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Abstract: Variational mesh refinement is a crucial step in multiview 3D reconstruction. Existing al-
gorithms either focus on recovering mesh details or focus on suppressing noise. Approaches with 
consideration of both are lacking. To address this limitation, we proposed a new variational mesh 
refinement method named total differential mesh refinement (TDR), which mainly included two 
improvements. First, the traditional partial-differential photo-consistency gradient used in the var-
iational mesh refinement method was replaced by the proposed total-differential photo-consistency 
gradient. With consideration of the photo-consistency correlation between adjacent pixels, our 
method can make photo-consistency achieve a more effective convergence than traditional ap-
proaches. Second, we introduced the bilateral normal filter with a novel self-adaptive mesh de-
noising strategy into the variational mesh refinement. This strategy maintains a balance between 
detail preservation and effective denoising via the zero-normalized cross-correlation (ZNCC) map. 
Various experiments demonstrated that our method is superior to traditional variational mesh re-
finement approaches in both accuracy and denoising effect. Moreover, compared with the mesh 
generated by open-source and commercial software (Context Capture), our meshes are more de-
tailed, regular, and smooth. 

Keywords: variational mesh refinement; photometric mesh refinement; surface reconstruction; 
mesh denoising; photogrammetry 
 

1. Introduction 
A well-established pipeline of image-based 3D reconstruction technology mainly in-

cludes structure from motion (SFM), multiview stereo (MVS), surface reconstruction, 
mesh refinement, and texture. In this pipeline, the surface reconstruction step reconstructs 
an initial coarse 3D mesh that may lack details and contain noise due to occlusion and 
non-Lambertian materials. Photometric stereo [1,2] and mesh refinement are popular 
methods to reconstruct high-quality mesh shapes. Photometric stereo recovers pixel-wise 
surface normals from a fixed scene under varying shading cues, which are widely used in 
the industrial field [3–5]. The mesh refinement method evolves the initial mesh to fine 
details using multiview images. In this paper, we mainly talk about the mesh refinement 
method for large-scale reconstruction. Variational mesh refinement is the most commonly 
used refinement method, and it improves mesh details and accuracy by iteratively updat-
ing all vertex positions to maximize the photo-consistency between images [6]. However, 
due to its isotropic regularization term, this method tends to smooth sharpened structures 
and cannot sufficiently remove excessive mesh noises in texture-less and non-Lambertian 
regions. 
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To solve this problem, Li et al. [7] used a content-aware mesh denoising approach as 
a regularization term for mesh refinement, which was effective in suppressing mesh noise 
while preserving sharp features. However, without the assistance of image information, 
some distinct errors and noises of the mesh may be wrongly identified as sharp features 
and preserved. 

Other studies aimed to improve the accuracy of the variational mesh refinement: 
some researchers selected the best image pairs to refine the mesh [8]. Blaha et al. [9] and 
Romanoni et al. [10] used semantic information to improve mesh accuracy. However, the 
improvement is limited when there are few images and little semantic information. In 
addition, existing variational mesh refinement methods calculate the gradient of each 
pixel independently and do not consider the photo-consistency of neighboring pixels. 

In this study, a total differential mesh refinement (TDR) approach was developed to 
address the abovementioned problems. First, we proposed to use the total-differential 
photo-consistency gradient (TDPG) to replace the partial-differential photo-consistency 
gradient (PDPG) calculation in the variational mesh refinement approach. The TDPG con-
siders the influence of the gradient between adjacent pixels so that the photo-consistency 
can obtain more effective convergence than the PDPG via gradient descent. Second, we 
incorporated bilateral normal filtering [11] into the variational mesh refinement to im-
prove the denoising and edge-preserving capabilities. A self-adaptive mesh denoising 
strategy was adopted to balance detail preservation and effective denoising. Specifically, 
the zero-normalized cross-correlation (ZNCC), which measures the photo-consistency in 
the image domain, was transformed to mesh vertices to form a ZNCC map indicative of 
the uncertainty of the mesh vertices. Then, denoising gradients are self-adaptive and 
weighted depending on their ZNCC. Thus, our method can remove mesh noise while 
preserving the details of the mesh. An overview of our method is shown in Figure 1. 

 
Figure 1. The flow diagram for the proposed TDR algorithm. 

Our contributions are as follows: 
We proposed the TDPG method, which considers the partial derivative of all pixels 

in the neighborhood, makes the photo-consistency error converge to a low level, and ob-
tains a fine-details mesh model. 

We introduced the bilateral normal filtering [11] to the variational mesh refinement 
and adopted the self-adaptive mesh denoising strategy that utilized a ZNCC map to guide 
mesh denoising. This strategy enabled effective denoising while preserving mesh details 
(Section 2.3). 

We used photo-consistency information to guide mesh denoising, which provided a 
new idea for the study of feature-preserving denoising. 

2. Methodology 
We enhanced the variational mesh refinement from two aspects. First, the total-dif-

ferential photo-consistency gradient (TDPG) calculation was proposed for more effective 
convergence of the photo-consistency. Second, bilateral normal filtering was utilized in 
mesh refinement for mesh denoising, flattening planes, and sharpening edges. In order to 
avoid the loss of details that may be caused by denoising, we proposed the self-adaptive 
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mesh denoising strategy. In this section, we first briefly introduce the variational mesh 
refinement approach (Section 2.1). Then, we present our mesh refinement method (TDR), 
including TDPG calculation (Section 2.2) and self-adaptive mesh denoising (Section 2.3). 

2.1. Preliminaries on Variational Mesh Refinement 
The variational mesh refinement approach was introduced by Pons et al. [12] and 

expanded by Vu et al. [13]. This method minimizes the photo-consistency error between 
image pairs by iteratively refining the mesh vertex. For one image pair 𝐼௣ and 𝐼௤, image 𝐼௤ can be projected onto the mesh 𝑆 and then reprojected to image 𝐼௣ to form a predicted 
image 𝐼௣௤ௌ  [7,14]. The photo-consistency between the predicted image and the reference 
image measures the correctness of the mesh, and the goal of variational mesh refinement 
is to minimize this photo-consistency error between all image pairs. 

The energy function is expressed as: 𝐸(𝑆) = 𝐸௣௛௢௧௢(𝑆) + 𝐸௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑆) (1)𝑆 is the mesh surface, 𝐸(𝑆) is the total energy function, 𝐸௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑆) enforces 
the smoothness of the surface. The 𝐸௣௛௢௧௢(𝑆) is defined as: 𝐸௣௛௢௧௢(𝑆) = − ෍ න 𝑀௭௡௖௖൫𝐼௣, 𝐼௣௤ௌ ൯(𝑥௜)𝑑𝑥௜ 

ఆ೛೜ೄ௣,௤  (2)𝑀௭௡௖௖൫𝐼௣, 𝐼௣௤ௌ ൯(𝑥௜) is the ZNCC measurement between images 𝐼௣ and 𝐼௣௤ௌ  at pixel 𝑥௜. 𝛺௣௤ௌ  is the map of the reprojection from image 𝐼௣ to image 𝐼௤ via the surface. 
To minimize 𝐸௣௛௢௧௢(𝑆), the gradient is calculated using chain rules (see [13]): 𝑔௣௛௢௧௢(𝑉) = 𝑑𝐸௣௛௢௧௢(𝑆)𝑑𝑉 = ෍ න 𝜙(𝑋௜)𝜕𝑀(𝑥௜)𝐷𝐼௤(𝑥௝)𝐷Π௤(𝑋௜) d௜𝑁୘d௜ 𝑁𝑑𝑥௜ 

ఆ೛೜ೄ௣,௤  (3)𝑉  represents all mesh vertices, 𝑔௣௛௢௧௢(𝑉) is the vertices gradient induced by the 
photo in each iteration. 𝑀 is the abbreviation for 𝑀௭௡௖௖൫𝐼௣, 𝐼௣௤ௌ ൯, 𝜕𝑀(𝑥௜) is photo-con-
sistency gradient at pixel 𝑥௜. 𝑋௜ is the intersection of S and the ray from the camera center 
of 𝐼௣ to 𝑥௜. 𝜙(𝑋௜) is the barycentric coordinate weight of 𝑋௜. Π௤ represents the projec-
tion from the world to the 𝐼௤, 𝑥௝ = Π௤(𝑋௜) and 𝐷𝐼௤(𝑥௝) is image gradient at 𝑥௝. 𝐷 de-
notes the Jacobian matrix of a function. d௜ is the vector joining the camera center of 𝐼௣ 
and point 𝑋௜. 𝑁 is the outward surface normal at 𝑋௜. 

For mesh regularization, this method adds thin plate energy [15] that penalizes mesh 
bending to prevent excessive bending of the mesh and excessive deviation of the gradient 
flow. 𝐸௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑆) = න (𝑘ଵଶ 

ௌ + 𝑘ଶଶ)𝑑𝑆 (4)

where 𝑘ଵ and 𝑘ଶ are the principal curvatures of the mesh. The linear combination of La-
placian and Bi-Laplacian operators minimizes this energy [15]. 

2.2. Total-Differential Photo-Consistency Gradient Calculation 
A key step in variational mesh refinement is the calculation of the vertex gradient 

(Equation (3)), which determines how the vertices are updated to minimize photo-con-
sistency error. In the baseline method [13], the photo-consistency gradient (𝜕𝑀 in (Equa-
tion (3))) is calculated separately at each pixel and the potential contradictions between 
pixel gradients are ignored. In our approach, we proposed to calculate the photo-con-
sistency gradient for each pixel with consideration of the surrounding related pixels. To 
distinguish those two methods, we denote the baseline method by 𝜕𝑀௉஽௉ீ and our 
method by 𝜕𝑀்஽௉ீ . The following describes the differences between the two methods. 

ZNCC is a ubiquitously used photo-consistency measurement in variational mesh 
refinement, and its formula is as follows: 
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𝑀௭௡௖௖(𝑥௜) = ଵ௡ (∑ (௔೘ିఓಲ)(௕೘ିఓಳ)೙೘సభ ఙಲఙಳ ), 𝑀௭௡௖௖(𝑥௜) ∈ (−1,1) (5)

where 𝑥௜ is the position of a pixel in the reference image, 𝑀௭௡௖௖(𝑥௜) is the ZNCC meas-
urement at 𝑥௜, while 𝐴 and 𝐵 are two image patches of equal size from the reference and 
predicted images at 𝑥௜ (see Figure 2). 𝑎௠ and 𝑏௠ (𝑚 ∈ (1, 𝑛)) denote the m-th pixel in 𝐴 
and 𝐵, respectively, and 𝑛 is the number of pixels in each image patch; 𝜇஺/𝜇஻ and 𝜎஺/𝜎஻ 
are the mean and standard deviations of the pixel values in 𝐴 and 𝐵, respectively. 

 
Figure 2. Schematic diagram of the minimization of ZNCC error. 𝐴 and 𝐵 are two image patches from the reference and predicted images at 𝑥௜. The 
black lines indicate that the two image patches are combined to calculate the ZNCC value. 
The arrows represent the differential of ZNCC with respect to the pixels in B. The right 
part of Figure 2 shows that ZNCC is jointly calculated by 𝑎௠ and 𝑏௠. To minimize the 
ZNCC error, the partial differential only changes the center pixel, while the total differen-
tial changes all the pixels in 𝐵. 

The ZNCC error is defined as 1 − 𝑀௭௡௖௖ . The variational mesh refinement [13] 
changes the center pixel value to reduce this error, and the partial derivative is calculated 
[12,14]: 𝜕𝑀௉஽௉ீ (𝑥௜) = 𝜕𝑀௭௡௖௖(𝑥௜)𝜕𝑏௖௘௡௧௘௥ = 1𝑛 ൬𝑎௖௘௡௧௘௥ − 𝜇஺𝜎஺𝜎஻ − 𝑀௭௡௖௖(𝑥௜) 𝑏௖௘௡௧௘௥ − 𝜇஻𝜎஻ଶ ൰ (6)

where 𝜕𝑀௉஽௉ீ (𝑥௜) denotes the PDPG at position 𝑥௜, 𝑎௖௘௡௧௘௥/𝑏௖௘௡௧௘௥ is center pixels of im-
age patches 𝐴 and 𝐵. 

On the one hand, PDPG only calculates the partial derivative of the center pixel. As 
in Figure 2, the ZNCC is determined by all patch pixels, and the total differential should 
be considered. On the other hand, the PDPG is individually calculated in each image 
patch. As in Figure 3, pixel 𝑥௜ is contained by nine image patches, but the gradient is only 
determined by the center patch. The gradient calculated in this way is expected to reduce 
the ZNCC error of 𝑥௜. However, it may increase the ZNCC error of the neighboring pixels, 
which is not conducive to the convergence of the photo-consistency on the entire image. 
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Figure 3. The difference between PDPG and TDPG. 

In our method, the photo-consistency gradient of a pixel is jointly determined by all 
image patches that contain it. Based on this idea, we propose the TDPG calculation 
method: 

𝜕𝑀்஽௉ீ (𝑥௜) = ෍ 𝑊௚ ቀ𝑑൫𝑥௜௕೘, 𝑥௜൯ቁ 𝜕𝑀௭௡௖௖൫𝑥௜௕೘൯𝜕𝑏௖௘௡௧௘௥
௡

௠ୀଵ  (7)

𝜕𝑀௭௡௖௖(𝑥௜௕೘)𝜕𝑏௖௘௡௧௘௥ = 1𝑛 (𝑎௠ − 𝜇஺೘𝜎஺೘𝜎஻೘ − 𝑀௭௡௖௖(𝑥௜௕೘) 𝑏௠ − 𝜇஻೘𝜎஻೘ ଶ ) (8)

where 𝜕𝑀்஽௉ீ (𝑥௜) is the TDPG at 𝑥௜ and 𝑥௜௕೘ is the position of 𝑏௠ in the image patch 
of 𝑥௜ (see Figure 3a), 𝑑(𝑥௜௕೘, 𝑥௜) is the Euclidean distance between 𝑥௜௕೘ and 𝑥௜. 𝑊௚(𝑑) is 

the Gaussian weight. డெ೥೙೎೎(௫೔್ ೘)డ௕೎೐೙೟೐ೝ  is the partial derivative of ZNCC at 𝑥௜௕೘ with respect to 𝑏௖௘௡௧௘௥. 𝐴௠ and 𝐵௠ are two image patches from the reference and predicted images at 𝑥௜௕೘. 𝜇஺೘/𝜇஻೘ and 𝜎஺೘/𝜎஻೘ are the mean and standard deviations of the pixel values in 𝐴௠ and 𝐵௠, respectively. The equation shows that the gradient of each pixel is jointly 
determined by the partial derivative of all pixels within the image patch and that pixels 
closer to 𝑥௜ have a more significant impact. 

Figure 4 shows the difference between the convergence process of the PDPG and 
TDPG on the entire image. We found that TDPG converges after ~25 iterations while 
PDPG takes ~35 iterations (Figure 4b). TDPG achieves a more effective convergence in 
that it considers the partial derivative of all pixels in the neighborhood and increases the 
area affected by the gradient, which thereby facilitates photo-consistency convergence on 
the entire image. Furthermore, TDPG also yielded a much lower ZNCC error than PDPG. 
The local magnification area in Figure 4c,d shows that the TDPG method makes the pre-
dicted image closer to the reference image in the iterative process. 
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Figure 4. An example of the convergence process of PDPG and TDPG for the entire image. (a) shows 
the reference (left) and predicted image (right), and (b) shows the photo-consistency convergence 
curve of the PDPG and TDPG. (c) and (d) show the changes in the predicted image at different 
iterations by PDPG and TDPG, respectively. 

2.3. Self-Adaptive Mesh Denoising 
Although the photo-consistency gradient improves accuracy and enriches the mesh 

details, noise and errors in the initial mesh cannot be effectively removed, especially in 
the texture-less and non-Lambertian regions. The mesh regularization of variational mesh 
refinement is a combination of the Laplacian and Bi-Laplacian operation [15], an isotropic 
and one-step mesh denoising method. The one-step property means that the method can-
not effectively remove the mesh noise in limited iterations, and the isotropic property 
makes it hard to retain high-frequency details [11,16]. Therefore, we propose to use the 
two-step and anisotropic bilateral normal filtering as a regularization term for mesh re-
finement. However, directly applying the bilateral normal filtering with its strong mesh 
deformation capability is inappropriate because the small mesh details that are difficult 
to distinguish from noise will be erased. 

We utilized the image ZNCC metric, which indicates the mesh accuracy, to guide 
mesh denoising. For image pair 𝐼௣ and 𝐼௤, 𝑥௜(𝑝, 𝑞) is the position of a pixel in image 𝐼௣. 
The ray formed by the camera center of 𝐼௣ and 𝑥௜(𝑝, 𝑞) intersects the mesh at the 3D po-
sition 𝑋௜(𝑝, 𝑞). The ZNCC value at face 𝑓௞ can be calculated from all the image pairs vis-
ible to it (Figure 5): 

C(𝑓௞) = ⎩⎪⎨
⎪⎧∑ ∑ 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞))௑೔(௣,௤)∈௙ೖ ∙ 𝑀௭௡௖௖(𝑥௜(𝑝, 𝑞))௣,௤ ∑ ∑ 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞))௑೔(௣,௤)∈௙ೖ௣,௤ , ෍ ෍ 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞))௑೔(௣,௤)∈௙ೖ௣,௤ ് 0

       0,         ෍ ෍ 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞))௑೔(௣,௤)∈௙ೖ௣,௤ = 0  (9)

where C(𝑓௞) represents the ZNCC value of face 𝑓௞. 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞)) describes whether the 
3D point 𝑋௜(𝑝, 𝑞) is simultaneously visible by image 𝐼௣  and image 𝐼௤ . If it is visible, 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞)) = 1; otherwise, 𝛼௣,௤௩௜௦(𝑋௜(𝑝, 𝑞)) = 0. 𝑋௜(𝑝, 𝑞) ∈ 𝑓௞ denotes 𝑋௜(𝑝, 𝑞) is on face 𝑓௞. 𝑀௭௡௖௖(𝑥௜(𝑝, 𝑞)) is the ZNCC value at 𝑥௜(𝑝, 𝑞). Then, C(𝑓௞) is transferred from mesh 
face to mesh vertex to form a ZNCC map: C(𝑉௜) = ∑ 𝐴(𝑓௞)𝐶(𝑓௞)௞∈ே(௏೔)∑ 𝐴(𝑓௞)௞∈ே(௏೔)  (10)
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in which, 𝑉௜ is a vertex of the mesh. C(𝑉௜) represents the ZNCC value of the mesh 
vertex 𝑉௜. 𝑁(𝑉௜) is the one-ring face neighborhood of 𝑉௜. 𝐴(𝑓௞) is the area of the face 𝑓௞. 

 
Figure 5. The schematic diagram for the calculation of the ZNCC value of face 𝑓௞. The red triangle 
represents 𝑓௞. All the image pairs visible to 𝑓௞ are considered for the ZNCC calculation, indicated 
as images from Camera 1 to 4 in this figure. 

The ZNCC maps of different meshes are shown in Figure 6. We found that the noise 
area in the mesh has a low value of C(𝑉௜) due to the error of the mesh shape. In addition, 
in the area with a high C(𝑉௜) , the mesh shape conforms to multiview photo-con-
sistency.We use a C(𝑉௜)-weighted denoising gradient to achieve self-adaptive mesh de-
noising: 𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑉௜) = (1 − C(𝑉௜)) ∙ 𝑔௕௜௟௔௧௘௥௔௟(𝑉௜) (11)𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑉௜) is the regularization gradient at each vertex, and 𝑔௕௜௟௔௧௘௥(𝑉௜) is the 
bilateral denoising gradient at each vertex which is described in [11]. 

. 

Figure 6. ZNCC maps of different meshes. (a–d) are the initial meshes, and (e–h) are the correspond-
ing ZNCC maps. 

It is worth noting that general mesh denoising methods only remove noise based on 
geometric information. In contrast, this paper adaptively applies a denoising gradient 
based on the photo-consistency metric, which is conducive to removing significant errors 
in the initial mesh (see Figure 1). 

Finally, our TDR combines the photometric gradient and regularization gradient by 𝛽: 𝑔்஽ோ(𝑉) = 𝑔௣௛௢௧௢்஽ோ (𝑉) + 𝛽𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡(𝑉) (12)𝑔 is an abbreviation for gradient. 𝑔௣௛௢௧௢்஽ோ (𝑉) is the photometric gradient of our TDR 
method in each iteration. 𝑔௣௛௢௧௢்஽ோ (𝑉)  replaces the 𝜕𝑀(𝑥௜)  as 𝜕𝑀்஽௉ீ (𝑥௜)  in (Equation 
(3)). 

2.4. Initialization and Implementation Details 
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We implemented the variational mesh refinement method [13], where ray tracing is 
used to calculate the projection between images, the image patch size is 5 × 5, 𝛽 is set to 
0.2. Those parameters are the same as that used in [13]. The Gaussian weights 𝑊௚(𝑑) are 
normalized according to the image patch size. The mesh denoising scheme is local for the 
bilateral normal filtering algorithm, and the normal iterations and the vertex iterations are 
set to 20 and 10, respectively. To solve the nonconvex problem, we utilize the L-BFGS 
optimization algorithm [17,18]. The parameter setting of the TDR method is the same as 
the variational mesh refinement. Our algorithm is implemented with C++. All experiments 
were conducted on a single PC machine with Intel(R) Core(TM) i7-8700 CPU (12-core), 64 
GB RAM,and Nvidia GTX 2070 GPU. 

We used a variety of mainstream meshes as the initial inputs, including the 
OpenMVS [19] mesh, which is reconstructed by the built-in surface reconstruction func-
tion, the COLMAP [20] mesh, and the CMP-CMVS mesh [21]. We used the OpenMVS 
mesh as the initial mesh by default, as the mesh faces are uniformly sized, and the scene 
reconstruction is complete. 

3. Experiments 
3.1. Dataset and Evaluation Metrics 

Dataset: We use six datasets that cover different scenes, including UAV (unmanned 
air vehicle) scenes, close-range scenes, and simulation scenes. Information about these da-
tasets is given in Table 1. 

Table 1. Introduction to the datasets used in this study. 

Dataset Name Image 
Size 

Number of 
images Initial Mesh Image 

Acquisition 

Tanks And 
Temples 

Family 1920 × 1080 153 OpenMVS Handheld 
Francis 1920 × 1080 302 OpenMVS Handheld 
Horse 1920 × 1080 151 OpenMVS Handheld 

Panther 1920 × 1080 314 OpenMVS Handheld 

ETH3D 

delivery area 6048 × 4032 44 OpenMVS Handheld 
facade 6048 × 4032 76 OpenMVS Handheld 
relief 6048 × 4032 31 OpenMVS Handheld 

relief 2 6048 × 4032 31 OpenMVS Handheld 

BlendedMVS 

UAV_ 
Scene1 2048 × 1536 77 OpenMVS Rendered 

UAV_ 
Scene2 

2048 × 1536 125 OpenMVS Rendered 

UAV_ 
Scene3 2048 × 1536 75 OpenMVS Rendered 

EPFL 

Herz- 
Jesu-P8 

3072 × 2048 8 
OpenMVS 
/COLMAP/ 
CMPMVS 

Handheld 

Fountain-P11 3072 × 2048 11 
OpenMVS/ 
COLMAP/ 
CMPMVS 

Handheld 

CG 
Simulation 

Dataset 
Joyful 1920 × 1080 70 OpenMVS Rendered 

Personal Col-
lection Da-

taset 

House 4592 × 3056 36 OpenMVS UAV 

Woodcarving 2016 × 4032 146 OpenMVS Handheld 
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(1) Tanks And Temples [22] is a benchmark for image-based 3D reconstruction. The im-
age sequences come from video streams. We picked the Family, Francis, Horse, and 
Panther data for close-range scene evaluation. 

(2) ETH3D [23] is a benchmark for multiview stereo (MVS) evaluation. It provides ultra-
high-resolution images registered to the 3D laser scan point clouds. We picked its 
facade, delivery_area, relief, and relief_2 data for close-range scene evaluation. 

(3) BlendedMVS [24] is a large-scale simulation MVS dataset. It provides ground-truth 
meshes and rendered images. We selected four outdoor scenes captured by UAVs, 
namely, UAV_Scene1, UAV_Scene2, and UAV_Scene3, for UAV scene evaluation. 

(4) Custom simulation dataset. We picked computer graph (CG) mesh models Joyful 
(Kim et al., 2016) as ground-truth mesh and utilized the same lighting to render 70 
images from fixed perspectives using Blender [25].  

(5) The EPFL dataset [26] provides two ground-truth meshes captured by LIDAR sen-
sors, namely, Herz-Jesu-P8 and Fountain-P11, and provides the images registered 
with the meshes. 

(6) Personal Collection Dataset. We collected multiview images from the internet and 
natural scenes for qualitative evaluation. 
Evaluation Metrics: Similar to [22,23], we use the shortest distance from a point to the 

surface to evaluate the precision of a mesh. I is the input mesh to be evaluated, and R is 
the reference mesh. For a vertex 𝑖 ∈ 𝐼, its distance to the reference mesh is defined as 𝑑୧→ୖ. 
These distances can be aggregated to define the accuracy of the input mesh I for any dis-
tance threshold 𝑑: 𝑃(𝑑) = 100 ∗ ∑ ሾ𝑑୧→ୖ < 𝑑ሿ௜∈ூ |𝐼|  (13)

where ሾ∙ሿ is the Iverson bracket. |𝐼| is the number of vertices for mesh 𝐼. 
Similarly, for a reference mesh vertex 𝑟 ∈ 𝑅, its distance to the input mesh is defined 

as 𝑑୰→୍. The completeness of the input mesh for any distance threshold 𝑑 is defined as: 𝐶(𝑑) = 100 ∗ ∑ ሾ𝑑୰→୍ < 𝑑ሿ௥∈ோ |𝑅|  (14)

Accuracy and completeness can be combined to calculate the F-score: 𝐹(𝑑) = 2 ∗ 𝑃(𝑑) ∗ 𝐶(𝑑)𝑃(𝑑) ∗ 𝐶(𝑑)  (15)

The F-score is the harmonic mean of the accuracy and completeness at threshold 𝑑. 
Threshold 𝑑 varies according to the different scales of the dataset. Moreover, we also use 
the mean of 𝑑୧→ୖ of all vertices as the mean-accuracy metric and the mean of 𝑑୰→୍ of all 
vertices as the mean-completeness metric. 

3.2. Comparison with the Baseline Method 
3.2.1. Performance on the UAV Dataset 

In urban scenes, the 3D reconstruction of structures (such as planes and edges) is the 
critical point. BlendedMVS provides urban meshes that are difficult to capture by a laser 
scanner fully. We selected the UAV_Scene1-UAV_Scene3 from BlendedMVS for experi-
ment. Figure 7 shows the visual results. Compared with the baseline method [13], the 
mesh refined by our TDR approach is sharper in the edge region (see the red boxes in 
Figure 7a) because we utilize the bilateral normal filtering with an edge-preserving effect. 
In addition, our method obtains a better mesh detail than the baseline method (see the 
green box in Figure 7b) because our TDPG converges better on photo-consistency. Fur-
thermore, in a limited number of iterations, the Laplace operator used in the baseline 
method does not remove the undulation in the initial mesh (see the blue box in Figure 7c). 
In contrast, our method makes the surface flatter due to the bilateral normal filtering with 
a better denoising ability. 
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Figure 7. The meshes result (odd rows) and the error (𝑑୧→ୖ) distributions of the meshes (even rows) 
on the BlendedMVS dataset. 

Table 2 shows the quantitative results of the BlendedMVS dataset. Since the captured 
images are far from the objects, we set the cutoff distance 𝑑 as 0.05 m. Table 2 shows that 
the baseline method and our TDR method both improve the precision of the initial mesh, 
but the improvement brought by our method is much more evident than that of the base-
line method. The error (𝑑୧→ୖ) distribution of Figure 7 shows that compared with the base-
line method, the accuracy improvement brought by our TDR method is reflected in the 
flat area. This shows that the proposed TDR method has a stronger ability to regularize 
the mesh than the baseline method. 

Table 2. Quantitative evaluation of the BlenderMVS dataset. Acc. means accuracy and Compl. rep-
resents completeness. 

  Initial Mesh Baseline TDR 

UAV_ 
Scene1 

Acc. [%] 28.11 77.00 81.67 
Compl. [%] 20.30 61.37 63.16 

F1 [%] 23.57 68.30 71.23 
Mean-Acc. [X10-2] 10.89 6.71 5.09 
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Mean-Compl. [X10-2] 24.13 15.03 14.13 

UAV_ 
Scene2 

Acc. [%] 31.90 72.79 77.71 
Compl. [%] 29.80 90.20 90.77 

F1 [%] 30.81 80.57 83.73 
Mean-Acc. [X10-2] 12.80 8.00 6.70 

Mean-Compl. [X10-2] 42.40 28.30 27.30 

UAV_ 
Scene3 

Acc. [%] 29.53 83.98 85.79 
Compl. [%] 28.90 66.85 67.95 

F1 [%] 29.21 74.44 75.84 
Mean-Acc. [X10-2] 10.27 5.37 4.94 

Mean-Compl. [X10-2] 26.80 17.55 17.44 

In summary, the TDR method can reconstruct sharp features and flat planes even 
under poor initial conditions, making our method very suitable for reconstructing urban 
scenes. 

3.2.2. Performance on the Close-Range Dataset 
For the close-range dataset, we test our method on the recently published close-range 

MVS datasets, i.e., ETH3D and Tanks and Temples. 
ETH3D dataset: This dataset has ultrahigh-resolution images and provides the laser 

scan point cloud with the registered images. We use the Poisson surface reconstruction 
[27] to obtain the reference mesh. Figure 8 shows the results of our experiment. Compar-
ing the baseline method, our TDR method which utilized TDPG has better mesh details 
(see the red ellipses in Figure 8). Then, Figure 8c,d show that the initial mesh has substan-
tial noise in texture-less regions. The baseline method using the isotropic denoising 
method cannot effectively remove this noise and retain sharp edges, while our TDR meth-
ods can effectively achieve these effects (see the blue rectangles in Figure 8). The results 
of the accuracy evaluation are shown in Table 3. Since the captured images are close to 
objects, we set 𝑑 as 0.005 m. Table 3 shows that the proposed TDR algorithm achieves the 
best results in terms of almost all quantitative metrics. 



Photonics 2023, 10, 20 12 of 20 
 

 

 
Figure 8. Visual comparison of results on the ETH3D dataset. 

Table 3. Quantitative evaluation of results on the ETD3D dataset. 

  Initial Mesh Baseline TDR 

delivery_area 

Acc. [%] 53.18 53.33 56.98 
Compl. [%] 37.65 41.85 42.95 

F1 [%] 44.09 46.89 48.98 
Mean-Acc. [X10-3] 7.89 7.80 7.24 

Mean-Compl. [X10-3] 51.24 50.90 50.84 

facade 

Acc. [%] 24.25 34.35 42.78 
Compl. [%] 27.07 38.22 45.15 

F1 [%] 25.58 36.18 43.93 
Mean-Acc. [X10-3] 34.89 30.67 26.76 

Mean-Compl. [X10-3] 15.35 13.91 13.22 

relief 

Acc. [%] 95.45 95.87 95.97 
Compl. [%] 94.09 95.63 96.79 

F1 [%] 94.77 95.75 96.38 
Mean-Acc. [X10-3] 1.79 16.25 13.51 

Mean-Compl. [X10-3] 2.15 1.76 13.17 

relief_2 

Acc. [%] 90.48 90.34 92.58 
Compl. [%] 86.72 89.74 90.72 

F1 [%] 88.56 90.04 91.64 
Mean-Acc. [X10-3] 1.94 2.16 1.93 

Mean-Compl. [X10-3] 2.66 2.19 2.13 

Tanks and Temples dataset: This dataset does not provide image poses that are reg-
istered with the reference point cloud. Therefore, the results of this experiment are quali-
tatively evaluated. Compared with the baseline algorithm, results of the proposed TDR 
method have finer details (the red boxes in Figure 9), flatter planes (the green boxes in 
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Figure 9), and sharper edges (the blue boxes in Figure 9). This proves the effectiveness of 
the two improvements in this paper. 

 
Figure 9. Visual comparison of results on the Tanks and Temples dataset. 

3.3. Discussion 
3.3.1. Ablation Experiment 

We evaluated the effectiveness of the two improvements in TDR in the simulated CG 
dataset (see Figure 10), and ablation experiments were conducted. We tested four different 
configurations: (1) w/o TDPG: using PDPG and self-adaptive bilateral regularization. (2) 
w/o BI: using TDPG and Laplace regularization. (3) w/o ZNCC weighted: using TDPG 
and bilateral regularization without ZNCC weighted. (4) Full TDR: using TDPG and self-
adaptive bilateral regularization. Figure 11 shows the results. There are giant pits in the 
face of the initial mesh due to a sizeable texture-less area in the rendered images (Figure 
11). The meshes using bilateral regularization ((b), (c), (d)) do not show this error. Com-
paring (b) with (e) in Figure 11, we found that TDPG presents a more detailed and accu-
rate result than PDPG. Comparing (d) with (e), the ZNCC weighted strategy succeeded 
in preserving mesh details (see the red box in Figure 11d). 

 
Figure 10. The simulated CG dataset. The three columns are the mesh, cameras, and rendered im-
ages from left to right. 
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Figure 11. The visualization result and the accuracy metric of the Joyful data. 

3.3.2. The Influence of Initial Meshes 
To discuss the impact of initial meshes on the TDR algorithm, the widely used 

CMPMVS mesh, OpenMVS mesh, and COLMAP mesh models were chosen as initial 
meshes for comparisons. We also added the baseline method [13] for comparison. The 
baseline algorithm generated the CMPMVS_Vu mesh, OpenMVS_Vu mesh, and 
CCOLMAP_Vu mesh. The TDR method generated the CMPMVS_TDR mesh, 
OpenMVS_TDR mesh, and COLMAP_TDR mesh. 

In this section, we use the EPFL dataset [26] for evaluation. This benchmark is de-
signed for mesh evaluation. Therefore, we test our results using the evaluation metric pro-
posed in this benchmark. First, the reference and the input mesh are projected into the 
same image, and the residual of the depth of each pixel is calculated. Then, the occupancy 
rates of the residuals from 3σ (σ = 1.1 mm) to 10-times 3σ are counted. Finally, the occu-
pancy rates of the residuals of all images are averaged to obtain the final occupancy dis-
tribution histogram and occupancy density map, as shown in Figure 12. In addition, the 
weighted average of the residual distribution histogram can be drawn to obtain the accu-
racy metric. The proportions of the part less than 30σ are counted as the completeness 
metric [26], shown in Table 4. 
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Figure 12. The residual occupancy density maps (a–f) and occupancy distribution histograms (g,h) 
of all meshes. 

Table 4. The accuracy and completeness of all meshes. 

 Herz-Jesu-P8 Fountain-P11 

 #faces [M] Acc. 
[3σ] 

Compl. [%] #faces [M] Acc. 
[3σ] 

Compl. [%] 

CMPMVS 2.76 6.25 50.57 2.47 5.08 53.42 
CMPMVS_Vu 1.25 4.30 66.55 1.55 2.90 70.34 

CMPMVS_TDR 1.25 3.77 71.83 1.55 2.64 71.70 
OpenMVS 1.54 4.04 72.96 1.89 2.42 79.37 

OpenMVS_Vu 1.26 3.59 75.62 1.52 2.15 79.52 
OpenMVS_TDR 1.26 3.49 75.72 1.53 1.95 80.29 

COLMAP 1.14 3.80 71.45 1.51 2.42 74.33 
COLMAP_Vu 1.23 3.60 73.77 1.39 2.24 78.25 

COLMAP_TDR 1.22 3.32 76.41 1.40 1.99 79.12 

Table 4 and Figure 13 show that, regardless of the initial mesh, the precision improve-
ment brought by the TDR algorithm is much more significant than that of the baseline 
algorithm. For both TDR and baseline methods, the accuracy and completeness of the re-
fined meshes are high if the initial meshes are accurate, and vice versa. The reason is that 
mesh refinement is a nonconvex problem and has a certain dependence on the initial value 
when using the gradient descent method to solve it. 
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Figure 13. Visualization of the results of all methods on Herz-Jesu-P8. 

Figure 13 shows the visual results for Herz-Jesu-P8. Even when handling a very poor 
initial mesh, TDR still reconstructs a good result (Figure 13a). All initial meshes have con-
siderable noise at the door region (the blue boxes in Figure 13). The TDR method outper-
forms the baseline method in mesh denoising ability. What is more commendable is that 
the proposed algorithm with a strong regularization term well retains the details in the 
human sculpture (the red boxes in Figure 13). This is attributed to the self-adaptive 
weighted denoising strategy, which effectively combines the photo-consistency gradient 
and the mesh denoising gradient, with the denoising gradient mainly applied to the noise 
areas. 

In other words, due to the stronger denoising ability, the TDR method can handle a 
worse initial mesh model. 

3.3.3. Running Times Evaluation 
In this section, we discuss the running time of our 3D reconstruction system and TDR 

algorithm on datasets EPFL and Tanks and Temples. 
Our 3D reconstruction system comprises SFM, MVS, mesh reconstruction and mesh 

refinement steps. The SFM step uses COLMAP (CUDA version) with default parameters. 
The MVS and mesh reconstruction step uses OpenMVS with default parameters. The pro-
posed TDR algorithm is used in the mesh refinement stage with no special performance 
optimization. Table 5 shows the processing times of the 3D reconstruction system. The 
SFM, MVS, mesh reconstruction, and mesh refinement time ratios are about 16%, 25%, 
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4%, and 55%, respectively. Although the mesh refinement step evolves the initial mesh to 
a high quality with fine details, it cost the most time in the 3D reconstruction system. 

Table 5. The processing times of the 3D reconstruction system. 

 Herz-Jesu-P8 Fountain-P11 Family Francis Horse Panther 

 
Time 

(s) 
Ratio 
(%) 

Time 
(s) 

Ratio 
(%) 

Tim
e (s) 

Ratio 
(%) 

Time 
(s) 

Ratio 
(%) 

Time 
(s) 

Ratio 
(%) 

Time 
(s) 

Ratio 
(%) 

SFM - - - - 472 12 925 19 276 12 1388 22 

MVS 120 35 196 38 1009 25 1313 27 575 24 1545 24 

Mesh 
reconstruct

ion 
60 18 86 17 222 6 131 3 91 4 331 5 

Mesh 
refinement 

159 47 233 45 2335 58 2455 51 1427 60 3149 49 

Table 6 shows the time consumption of critical steps in the TDR and the baseline 
method. The two improvements of our method correspond to the computation of 𝜕𝑀 and 𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡, respectively. On the one hand, the PDPG method can use the integral image 
[28] to accelerate calculations, while the TDPG method cannot. On the other hand, PDPG 
calculates the partial differential once per pixel, while TDPG calculates the 25 times partial 
differential for the 5 × 5 image patch. Therefore, the running time of 𝜕𝑀 is 8~13 times that 
of PDPG in the experimental data. For the regularization item 𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡, the baseline 
method takes less than 1 s on all experimental data. Our TDR method utilizes the bilateral 
normal filter method, thus increasing the time consumption, but the time ratio does not 
exceed 2% of the total time. Overall, the running time of our method is 1.5~2 times more 
than the baseline method due to a time increase for TDPG. 

Table 6. The time consumption of critical steps in the TDR and the baseline method. 

 Herz-Jesu-P8 Fountain-P11 Family Francis Horse Panther 
 Vu TDR Vu TDR Vu TDR Vu TDR Vu TDR Vu TDR 

#Vertices (K) 754 754 944 944 895 895 672 672 527 527 1897 1897 
#Images pixels (M) 50 50 69 69 317 317 626 626 313 313 651 651 

Ray tracing (s) 30 32 43 45 561 389 624 524 416 291 850 810 
Compute 𝜕𝑀 (s) 7 85 10 129 231 1391 285 1271 184 759 198 1626 

Compute 𝑔௣௛௢௧௢ (s) 17 16 26 23 371 257 277 245 211 151 339 316 
Compute 𝑔௥௘௚௨௟௔௥௜௭௔௧௜௢௡ (s) 0 3 0 4 0 7 0 5 0 5 0 10 

Others (s) 22 24 30 32 435 290 504 410 331 221 433 387 
Total (s) 76 159 109 233 1597 2335 1690 2455 1142 1427 1819 3149 

3.4. Comparison with Open Source and Commercial Software 
In this section, we compare our method with representative open source software 

(OpenMVS and COLMAP), commercial software (Context Capture [29]), and the baseline 
method [13]. Figure 14 visually compares the reconstructed 3D models on the Personal 
Collection Dataset. OpenMVS can reconstruct the overall shapes, although some fine de-
tails are lost (the roof in the House data), and noise is covered on the smooth surface (all 
enlarged parts in Figure 14). The COLMAP mesh is similar to the OpenMVS mesh, with 
slightly more details (the roof in the House data) but fails in texture-less regions (the white 
wall in the House data). The Context Capture mesh also fails in texture-less regions (the 
white wall in the House data), and it is too smooth, which causes details loss (roof in the 
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House data). The method of [13] enhances the details of the initial mesh to a certain extent 
(the roof in the House data), but the mesh noise is still not eliminated, and the edges are 
not sharpened (the white wall in the House data). In contrast, due to the strong denoising 
ability brought by the bilateral normal filter, our mesh result on the Woodcarving data is 
the smoothest, and the house edges are the sharpest. At the same time, the TDPG recovers 
the most details. 

 
(a) Woodcarving data 

 
(b) House data 

Figure 14. Visual comparison on the Personal Collection Dataset. 

4. Conclusions 
This study proposed a new mesh refinement approach coupling total differential 

photometric mesh refinement and self-adapted mesh denoising. On the one hand, tradi-
tional PDPG in variational mesh refinement is replaced by TDPG. TDPG considers the 
neighboring pixels and increases the area affected by the gradient, which results in more 
effective convergence of the photo-consistency, thus increasing the details and accuracy 
of the mesh. On the other hand, the self-adaptive denoising strategy provides a frame-
work for image-guided mesh denoising. The intensity of the denoising gradient can be 
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adaptively adjusted according to the multiview ZNCC metric, which facilitates the re-
moval of significant errors in the initial mesh and preserving mesh details. Experiments 
on different scenes and comparisons with open-source and commercial software were 
conducted. The refined meshes are evaluated in terms of both accuracy and completeness. 
Results showed that our method outperformed current variational mesh refinement meth-
ods and is comparable and even better than commercial software, and the mesh refined 
by our method is the most detailed, accurate, and regular. In the future, we plan to run 
our method on GPU and explore the fusion of subpixel sampling and photometric stereo 
technology with mesh refinement. 
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