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Abstract: In this research, an intelligent control architecture for an experimental Unmanned Aerial
Vehicle (UAV) bearing unconventional inverted V-tail design, is presented. To handle UAV’s inherent
control complexities, while keeping them computationally acceptable, a variant of distinct Deep
Reinforcement Learning (DRL) algorithm, namely Deep Deterministic Policy Gradient (DDPG) is
proposed. Conventional DDPG algorithm after being modified in its learning architecture becomes
capable of intelligently handling the continuous state and control space domains besides controlling
the platform in its entire flight regime. Nonlinear simulations were then performed to analyze UAV
performance under different environmental and launch conditions. The effectiveness of the proposed
strategy is further demonstrated by comparing the results with the linear controller for the same
UAV whose feedback loop gains are optimized by employing technique of optimal control theory.
Results indicate the significance of the proposed control architecture and its inherent capability to
adapt dynamically to the changing environment, thereby making it of significant utility to airborne
UAV applications.

Keywords: flight dynamics; linear quadratic regulator; machine learning; Reinforcement Learning;
Deep Deterministic Policy Gradient; optimal reward function; optimal control theory; linear quadratic
regulator nonlinear simulations

1. Introduction

The requirement for flexible and dependable network supporting systems grew in
response to the enormous demand for trustworthy surveillance services [1–3]. Unmanned
aerial vehicles (UAVs) apart from their conventional roles [3–9], have recently gained popu-
larity as core network devices for delivering flexible and dependable network services such
as mobile surveillance. It has been demonstrated that UAVs may adapt and dynamically
update the positions of surveillance UAVs using their mobility capability [10,11]. Many
critical characteristics of UAVs have been classified, including top-level configuration,
restricting altitude, mean take-off weight, autonomous level, and even ownership. Similar
nature optimization can be traced for ground applications [12–19].
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The categorization of UAVs into fixed-wing, rotary-wing, and hybrid-wing aircraft is
the first topic to be covered. Similar to ordinary fixed-wing human planes, UAVs also have a
stiff wing with an airfoil that functions by boosting forward airspeed to fly. In comparison to
the second design with rotary wings, this arrangement offers longer endurance flights and
loitering, provides high-speed motion, and retains high payloads. Some of the drawbacks
with this arrangement include the necessity for a runway to take-off/land because it relies
on forward airspeed, as previously indicated, and the inability to do hovering activities
because it must maintain continuous flight till landing at the conclusion of each journey. The
rotary-wing arrangement, on the other hand, provides manoeuvrability benefits through
the use of rotating plates. Its rotating blades can provide enough aerodynamic push to
fly without using airspeed relative velocities. These properties enable this type of UAV to
execute vertical take-off/landing, fly at low altitudes, such as in congested metropolitan
areas, and hover. It cannot, however, sustain the same payload as a fixed-wing arrangement.

The third is the hybrid configuration, which has been proposed as a new type of aerial
platform that combines the benefits of both known fixed and rotary wings (Convertiplanes
and Tail-sitters). UAVs have seen a dramatic surge in civilian applications in a variety
of industries in recent years due to their low cost, adaptability, automation capabilities,
and reduced safety restrictions because of no human on board. Power line inspection [20],
wildlife conservation [21], construction inspection [22], and precision agriculture [23] are
some of the few examples. UAVs, on the other hand, have payload size, weight, and power
consumption limits, as well as restricted range and endurance. UAVs also face unique and
variable environments because of their wide spread usages and thus appears as one of
the biggest challenges. These drawbacks however should not be neglected, and they are
especially important when deep learning algorithms are required to operate on a UAV.

1.1. Relevant Studies

Reinforcement Learning (RL) is the process of learning and selection of actions that
what to perform in a given situation in order to maximize a numerical reward signal. The
interactive intelligent agent in RL has a specific aim to achieve. In order to determine the
best strategy that maximizes the cumulative reward from interactions with the environment,
the agent must balance exploitation and exploration of the state space. An agent alters
its behaviour or policy in this setting by being aware of the states, actions space, and
rewards for each time step. Reinforcement Learning uses an optimization technique to
maximize the cumulative reward throughout the whole state space. The environment model
reflects the behaviour of the surrounding environment and aids algorithm performance by
comprehending it.

In reinforcement learning, an agent is the entity that is required to do any action in the
environment given its present state and previous experiences. Any reinforcement learning
algorithm’s fundamental goal is to allow the agent to quickly learn the best policy, which is
represented by the symbol, that accurately completes the specified task and so yields the
largest reward value [24].

Deep reinforcement learning (DRL) is a machine learning topic that combines deep
learning (DL) i.e., use of neural nets and reinforcement learning together to deliver an
optimal solution based on prior experience. This experience is built on iterations and
analyzing a reward function in order to determine an agent’s best conduct. The value-based
method, policy-based approach, and model-based approach are the three primary kinds of
deep reinforcement learning approaches. The agent’s goal in value-based reinforcement
learning is to identify the policy that maximizes a value function across a sequence of
actions in the long term. The agent must then identify the policy that leads to the optimum
value for the objective function in policy-based reinforcement learning. There are two types
of techniques in this category: deterministic and stochastic. The former strategy takes the
same action in every state, but the latter allows for differences in action depending on
probabilistic assessments. Finally, model-based reinforcement learning relies on the agent
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being given a model of the environment or being asked to learn a model of the environment
in order to accomplish tasks in that environment.

Dao et al. [25] employed Sliding Mode Control (SMC) with Adaptive Dynamic Pro-
gramming. Researchers have intelligently fused non-linear technique with RL technique.
In current research, RL based dynamic Programming has been used for evaluating the Opti-
mal Reward Function to be incorporated with conventional DDPG Algorithm, which makes
it novel and unique as compared to other approaches. In another paper, Dao et al. [26]
employed Actor Critic Network through ARL. This work is in accordance with the current
work in which both DDPG and PPO have been used which are also from a family of Actor-
Critic networks, with prime difference of a Reward Function. Pham et al. [27] discussed
a tracking problem which applies Adaptive Reinforcement Learning (ARL) along with
Disturbance Observer (DO) to achieve the objective. However, in current research Optimal
RL based Dynamic Programming has been used for the reward function followed by using
two variants of DRLs for devising Optimal Control Strategy. Similarly, Ref. [28] addressed
a tracking control problem for an uncertain SV using ARL based cascaded structure. Cur-
rent research on the other hand also employs Actor-Critic network by employing DDPG
and PPO. At the heart however, lies RL based DP reward function which helps achieve
convergence besides making the learning quicker.

Various researchers have employed RL for solving various control problems. Similar
nature work [29,30] is done in the field of ground robotics [31–33] and wheeled inverted
pendulum [25] by employing non-linear Sliding Mode Control (SMC) technique with
Adaptive Dynamic Programming. Based on our review of the related research and cited
papers, it has been assessed that in spite of being an active area of research, application of
RL for UAV application is still in its infancy. The applications are focused towards limited
segments mainly handling segmented flight phases [34,35]. Keeping in view the immense
potential of RL algorithms and its limited application in entirety for UAV Flight Control
systems development, it is considered mandatory to explore this dimension.

1.2. Research Contributions

In this paper, authors have presented the efficacy of DRL algorithm for a Unmanned
Aerial Vehicle. Continuous state and control space domains are used to design a DRL-based
control method that covers the whole flying regime of the Unmanned Aerial Vehicle while
including nonlinear dynamical path limitations. Current study work. To our knowledge,
the proposed method varies from previous research in the following ways:

• This study represents one of the pioneering work that applies DRL on controlling a
non conventional UAV over its complete trajectory and flight envelope.

• Although a conventional DDPG algorithm lies at the core of current problem solving
but it is pertinent to highlight that applied DDPG was modified with regards to its
learning architecture through data feeding sequence to the replay buffer. Generated
data was fed to the agent in smaller chunks to ensure positive learning through
actor policy network. This data feeding distribution also makes it easier for the critic
network to follow the policy and to help in positive learning of the agent.

• An optimal reward function was incorporated which primarily focuses on controlling
the roll and yaw rates of the platform because of strong coupling between them due to
inherent inverted V- tail design of the UAV. Optimal reward function was formulated
from initial data collected in Replay Buffer before the formal commencement of
agent’s learning.

2. Problem Setup

Current research analyzes a pure Flight Dynamics problem from a perspective of
controlling an experimental UAV it in its entire flight regime employing intelligent control
techniques that can handle continuous domains.
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2.1. Flight Dynamics Modeling

The geometric, flight and mass parameters of the experimental UAV utilized in this
study are elaborated in Table 1. The UAV configuration consisting of ‘V’ tail with inverted
fin have been adopted to meet the challenging performance requirements and aerodynamic
characteristics. In this paper, the flight dynamics are modelled using the 6-DOF model,
which is often used to represent vehicle motion in 3D space [36–42].

Table 1. UAV parameters.

No. Nomenclature Value No. Nomenclature Value

1 Weight 600 Kg 6
Wing Area/Mean
Aerodynamic
chord/Wing Span

9.312 f t20.8783 f t/4.101 f t

2 Angle of incidence
of wing 6◦ 7 Horizontal tail inci-

dence Angle 0◦

3 cg location 3.78 f t 8
Vertical location of cen-
ter of gravity from ref-
erence plane (Vcg)

2.4 f t

4 Airfoil of Tail
(Vertical)

NACA-6-
65A007 9 Wing airfoil NACA-6-65-210

5
Airfoil of Tail
(Horizontal)

NACA-6-
65A007 10

Moment of Inertia Ma-
trix slug− f t2

 41 0.16 −12.4
0.16 690 0.0037
−12.4 0.0037 716



2.2. State and Action Space Characterization

The problem is formulated as a nonlinear system and depicted in Equation (1):

~̇x = f (~x,~u) (1)

hence, ~x ∈ R12 is called as state vector, ~u ∈ R2 is called as control vector, and ~̇x ∈ R12 are
the updated state estimates. The state vector is depicted by Equation (2).

~x = [U, V, W, φ, θ, ψ, P, Q, R, h, PN , PE]
T , ~x ∈ R12 (2)

A control vector is depicted in Equation (3)

~u = [RCF, LCF]T , ~u ∈ R2 (3)

As the intended motion of the UAV spreads over a localized area of Earth, a flat
non-rotating Earth is assumed for all mathematical analysis. The governing equations of
motion represent (a) dynamics of translation, (b) dynamics of rotation, (c) kinematics and
(d) navigation assuming non-rotating Earth.

2.3. Drl Algorithms and Appropriate Selection

Reinforcement learning algorithms for discrete domains are mainly used for finding a
state-value function Vπ∗, by following a policy π. The π is dependent on time which helps
in guiding the choice of action to be taken.

π(z|y) = P[At = z|St = y] (4)

The output from state y, by following policy π and collecting scalar incentives, during
transitioning between states is the state-value function (5). The agent’s behaviour is closely
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monitored to ensure that all states are visited at least once throughout the learning process.
The return that is gathered by the agent existing in any specific state y and doing an action
determines the action-value function (6).

vπ(y) = Eπ [Gt|St = y] (5)

qπ(y, z) = Eπ [Gt|St = y, At = z] (6)

It is apprised that Equations (4) and (5) presents novel mathematical architecture of
the ‘Optimal Reward Function’. It has been developed with an Iterative process while
implementing the Reinforcement Learning based Dynamic Programming concept in an in-
novative manner. This Optimal Reward function has been embedded with the conventional
DDPG Algorithm thus making it a novel approach for solving a complex control problem
with continuous space and action domains. Incorporated Optimal reward function is one
of the reasons that ensures positive convergence.

Selection of appropriate RL algorithm is difficult and it is not easy to implement due
to complexity of states and actions [43,44]. Elements such as state (y) and action space (z),
policy search (π) or value function (v), either model free/based, requires neural nets (deep
RL) etc are deriving parameters in formulating RL algorithms. RL algorithms range from
Policy Gradients to Q-learning besides Actor-Critic methods. All the methods have their
own strengths and weaknesses, however few factors like hyper-parameters, random seeds
or environment properties have profound effects [45] in DRL algorithms.

As our problem has a complex action domain with continuous state, so policy gra-
dient methods incorporating neural nets were preferred as they directly optimize the
parameterized policy by using an estimator of the gradient of the expected cost. These
primarily include Trust Region Policy Optimization (TRPO) [46], Proximal Policy Optimiza-
tion (PPO) [47], Deep Deterministic Policy Gradient (DDPG) [48], and its variants Twin
Delay DDPG (TD3), Soft Actor-Critic (SAC), Advantage Actor-Critic (A2C), Asynchronous
Advantage Actor-Critic (A3C) and ACKTR (Actor-Critic using Kronecker-Factored Trust
Region) [49]. TRPO and PPO use constraints and advantage estimation to perform net-
work update.

TRPO uses conjugate gradient descent as the optimization method with a KL con-
straint while PPO reformulates the constraint as a penalty (or clipping objective). DDPG
and ACKTR use actor-critic methods which estimate Q(s, a) and optimize a policy that
maximizes the Q-function. DDPG does this using deterministic policies, while ACKTR uses
Kronecketer-factored trust regions to ensure stability with stochastic policies. Owing to
the nature of problem at hand our requirement was to handle multi-processed continuous
actions which further narrowed down our search to TRPO, PPO, DDPG and A3C only.

Critical challenge related to DDPG is sample inefficiency because actor is updated
based on gradients evaluated when training of the critic neural network is taking place.
Gradient is usually noisy because it relies on the outcome of the simulated episodes. to
Therefore, to avoid divergence off-policy DRL training algorithms maintain a copy of
the actor and critic neural networks while undergoing training. DDPG usually faces
convergence issues which are handled by employing various optimization algorithms
among which Adam optimizer outperforms others because of its minimum training cost.
Adam optimizer has also been employed in current research as well. But the best part about
DDPG is that its Q value based and is more intuitive to implement.

DDPG is an effective policy gradient based RL algorithm [50], that can be configured
for problems involving high dimensional continuous state space domain [51]. It is an
off-policy algorithm, refer [52], whose behavioral policy is stochastic in nature while target
policy is deterministic. Being model-free, it uses deep learning techniques that were
introduced along with Deep Q Networks (DQNs) for efficient learning [53]. It utilizes
the concept of replay buffer and then use experience replay to break up the temporal
correlations [54].
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Based on the basic architecture of the DDPG algorithm as articulated in [48,55,56],
actor and critic neural nets along with their target networks were established in Python.
TFlearn [57], a modular higher-level API to TensorFlow deep learning library [58] has been
utilized during the research and exhibits remarkable performance. Designed Neural nets
had three layers each for both actor and critic networks with first layer having 400 Neurons
while second layer having 300 Neurons. It is pertinent to highlight that the selection of the
number of neurons was finalized after repeated hit and trial by evaluating the learning
performance every time. Two different activation functions have been used in the neural
nets. tanh is used for the actor network function in order to include for both the positive
and negative deflections of the controls while relu is used for the critic network function
which gives a Q-value of present state based on the action as dictated by actor.

2.4. Selection of Optimizer Algorithm

Adam optimizer which is an extension to stochastic gradient descent as explained
by [59] was used for ensuring efficient learning of all the four actor critic and their target
networks. Empirical results as evidenced in Figure 1 retrieved from the analysis of [60]
demonstrates that Adam works well in practice and compares favorably to other stochastic
optimization methods besides bearing minimum training cost, however some people have
also used derivative of DDPG for positive optimization [55].

Figure 1. DDPG Actor-Critic Neural Networks.

Modern optimization algorithms such as Aquila Optimization Algorithm [61] and Hy-
brid Algorithm of Arithmetic Optimization Algorithm With Aquila Optimizer (AOAAO) [62],
have special applications for machine learning based problem solving However, Adam
which possess inherent advantages over the two other extensions of stochastic gradient de-
scent namely Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation
(RMSProp) have been used in current research [63,64]. AdaGrad maintains a per-parameter
learning rate which improves performance on problems with sparse gradients. RMSProp
also maintains per-parameter learning rates that are adapted based on the average of recent
magnitudes of the gradients for the weight. Adam instead of adapting the parameter learn-
ing rates based on the average first moment as in RMSProp, Adam also makes use of the
average of the second moments of the gradients. Acquiring benefits of both, results show
that it has minimum training cost among the various optimizers in use for DRL algorithms.

Adam updated the network weights iterative in training data during the learning
phase. For the back-propagation optimisation the learning rate of both the actor and the
critic was set to 1 × 10−3with first and second moments set to 0.9, 0.999, respectively.
Experience Replay Buffer size was set as 1 million i.e., after the complete replay buffer is
filled the oldest data is popped out making place for the new incoming data. Batch size
for calculating the gradient descent was maintained as 64 to improve the optimization.
The reward discount was set as γ = 0.95 and the soft update of the target neural networks
was selected as τ = 0.005. To allow exploration a simple Gaussian noise with σ = 0.25
was also added and during the training the best model was saved. Keeping in view the
wide ranging and varying numerical data of states and rewards owing to the peculiar
nature of the problem, batch normalization was incorporated before feeding the data to
neural nets for efficient training of Neural nets. Additionally, the data being generated
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during simulated episodes was fed to the neural nets in chunks with an aim to speed up
the learning curve.

In order to improve the efficacy of conventional DDPG algorithm, optimal penalty and
reward function developed after an iterative process was utilized. Scalar reward function
lies at the core of any RL problem as it guides the agent towards its goal. Significance of
the reward function can be realized from the fact that it is the only measure for gauging
success or failure of any particular action for the agent. If is not formulated correctly it
may lead to the choice of actions which may take the agent away from priority goals.
Reward function incorporated in this research aims at maximizing the glide range of the
experimental glide UAV.

It is critical to understand that during the iteration process weights management was
done carefully on logical grounds as otherwise random increase in the weights would in-
crease pen, refer Equation (7). thus bringing the reward for each step sharply down, finally
resulting in an unstable reward function. Due to the same, the difference of rates with
the desired absolute values for each different state were also included in the cost function.The
iterative process continued before reaching a final reward function to give a complete opti-
mization process. In order to improve the control of states corresponding to experimental
design vehicle, additional dynamic weights w7, w8, w9 and w10 were also added to the
already finalized structure aiming to gain effective control of the changing rates with each
step of the episode. Subsequently, y dis parameter was also added in the penalty to restrict
platforms lateral movement in the Y-direction. Additionally, the r also included the altitude
decrease i.e., zcurr which is the decreasing altitude with every step. Additionally, rates
were made part of the reward function in order to arrest any abnormal trends of roll and
yaw coupling

pen = w1|P|+ w2|Q|+ w3|R|+
w4∆P + w5∆Q + w6∆R+

w7δP + w8δQ + w9δR + w10ydis

(7)

r = 10−3 × xcurr2 + (36000− zcurr)

rew = r− pen (8)

where pen represents the penalty defined at each step of the simulation. xcurr is the
incremental current x value or covered gliding distance. r is the instantaneous scalar reward
value based on increasing xcurr. w represent dynamic weights which are varied by the
agent during the learning process, for limiting the rates in order to improve control of the
gliding platform. zcurr is the decreasing altitude of the platform with every step of the
episode. y dis parameter represents distance covered in East direction and is added in the
penalty to restrict platform’s lateral movement. P, Q and R are the Roll, Pitch and Yaw rates
respectively, whereas ∆P , ∆Q and ∆R represent the change in these instantaneous rates
while δP, δQ and δR are the difference between instantaneous and ideal targeted selected
values for each of the three rates.

3. Results and Discussion

The results achieved through implementation of modified DDPG RL controller are
discussed in this section. The launch conditions are taken as

1. Launch Condition No. 1 Altitude 35,500 ft, Mach 0.85; Angle of Attach 0◦

2. Launch Condition No. 2 Altitude 35,000 ft, Mach 0.7; Angle of Attach 2◦

Terminal State of the current MDP is recognized as the state when the “gliding UAV
hits the ground with the employed condition of ‘h’ is less than or equal to zero that is when
the altitude reduces to ‘ZERO’”.
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DDPG RL Controller Results

Body axis rates variation during the flight of UAV are depicted in Figure 2. With
all 3 rates initialized at zero, agent selects random actions during the exploration phase
while all the states resulting from the actions are stored in the buffer replay. Incorporated
optimal reward function and the learning of agent based on the replay buffer gradually
starts to make optimal trade-off among all three rates. Superior learning of DDPG agent
based on neural nets can be appreciated from the smooth varying graphs instead of pointy
ones. Though the rates are contained in the major part of the episode, however strong
coupling between roll and yaw due to complex controls of the UAV, the roll and yaw rates
show an increasing trend just before the culmination of one of the optimal episodes and
thus validate the coupling behaviour. This behaviour of the agent gives us a peak into its
exploration behaviour that is being managed through the added noise in the action policy
after initially following learnt policy for a good reward.

Figure 2. Angular rates variation.

Figure 3 explains the Euler angles variation during the flight. Both pitch and yaw
angles are contained close to 1◦ during almost half of the initial flight phase. UAV shows a
wing rocking behaviour for initial part of the episode because of the roll angle variation
due to a sinusoidal behavior in the roll rate. Because of the inherent complex geometry of
the vehicle the roll and yaw dynamics are complex. With agent subsequently learning to
optimally trade-off rates, decreases the roll angle variation however, pitch and yaw angles
show more variation. But overall the trade-off appears to be controllable and optimal path
is maintained as variation in roll rate does not hamper the glide path range.

Figure 3. Euler Angles variation.
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Similarly, Figure 4 depicts the glide path of the UAV which initially covers more
distance north wards but with evolving scenario and increasing yaw angle variation the
UAV follows the desired east ward direction.

Figure 4. Glide path of UAV.

Figure 5 depicts UAVs variation of angle of attack and sideslip angle during the flight.
While the sideslip is contained between 0.5 to −1◦, the angle of attack initially increases to
gain more lift, later maintains it close to 6◦. The vehicle finally performs nose down just
before culmination of the flight to hit the desired target.

Figure 5. Angles variation of UAV.

Velocity profile as shown in Figure 6 decreases smoothly as a result of drag and
increase of alpha in the major part of the episode. However, at the later part of the flight it
decreases significantly with the increase in yaw angle and thus sideslip, thereby increasing
drag profoundly before touching the ground.

Altitude variation as depicted in Figure 7 is smooth and gradual in the initial part
where the angle of attack is maintained close to 5 degs. However, the altitude shows a steep
decline in the later part of the episode primarily for hitting the desired target location.
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Figure 6. UAV Velocity profile.

Figure 7. UAV Altitude variation.

Reward function variation is shown in Figure 8. Initially the agent is taking random
actions thus exploring the action space. The moment replay buffer gets filled, the agent
based on the learning from replay buffer starts to take desired actions which help achieve set
objectives besides giving a rise in reward based on good prediction of actions. Convergence
of reward function is also evident as the agent learns with increasing iterations and stabilizes
itself after almost 8000 epochs.

Figure 8. Reward Function.

4. Comparison of Proposed Algorithm with Contemporary PID

After performing extended simulations under different environmental conditions to
evaluate the the performance of our proposed DDPG algorithm, now we further extend our
results. In this section, we will perform a detailed study and do a comprehensive analysis
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by comparing the results achieved from proposed DDPG based control architecture with
conventional LQR based control architecture. The analysis was carried out under setting
with a higher level of intricacy and introducing complex situation loaded with varying
environmental conditions. Results were then examined to draw inferences.

DDPG vs. LQR Control Architecture

The optimum trajectory for the flight conditions mentioned in Section 2.4 computed
utilizing linear LQR based control architecture is depicted in Figure 9. It is evident that
inspite of having range enhancement to about 85Kms, the problem of course deviation
was encountered. This is primarily because the ψ dynamics were decoupled and were
not included fully in the navigation loop. However, no such problem was encountered in
the DDPG based control architecture elaborated in Figure 10. Thus the proposed DDPG
algorithm not only significantly enhanced the vehicle range but also posed superior opti-
mization results by reducing the Circular Error Probability (CEP).

Figure 9. UAV trajectory: LQR based stabilization control architecture.

Figure 10. UAV trajectory: DDPG based control architecture.

5. Conclusions

In this research, a Reinforcement Learning based non-linear intelligent controller for
an experimental UAV was developed. Results indicate efficacy of the control architecture
as RL based intelligent controller keeps the platform dynamically stable throughout the
flight envelope while satisfying vehicles design constraints. Performance of proposed RL
controller extensively evaluated through non-linear 6-DOF simulations, exhibited stable
flight. After ascertaining the performance characteristics, a detailed comprehensive analysis
by comparing the results achieved from proposed DDPG based control architecture with
conventional LQR based control architecture. The analysis was carried out under setting
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with a higher level of intricacy and introducing complex situation loaded with varying
environmental conditions. Authors believe that the investigations made in this research
provides a mathematical-based analysis for designing a preliminary guidance and control
system for the aerial vehicles utilizing intelligent controls. This research is expected to open
avenues for researchers for designing intelligent control systems for aircraft, UAVs and the
autonomous control of missile trajectories for both powered and unpowered configurations.
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