
Citation: Karageorgiou, S.; Karyotis, V.

Markov-Based Malware Propagation

Modeling and Analysis in Multi-Layer

Networks. Network 2022, 2, 456–478.

https://doi.org/10.3390/

network2030028

Academic Editor: Andreas Kassler

Received: 2 August 2022

Accepted: 13 September 2022

Published: 17 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Markov-Based Malware Propagation Modeling and Analysis
in Multi-Layer Networks
Stavros Karageorgiou 1,† and Vasileios Karyotis 2,*,‡

1 Alstom Transport Deutschland GmbH, 38239 Salzgitter, Germany
2 Department of Informatics, Ionian University, 49100 Corfu, Greece
* Correspondence: karyotis@ionio.gr; Tel.: +30-2661-087-760
† Current address: Linke-Hofmann-Busch-Strasse 1, 38239 Salzgitter, Germany.
‡ Current address: Tsirigoti Sq. 7, 49100 Corfu, Greece.

Abstract: In this paper, we focus on the dynamics of the spread of malicious software (malware) in
multi-layer networks of various types, e.g., cyber-physical systems. Recurring malware has been one
of the major challenges in modern networks, and significant research and development has been
dedicated to mitigating it. The majority of relevant works has focused on networks characterized by
“flat” topologies, namely topologies in which all nodes consist of a single layer, studying the dynamics
of propagation of a specific threat or various types of malware over a homogeneous topology. As
cyber-physical systems and multi-layer networks in general are gaining in popularity and penetration,
more targeted studies are needed. In this work, we focus on the propagation dynamics of recurring
malware, namely Susceptible–Infected–Susceptible (SIS type) in multi-layer topologies consisting of
combinations of two different types of networks, e.g., a small-world overlaying a random geometric,
or other such combinations. We utilize a stochastic modeling framework based on Markov Random
Fields for analyzing the propagation dynamics of malware over such networks. Through analysis and
simulation, we discover the most vulnerable and the most robust topology among the six considered
combinations, as well as a result of rather practical use, namely that the denser the network, the more
flexibility it provides for malware mitigation eventually.

Keywords: complex networks; multi-layer networks; malware spread; Markov Random Fields
(MRF); network resilience

1. Introduction

In recent years, the explosive growth of malware incidents and the associated high
recovery costs for users and network administrators call for more accurate modeling and
studying of the evolution of malware spread in diverse cases and conditions. Simultane-
ously, complex and special-purpose networks, e.g., those corresponding to cyber-physical
systems, emerge in various applications. The term complex networks describes cumula-
tively all different types of network topologies emerging in different and diverse applica-
tions, e.g., in communication, financial, biological, geographical networks and others [1].
At the same time, the so-called multi-layer networks are emerging in the modeling and
analysis of similarly diverse applications, e.g., in information diffusion in social networks,
pattern recognition applications such as text mining, etc. Such networks are characterized
by multi-layer topologies, namely topologies that overlay each other forming “vertical”
connections between nodes of different layers (see Figure 1). Especially for cyber-physical
systems, the corresponding topologies typically consist of a two-layer network, with the
lower layer representing physical device topologies, such as sensors, actuators, etc., and the
upper layer representing software agents, real users, etc.
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Figure 1. Network topology of considered cyber-physical system.

However, the proliferation of such systems has attracted malicious activity as well,
which has been expressed in different forms of spreading malware across network topolo-
gies and devices, calling for accurate modeling, capable of yielding epidemic control tools.
Multi-layer networks face higher attach potentials than single-layer (“flat”) topologies.
Each node in each layer is a potential attack seed, and vice-versa, each node in each layer
may be reached eventually by malicious nodes in other layers. Thus, the degrees of free-
dom of a potential attacker increase, and it is necessary to reconsider various malware
propagation modeling approaches with respect to their potential in multi-layer networks.

Along these lines, in this work, we are interested in investigating such a research
problem for a specific malware propagation modeling approach, and we investigate its
behavior and modeling potentials in multi-layer networks. We adopt a macroscopic view
of malware propagation, focusing on whether each device/software agent is infected or not
within a longer period of time, and we focus specifically on the modeling and analysis of
malware in two-layer networks. Such networks are good representatives of cyber-physical
systems, and thus, our study here can be equally considered as a macroscopic malware
modeling study in cyber-physical topologies of various types. A cyber-physical system
is represented as a two-layer network, and in our case, malware propagation is modeled
via a Markov Random Field (MRF). MRFs are stochastic spatial (or graphical) models;
they have been used extensively for image processing and have recently been proposed
for macroscopic modeling of malware propagation in “flat” networks of various types of
topologies as well [2].

In this work, we propose the use of the MRF framework for modeling malware
propagation in multi-layer networks and more specifically cyber-physical systems (two-
layer networks) for the first time. We study the properties and characteristics of propagation
in topologies consisting of different types of topologies, e.g., cyber-physical networks
combining different types of topologies, such as random with power-law, random geometric
graph, random graph, small-world, scale-free and regular. Such topologies essentially can
be used to represent the topologies emerging in diverse applications that are popular
nowadays or will become popular in the near future. We investigate the impact of the
network architecture, the type of network, as well as parameters relevant to predefined
security measures.

Apart from the MRF approach, there are other families of approaches that can provide
effective frameworks for modeling malware propagation: for instance, the Birth–Death–
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Immigration (BDI) model [3,4], adversarial or game theoretic models[5–7], and lately
machine learning approaches [8,9]. Each family of modeling approaches has advantages
and limitations, and eventually, there is no one-size-fits-all solution. For instance, one
approach may yield low computational complexity (e.g., the MRF), while others may
model more naturally the competitive behavior delveloped (e.g., game theoretic). The MRF
approach is a fair alternative in the sense that it is distributed, has low computational com-
plexity, yields satisfactory convergence with few iterations and amble modeling flexibility.
The contributions of this paper are summarized as follows:

• We present a Markovian modeling framework for the propagation of malware in
multi-layer networks and demonstrate it for a two-layer cyber-physical topology.

• We develop an implementation of the proposed framework and study malware prop-
agation in different types of two-layer networks, which combine different types of
graphs, e.g., random with power-law, random geometric graph, random graph, small-
world, scale-free and regular.

• Through analysis and simulation, we identify the critical parameters affecting the
malware evolution, paving the way for developing better mitigation measures.

The rest of this paper is organized as follows. In Section 2, we present previous
works and distinguish them from the contribution of this paper, while in Section 3, we
first provide the basics for the selected network topologies and then explain the choice of
topology combinations considered. Section 4 describes the considered malware propagation
MRF model and presents the results obtained for each separate considered system topology.
In Section 5, we present and discuss the cumulative results of our research, and finally,
in Section 6, we conclude the paper and suggest directions for future work.

2. Related Work

One of the first epidemic models was devised by Daniel Bernoulli in 1760, aiming
at studying the spread of smallpox [10]. Further development of such models dates back
in the 1900s [11–13]. These studies aimed to model the spread of various diseases in the
general population.

In malware modeling, we are concerned with two main types of spreading: worms
and e-mail viruses. Of course, there are other various types of malware, but focusing
on the previous two essentially captures the majority of features that malware uses for
propagation/spreading. Since the appearance of the Morris worm in 1988, active worms
have been a major and persistent threat to Internet security. Code Red and Nimda worms
infected hundreds of thousands of systems and cost the public and private sectors millions
of dollars [14–16]. Active worms spread automatically as they infect computer systems.
Staniford et al. [17], have shown that active worms can potentially spread in the Internet
in seconds. Modeling and monitoring the spread of active worms as well as the ability to
generate methods to effectively defend our systems against them can help us understand
how they are contagious, monitor and effectively defend computer systems. The ultimate
goal of the worms is usually to perform various malicious actions, such as destroying per-
sonal files, intercepting information and causing the system to shut down completely [18].
Rolhoff [19] introduced a stochastic density-dependent Markov propagation model by
jumping and random scanning.

Email viruses are one of the most important threats in the Internet. Zoo et al. [20]
presented an email virus model that shows the behaviors of email users, for example the
frequency with which incoming emails are checked and the probability of an attachment
being opened in an email. Email viruses spread to a logical network defined by email
address books. Email network topology plays an important role in determining the behavior
of virus spread via email. It compares the spread of the e-mail virus in three topologies:
power law, small world and random graph topologies. The impact of power-law topology
on the spread of email viruses is mixed: email viruses spread faster than in a small-world
or random graph topology, but virus defense is more effective in a power-law topology [21].
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In addition, sending viruses via e-mail does not require “holes” in the operating system or
software [22].

Protecting a computer system from malicious attacks is a major challenge for network
security and management. Such attacks are due to the spread of malware. A detailed expla-
nation of the malware classification is provided by Idika and Mathur [23]. Shultz et al. [24]
suggested several different classifiers and a set classifier to classify files as malware or
benign. The frequency and infectivity of malware epidemics have increased dramatically
in recent years, posing a significant threat to network infrastructure. As mentioned be-
fore, there are mainly two types of malware that are classified according to how they are
spread: active worm networks, such as Sapphire and Morris that exploit malicious code
of self-propagation [24], and viruses, such as Melissa and Concept, which rely on human
interactions to spread [25].

A recent malware investigation focuses primarily on modeling the spread of malware
using a random scan format [26–28]. Malicious software may use other scanning methods.
For example, the Morris worm uses a topographic scan, which examines local configuration
files to find potential target neighbors [29]. Topological scanning is a potential thread of
network routing infrastructure, global web networks and peer-to-peer systems [17], where
topologies play an important role in the spread of malware [30]. The Markov model incor-
porates the simplest spatial dependence, which is guided by the Bethe approach used in
graphical models [31]. The spatial Markov assumption factorizes an exact joint probability
distribution into a form that only depends on one-node and two-node marginal probabili-
ties. Theoretical analyses and extensive simulations in real and synthetic topologies of large
networks have been performed. The results show that the Markov model equipped with
the simple spatial dependence can achieve greater accuracy than the independent model,
especially in sparse graphs [21]. An overview of Markov Random Fields is presented
in [32].

Various approaches have been proposed for modeling and simulating malware spread-
ing over different topologies. Kephart and White presented an epidemiological model,
which is suitable for analyzing the spread of viruses in random graphs [33]. Garetto et al.
analyzed malware that spread to small global topologies using a variation of the influ-
ence model, where the influence of neighbors is limited to taking a polyline format [25].
Boguñá et al. studied the epidemic spread in complex networks [34], and Wang et al. pro-
posed a model for virus propagation in arbitrary topologies [35]. Zou et al. and Wang et al.
investigated the effect of topology and immunization on the spread of computer virus
through simulation [30,36]. Ganesh et al. modeled the spread of an epidemic as a contact
process to study how it works, whether it is weak or strong [37]. The model assumes that
a vulnerable node can be infected by its infected neighbors at a rate commensurate with
the number of infected neighbors. Zou et al. in a recent study focused on the spread of
randomly crawling worms. A model of the spread of Code Red worm, taking into account
human countermeasures and the impact of the worm on the Internet infrastructure, was
proposed in [27]. Chen et al. studied the proliferation of active worms using random
scanning and extended the proposed modeling method to investigate the spread of local-
ized scan worms [28]. Moore et al. applied the epidemiological model to investigate the
requirements for limiting the self-propagating worm by randomly selecting a target [26].

Due to the rapid development of complex communication networks, the need to
protect the networking infrastructure from malicious software attacks has increased. In [2],
a spatio-stochastic framework based on Markov Random Field (MRF) is proposed for mod-
eling the macroscopic behavior of a complex communication network under random attack,
where malicious threats propagate through direct interactions and follow the paradigm
of Susceptible–Infected–Susceptible infections. Through the MRF framework, a detailed
study of the dynamic propagation is performed in different topologies of complex commu-
nication networks, for example grid topology, random, scale-free, small-world and random
geometric graphs. Combining Gibbs sampling with simulated annealing, the behavior of
the above systems for various parameters related to topological and malicious programs in
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relation to the general random attacks under consideration was studied. Random networks
have been shown to be more powerful, followed by scale-free, regular and small-worlds,
while multihop seems to be the most vulnerable of all.

The role of topology depends on the spread of malware, [38]. A tail-based framework
was developed in [39] for multi-layer wireless networks and used in [40,41] to analyze
attack strategies using topology control [42]. The MRF framework employed in this paper
focuses on similar objectives but assumes arbitrary complex communication network
topologies in a unified manner. Several other projects have identified the importance
of controlling topology in the spread and mitigation of malware on wireless and social
networks. In [43,44], the concept of differentiating wireless transmission power for effective
defense design in conjunction with optimal dynamic epidemic control was adopted and
examined. Contrary to that, our approach focuses on the study of general malware that
spreads with repetitive behavior against arbitrary topologies. The MRF framework is
different, as it can deal more holistically with different topologies and application scenarios,
inherently integrating topology information into the MRF framework. In addition, due to
Gibbs sampling combined with simulated annealing, the proposed MRF approach has a
lower overall computational cost compared to other stochastic and differential equilibrium
frameworks. A research by Barabasi and Albert [45] has explored the role of social topology
in the spread of worms by developing a lightweight warning/detection system specifically
for small, scale-free online social networks. Our approach has a more general perspective of
modeling, evaluating and studying the spread of malware in two-layer complex topologies.

Random fields have been proposed for network security and in particular for intrusion
detection [46]. The researchers propose a hybrid intrusion detection approach based on
feature selection and multiple levels of random fields under conditions mainly for wired
networks. In that work, random fields are used to detect intrusions and not for modeling
the spread of malware, as in our case. MRFs have been used to model the spread of
malware on linear finite networks as well [47]. To cover more general multi-layer complex
topologies (regular, random, random geometric, scale-free and small-world), we generalize
and extend the MRF framework in a holistic way that analyzes the role of each network
capability in malicious software dynamics.

3. Malware Propagation Modeling in Multi-Layer Networks

In this section, we present the considered topologies. In Section 3.1, we explain the
exact models employed for each one, along with a short summary of their features that
will be of particular interest later, in the modeling and analysis of malware propagation.
Then, in Section 3.2, we provide details on the modeling of malware propagation in multi-
layer networks.

3.1. Topologies
3.1.1. Scale-Free Topology

A grid is generally considered to be scale-free if the k-node fraction follows a power
distribution k−α where α > 1. A network is scale-free if its degree distribution follows a
power law, at least asymptotically. That is, the type P(k) of nodes in a network that has
connections k is equal to:

P(k) ' k−γ, (1)

where γ is a parameter whose value ranges from: 2 < γ <3 (occasionally may be out of
bounds) [48].

The properties of a scale-free topology have been studied in detail using the theory
of filtration by Cohen [49] and by Callaway [50]. In addition, it has been shown by
Cohen [51] that randomly removing any fraction of nodes from the network will not
damage the network.
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3.1.2. Small-World Topology

Watts and Strogatz (1998) created a simple computational model of a regular network,
in which each node of the network was connected by an edge to each of its four nearest
neighbors [52]. This network topology is very centralized in design. A small-world network
is a type of graph in which most nodes are not adjacent to each other, but the neighbors of
any given node are likely to be adjacent to each other and most nodes are accessible from
any other node with a small number of jumps (hops) or stairs. Specifically, a small-world
network is defined as a network where the standard distance L between two randomly
selected nodes increases with the logarithm of the number of N nodes in the network:

L ' logN. (2)

Small-world properties are found in many real-world phenomena [53], such as naviga-
tion through menu sites, food networks, catering networks, variable processing networks,
brain neural networks, voter networks, telephone diagrams, and social networks. These
qualities can of course appear in social networks and other real-world systems through the
process of dual evolution.

3.1.3. Random Graph Topology

Random graphs can be described by their probability distribution [54]. Its practical
applications are found in all areas where complex network models are needed, so many
random graph models are known to reflect the different types of complex networks found
in different areas.

A random graph is achieved by starting with a set of n isolated vertices and adding
successive ends randomly to each other. Different random graph models produce different
probability distributions. The most commonly studied model is the one proposed by
Gilbert, called G(n, p), where each possible edge appears with a probability of 0 < p < 1.
The probability of obtaining a particular random graph with m edges is: pm(1− p)N−m,

where N =

(
n
2

)
[55].

Random graph theory studies the typical properties of random graphs, that is, those
that are most likely to apply to graphs derived from a particular distribution. Researchers
often focus on the asymptotic behavior of random graphs and the fact that different
probabilities converge as n becomes very large. Filtration theory characterizes the degree
of connection of random graphs, especially infinitely large graphs. Local infiltration has
been particularly studied by Dong [56] and refers to the removal of a node by its neighbors
and subsequent nearest neighbors.

3.1.4. Random Geometric Graph Topology

A random geometric graph (RGG) is a non-directed graph constructed by randomly
placing N nodes in a metric space and connecting two nodes with a link if and only if
their distance is in a certain range. A real application of RGGs is the modeling of ad hoc
networks [18]. In addition, they are used to execute benchmarks for graph algorithms.

Random geometric graphs (RGGs) are commonly used to model networks of systems
that depend on the underlying spatial constraints. The probability distribution of an RGG
is vital to the study of its random topology and its properties. However, a major obstacle to
extracting the graph distribution is that it requires the common probability distribution
of (n− 1)/2 distances between n nodes that are randomly distributed in a delimited field.
For arbitrary n, one can draw a set of upper limits on the entropy of the graph. In particular,
the limit involving the entropy of a three-node graph is tighter than the existing limit
assuming that distances are independent [57].
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3.2. Malware Propagation Modeling in Cyber-Physical Systems

A cyber-physical system (CPS) consists of a physical substrate (sensor, actuator, etc.)
controlled or monitored by software. In cyber-physical systems, physical and software
components are capable of operating at different spatial and temporal scales. They also
exhibit multiple and distinct behaviors and interact with each other in ways that change
with the environment. The cyber-physical system integrates the dynamics of physical
processes with those of networking and software, providing modeling, design and analysis
techniques for the integrated whole. A complete cyber-physical system is usually designed
as a network of interacting elements with physical input and output. The concept is closely
related to the concepts of robotics and sensor networks with intelligence mechanisms
suitable for computational intelligence. The cyber-physical system includes interacting
digital, analog, physical and human components designed to function through integrated
physics and logic. Cyber-natural systems will bring progress in personalized healthcare,
emergency response, traffic flow management and electricity generation and delivery
as well as in many other areas just envisioned [58,59].

In this work, we employ the cyber-physical paradigm as a realistic representative
of a multi-layer network topology, and more specifically, a two-layer complex topology.
The physical devices of the system form a topology depending on the potential interactions
they may develop, while the cyber part of the system may form a separate network topology,
possibly using other communication means than the one employed by the physical system.
The two resulting topologies of the cyber-physical system may be completely different
or exhibit correlations. In this paper, we assume that the two emerging topologies are
independent as far as each separate topology is concerned (“horizontal” topology), while
there are “vertical” correlations emerging between the cyber and physical part of the system,
representing correlations among the two layers.

The research so far has mainly dealt with the spread of malware on single-layer (“flat”)
topologies. Given the widespread use of computer devices and the rapid evolution of the
use of the Internet in our daily lives, it makes sense to investigate the spread of malware
in topologies with two or more layers (multi-layer topologies). We are focusing toward
this direction, and in the following, we determine the combination of the topologies that
we set [60–62]. Based on the above, it makes sense to study combinations of network
topologies, which are prone to emerge in various daily-used applications in various cyber-
physical systems, as we do in the following. After extracting the results, i.e., calculating the
average of the infected nodes of the networks we set, we performed for each combination
of topologies a graph with three curves, one for each different value of the nodes of the first
topology. The nodes of the second topology are displayed on the horizontal axis, while the
number obtained by dividing the number of nodes by the final infected ones is displayed
on the vertical axis.

3.3. Modeling Malware Propagation via a Markov Random Field

We consider a malware propagative complex communication networks (CCN) with N
nodes. In our case, the considered CCN will be a two-layer network, such as the one shown
in Figure 1. The term malware propagative denotes that wherever a legitimate node is
infected, it can further infect with malware other non-infected legitimate nodes. We study
the macroscopic behavior of the system, in which nodes may become infected, then recover
to the susceptible state, and become re-infected at a later time instant. This behavior is
effectively described by an SIS infection paradigm.

Assume a finite set S, |S| = N, with elements s ∈ S corresponding to the nodes of the
network. We define the phase space Λ as the set of possible states of each s ∈ S. We define
a random field on S, the collection X = {Xs, ∀s ∈ S} of random variables with values in
Λ. A configuration x = {xs, ∀s ∈ S, xs ∈ Λ} corresponds to one of all possible states of the
nodes. The employed MRF framework abstracts connectivity and local interactions through
the neighborhood system of each node’s set of neighbors. A neighborhood system on S is
defined as a family N = {Ns}s∈S of subsets Ns ⊂ S, such that for every s ∈ S, s 6= Ns and
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r ∈ Ns if and only if s ∈ Nr. Ns is called the neighborhood of node s. The random field X
is called a Markov Random Field (MRF) with respect to N if for every node s ∈ S,

P(Xs = xs | Xr = xr, r 6= s) = P(Xs = xs | Xr = xr, r ∈ Ns). (3)

Direct interactions between infected and sensitive nodes are recorded, covering cases
where malware infections spread in a localized way that depends on the one-hop communi-
cations [43]. However, we can adapt the neighborhood system definition by appropriately
defining a new neighborhood system where the nodes involved are direct neighbors (in
the overlay topology). The MRF framework achieves macroscopic evolution of the system
through point-to-point interactions between adjacent nodes.

For an appropriate MRF modeling of an SIS malware propagation epidemic, we select
for each node k a pairwise (depending on neighboring interactions) potential function of
the form:

Φκ(x) = Φκ(xκ) = −D ∑
r

σκσr, ∀r ∈ Nκ , D > 0, (4)

for each pair of neighboring nodes κ, r ∈ S. Function σκ is a bijective function of xi, xi
being the node state with 0 denoting a susceptible node, 1 denoting an infected one and
x being the vector of all node states denoting the overall system state. Parameter D is
a constant scaling factor that can be used to change the sensitivity of the MRF model.
The exact definition of the node-specific function σ(·) can slightly affect the sensitivity of
the model but not the observed behavior. The exact potential function essentially captures
the pairwise interactions between network nodes and quantifies the outcome of such
interactions, depending on the individual node states, e.g., interactions between infected–
susceptible nodes, infected–infected, and susceptible–susceptible. All contributions are
aggregated and reflected in the total “energy” value of the system. The goal is to bring the
system to a state with the least possible energy, the latter being symbolized by the potential
function divided by temperature. Simulated annealing (SA) can be combined with Gibbs
sequential sampling to analyze the evolution of the cumulative state of the system. An RF
X is called a Gibbs Random Field (GRF) if it satisfies:

P(X = x) =
1
Z

e−
U(x)

T , (5)

where Z := ∑x∈Λn e−
U(x)

T is called the partition function and T is called the temperature of
the system. U(x) is the general potential function mentioned above. It is not unique.

The approach works as follows. In each iteration, each node is visited once according to
a specific visiting scheme, and the status of each site is updated according to its neighboring
situations, depending on its possible operation. The process is repeated for a number
of scans s until the system converges to its steady state. Before this iterative process,
a temperature T(·) = T(s) and the maximum number of scans s are selected. SA requires a
gradual reduction in temperature as the simulation progresses, so that the system initially
wanders to a wide area of the search space that contains good candidate solutions. It
then drifts to low-energy areas and finally downhill according to the steepest heuristic
descent. For each node, a binary decision is made as to whether its status will remain
the same for the next scan or change. For every possible value of each state l ∈ Λκ ,
where Λκ is the phase space of the node κ, the potential function for each position κ,
Φκ(xl

k) = Φκ(xκ) = l, x′κ : κ′ ∈ Nκ , depends only on the state of node k and the states of
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all neighboring sites κ′ ∈ Nκ . The decision for the next state of each node can be made
according to the following probability:

Pr(xk = `) =
e−

Φk

(
x(`)k

)
T(n)

∑
`′∈Λk

e−
Φk

(
x(`
′)

k

)
T(n)

. (6)

Thus, with the above probability, the next state of node k will be `. Given that Λk = {1, 0}
in our case, corresponding to infected and non-infected (susceptible) states, the above can
be written in a simpler general form:

Pr(xk = `) =
1

1 + e−
Φk

(
x(`
′)

k

)
−Φk

(
x(`)k

)
T(n)

, (7)

where `, `′ ∈ {0, 1} and ` 6= `′.
Taking into account the values of the phases in the defined phase space, we have

chosen the following potential function expressions:

Φk(x(0)k ) = −J ∑
k′∈Nk

σkσk′ = −J ∑
k′∈Nk

xkxk′ = 0, (8)

Φk(x(1)k ) = −J ∑
k′∈Nk

σkσk′ = −J ∑
k′∈Nk

xkxk′ = −J ∑
k′∈Nk

xk′ , (9)

which yield the following expressions for the node state probabilities:

Pr(xk = 1) =
1

1 + e−J

∑
k′∈Nk

xk′

T(n)

, (10)

Pr(xk = 0) = 1− Pr(xk = 1) =
1

1 + eJ

∑
k′∈Nk

xk′

T(n)

. (11)

The annealing pattern is chosen as T(s) = c0
logn , where c0 is a constant (c0 = 1000) that

affects the convergence and accuracy of the model. Higher values J/c0 correspond to more
vulnerable topologies where malware spreads more easily, while lower values correspond
to more powerful ones. The maximum number of scans is selected as s = 2000. Such a
number ensures that the sampling process converges to the steady-state system with a
high probability, which is verified by ensuring that the system state remains unchanged
for a number of consecutive scans. The selected parameter ensures this for all scenarios,
as they proved to be sufficient even for smaller values s, e.g., s = 1000 or 1500 scans. All the
results that will be presented for each type of network have been calculated on average in
25 different scenarios.

In terms of attacks, we focus on non-smart (random) malware attacks, starting with a
single intruder (infected), where the infected node is unable to use any side information to
help spread the malware. The intruder and the infected nodes communicate only through
point-to-point contacts, and susceptible nodes are infected with the same probability of
infection when they come in contact with infected/malicious nodes. Consequently, such
non-smart attacks can be considered as “blind” (random) attacks against vulnerable one-
hop neighbors. Random attack vulnerability analysis is just one of the many applications
that the MRF framework can host.

At this point, we need to note an important aspect of the MRF framework presented
above. Malware propagation may have some preferential directions, e.g., an Android-based
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malware will follow the “direction” of other Android devices but not the direction of iOS
devices. MRFs can be applied equally well in directed graphs [63]. An MRF is essentially
defined on a neighborhood system, namely the set of all neighborhoods formed by the
nodes of the graph. In case of a directed process, the underlying graph will be directed,
but each node will be equally fit to define its neighborhood, on which it will be possible to
perform the distributed Gibbs sampling with simulated annealing. The rest of the model
can remain unchanged.

4. Epidemics Spreading in Multi-Layer Complex Networks via Markov Random Fields

In this section, we provide the results obtained for each separate scenario via the use
of the MRF malware modeling framework.

4.1. Analysis of Random Markov Fields on Spreading Malware

We considered a Markov Random Field (MRF)-based framework for modeling the
macroscopic behavior of a multi-layer CCN under random attack, where malicious threats
propagate through direct interactions and follow the Susceptible–Infected–Susceptible
infection paradigm. We studied the behavior of two-layer systems for various topological
and malware-related parameters with respect to the general random attacks considered.
We demonstrate the effectiveness of the MRF framework in capturing the evolution of SIS
malware propagation and use it to assess the robustness of synthetic CCNs with respect to
the involved parameters.

We focus on the cumulative number of infected nodes and not on the state of each node
in particular. The MRF framework abstracts connectivity and local interactions through
the neighborhood system, focusing on the macroscopic evolution of the system through
point-to-point interactions between adjacent nodes. Direct interactions between infected
and sensitive nodes are recorded, covering cases where malware infections spread locally
similarly to [2].

For malware propagation, L = 0, 1 is the phase space, where ‘1’ corresponds to an
infected state and ‘0’ corresponds to the non-infected (susceptible) state. We focus on the
interactions between neighboring S–I pairs of nodes. Such pairs drive the evolution of
malware propagation. The dynamics of malware depend mainly on interactions between
attacking nodes and sensitive users [25,43,44,64]. Thus, in relation to defining an appropri-
ate possible operation for an MRF malware, a pairwise potential is employed. Singleton
terms could have also been included, representing the contribution of the nodes themselves
to the spread of malware. In such cases, where a node suddenly changes its status from
vulnerable to infected and starts spreading malware, various types of malware could be
represented, e.g., trojan horse, trapdoors, etc. [65].

With respect to attacks, we start from a single attacker, which is constantly infected.
The attacker and infected nodes only have point-to-point contacts with susceptible nodes,
which are homogeneously infected, i.e., they become infected with the same infection
probability when in contact with infected/attack nodes. Here, we focus on these types of
attacks in order to demonstrate how the MRF can be used for network robustness analysis
and reveal salient features of the framework.

4.2. System Setup

We consider two-layer complex topologies, as shown in Figure 1; also, we consider that
each layer may be of different type, i.e., random, small-world, etc. To examine each aspect
of the day-to-day networks represented by these combinations, we set the number of nodes
in the first network equal to 100, 250, and 500 nodes. Meanwhile, for the corresponding
topology that is connected, we defined the nodes equal to 100, 250, 500, 750 and 1000. That
is, keeping the number of nodes of the first topology constant, we modified the number of
nodes of the second. To cover a wide range, 25 scenarios of each correspondence between
the node numbers were repeated, and finally, the average of the infected nodes of our final
network was obtained.
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To better account for the interaction of the two topologies and the resulting infected
nodes, we created vertical links between these two topologies. These vertical connections
must also increase, as our network grows, in order to be able to properly and effectively
relate the connection and interaction of the two network topologies. Therefore, we set them
to equal to the number of nodes in the first topology, i.e., 100, 250 and 500.

In order to determine the vertical connections between the two considered topologies,
we select a pair of nodes, i.e., one node from the first topology and one from the second at
random. This will also be a link between the topologies. We repeat the same procedure
for another random pair of nodes, after first making the appropriate check for whether
this pair has been used before. This way, we avoid “losing” some vertical connections by
randomly selecting the same node pairs.

4.3. Considered Topologies and Scenarios
4.3.1. Random Geometric Graph and Scale-Free

As the first combination of considered topologies, the Random Geometric Graph (RGG)
with a scale-free (SF) topology is presented. This corresponds to a possible application
where users use their mobile phones to communicate directly and in parallel access different
social networks at the same time. The RGG topology corresponds to the direct connections
between mobile phones, i.e., connections at the physical layer, while the SF topology
corresponds to the interfaces that users have with each other in each social network (cyber
layer). Figure 2 shows the results for different sizes of the single topology and for varying
numbers of nodes of the second level topology. As expected, the larger the network,
i.e., the denser it becomes, the higher the average number of infected nodes in the network.
Another observation that stands out is that as the network density increases, the number of
infected nodes increases slightly faster than linearly (comparing the results between curves
corresponding to N_1 = 100, N_1 = 250 and N_1 = 500).

Figure 2. Random Geometric Graph with scale-free, while N_1 = 100, N_1 = 250 and N_1 = 500.
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4.3.2. Random Graph and Random Graph

A second combination of topologies we consider is that of a Random Graph (RG) with
another Random Graph (RG), while each topology has different topological parameters.
In this case, one topology could correspond to a peer-to-peer file sharing network, while
the other could correspond to random users coexisting on the Internet and communicating
with each other. Figure 3 shows the results for different sizes of the single topology and
for varying numbers of nodes of the second-level topology. As in the previous figure, we
obtain similar results regarding the expected number of infected nodes and the network
density. However, compared to the last observation in the previous scenario, here, it seems
that in terms of the number of N_1, the increase in the average number of infected nodes is
closer to having a linear scale.

Figure 3. Random Graph with Random Graph, while N_1 = 100, N_1 = 250 and N_1 = 500.

4.4. Random Graph and Small-World

As a third combination, a Random Graph (RG) topology combined with a Small-
World (SW) topology was chosen. The union of these two topologies may correspond
to an application where users use their mobile phones to connect to a peer-to-peer file
sharing network. In this network, the Random Graph (RG) topology corresponds to the
direct connections between mobile phones (physical), while the Small-World (SW) topology
corresponds to a social network that develops and has this structure (cyber layer). Figure 4
shows the corresponding results. As we observe the resulting figure, we realize that the
larger the network, i.e., the denser it becomes, the greater the average number of infected
nodes in the network. The only difference one may notice is that on average, the number of
infected nodes in this topology is a bit less than the previous one (RG-RG).

4.5. Small-World and Scale-Free

A fourth combination of complex topologies was chosen to form a potential cyber-
physical system consisting of a Small-World (SW) overlaying a Scale-Free (SF) topology.
The SW topology might correspond to a growing social network, while the SF topology
could correspond to the interfaces that users have with each other in the social network.
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Figure 5 presents corresponding results to the previous schemes. That is, the number of
spoke nodes directly depends on how much the network created by these two topologies
grows and becomes dense.

Figure 4. Random Graph and Small-World, while N_1 = 100, N_1 = 250 and N_1 = 500.

Figure 5. Small-World and Scale-Free, while N_1 = 100, N_1 = 250 and N_1 = 500.
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4.6. Regular and Random Graph

The fifth combination we considered was a Regular (REG) topology combined with a
Random Graph (RG) topology. Regular topology (REG) can usually correspond to some
physical grid-type topology, e.g., sensor network, while Random Graph (RG) topology can
correspond to random users coexisting on the Internet and communicating with each other
in their communication with the display or even otherwise using the physical topology. In a
grid topology, such as REG, all nodes are interconnected, i.e., we have a fully interconnected
topology. This is the most expensive but also the most secure topology model, as a message
goes only to the correct recipient; while nodes become infected and malfunction, they do
not affect the rest of the network nodes. The shape Figure 6 also shows similar results to
the previous graphs. Of course, in this particular example, we notice that with regard to the
scaling with respect to the different values of N_1, here, the observation of the first scenario
(RGG - SF) is valid; that is, as the density of the network increases, the number of infected
nodes increases slightly faster than linearly.

Figure 6. Regular and Random Graph, while N_1 = 100, N_1 = 250 and N_1 = 500.

4.7. Regular and Scale-Free

The last combination of topologies was again considered a Regular (REG) topology for
the physical system combined with a Scale-Free (SF) for the cyber portion of the network.
The Regular (REG) topology corresponds, as in the previous example, to some physical
network type topology, e.g., sensor network, while the Scale-Free (SF) topology can be
considered as an alternative to the RG topology considered in the previous scenario,
mirroring the interfaces that users have with each other in the social network. Figure 7
shows the corresponding results with the previous graphs. In this particular example, we
notice again that regarding the scaling with respect to the different values of N_1, here
again, the observation of the first scenario (RGG - SF) applies. Thus, we conclude that as
the network density increases, the number of infected nodes increases slightly faster than
linearly that when we choose an RG topology.
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Figure 7. Regular and Scale-Free, while N_1 = 100, N_1 = 250 and N_1 = 500.

5. Discussion

In this section, we perform a cumulative comparison across the considered scenarios
for the purpose of obtaining useful observations and insights. We are mostly interested
in observations and their reasoning regarding the structural properties and behavioral
features expressed by different types of considered topologies.

The following figures present cumulative results for all considered scenarios, aiming
towards comparing among the different combinations of the considered complex topologies
and the extraction of longer-term useful observations. Figure 8 presents the cumulative
results when N_1 = 100 nodes, Figure 9 presents the cumulative results when N_1 =
250 nodes, and Figure 10 presents the cumulative results when N_1 = 500 nodes. These
three figures allow comparing the behavior of the considered scenarios and topologies
with respect to the size of the first topology. The first interesting outcome is that a quite
similar behavior is exhibited among the different scenarios as the first network becomes
larger (and denser). This is due to the fact that some of the topologies share some common
features, e.g., SW with SF, etc. The less vulnerable combination is that of RGG-SF, while
the most vulnerable one being the RG-RG. The performance of the rest of the schemes
performing in between these two extremes remains the same for all three values of the size
of the first network. This is due to the fact that the epidemic behavior depends more on the
structural properties of the corresponding topologies rather than on the exact size (density
of the network). Of course, as can be observed by the three figures, there is more prominent
segregation of the relative performance as the topology of the first network becomes
larger. The topology determines the neighboring relations and thus defines terminally the
allowed interactions and hence the allowed diffusion paths in the network. In any case,
the structural feature seems to have a stronger effect than the size of the topology.
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Figure 8. Spread of malware while the nodes of the 1st topology remain equal to N_1 = 100.

Figure 9. Spread of malware while the nodes of the 1st topology remain equal to N_1 = 250.

Then, Figures 11–15 present similar cumulative results for the number of infected
nodes when the second topology has N_2 = 100, 250, 500, 750 and 1000 nodes, respectively.
Such figures allow comparing the behavior of the considered scenarios–topologies as well,
this time with reference to the second topology. A similar interesting outcome, as in the
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previous case, is that a quite similar behavior is exhibited among the different scenarios in
each figure, as the second network becomes larger (and denser). However, here, the relative
ordering of the behavior of each combination changes. The more robust combination is
that of RG-RG, while the most vulnerable one is the RGG-SF. The relative ordering of the
performance of the schemes in between remains the same for all the considered sizes of
the second topology. The reason for the repeating relative ordering is again the fact that
the epidemic behavior depends more on the structural properties of the corresponding
topologies rather than on the exact size (density of the network). The segregation of the
relative ordering is again due to the second topology becoming more dense and thus
producing more epidemic events in the corresponding scenarios. The modification in the
relative ordering compared to the previous set of results is due to the nature of the type of
each employed topology as second topology in the two-layer combination. Differences in
the density of such topologies lead to different relative orderings. In any case, the structural
feature prevails overall, having a stronger effect than the size of the topology.

Figure 10. Spread of malware while the nodes of the 1st topology remain equal to N_1 = 500.

Through the above analysis for random attacks, it can be concluded that overall,
and with gravity of importance on the factors of structural topology, the combination
RGG-SF is more vulnerable. Second in order of vulnerability follows the combination of
the SW-SF, which is followed by REG-SF and RG-SW. Finally, the combinations REG-RG
and RG-RG are observed to be the most reliable.

More specifically, in the RGG-SF combination, it is observed that the spread of malware
on the network is more intense, resulting in more network nodes being infected as the
density of the topology increases. In the combinations SW-SF and REG-SF, similar results
are observed, as the spread of malware in networks such as a developing social network or
some natural grid-type topology (e.g., sensor network), when malware comes in contact
with the interfaces that users have with each other in the social network is less harmful and
the network is quite reliable. The RG-SW combination, representing, e.g., a network where
users connect with their mobile phones to a peer-to-peer network, is equally vulnerable and
reliable. The possible shortcuts in the topology introduced by the SW part of the network
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reduce the robustness potentials of the RG part, which if independent would exhibit very
good robustness performance [2].

The most reliable and least vulnerable networks according to the research results
are those of the combinations REG-RG and RG-RG, respectively, i.e., some natural grid-
type topology, e.g., sensor network, over which users may access a social or other type of
information exchange network. This is due to the fact that the grid-like part of the topology
ensures local interactions, while the random part of the topology provides the necessary
randomization with respect to the contacts. This means that even though there might be
intense local epidemic incidents, these will propagate randomly, and thus, they will not
necessary hit on key nodes, eventually diminishing the potential effect of strong epidemics.

Figure 11. Spread of malware while the nodes of the 2nd topology remain equal to N_1 = 100.

Figure 12. Spread of malware while the nodes of the 2nd topology remain equal to N_1 = 250.
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Figure 13. Spread of malware while the nodes of the 2nd topology remain equal to N_1 = 500.

Figure 14. Spread of malware while the nodes of the 2nd topology remain equal to N_1 = 750.

It is very important to note that as the final network density increases, in most of the
studied topologies, the percentage of infected nodes reduces relevantly, i.e., the increase
of the number of expected infected nodes increases linearly or mostly sub-linearly. Thus,
on larger networks, malware is less harmful and can be restricted more easily. Even if
we set the initial number of infected nodes equal to 10, we observe that the final number
of infected nodes does not differ much from the final number of infected nodes when
we set the initial number of infected nodes equal to 1. This phenomenon was observed
and investigated in all topologies analyzed, of all sizes. Our results show that the final
number of infected nodes is eventually more due to the topological features of the network
topologies themselves and their density rather than due to the initial number of malicious
nodes that may begin the epidemic.
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Figure 15. Spread of malware while the nodes of the 2nd topology remain equal to N_1 = 1000.

6. Conclusions and Future Research
6.1. Summary

In this work, we studied the modeling of malware in multi-layer network topologies
and more specifically in two-layer topologies, representing possible cyber-physical systems.
We observed and recorded the propagation of malware, starting in each case from a random
node of the network, in the two-layer network that we set each time. The considered two-
layer topologies combine different types of complex networks, which represent potential
networks emerging in our daily lives and more specifically topologies emerging as cyber-
physical systems. A Markov Random Field (MRF)-based framework was used to model the
propagation of random malware throughout the systems under consideration. We study
such systems macroscopically, in the sense that over a long period of time, vulnerable nodes
can be infected and then fully recover only to be infected again by another malware. Thus,
we considered the SIS paradigm for the MRF-based propagation model. By combining
Gibbs sampling with simulated annealing, we obtained the long-term statistics of the
propagation of such malware in the considered topologies through the expected number of
infected nodes in each scenario. The main results are that networks with denser topologies
ultimately offer greater flexibility in handling random malware regardless of its type.
Regarding vulnerability, the most reliable and least vulnerable networks were observed in
the combinations of REG-RG and RG-RG topologies, that is, the combination of a physical
mesh-type topology or a topology that could correspond to a peer-to-peer file sharing
network, in combination with a topology that corresponds to the random users that coexist
on the Internet and communicate with each other.

6.2. Future Work

Multiple directions have been identified for future work. An interesting one was
mentioned before, involving the study of the model and of the propagation in directed
topologies, modeling “preferential” malware. A second direction for future work is the
analysis and extension to systems with more network layers (third and fourth layers), thus
listing networks that we use in our daily life, even up to the semantic layer. Finally, a
more practical direction for extension would be to study the results of this work in real
cyber-physical systems for cross-validation of the results.
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