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Abstract: This paper reviews real-time optimization from a reinforcement learning point of view.
The typical control and optimization system hierarchy depend on the layers of real-time optimiza-
tion, supervisory control, and regulatory control. The literature about each mentioned layer is
reviewed, supporting the proposal of a benchmark study of reinforcement learning using a one-layer
approach. The multi-agent deep deterministic policy gradient algorithm was applied for economic
optimization and control of the isothermal Van de Vusse reactor. The cooperative control agents
allowed obtaining sufficiently robust control policies for the case study against the hybrid real-time
optimization approach.

Keywords: one-layer approach; economic optimization; process control

1. Introduction

Real-time optimization (RTO) is based on a control system that is designed to drive
the plant to reach the project decisions made in the planning and scheduling layers (i.e,
optimizing the plants’ economic performance as its principal objective). It is an interme-
diate optimization layer and performs hourly decision-making, providing the reference
trajectories for the process and control variables, which hierarchically must be maintained
by the supervisory control layer and, then, by the regulatory control layer, as shown in
Figure 1 [1–4].

Since the 1980s, real-time optimization techniques applied to the process industry
have evolved significantly. Mochizuki et al. [5] described the technological achievements
that have enabled RTO to grow while simultaneously dropping in cost, which is mainly
due to the development of automated and integrated optimization technologies. This is the
case for refinery and chemical plants [6], especially as a consequence of the improvement of
the mathematical models and of optimization packages with sufficiently robust numerical
methods to optimize the economic performance of the plant and help the decision-making
of engineers, who do not need to deal with the steps of data reconciliation, the updating of
the model parameters, and optimization simultaneously [7].

The main challenge for RTO implementation is the integration of the layers illus-
trated in Figure 1. The classical two-layer approach deals with the integration of real-time
optimization and supervisory control. Steady-state real-time optimization (SSRTO) de-
mands that the plant reach a steady-state for the optimization with a rigorous model to
be performed. Until this condition is satisfied, nothing can be done [8]. Model predic-
tive control (MPC) implements control actions in this interval (minute by minute), using
a simpler model that captures the process dynamics and drives the design variables to
their optimal values. However, this integration can be complex when implementing the
set-point resulting from SSRTO because the plant must still be in the original steady-state.
In addition, the mismatch model issue must be treated so that the high-level SSRTO sends
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admissible set-points for the lower-level MPC [8–11]. Dynamic real-time optimization
(DRTO) is an alternative derived from SSRTO, which requires a rigorous dynamic model of
the process to eliminate steady-state detection requirements. However, implementing it for
large-scale systems is challenging (i.e., regarding its modeling and optimization), even with
the computational power currently available [12,13]. A more recent approach combines
SSRTO and DRTO, called hybrid real-time optimization (HRTO), which has the modeling
effort reduced because the dynamic terms in the model need only to be introduced in the
model adaptation step, thus reducing the steady-state waiting time (e.g., [13–16]).

Planning and scheduling
(Weeks to days)

Real-time optimization (RTO)
(Hours)

Supervisory control (MPC)
(Minutes)

Regulatory control (PID)
(Seconds)

Process

Figure 1. The typical control and optimization system hierarchy in industry.

Alternatively, the one-layer approach has been attempted to circumvent these prob-
lems. The objective is to augment the MPC with global plant information (e.g., plant
economic objective) to remove the SSRTO layer. Zanin et al. [17,18] applied this methodol-
ogy to fluid catalytic cracking units, using MPC with an economic factor directly included
in the control objective. These studies were precursors for developing a new line of research
called economic model predictive control (EMPC) [19,20]. Its main advantage is derived
from a controller with better performance in terms of disturbance rejection and economic
profits, provided that the control tuning has been correctly performed and the security
constraints included. However, the computational burden for the one-layer approach
may be huge, especially when it is solved via a global optimization algorithm due to the
nonlinearity and non-convexity of the problem [21].

A machine learning approach called reinforcement learning (RL) is showing promising
results in several areas of knowledge mainly linked to artificial intelligence (e.g., natural
language processing [22], autonomous driving [23], robotics [24,25]). Due to the remarkable
results obtained in these areas, which are a consequence of the consolidation of deep neural
networks and new reinforcement learning algorithms, this methodology effectively began
to be studied by the process control community (e.g., [26–30]). It is characterized by an agent
(i.e., control policy) capable of self-learning in the process guided by numerical rewards,
following a Markov decision process. Specifically, the agent learns from interactions without
relying on a process model (i.e., model-free), and data-driven and simulation information
can be used. Thus, reinforcement learning is considered as a promising alternative to
replace or complement standard model-based (MPC) approaches for batch process control
(e.g., for more details, see [31,32]). At this point, the present article reviews the two-layer
and one-layer real-time optimization approaches from the point of view of reinforcement
learning. The contribution to the state-of-the-art is twofold: (1) There is a lack of articles
covering the subject. To the authors’ knowledge, only Powell et al. [33] implemented RL
for the real-time optimization of a theoretical chemical reactor. (2) The research method
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involves the study of each online optimization layer of the plant-wide structure, explicitly
dealing with its conceptualization for reinforcement learning, as well as the challenges for
integrating the layers and the problems of the implementation and maintenance of control
agents under this point of view.

This review begins in Section 2 with a brief introduction to the reinforcement learning
methodology. Section 3 details real-time optimization, supervisory control, and regulatory
control for RL. Section 4 proposes a benchmark study of RL using a one-layer approach,
evaluating the computational burden and control performance when the disturbance varies
with the same plant dynamics, which is a challenge independent of the employed RTO
approach. For that purpose, the multi-agent deep deterministic policy gradient algorithm
is applied for economic optimization and control of the isothermal Van de Vusse reactor.

2. Reinforcement Learning

The reinforcement learning concept is briefly given in Figure 1. In terms of defining
the elements of RL, this self-learning process comprises the interaction of an agent through
actions (at) with the environment, which reaches a new state (st+1) guided by a reward
(rt). The first classic example goes back to the theory of animal psychology, exemplified by
an animal (i.e., agent) learning how to perform a certain task in a controlled environment,
with the reinforcement signal used to guide its learning (e.g., rewards in the form of
food) [34]. With the advent of programmable computers, reinforcement learning theory
intersected with artificial intelligence. Minsky [35] discussed RL models. Bellman [36,37]
founded the theory of optimal control, dynamic programming, and the Markov decision
process. Besides these advances, the problems related in Marvin and Seymour [38] about
the perceptron network affected the state-of-the-art development in artificial intelligence
until the mid-1980s.

With the return of interest in artificial intelligence (e.g., with the work of Rumelhart
et al. [39] as a landmark), classic RL problems began to be studied again. For example,
the pole balancing problem (a benchmark optimal control problem) provided RL-based
alternatives to black-box models obtained from neural networks and tabular algorithms.
Figure 2 outlines this learning problem, where an agent must keep the pole balanced
(when pushing the cart to the right or left) for a defined length of time of the simulation
(T), being formulated as a stochastic sequential decision-making problem (more details
are given in Section 2.1), in which the optimal policy must maximize the reward sum,
known as the return R(τ), along the trajectory τ = (a0, s0, a1, s1, · · · , aT , sT), as shown in
Equation (1). In this equation, γ corresponds to the discount factor of the return. When
γ = 0, the immediate reward (rt) is prioritized, whereas if γ = 1, the entire trajectory is
considered [40–42].

R(τ) =
T

∑
t=1

γt−1r(st, at, st+1) (1)

State and Reward

Actions

Environment

Pole balancing
problem

Agent

push the cart
(left or right)

Figure 2. Simplified outline of the pole balancing problem in the RL framework.
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2.1. Markov Decision Process

The Markov decision process (MDP) is defined by the tuple (St, At, Pt, Rt). St, At, and
Rt correspond to the set of non-terminal states, actions, and rewards. Pt is the probability
transition, with Pt : St × At × S+

t → [0, 1] and S+
t the set of terminal states. As mentioned

in Section 2, the MDP is a discrete-time stochastic control process, in which the current
state of the system (st ∈ St) must contain all the information needed by the agent to decide
which action (at ∈ At) to take (independent of all previous states and actions), resulting
in the subsequent transition to the new state st+1 = P(st+1|st, at), in order to satisfy the
Markov property. Moreover, a policy (π) must map states to actions and is optimal when it
maximizes the return regardless of the initial state chosen (s1) and the obtained trajectory
(τ) (Equation (2)) [42,43].

π∗ = argmax
π

Epπ(τ)[R(τ)] (2)

In this equation, Epπ(τ) denotes the expectation about the trajectory τ extracted from
pπ(τ), and pπ(τ) denotes the probability density of observing the trajectory τ under policy
π (Equation (3)).

pπ(τ) = P(s1)
T

∏
t=1

P(st+1|st, at)π(at|st) (3)

2.2. Algorithms

The main reinforcement learning algorithms can be divided into two main cate-
gories [40]. Value-based algorithms obtain the optimal policy by approximating the return
value for all possible trajectories. The first proposed alternative considers only the state
value function (Equation (4)). The other option considers the value function of the state–
action pair (Equation (5)) [41].

Vπ(s) = Epπ(τ)[R(τ)|s1 = s] (4)

Qπ(s, a) = Epπ(τ)[R(τ)|s1 = s, a1 = a] (5)

An algorithm consolidated in the literature is known as Q-learning and was first
described by Watkins [41]. This outstanding work was a watershed for reinforcement
learning theory. The main outcome of this study was to replace the tabular methods with
parametric approximators to improve generalization and deal with the dimensionality
problem. The optimization problem now conforms to Equation (6), and the agent explores
the environment until the Bellman optimality condition is reached (i.e., using bootstrapping)
(Equation (7)).

θ∗ = argmin
θ

[Qπ(s, a, θ)−Qπ(s, a)] (6)

Qπ(s, a) = r(s, a) + γQ∗(s
′
, a
′
, θ) (7)

The second category includes the policy-based algorithms. Williams [44] developed
the first algorithm based on these principles, which is known as REINFORCE and has
shown promising results in several fields of research (e.g., [29,30]). Specifically, it uses an
auto-parameterized policy (π(at|st, θ)) and should maximize the expected return J(θ), as
shown in Equations (8)–(10).

θ∗ = argmax
θ

J(θ) (8)

J(θ) = Epπ(τ|θ)[R(τ)] =
∫

p(τ|θ)R(τ)dh (9)

p(τ|θ) = p(s1)
T

∏
t=1

p(st+1|st, at)π(at|st, θ) (10)



Processes 2023, 11, 123 5 of 21

2.3. Deep Reinforcement Learning

Section 2.2 briefly provided the main RL algorithms described in the literature. There is
a consensus that deep neural networks are the best option as parametric approximators due
to their ability to deal with big data in terms of generalization, computational processing
power, and the invariance dilemma [45]. Another advance concerns the development of sta-
ble algorithms to deal with problems demanding high-dimensional state space evaluation
and alternatives to improve the offline training of these agents (e.g., [46–48]).

The most-employed deep reinforcement learning algorithm in the literature is the
actor–critic networks. This is an algorithm that combines ideas from value-based and
policy-based algorithms. First, it was described in LeCun et al. [49]. Then, Sutton et al. [50]
effectively formulated it for RL, with the guarantee of convergence given by the deter-
ministic policy gradient theorem. Figure 3 illustrates the update of the actor and critic
networks. Specifically, the step forward comprises the action selection (a = π(at|st, θa))
and the critic network computation (i.e., value function Q(st, at, θc)). In the backward step,
the parameters of both networks are updated with the backpropagation and stochastic
gradient descent algorithms. At this point, it is worth mentioning that it is necessary to
calculate ∇a log(π(at|st, θa)) since the actor network categorizes actions instead of their
value, as suggested by Williams [44] and shown in Equation (10). Furthermore, the tem-
poral difference (TD) method is recommended to learn offline directly from experience
(i.e., TD-error (δt)). As the method does not require a model of the environment, it is
straightforward to implement and allows bootstrapping, which is an advantage compared
to Monte Carlo (MC) methods and dynamic programming. However, its training must be
rigorously performed to avoid obtaining unfeasible policies, since the computed Q-value
does not consider the return from the entire trajectory as in MC methods [51].

Input Layer

Hidden Layer
(ReLU)

Output Layer

Input Layer

Hidden Layer
(ReLU)

Output Layer

Actor network update Critic network update

Figure 3. Diagram describing the update of the actor and critic parameterized by a deep neural
network.

This model-free algorithm depends on offline training, where the learning across
different episodes can be: (1) off-policy: the learned policy is updated from data obtained
from the implementation of other policies. This learning procedure is shown in Figure 4,
where πt+1 is updated from samples of policy roll-out data up to πt (i.e., π1, · · · , πt),
which are contained in a large buffer. For example, the deep deterministic policy gradient
(DDPG) algorithm [47] estimates the Q-values through a greedy policy instead of the
behavioral policy, which leads to the TD-error (δt) shown in Equation (11). The second
(2) is on-policy: the learned policy πt+1 is updated from transitions (or data) exclusively
taken from the previous policy πt; thus, it does not depend on a buffer [42]. For example,
the proximal policy optimization (PPO) algorithm [52] estimates the Q-values assuming
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the current behavioral policy continues to be followed, resulting in the TD-error (δt) shown
in Equation (12).

δt = rt + γmax Q(st+1, at+1, θc)−Q(st, at, θc) (11)

δt = rt + γQ(st+1, at+1, θc)−Q(st, at, θc) (12)

Data-driven

buffer (D)

update

rollout data

Figure 4. Off-policy reinforcement learning.

3. Applications

This section details the specific applications of reinforcement learning for real-time
optimization, supervisory control, and regulatory control. The main details of these method-
ologies are also presented. Table 1 summarizes several references for RL in this context, in
which the listed algorithms are derived from those shown in Section 2.

Table 1. Several references for reinforcement learning.

Main Topic Algorithm References

SSRTO Deep actor–critic [33]
Supervisory control REINFORCE [29,30]

Deep Q-learning [53]
PPO [28]

DDPG [26]
DDPG [54]
A2C [55]

Regulatory control Deep Q-learning [56]
PPO [57]

DDPG [58]
DDPG [59]
A3C [27]

The deep deterministic policy gradient algorithm is actor–critic, off-policy, and de-
terministic (µ(st, θt)). This algorithm is an improved version of the deterministic policy
gradient algorithm for continuous control. The critic is updated using the Bellman equation
(Equation (13)). The actor is updated by applying the chain rule to the expected return
(weighed by the critic) with respect to the actor parameter (Equation (14)) [46,47].

δt = E
[
rt+γmax Q(st+1, at+1, θt)−Q(st+1, at+1, θt+1)

]
θt+1 = θt + αcδt∇θt Q(st, at, θt)

(13)

θt+1 = θt + E[∇θt µ(st, θt)∇at Q(st, at, θt)]|at=µ(st ,θt) (14)

The A2C and A3C algorithms [60] are variations of the actor–critic algorithm with
agents learning asynchronously, with two or three agents in parallel. The only exception
is the proximal policy optimization algorithm, which is an algorithm that learns while
interacting with the environment over different episodes (i.e., on-policy). Methodologically,
this property comes from another similar algorithm considered more complex (trust region
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policy optimization (TRPO)), addressing the divergence effect Kullback–Leibler (KL) and
surrogate objective functions. Based on this, what is summarized in Table 1 is consistent
with the works reported in [61–63], with a preference for DDPG and PPO algorithms and
their variants as learning algorithms for process control.

3.1. SSRTO

In this review, SSRTO is the only RTO application addressed for three reasons: (1) it
remains the most-applied approach in the process industry; (2) it has an extensive literature;
(3) to the best of the authors’ knowledge, only Powell et al. [33] used RL in this context.
Figure 5 illustrates the steps of SSRTO with model parameter adaptation (MPA). Specifically,
MPA updates the rigorous model of the SSRTO layer with steady-state plant information,
which must be detected and treated with process data reconciliation before being fed
to the parameter estimator. The process disturbances and model uncertainty strongly
influence this step. When varying with the same plant dynamics, the former makes
it difficult to detect the steady-state. The latter directly affects data reconciliation and
parameter estimation. Nevertheless, it is a traditional industry methodology for well-
segmented optimization and control steps, facilitating its application and maintenance in
the real process. In addition, there are still alternatives to improve parameter estimation by
including model and plant derivatives (for more details, see [64–66]).

Real process

Steady-state
detection

Data
Reconciliation

Parameter estimation
(steady-state model)

SSRTO

Supervisory control
(MPC)

MPA

Disturbances

Figure 5. The classical two-layer approach in the industry. The steps of SSRTO with model parameter
adaptation and model predictive control.

For brevity, the optimization details about the MPA approach and SSRTO layer are
shown in Equations (15) and (16), respectively, provided that the steady-state detection
and data reconciliation steps have been correctly performed. In Equation (15), the pa-
rameters of the rigorous model of the process (i.e., y = f (u, ωk)) are updated (ω∗k ) based
on steady-state reconciled measurements from the plant (ymeas), with the values of the
manipulated variable (u) received from the supervisory control. In Equation (16), the
updated model is used to optimize the plant encompassing the process and economic
constraints (g(y, u)). The optimal solution Y∗k+1 = (y∗k+1, u∗k+1) is sent as the set-point to
the supervisory control layer, which must drive the plant to these desired values, while
rejecting process disturbances [11,13].

ω∗k = argmin
ω
||ymeas − f (u, ωk)|| (15)

Y∗k+1 = argmin
u,y

J(y, u)

s.t. y = f (u, ω∗k )

g(y, u) ≤ 0

(16)
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Considering RL in the MPA framework, the reformulated problem now comprises
offline training, policy transfer, and online policy deployment. Moreover, the elements of
RL encompass the current state of the plant sk = f (u, ωk), action ak = ωk+1, and reward
rk = ||ymeas − f (u, ωk)||. First, extensive offline training based on the randomization of
process variables and parameters is required to sample ak, sk, sk+1, and rk. To deal with the
complexity of offline training, adopting a feasible range for the parameters (i.e., defining
the lower bound lb < ak and upper bound ak < ub) and using a replacement model of the
rigorous model of the process based on deep neural networks are recommended, which
limits the agents’ exploration and exploitation of it. As a result, this allows an adaptive,
stochastic and low-computational-cost policy, depending only on the computation of the
action by the actor network (ωk+1 = µ(sk, θa)). At the end, policy transfer and online policy
deployment remain to be addressed by RL. For that purpose, safe RL can guarantee its
industrial application in the future (see, for instance, [28]).

SSRTO using RL was addressed by Powell et al. [33], who proposed a methodology
to deal with the economic objective and process constraints for a chemical reactor control
problem (a continuously stirred tank reactor (CSTR)). Specifically, they simulated data from
a rigorous process model. They included process constraints in the reward and the price
of reagents and loads (S) as the input to the actor and critic networks. The RL elements
encompass the current plant state sk = fk(ak, ωk), action ak, and reward rk = J(sk, ak, S).
For the offline training phase, the vanilla actor–critic algorithm was employed. The training
was divided into two stages: (1) the critic network was trained based on the randomization
of the process conditions and using cross-validation to obtain an unbiased and generalizing
critic network (i.e., Q(sk, ak, S, θc)); (2) the actor network µ(sk, S, θa) was trained around the
optimal operating conditions of the plant and the feasible range of the parameters, taking S
as known disturbance and adding constraints for the actions, as shown in Equation (17),
with λ adjusting the importance of the magnitude of the action.

a∗k = argmax
ak

Q(sk, ak, S, θc) + λ(ak)

s.t. ak = µ(sk, S, θa)

λ(ak) =


−1000, if ak < lba

−1000, if ak > uba

0, Otherwise

(17)

After extensive offline training, Powell et al. [33] applied the policy to the real process
(i.e., adding white noise and altering S in the simulated process). As a result, the control
law was adequate to what would be required by an operator for automatic control or
supervision, demanding the evaluation of a function instead of solving the RTO problem.
Despite this, the obtained control law generated a smaller economic gain than SSRTO
solved by nonlinear programming.

3.2. Supervisory Control

This section focuses on RL’s applications for supervisory control, rather than describing
the implications for the development of control theory itself (what can be seen in [62,63]).
In Table 1, the listed references comprise RL methodologies applied to the batch process
control due to the scarce literature on continuous process control, which mainly combines
reinforcement learning and model predictive control to include process constraints and,
thus, ensure a level of control stability. Therefore, they guide the discussion throughout
this section.

For example, Ma et al. [26] formulated the control problem of a semi-batch polymer-
ization reactor. For MDP sampling (regarding the current process state, action, and reward),
extensive offline training was conducted so that the optimal set-points were randomly
selected and modified during off-policy learning and the zero-mean Ornstein–Uhlenbeck
process was applied to the actions to generate temporally correlated exploration samples
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(as in the DDPG algorithm). Additionally, the state space was increased by including the
difference between the sampled state and the desired set-point (i.e., yt − y∗t ). These changes
directly influence the obtained reward, as shown in Equation (18), which depends on the
time t and parameters α, β, and c to adjust the importance of reaching the set-point (y∗t ).
To a certain extent, the redefinition of this control problem is close to the approach used
for MPC, in which the offline training step would be the model identification. Thereafter,
the controller is implemented in a closed loop considering the process constraints and the
previously identified model (e.g., [67,68]).

rt =

{
αt + c, if ||yt − y∗t || ≤ 0.05y∗t
β||yt − y∗t || − αt, Otherwise

(18)

The other listed references and control applications (Table 1) are briefly commented
on as they follow an RL methodology similar to the one described above, changing only
the type of algorithm used, the addressed control problem, and the definition of the RL
elements. Namely, all RL applications depend on extensive offline training based on
simulation or real plant data, where the set-point is sampled randomly and has to be
reached during the training. Another point for discussion is the lack of validation for
industrial processes, as all case studies were restricted to control experiments based on
simulation. However, the obtained policies showed superior performance to the model-
based ones for all cases (e.g., MPC), which is promising and encourages developing state-
of-the-art technologies (RTO using RL). Undoubtedly, safe RL will be essential to ensure
such integration in the short term.

Based on this, a parallel is made for continuous processes. Extensive offline training
based on the randomization of process conditions is also required to allow MDP sampling.
However, a less rigorous model of the process is employed (when compared to that used for
SSRTO), and generating simulation data for offline training is costly and complex because
the optimal values of the process and control variables need to be maintained minute by
minute instead of hourly as in the SSRTO layer. For example, Oh et al. [69] discussed the
integration of reinforcement learning and MPC to ensure online policy implementation
and fix these issues, suggesting a new approach to Equation (1) (Equation (19)), where the
terminal cost is approximated by Q-learning and the cost stage by MPC (e.g., [68,70,71]).
This blended receding horizon control approach allows for including constraints on controls
and states and incorporating disturbances directly into the optimization problem. It implied
in a controller data sampling efficiency much higher than that of model-free RL algorithms,
but the challenge is executing online policies continuing to learn about the process and
balancing safety and performance.

a∗ = argmin
a(0),··· ,a(p−1)

p−1

∑
k=0

[
L(s(k), a(k)) + Q(s(p), a(p), θc)

]
s.t. sk+1 = f (sk, ak, ωk), s(0) = s0

a(k) ∈ A, i = 0, · · · , p− 1

s(k) ∈ S, i = 1, · · · , p− 1

s(p) ∈ Z, i = 0, · · · , p− 1

(19)

3.3. Regulatory Control

The regulatory control layer is directly in contact with the process. It makes second-
scale control decisions to indirectly optimize the plants’ economic performance, depending
on the optimal values (for the design variables) from the supervisory control layer. For
regulatory control, RL can be understood as an adaptive controller, which is similar to the
proportional–integral–derivative (PID) controller (for more details on PID control methods,
see Kumar et al. [72]), automating the control decisions while depending on the evaluation
of a function (i.e., deep neural network) [62]. Due to these remarkable features and a broad
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portfolio of bench-scale and industrial-scale control experiments using PID controllers,
RL-adapted alternatives also began to be proposed for bench-scale control experiments.
The control policy is less conservative and can automate controller tuning to adapt to
supervisory control set-point changes.

For example, Lawrence et al. [59] studied an experimental application for PID tuning.
They innovated by embedding PID in the RL framework, updating the actor and critic
networks (i.e., employing the DDPG algorithm) by directly using PID tuning parameters as
parameters of the actor itself (i.e., proportional gain (kp), integral gain (ki), and derivative
gain (kd)) such that at = µ(st, θa = (kp, ki, kd)) + at−1. They also increased the state
space by including time-delayed information on the control action and the difference
between the sampled state and the desired set-point (for more details on including historical
information for Markov state prediction, see Faria et al. [32]). The authors used this
difference as a reward signal and penalized actions with high-magnitude variations (i.e.,
rt = ||yt− y∗t || − 0.1||∆u||). Finally, considering a two-tank system-level control experiment,
they compared the results to various tuning parameters (PID controller) based on the
internal model control approach and evaluated the nominal performance and stability,
among other factors that influenced the response of both controllers. The results showed
that the RL-based controller proved efficient for such performance criteria and could follow
the set-point and reject perturbations.

The above approach is an extension of the ones seen in the works of Dogru et al. [27]
and Ramanathan et al. [56]. Both adapted the control experiment in the RL framework
using a more conventional approach than the one proposed by Lawrence et al. [59], similar
to the one used for supervisory control. Specifically, instead of updating the PID controller
parameters included in the actor network, the actor and critic learn following the approach
illustrated in Figure 3. In addition, both increased the state space by including information
between the sampled state and the desired set-point (delayed in time) and the immediate
reward penalizing large set-point deviations and large magnitude variations of actions.
Spielberg et al. [58] focused on the design of the RL agent for regulatory control and
rigorously detailed the steps for its implementation considering a control experiment in a
simulated environment (using the DDPG algorithm). The resulting control agent followed
the set-point for single-input, single-output (SISO) and multiple-input, multiple-output
(MIMO) cases. Moreover, a new control experiment evaluated the robustness of the DDPG
controller to adapt to abrupt process changes and how this affects its learning performance
and convergence. The result was that the controller continues to learn online without the
need to restart the offline training.

4. Benchmark Study of Reinforcement Learning
4.1. Offline Control Experiment

To consolidate what was described in this review, a control experiment details the
formulation of a control agent based on RL. The proposed control experiment follows an
example from the work of Ławryńczuk et al. [73], which evaluated the classical two-layer
approach (i.e., RTO plus MPC) for the economic optimization and control of the well-known
Van de Vusse reactor.

4.1.1. Dynamic Model of the CSTR

A schematic diagram of the Van de Vusse reactor is shown in Figure 6. The feed inflow
contains only cyclopentadiene (component A) with concentration Ca f . The volume (V)
is maintained constant throughout the reaction. The outflow includes the remainder of
cyclopentadiene, the product cyclopentenol, and two unwanted by-products, cyclopentane-
diol (component C) and dicyclopentadiene (component D), with concentrations of Ca, Cb,
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Cc, and Cd and constant reaction rates (k1, k2, k3), characterizing the Van de Vusse reaction
(Equation (20)) [73].

A
k1−→ B

k2−→ C

2A
k3−→ D

(20)

Figure 6. Van de Vusse reactor.

This process is modeled as an ordinary differential equation (ODE) system with two
states (Ca and Cb) and one manipulated variable (F), as shown in Equations (21) and (22).

dCa(t)
dt

= −k1Ca(t)− k3C2
a(t) +

F(t)
V

(Ca f (t)− Ca(t)) (21)

dCb(t)
dt

= k1Ca(t)− k2Cb(t)−
F(t)
V

Cb(t) (22)

The real-time optimization problem deals with the maximization of the concentration
of the component B (J = −Css

b ) by manipulating F ∈ (0, 150). It is also assumed that the
product should fulfill a purity criterion (Cb > 1.15) regardless of the values of disturbance
Ca f ∈ (9, 11). Within the classic RTO perspective (Figure 5), w∗k corresponds to Ca f , the
CSTR model (y = f (u, w∗k )) is the same for SSRTO and MPC, and the optimal solution
(Cb(k + 1)∗, F(k + 1)∗) is sent as the set-point to the supervisory control layer (MPC).
In the next section, this problem is formulated in the RL framework, according to the
one-layer approach. The option is to use a variant of the DDPG algorithm as a learning
agent (i.e., multi-agent deep deterministic policy gradient (MADDPG) [74]), which uses
cooperative or concurrent control agents to improve the data distribution (i.e., buffer
sampling) and to stabilize training, which is a contribution to the literature, following the
recommendations of Powell et al. [33] on obtaining an optimal actor and critic given the
complex offline training.

4.1.2. RL Framework

The roll-out data sampling was based on the simulation of the Van de Vusse reactor
over k = (1, · · · , N) episodes of size i = (1, · · · , T). The RL elements in this framework
are illustrated in Figure 7. The current state and the new state are x = (Ca(t), Cb(t)) and
x′ = (Ca(t + 1), Cb(t + 1)). The reward is the essential RL element to guide offline learning.
Its definition encompasses the economic objective (J(t) = −Css

b ) according to Equation (23),
which is maximized only when the required minimum production of Cb is reached (i.e.,
Cb ≥ 1.15), plus the contribution of η(T− i)∆t, with η adjusting the importance of reaching
such a condition as quickly as possible. When the minimum Cb production is not reached,
β adjusts the importance of maximizing Cb(t + 1) and Cb(t) and φ i ∆t penalizes high
variations of ∆F = µ(x, θa) (i.e., in the range F ∈ (0, 150)). Additionally, the reactor
initial conditions are randomly selected according to continuous uniform distribution (i.e.,
Ca(0) = U(a, b), Cb(0) = U(a, b), where a and b are the minimum and maximum values),
with process disturbance also sampled randomly (Ca f (0) = U(a, b)). They are maintained
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constant for each episode, and the procedure repeats until the buffer is completely filled
(N = D).

rt =

{
η(T − i)∆t + F(t), if Cb(t) ≥ 1.15
βCb(t + 1)Cb(t)− ϕ||∆F(t)|| (i) dt, Otherwise

(23)

CSTR
buffer (D)

update

rollout data

Offline Learning

Figure 7. Offline learning with multi-agent deep deterministic policy gradient, with a buffer of size
D, to optimize and control the Van de Vusse reactor.

The steps for its implementation are similar to the DDPG algorithm and are shown in
Algorithm 1. However, the dimension of the buffer is increased since the critic network
update (Q1) will also depend on collected experiences, actions U = {u1, · · · , uNa}, states
X = {x1, · · · , xNa}, state transitions X

′
= {x′1, · · · , x

′
Na}, and rewards R = {r1, · · · , rNa},

from the other agents. Regarding the case study, the first step is selecting the number of
agents (µi

t), which directly influences the amount of acquired experience and the computa-
tional burden. At each execution of the algorithm (episodes = 1, N), the initial condition
(X0) is sampled at random (uniformly) for each agent and kept constant for t = 1, T. The
aim is to expose each agent to various experiences, continuing to learn to maximize rewards
(Rt) regardless of the initial state (Ca(0) and Cb(0)) and process disturbance (Ca f (0)). This
procedure follows the behavioral policy and the Ornstein–Uhlenbeck process to gener-
ate temporally correlated exploration samples (ui

t = ∆Fi
t ), and thus obtain the rewards

(Equation (23)) and reach the new state (Equations (21) and (22)), which compose a buffer
that stores and replays uniformly the roll-out data ({Xt, Ut, Rt, Xt+1}). With a sufficient
number of samples (i.e., if N > D), the update step for each agent effectively begins.
The tuple ({Xi

j, Ui
j , Ri

j, Xi
j+1}) of size K is sampled at random (uniformly) to compute the

TD-error (δi
j) increased with actions implemented by each agent, which leads to updat-

ing the critic and actor networks. Finally, updating the actor and critic networks with
delayed (or filtered) copies of the original DNN is an alternative, as in DDPG algorithms,
to stabilize training.
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Algorithm 1: MADDPG algorithm.

Result: For each agent i, optimal policy µi(xi
t, θi

a)
1 for episodes = 1, N do
2 X0 = (Ca(0), Cb(0), Ca f (0)) e U0 = F(0);
3 ξ is a zero-mean Ornstein–Uhlenbeck process;
4 for t = 1, T do
5 For each agent i, select actions ui

t = ∆Fi
t = µi(xi

t, θi
a) + Fi

t−1 + ξt;
6 Obtain reward Rt and new state Xt+1;
7 Replay buffer {Xt, Ut, Rt, Xt+1};
8 if N > D then
9 for i = 1, Na do

10 for j = 1, K do
11 roll-out data sampling {Xi

j, Ui
j , Ri

j, Xi
j+1};

12 Compute the temporal difference error (δt):
yi

j = ri
j + γ Qi

θ
′
c
(Xi

j+1, µi(x1
j+1, θ

′i
a ), · · · , µi(xNa

j+1, θ
′i
a ));

13 δi
j = yi

j −Qi
θc
(Xi

j, u1
j , · · · , uNa

j );

14 end
15 Critic network update:
16 Li

c = ( 1
K ∑ δ2)i;

17 Actor network update:
18 ∇θc µ|xi ≈ 1

K ∑i∇aQi
θc
(Xi

t, µi(x1
t , θi

a), · · · , µi(xNa
t , θi

a))∇aµi(xi
t, θi

a);
19 end
20 For each agent i:
21 Target critic network update: θi

c(t + 1) = κθi
c(t) + (1− κ)θi

c(t + 1) ;
22 Target actor network update: θi

a(t + 1) = κθi
a(t) + (1− κ)θi

a(t + 1)
23 end
24 end
25 end

4.1.3. Validation of the Control Experiment

The parameters used in the offline control experiment are summarized in Table 2.
The selected hyperparameters’ values (i.e., K, κ, and γ) followed the recommendations of
Lillicrap et al. [47] and Lowe et al. [74]. The number of episodes (N), the buffer size (D),
the number of agents (Na), the size of the episode time horizon (T), and the parameters η,
β, and ϕ were selected by trial and error. The selected actor network must be more con-
servative than the critic network, according to the recommendations from Faria et al. [32].
Furthermore, the actor and critic learning rates decay by ϑ every 1000 episodes (i.e., when
N ≥ D) to stabilize stochastic gradient descent optimization. The definition of the process
conditions, except for the control action limit (∆F) between -20 and 20, followed the example
of Ławryńczuk et al. [73]. Namely, Ca(0) = U(9, 11), Cb(0) = U(0, 1.5), Ca f (0) = U(9, 11),
F(0) = U(0, 150), k1 = 50, k2 = 100, k3 = 10, and the control experiment lasting two hours,
with the control action taken at each time interval of duration of 0.025 h (∆t = 0.025), total-
ing 80 time steps (i.e., T = 2

0.025 = 80). Finally, the control experiment was performed on an
ACER Aspire A315-23G computer with 12 GB RAM. The system of Equations (21) and (22)
was integrated using CVODES [75] (suite of differential algebraic equation solvers imple-
mented in Casadi). Moreover, Pytorch [76] was employed for the actor and critic networks’
definition and offline training.
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Table 2. The MADDPG algorithm’s hyperparameters.

Hyperparameters Value

MADDPG
Discount factor (γ) 0.99

Batch size (K) 50
Buffer (D) 5000

Episodes (N) 8000
Time constant (κ) 0.005

Number of agents (Na) 4
η, β, ϕ (0.1, 0.1, 1)

Actor Network
Activation function ReLU, Tanh

Layers (Laa) 4
Neurons (Naci) (200, 150, 150, 120)

Critic Network
Activation function ReLU, Linear

Layers (Lac) 2
Neurons (Nci) (250, 150)

DNN Training Algorithm
Optimizer Adam

Actor learning rate (αa) 0.0035
Critic learning rate (αc) 0.035
Decay learning rate (ϑ) 0.1

The offline learning of the four agents following the RL framework is illustrated in
Figures 8 and 9. In Figure 8, all agents resulted in an actor that maximized the policy gradi-
ent, having a magnitude compatible with that computed by the critic network (Figure 9)
and independent of the initial conditions of the reactor. This means that all agents learned
decision-making policies that maximized the rewards over the episodes. At this point, it
was expected to obtain an actor and a critic sufficiently generalizing and robust to adapt to
new process conditions. However, Agent 3 had an oscillatory behavior, which can make its
online use unfeasible, and Agent 4 may have reached a sub-optimal state.

Figure 8. Actor and critic update to Van de Vusse reactor economic optimization and control.



Processes 2023, 11, 123 15 of 21

0 10 20 30 40 50
Batch size (K)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Q
ne

tw
or

k
va

lu
e

N = 5000
Agent 1
Agent 2
Agent 3
Agent 4

0 10 20 30 40 50
Batch size (K)

700

800

900

1000

1100

1200

N = 8000

Agent 1
Agent 2
Agent 3
Agent 4

Figure 9. Q-network value considering the action taken from a continuous uniform distribution
(N = 5000) and the action with the MADDPG algorithm (N = 8000).

Validation for Process Condition 1

To validate these results, a new process condition not tested offline was performed:
the training time was extended to 5 h; the dynamics of process disturbance was a sine wave,
which exhibited a smooth, periodic oscillation (Figure 10); the steady-state condition was
Ca(0) = 10, Cb(0) = 1.15 and F(0) = 150.

0 1 2 3 4 5
time (h)

9.00

9.25

9.50

9.75

10.00

10.25

10.50

10.75

11.00

C a
f

Disturbance

Figure 10. Process disturbance with sine wave dynamics outside the range used in the offline training.

In Figure 11, when evaluating the dynamics of Cb, Agents 1 and 4 had the least-
oscillatory behavior, did not exceed the process constraint, and took adequate control
actions for process disturbances, as illustrated in Figure 12. These results corroborate what
was expected given the oscillatory behavior of Agents 2 and 3 in the offline training phase
to update the actor and critic networks. Agent 3 resulted in a sub-optimal actor with
saturated control actions at the upper limit of F. Agent 2 did not find a suitable actor to
deal with process disturbances, resulting in an oscillatory and divergent control policy.
These results denote one of the main features of the MADDPG algorithm (mentioned
in [77]), as it allows using cooperative control agents that have increased learning (Agents
1 and 4) when collecting experiences of sub-optimal policies (Agents 2 and 3). Although
Agents 2 and 3 resulted in unfeasible policies, the possibility of using each agent in parallel
improved the robustness of the methodology (compared to DDPG), especially considering
its implementation in the real process, which could discard Agents 2 and 3 and directly
employ Agents 1 and 4 or even combine them. These claims were evaluated by comparing
the performance of all agents with respect to the two-layer approach. Specifically, the
HRTO approach with the set of parameters based on Matias and Le Roux [14] was chosen.
Agents 1 and 4 rejected the disturbances and reached the set-point as in HRTO (Figure 13),
which employed the extended Kalman filter (EKF) and estimated Ca f (online) for the model
adaptation step of RTO and MPC. The EKF suitably estimated the disturbance (Figure 13b)
so that MPC achieved the set-points resulting from the RTO layer (Figure 13a,c).



Processes 2023, 11, 123 16 of 21

Figure 11. Dynamics of Cb when subjected to process disturbances of Figure 10 over a 5 h control ex-
periment.

Figure 12. Dynamics of control actions (∆F) when subjected to process disturbances of Figure 10 over
a 5 h control experiment, to maximize Cb.
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(a) Dynamics of Cb.
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(b) Dynamics of Ca f .
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(c) Dynamics of F.

Figure 13. HRTO approach to Van de Vusse reactor economic optimization and control concerning
process disturbances of Figure 10.

In Table 3, the average yield of Cb and the CPU time for each agent are summarized.
Agents 1 and 4 were an interrelated alternative to HRTO as they demand to compute a
function rather than solve a sequence of nonlinear optimization problems, despite less
economic profit. These results were also seen in Powell et al. [33]. However, using multiple
agents guarantees learning from sub-optimal policies and parallel implementation.
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Table 3. Average yield and online experiment time for each agent.

Agent Average Yield Online Experiment Time

1 1.2414 1.5 s
2 1.2015 1.5 s
3 1.1508 1.5 s
4 1.2405 1.5 s

HRTO 1.2534 16 s

Validation for Process Condition 2

Another process condition is proposed to evaluate the generalization of agents when
subjected to process disturbances that they were not exposed to during offline training, i.e.,
Ca f (t) has process dynamics according to Figure 14.

0 1 2 3 4 5
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11.00

11.25

11.50

11.75

12.00

12.25

12.50

12.75

13.00

C a
f

Disturbance

Figure 14. Process disturbance with sine wave dynamics outside the range used in the offline training.

All learning agents showed a more oscillatory behavior, as shown in Figure 15. This
was expected as they were not exposed to these conditions in offline training. Despite
this, they managed to capture the dynamic behavior of Cb adequately, again with Agents 1
and 4 taking control actions closer to those considered optimal, as shown in Figure 16 (i.e.,
concerning HRTO (Figure 17)) and with a CPU time equal to the condition tested before
and summarized in Table 3. These results were due to the networks’ ability to generalize to
other process conditions, which demonstrated the robustness of the MADDPG controller to
adapt to abrupt process changes, as detailed in Spielberg et al. [58] for the DDPG controller,
without the need to restart the offline training.

Figure 15. Dynamics of Cb when subjected to process disturbances of Figure 14 over a 5 h control ex-
periment.
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Figure 16. Dynamics of control actions (∆F) when subjected to process disturbances of Figure 14 over
a 5 h control experiment, to maximize Cb.
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(a) Dynamics of Cb.
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(b) Dynamics of Ca f .

0 1 2 3 4 5
time (h)

80

90

100

110

120

130

F
(L

/h
)

NMPC
RTO

(c) Dynamics of F.

Figure 17. HRTO approach to Van de Vusse reactor economic optimization and control concerning
process disturbances of Figure 14.

5. Conclusions

This review outlined guidelines for real-time optimization using reinforcement learn-
ing approaches. The analysis of specific applications for real-time optimization, supervisory
control, and regulatory control allowed us to make some general conclusions about it:

• There are a huge number of RL applications not considering the economic optimization
of the plant;

• Almost all applications are restricted to validation with bench-scale control experi-
ments or based on simulation;

• There is a consensus in the literature that extensive offline training is indispensable to
obtain adequate control agents regardless of the process;

• The definition of the reinforcement signal (reward) must be rigorously performed
to adequately guide the agents’ learning, which must be penalized when it is far
from the condition considered ideal or when it results in impossible or unfeasible
state transitions;

• The benchmark study of RL confirmed the hypothesis that cooperative control agents
based on the MADDPG algorithm (i.e., one-layer approach) could be an option for the
HRTO approach;

• Learning with cooperative control agents improved the learning rate (Agents 1 and 4)
through the collection of experiences of sub-optimal policies (Agents 2 and 3);

• The parallel implementation with MADDPG is possible;
• The benefits of the collection of experiences with MADDPG depend on a trustworthy

process simulation;
• Learning with MADDPG is fundamentally more difficult than the single agent (DDPG),

especially for large-scale processes due to the dimensionality problem;
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• It is necessary to develop RL algorithms to handle security constraints to ensure
control stability and investigate applications for small-scale processes.
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