SSDD where we take the PASCAL VOC format to introduce. (a) PSeg in a SAR image; (b) xml
annotation details.

Figure 7. Semantic segmentation of PSeg-SSDD. (a) An original SAR image; (b) its semantic segmentation mask.

Furthermore, based on PSeg-SSDD, one can study the instance segmentation task
by using Mask R-CNN [120] or PANet [121]. Instance segmentation means that the ma-
chine automatically frames different instances from the image with the object detection
method and then marks them pixel by pixel in different instance areas with the semantic
segmentation method.

In fact, the labels of polygon segmentation can act as labels for BBox and RBox.
Suppose the labels of polygon segmentation are denoted as the set LPSeg,

LPSeg = {(x1, y1), (x2, y2), · · · , (xn, yn)} (5)

where there are n points make up this set L to describe this ship. Therefore, the labels of
BBox LBBox can be obtained by

LBBox =

{
(xmin, ymin, xmax,ymax) | xmin = min

i=1,2,···n
{xi}, ymin = min

i=1,2,···n
{yi}, xmax = max

i=1,2,···n
{xi}, ymax = max

i=1,2,···n
{yi}

}
(6)

The above formula is obvious because a BBox is indeed the smallest circumscribed
horizontal rectangle of a PSeg. Therefore, for the instance segmentation task, the training
label is shown in Figure 8.
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Figure 8. Instance segmentation of PSeg-SSDD. (a) An original SAR image; (b) its instance segmentation annotation.

In Figure 8, each ship is given a polygon outline label and a horizontal rectangular
box at the same time. For the same ship, the color of the polygon outline label and the
horizontal rectangular box is the same. This shows that the two types of labels represent the
same ship. Moreover, the colors of different ships are different because they are different
instances, determined by the definition of the instance segmentation.

Finally, the labels of RBox LRBox can be obtained from the PSeg labels LPSeg. The former
is the smallest circumscribed rectangle of the latter, i.e.,

LRBox = (x, y, w, h, θ)
where (x, y), (w, h), θ = cv2.minAreaRect

(
LPSeg

) (7)

where cv2 is the python-opencv package, and minAreaRect is the function to calculate the
smallest circumscribed rectangle. The input of minAreaRect is a point set, and the output
is a list. The first element of this list is a tuple (x, y), i.e., the center coordinate of the box.
The second element is a tuple (w, h), i.e., the width and height of the box. The last one is a
float-type number θ, i.e., the ship direction angle ranging from 0◦ to 90◦.

4. Data Directory

Figure 9 is the diagrammatic sketch of the data directory. In the root directory (Official-
SSDD), there are four folders—BBox-SSDD (labels of BBox), RBox-SSDD (labels of RBox),
PSeg-SSDD (labels of PSeg), and BBox-RBox-PSeg-SSDD (labels of BBox, RBox, and PSeg)
provided to study the “all-in-one” ship detection. We provide two types of annotations—the
PASCAL VOC format (voc_type) [113] and the COCO format (coco_type) [114].

In Figure 9, due to limited pages, we only expanded the specific contents of the first
folder (BBox-SSDD) to display. From Figure 9, we also provide the SAR images with ship
ground truths in the JPEGImages_BBox_GT. Moreover, it should be noted that after further
update and maintenance in the future, the data directory may change slightly.
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Figure 9. Diagrammatic sketch of the data directory. We provide two types of annotations, i.e., the
PASCAL VOC format (voc_type) [113] and the COCO format (coco_type) [114]. It should be noted that
after further update and maintenance in the future, the data directory may change slightly.

5. Data Analysis

The initial reports of SSDD lack comprehensive data analysis. This is not conducive to
the further research of follow-up scholars. Therefore, in this review, it will be complemented.
Frist, we will analyze the image size (width and height) distribution in the following parts.
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Afterward, we will make a specific and detailed data analysis on BBox-SSDD, RBox-SSDD,
and PSeg-SSDD, respectively, in Sections 5.1–5.3.

The size of the sample image in the dataset has a significant impact on the final
detection performance. Generally, a deep network often needs a fixed image input size to
maintain the unity of feature dimensions, e.g., SSD-300’s input dimension is 300 × 300,
SSD-512 is 512 × 512 [20], and YOLO is 416 × 416 or other multiples of 32 [19]. When the
images in the dataset are not uniform, one usually needs to use some image interpolation
methods to resize the original image. Therefore, the dimension of the resized scale is
rather important. This size should preferably be determined according to the image size
distribution of the dataset. For example, in the computer vision community, the default
input size of the COCO dataset is 1333 × 800, which is an empirical optimal value adopted
by a wide range of scholars. If this resized scale is too small, the information of many ships
will be lost after a series of convolutions, resulting in their missed detections. If this resized
scale is too large, the parameters of the network will increase rapidly, resulting in slow
convergence speed, longer training time, and sacrificing the computational cost.

Nowadays, when using SSDD, many scholars in the SAR ship detection community
adopt different input sizes in their different networks, e.g., 160 × 160 in Zhang et al. [65],
300 × 300 in Wang et al. [31], 500 × 500 in Jian et al. [89], 512 × 512 in Zhang et al. [73],
600 × 600 in Yu et al. [97], 600 × 1000 in Wei et al. [51], and so on. This leads to an unrea-
sonable comparison of methods in accuracy. Generally, for the same network, the accuracy
of 300 × 300 is often inferior to 500 × 500 or larger sizes. Therefore, it is necessary to make
a detailed analysis of the image size. Moreover, an appropriate input size is also conducive
to the design of better data enhancement methods, e.g., the work of Yang et al. [122].

Figure 10 shows the SAR image sample size statistics in SSDD. The three types of
datasets share the same analysis results. In Figure 10, the test set is an image set with
their suffix is 1 or 9. See the samples marked in magenta. The rest constitutes the training
set. As a result, the training-test ratio is 8:2, i.e., 928 training samples and 232 samples. In
Figure 10, we investigated the width-height distribution of images in Figure 10a and the
ratio between width and height in Figure 10b.

From Figure 10a, the following conclusions can be drawn:

1. The sample sizes in the SSDD dataset are quite different. Taking the entire dataset
as an example, the smallest width is 214 pixels, while the largest one is 668 pixels.
Their difference has tripled. The smallest height is 160 pixels, while the largest one is
526 pixels. Their difference has tripled too.

2. The widths of images are widely larger than the heights from the green lines. There-
fore, we hold the view that it may be unreasonable to directly stretch the height of
the image to its width size. Otherwise, the aspect ratio of the original ship in the SAR
image must change, which is a typical violation of the SAR imaging mechanism.

3. Many samples share the same 500-pixel width, i.e., a strong cluster width = 500, but
they do not share the same height. Their heights range from ~200-pixel to ~500-pixel.
It is noteworthy that the mean, median, and mode values are all located at width = 500.

From Figure 10b, the following conclusions can be drawn:

1. The ratio between the image width and height reflects a normal distribution. The
ratio with the highest frequency was ~1.4. Therefore, we hold the view that it is better
to maintain this ratio during image pre-processing because this can minimize the
information loss caused by pre-processing.

2. The aspect ratio of images has an extreme tailing effect at both ends of the histogram.
Therefore, scholars can consider clipping the image with an extremely differentiated
aspect ratio so as to realize the normalization of network input. In fact, this practice
can also serve as data enhancement.

Furthermore, from Figure 10, the image scale distribution on the entire dataset, the
training set, and the test set remains roughly unchanged. This shows that the dataset
partition mechanism we customized is reasonable. In essence, DL is indeed to fit the
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distribution of samples on the training set. Consequently, it can be generalized to the test
set, which shares a similar distribution to the training set.

Figure 10. SAR image sample size statistics in SSDD. (a) Distribution of the image width and height; (b) distribution of the
ratio between the image width and height.

Finally, we suggest the resized image scale as 500 × 350 pixels because it is closer to
the median values of the width and the height Figure 10a. In addition, the ratio is ~1.4
(500/350), which is in line with the mean value of Gaussian distribution in Figure 10b.

5.1. Data Analysis on BBox-SSDD

Figure 11 shows the data statistics results on the BBox-SSDD dataset. We have investi-
gated the distribution of the BBox width and height shown in Figure 11a, the distribution
of the ratio between the BBox width and height in Figure 11b, the distribution of the area
of the BBox in Figure 11c, and the distribution of the BBox center coordinates (x, y) in
Figure 11d where x = (xmin + xmax)/2 and y = (ymin + ymax)/2 from Figure 4a.

From Figure 11a, the following conclusions can be drawn:

1. Ships in SSDD are universally small. The width-height distribution of BBox presents
a symmetrical funnel shape. There are more ships at the top of the funnel and fewer
ships in the center of the funnel. This shows that SAR ships are rarely square (the
green line), which is also reasonable because ships are always flat. The average size
of ships is only ~ 35 × 35 pixels. It is extremely difficult to detect such small ships.
Thus, scholars should pay special attention to this phenomenon.

2. The reason why the ship size distribution presents a symmetrical structure based on
the diagonal is that the breadth and length of the ship are not completely distinguished
in the image coordinate system. Sometimes, the BBox width and height are confused.
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From Figure 11b, the aspect ratio of BBox ships is seriously unbalanced. The aspect
ratio of most ships is less than 1. Some ships with extreme aspect ratios are easy to miss
detection because of the scarcity of training data. Scholars can use the 90◦ rotation data
enhancement to alleviate this problem. Moreover, one can also selectively only enhance
the data of ships with a large length-width ratio so as to realize the learning balance of the
network.

From Figure 11c, we can more clearly find that the SAR ship is small. However, the
upper limit of the BBox areas is rather large. In other words, some ships are extremely large
in size, but their number is extremely small. For example, the number of areas > 50,000
is only 4 in the entire dataset. It is possible that these ships have the highest resolution
because the area of BBox is calculated according to the number of pixels. The area of the
same ship in high-resolution images is larger than that in low-resolution images. This
huge cross-scale ship detection is a challenging task. In order to realize the multi-scale
ship detection under the condition of multi-resolution, scholars can appropriately down-
sample the large ships to improve the benefit of multi-scale feature learning of the network.
Moreover, for too small ships, it can be improved by up-sampling interpolation to avoid
their information loss in the network. A potential solution to small ship detection is to
design a network to super-resolution reconstruct small ships under low resolution so as to
expand the characteristics of small ships.

From Figure 11c, the positions of ships in images are completely random, so scholars
need to be careful when using random slicing to realize data enhancement.

5.2. Data Analysis on RBox-SSDD

Figure 12 shows the data statistics results on the RBox-SSDD dataset. We have investi-
gated the distribution of the RBox width and height shown in Figure 12a, the distribution
of the ratio between the RBox width and height in Figure 12b, the distribution of the area of
the RBox in Figure 12c, the distribution of the RBox center coordinates (x, y) in Figure 12d
(see Figure 5a), and the distribution of the RBox angle θ in Figure 12e.

From Figure 12a, compared with the BBox size distribution in Figure 11a, the size
distribution of the ship is closer to the edge of the funnel. In other words, almost no ships
are square, which is in line with common sense. BBox ships appear diagonally because
the direction of the ship is around 45◦, so the width of BBox is equal to the height. This
indicates that RBox is more advanced than BBox, and the former can better depict the real
ship.

From Figure 12b, the distribution rule of the width-height ratio of RBox is different
from that of BBox. When the aspect ratio is about 3, a small crest appears. This is because
RBox can successfully identify the long and short sides of ships, so the aspect ratio is mostly
greater than 1. However, RBox is still powerless for very small ships because the total
number of pixels of the ship is too small. From Figure 12c, similar conclusions can be
drawn to Figure 11c. From Figure 12d, similar conclusions can be drawn to Figure 12d.
Because of the limited pages, we will not repeat the introduction.

Only RBox provided the direction theta θ distribution in Figure 12e. From Figure 12e,
the angle distribution of ships presents a bowl shape with high ends and low middle. In
other words, most ships maintain the relevant vertical and horizontal state in SAR images.
However, some ships parking at ports may enable large direction angles. Based on this
phenomenon, we can roughly identify inshore ships. Then, we can contrapuntally design
the network to improve the detection accuracy of inshore ships. Moreover, if scholars want
to improve the multi-directional detection performance of detectors, we hold the view that
ships with strong angle identification (the bowl bottom in Figure 12e) should be rotated to
generate more samples so as to avoid the angle imbalance learning.
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5.3. Data Analysis on PSeg-SSDD

Figure 13 shows the data statistics results on the PSeg-SSDD dataset. We have investi-
gated the distribution of the PSeg area shown in Figure 12a, the distribution of the PSeg
perimeter in Figure 12b, and the distribution of the proportion of the PSeg area among the
whole image in Figure 12c.

In Figure 13a, in line with previous statements, the number of large ships is far smaller
than that of small ships. This quantitative imbalance will inevitably make it difficult for
networks to learn the characteristics of large ships effectively. As a result, the detection
accuracy of large ships is lower than that of small ships. Quantitative comparison results
can be found in the work of Mao et al. [54]. This phenomenon seems contrary to common
sense because, in fact, small ships are harder to detect usually. One can reduce the resolution
of the large ship image by down-sampling to improve the detection performance of large
ships. This is because, in this way, the rare large ships may become medium-sized ships so
as to avoid the huge scale imbalance learning of the network.

In Figure 13b, the distribution of the PSeg perimeter is a little different from that of
the PSeg area based on the visual observation from the highest value. In other words,
the larger the area of a ship, it does not necessarily mean the larger its perimeter. This is
caused by the flat shape of the ship. Moreover, the existence of speckle noise may affect
the statistics of the actual perimeter of the ship because the noise will make the edge of
the ship more uneven, thus increasing the contact area between the ship and the ocean.
Therefore, when using SSDD, one should better consider suppressing speckle noise. Some
previous work in Zhang et al. [55] and Chen et al. [39] considered this problem.

From Figure 13c, SAR ships always account for a very small proportion in the whole
image, most <4%. This vividly shows the characteristics of the “bird’s-eye” view of SAR.
Therefore, SAR remote sensing images are different from the optical images of natural
scenes that have a “person’s-eye” view. This shows that it is not feasible to directly
apply deep learning detectors from the field of computer vision to SAR ship detection.
Scholars should design the network according to the characteristics of SAR so as to achieve
purposeful ship detection rather than generic object detection [123].
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6. Using Standards

So far, 75 public reports have used SSDD to study DL-based SAR ship detection,
but there are no unified standards for the way they use SSDD because the initial open
report of SSDD did not provide them. This situation will hinder fair methodological
comparison and effective academic exchanges. Therefore, we will explicitly formulate
some strict using standards, e.g., (1) the training-test division determination in Section 6.1,
(2) the inshore–offshore protocol in Section 6.2, (3) the ship-size reasonable definition in
Section 6.3, (4) the determination of the densely distributed ship samples in Section 6.4, and
(5) the determination of the densely parallel berthing at ports ship samples in Section 6.5.

6.1. Training-Test Division Determination

The original report of SSDD in [28] adopted the random ratio of 7:1:2 to divide the
dataset into a training set, a validation set, and a test set. However, this random division
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mechanism leads to great uncertainty in the samples in the test set. For example, using
the same detector for multiple training and testing by a random division leads to different
accuracy results due to the great uncertainty of training samples. This is because the
number of samples in SSDD is too small, only 1160. In this case, the random partition may
destroy the distribution consistency between the training set and the test set.

Later, some scholars also adopted other ratios for training, validation, and testing, e.g.,
7:2:1 in the work of Chen et al. [62], about 5:1 in the work of Yu et al. [97], 7:3 in the work
of Wu et al. [99], 8:2 in the work of Chen et al. [90], and so on. Obviously, these diverse
dataset division mechanisms will lead to unfair methodological comparison, which is not
conducive to academic exchanges. This problem was also revealed by Zhang et al. [57,73]
and Chen et al. [90].

In fact, in the field of computer vision, two well-known datasets for object detection,
i.e., the PASCAL VOC [113] and COCO datasets [114], both provide the only determined
training set, verification set, and test set, which is also to ensure the fairness of their compe-
tition. Later, inspired by this practice, the publisher of the AIR-SARShip-1.0 dataset [104]
provided the unique training set and test set files. Therefore, inspired by these works, we
make strict regulations on the division of training set and test set of SSDD, as in Table 6.

Table 6. Training-test division.

Training Set Test Set

Image file name * 0.jpg, * 2.jpg, * 3.jpg, * 4.jpg, * 5.jpg, *
6.jpg, * 7.jpg, * 8.jpg, * 1.jpg, * 9.jpg

Number 928 232
Training-test ratio 8:2

* n.jpg means that the last digit of the document number is n, e.g., * 0.jpg means 000010.jpg, 000020.jpg, etc.

From Table 6, the images with the last digits of the file number 1 and 9 are uniquely
determined as the test set, and the rest are regarded as the training set. Such a rule can also
maintain the distribution consistency of the training set and test set, which is conducive
to network feature learning. More information on distribution consistency can be found
in the work of Han et al. [66–68]. Moreover, the official released SSDD does not provide
the unique validation set. Scholars can extract some images from the training set to form
a verification set according to their own needs. We only care about the fair accuracy
comparison when the test set is exactly the same.

Finally, according to our experience, we suggest that scholars do not set up a veri-
fication set because it sacrifices the learning gain of the network. In short, the number
of samples in SSDD is very small, so we should cherish each sample to ensure that the
training gradient of each test sample is reduced. However, the verification set does not
participate in the training gradient descent, which will inevitably lead to insufficient ship
feature learning. Of course, if researchers want to monitor whether the model has been
overfitted in the training process, they can set up multiple overlapping cross-verification
sets to achieve the purpose.

6.2. Inshore-Offshore Protocol

Many previous reports focused on inshore ship detection, e.g., Wei et al. [51], Su et al. [52],
Yang et al. [59], Zhang et al. [73], and so on. Ships landing on the shore are easily interfered
with by port facilities, and the land backgrounds in the image are more complex. Nowadays,
inshore SAR ship detection is a research hotspot. In order to ensure the fairness of accuracy
in these two different scenarios, we also uniquely determined the inshore and offshore files
tested. Inshore images are marked in magenta in Figure A1.

According to statistics, among the 232 test images, there are 186 offshore scene images,
while there are only 46 inshore scene images. The proportion between offshore and inshore
scenes is shown in Figure 14.
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Figure 14. Proportion of offshore and inshore scenes.

Similar to HRSID [63] and LS-SSDD-v1.0 [105], we regard images containing land as
inshore samples and others as offshore samples. From Figure 14, the numbers of inshore
samples and offshore ones are hugely imbalanced (19.8% VS. 80.2%). This phenomenon
seems to accord with the fact that the ocean area of the Earth is much larger than land.
However, DL needs a lot of data to learn features. More data often brings better learning
benefits; less data is bound to cause inadequate learning. Thus, the sample number
imbalance between the offshore scene and inshore one will bring about a huge imbalance
of models’ learning representation capacity between offshore and inshore. Networks will
be trapped in many easy offshore samples. The detection performance of inshore ships will
become poor due to fewer training samples; meanwhile, that of offshore ships will become
excellent due to more samples.

In the future, scholars should pay special attention to the above problem when design-
ing detectors. Several reports, e.g., the balance scene learning mechanism in the work of
Zhang et al. [73] and the visual attention mechanism in the work of Chen et al. [46], can
provide some valuable suggestions. We hold the view that one can design a classifier to
realize scene recognition and then carry out selective-scene data enhancement to achieve
balanced scene learning. Moreover, an interesting report from Chen et al. [90] proposed to
mix-up stitches multiple rotating ships into one image and mosaic combines four original
images into one image, which can improve the detection performance of inshore scenes.
This work is inspired by YOLOv4 [124]. This method is rather useful and can also avoid
network training falling into a large number of useless pure background negative samples,
i.e., no ships in the image [105].

6.3. Ship-Size Definition

Multi-scale ship detection is a challenging task because different types of ships have
different sizes, and if the same ship has different resolutions, it will also lead to a change in
the total number of pixels in the image. However, so far, there is still no clear definition of
which ships are small ships and which ships are large ships in SAR images. Some scholars
believe that ships with less than 40 pixels are small ships, but they do not take into account
the actual resolution of the image. Moreover, it is not consistent with the consensus in the
computer vision community to determine the size definition of ships simply according to
the number of pixels.

In the SAR ship detection community, Wei et al. [51], Su et al. [52], and Mao et al. [54]
followed the standard of the COCO dataset to classify ship sizes, i.e., the area of BBox < 322

means a small ship, the area of BBox < 962 but >322 means a medium ship, and the area
of BBox > 962 means a large ship. However, this definition is tailored only for the COCO
dataset, and it may be problematic to use it on the SSDD dataset. It does not match the area
distribution of BBox very well, as shown in Figures 11c, 12c and 13a.



Remote Sens. 2021, 13, 3690 29 of 41

Therefore, it is better to specify the ship size definition according to the SSDD dataset
we use. Moreover, we should also define the ship size according to different label types.

Finally, according to Figure 15, we define the ship size standard in Table 7. Here,
according to the statistical histogram of the label area, we respectively distribute the large,
medium, and small ships.
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Table 7. Ship-size definition.

Label Type Small Medium Large

BBox-SSDD Area < 1000 1000 <= Area <= 8000 Area > 8000
RBox-SSDD Area < 625 625 <= Area <= 7500 Area > 7500
PSeg-SSDD Area < 625 625 <= Area <= 6875 Area > 6875

6.4. Densely Distributed Small Ship Samples

Densely distributed small ships are difficult to detect because the characteristics are not
clear. Many scholars have focused on this issue. In order to facilitate the accuracy evaluation
specifically in this specific scenario, we specify the samples of densely distributed small
ships in the test set as in Figure 16. Among the 232 test images, there are 10 images that
have densely distributed small ships. In Figure 16, according to our experience, the ships
in the 001119.jpg are the most difficult to detect. Scholars should pay more attention to it.

Figure 16. Densely distributed small ship samples.

Moreover, for these kinds of difficult samples, we provide several potential solutions:

1. One can use random crop data enhancement to increase the proportion of small ships
in the whole image.

2. One can detect small ships in the shallow layer of the deep network with low feature loss.
3. One can combine CFAR into the deep network because CFAR is more pixel-sensitive.
4. One can combine visual saliency theory to generate a saliency map to guide deep

network learning features because these small ships are very significant in human-eye
observation.

5. One can design a deep network to super-resolution reconstruct the small ship. In this
way, the features of small ships will become richer.
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6.5. Densely Parallel Berthing at Ports Ship Samples

Ships densely parallel berthing at ports are also rather difficult to detect. On the
one hand, the very complex land background will reduce the training efficiency because
there will be a large number of negative samples generated during training. On the other
hand, ships moored side by side will produce hull overlap effects because of SAR’s special
imaging mechanism and limited resolution. In order to facilitate the accuracy evaluation
specifically in this specific scenario, we specify the samples of parallel berthing at ports
ships in the test set as in Figure 17.

Figure 17. Densely parallel berthing at ports ship samples.

Moreover, for these kinds of difficult samples, we provide several potential solutions:

1. One can use the attention mechanism to suppress the land interference so as to focus
on the ship region.

2. One can use a segmentation mask to assist ship detection, e.g., the reports of Mao et al. [54],
Hou et al. [84], and Wu et al. [99].

3. One can use generative adversarial networks (GAN) [125] to generate more samples
of such scenes so as to improve the learning proportion of these ships, e.g., the work
of Jiang et al. [95].

4. One can use the soft-NMS post-processing algorithm [126] to avoid missed detections,
e.g., the reports of Wei et al. [51] and Zhang et al. [101].

7. Conclusions

This article reviews the current usage status of the first open SSDD dataset in the
SAR ship detection community. We release the official version of SSDD, covering three
types: BBox-SSDD, RBox-SSDD, and PSeg-SSDD. We have made a detailed analysis of
the three datasets when applied to different tasks. We comprehensively summarize the
differences between ship detection in the SAR remote sensing community and general
object detection in the computer vision community, which will help future scholars to
design more purposeful detectors combined with the characteristics of SAR. Furthermore,
we explicitly formulate some strict using standards for the sake of fair methodological
comparisons and effective academic exchanges, including (1) the training-test division
determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition, (4)
the determination of the densely distributed small ship samples, and (5) the determination
of the densely parallel berthing at ports ship samples. These using standards can provide
a fair methodological comparison. We also put forward many valuable suggestions to
improve the detection accuracy of difficult samples for possible future scholars. We expect
that this review will be useful for relevant scholars who are studying DL-based SAR ship
detection. We hope this review could also serve as a careful and useful introductory tutorial
for beginners who are preparing to study SAR ship detection based on DL.

Finally, we will develop an online evaluation system for benchmarks on SSDD. Re-
searchers of this field can submit their results for a completely fair evaluation.
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Figure A1. Rotatable bounding boxes or ground truths in the test set of RBox-SSDD. The inshore
samples are marked in magenta.
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Figure A2. Cont.
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Figure A2. Polygon segmentation labels in the test set of PSeg-SSDD. The inshore samples are
marked in magenta.
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Figure A3. Bounding box ground truths in the test set of BBox-SSDD. The inshore samples are
marked in magenta.
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