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Abstract: Human motion state recognition technology based on flexible, wearable sensor devices 
has been widely applied in the fields of human–computer interaction and health monitoring. In this 
study, a new type of flexible capacitive pressure sensor is designed and applied to the recognition 
of human motion state. The electrode layers use multi-walled carbon nanotubes (MWCNTs) as con-
ductive materials, and polydimethylsiloxane (PDMS) with microstructures is embedded in the sur-
face as a flexible substrate. A composite film of barium titanate (BaTiO3) with a high dielectric con-
stant and low dielectric loss and PDMS is used as the intermediate dielectric layer. The sensor has 
the advantages of high sensitivity (2.39 kPa−1), wide pressure range (0–120 kPa), low pressure reso-
lution (6.8 Pa), fast response time (16 ms), fast recovery time (8 ms), lower hysteresis, and stability. 
The human body motion state recognition system is designed based on a multi-layer back propaga-
tion neural network, which can collect, process, and recognize the sensor signals of different motion 
states (sitting, standing, walking, and running). The results indicate that the overall recognition rate 
of the system for the human motion state reaches 94%. This proves the feasibility of the human 
motion state recognition system based on the flexible wearable sensor. Furthermore, the system has 
high application potential in the field of wearable motion detection. 

Keywords: flexible capacitive pressure sensor; microstructured electrode; multi-walled carbon 
nanotube; barium titanate; back propagation neural network; human motion state recognition 
 

1. Introduction 
Human motion state recognition technology has been widely applied in different 

fields such as medical treatment [1,2], human–computer interaction [3,4], and home life 
[5,6]. The current research regarding human motion detection can typically be divided 
into two modes. The first mode is the human motion state recognition based on video and 
image processing technology. For example, Ma et al. [7] of Nanjing University of Posts 
and Telecommunications proposed an architecture of time-varying long short-term 
memory recurrent neural networks (TV-LSTMs) for human action recognition, which 
adopted convolutional neural networks (CNNs) as the feature generator, and obtained 
good recognition results. Bilen et al. [8] of the University of Edinburgh combined motion 
pictures and dynamic optical flow with CNNs and summarized the video as an image, 
which can realize end-to-end video action recognition. Although this vision-based recog-
nition mode has the advantages of strong real-time performance, simple data acquisition, 
and good continuity, most of the studies focus on algorithm design with a long system 
development cycle. In addition, slight human movements are difficult to capture using 
hardware such as cameras. Natural factors such as ambient lighting and object occlusion 
can also affect the recognition effect to a certain extent. Moreover, the range of human 
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movement is limited by the position of the camera, which can easily invade personal pri-
vacy. The second mode is the human motion state recognition based on wearable devices. 
For instance, Chamroukhi et al. [9] of the University of Toulon in France used an MTx-
Xbus inertial tracker on the chest, right thigh, and left ankle of the experimenter to collect 
data. The problem of motion recognition was solved by segmenting the multi-dimen-
sional time series of acceleration data. Moreover, Ronao et al. [10] of Yonsei University in 
South Korea adopted smartphones as sensors and a deep CNN as the recognition model 
and used the unchanging characteristics of the one-dimensional time input signals to re-
alize the recognition of human motion state. In the above-mentioned models, the motion 
data are collected using wearable rigid sensors and thus have a flexible application range. 
However, the way of wearing hardware devices may restrict people’s joint activities to a 
certain extent, and the human–computer interaction experience is not sufficiently effec-
tive. Therefore, a compact, lightweight, and wearable sensor with superior performance 
is required to collect human motion signals. With the rapid development of flexible elec-
tronic technology, the emergence of flexible sensors provides new ideas for the detection 
of human motion state. Unlike the traditional rigid sensors, flexible sensors can adapt to 
complex detection environments and are small and lightweight. Thus, such sensors can 
adapt well to the requirements of human motion monitoring and not cause great obstacles 
to the activities of the human body [11–14]. Although there have been reports on the ap-
plication of flexible sensors in the field of motion state recognition, the recognition effect 
is still limited by key factors such as the sensitivity and stability of the sensor. Hence, it is 
of certain significance and value to design a flexible sensor with superior performance 
that can be applied to the detection of human motion state. There are many types of flex-
ible pressure sensors, and their sensing mechanisms are mainly of piezoresistive sensors 
[15,16], piezoelectric sensors [17,18], and capacitive sensors [19,20]. Piezoelectric sensors 
have the advantages of high sensitivity and fast response due to their unique sensing prin-
ciples. However, they cannot effectively measure static pressure [21]. Piezoresistive sen-
sors have the advantages of easy data collection, simple production, and stable perfor-
mance. However, the sensing materials can be easily affected by environmental factors. 
Piezoresistive sensors can be strongly affected by the viscoelasticity of flexible materials 
and are prone to large hysteresis, thereby affecting the real-time detection effect [22]. In 
comparison, capacitive sensors have low power consumption, high sensitivity, low hys-
teresis, fast response, and good perception of small stress; thus, they can meet the actual 
requirements of human motion detection [23]. The capacitance is calculated as follows 
[24]: 

0 r AC
d

ε ε
= , (1) 

where 0ε  is the vacuum dielectric constant, rε  is the relative dielectric constant of the 
dielectric layer, A  is the relative area of the two electrode layers, and d  is the distance 
between the two electrode layers. Among them, variable parameters A , d , and rε  af-
fect the sensing performance such as sensitivity of the sensor. The sensitivity of a capaci-
tive pressure sensor is as follows [25]: 
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where S  is the sensor sensitivity, C  is the capacitance value output by the sensor after 
pressure is applied, 0C  is the initial capacitance value of the sensor, and P  is the change 
in pressure received by the sensor. Substituting Equation (1) into Equation (2), we can 
obtain 
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where 0rε , 0A , and 0d , respectively, represent the relative dielectric constant of the 
dielectric layer, the relative area of the electrode plates, and the distance between the two 
electrodes in the initial state of the sensor; rε , A , and d , respectively, represent the 
corresponding parameters when pressure, P , is applied to the sensor. As shown in Equa-
tion (3), to increase the sensitivity of the sensor, under the same pressure applied, rε  and 

A  must be maximized as much as possible and d  must be reduced. Currently, the 
main method to improve the performance of capacitive sensors is to construct microstruc-
tures in the dielectric layer and the electrode layer. For example, Bao et al. [26] from Stan-
ford University proposed a dielectric layer integrated with a pyramid-shaped microstruc-
ture. The capacitive flexible pressure sensor composed of this dielectric layer had a sensi-
tivity of 0.55 kPa−1 in a pressure range of 0–0.2 kPa. The pressure detection limit was as 
low as 3 Pa, and the response time was less than 1 s. Furthermore, Wei Li et al. [27] from 
Tiangong University proposed a flexible capacitive pressure sensor based on a polydime-
thylsiloxane (PDMS) dielectric layer with air gaps and high porosity. The sensor had an 
excellent sensitivity of 1.15 kPa−1 (<1 kPa) in a pressure detection range of 0–5 MPa. How-
ever, the volume of the sensor based on the foam structure was relatively large, and the 
wearability of the human motion detection was poor. Zian Zhang et al. [28] from Sun Yat-
sen University reported a flexible, interlayered capacitive pressure sensor with micro-
cone array electrodes and a porous medium layer. The sensor had high sensitivity (2.51 
kPa−1), fast response time (84 ms), and a wide working range (>10 kPa). Clearly, further 
improvement of the performance of capacitive sensors can be realized by both construct-
ing a microstructure in the electrode layer and improving the dielectric constant. Based 
on the above discussion, the following strategies are adopted in this study to improve the 
performance of sensors: using a low-cost sandpaper mold, the micro structure is fabri-
cated on the surface of the sensor electrode. The BaTiO3 with high dielectric constant and 
low dielectric loss is doped into PDMS as filler, and the dielectric constant of the dielectric 
layer is improved. On the other hand, because multi-layer back propagation neural net-
work (BP neural network) training has strong nonlinear mapping ability and high self-
learning and adaptive ability, the BP neural network is used to train and identify the col-
lected samples. 

In this paper, based on previous work [29], a human motion state recognition system 
based on wearable flexible capacitive pressure sensor was designed. Firstly, we designed 
a flexible pressure sensor consisting of MWCNTs/PDMS electrode layers with microstruc-
tures embedded on the surface and a BaTiO3/PDMS dielectric layer. The addition of Ba-
TiO3 effectively improved the dielectric constant of the dielectric layer and the sensitivity 
of the sensor. At the same time, the response characteristics and reliability of the sensor 
were explored using various mechanical deformations and a hot box test. Subsequently, 
the data acquisition, denoising, sample division, and feature extraction of the correspond-
ing sensing signals (respiration signals and signals of elbow joint and knee joint bending) 
of volunteers in four motion states (sitting, standing, walking, and running) were com-
pleted. Finally, using BP neural network training, a data model of human motion state 
recognition was established, which realized the recognition of the motion states of sitting, 
standing, walking, and running. The sensor can effectively monitor human physiological 
activity information, such as breathing signals and the state of joint motion, and can sig-
nificantly contribute to the field of wearable motion detection. 

2. Experimental Section 
2.1. Preparation of Materials 

The MWCNTs were purchased from Nanjing Xanano Materials Tech Co., Ltd., Nan-
jing, China with 95% purity, 10–30 m length, and 2.0 wt% carboxyl content. The MWCNTs 
were dispersed in anhydrous ethanol (AET) and stirred manually for 10 min. Subse-
quently, high-frequency ultrasound was used for 30 min to further disperse the MWCNTs 
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to reduce the occurrence of agglomeration of the MWCNTs in the dispersion. Then, 
MWCNTs/AET dispersion with a mass fraction of 1 wt% was obtained. The dispersion 
solution was kept static for 12 h. Subsequently, the bottom precipitation was removed, 
and the supernatant was retained for further experiments. PDMS (Sylgard 184 model) was 
purchased from Dow Corning. The PDMS main agent and curing agent were mixed at a 
ratio of 15:1 and stirred for 30 min, and then they were processed under vacuum for 30 
min to remove air bubbles in the mixed solution for later use. Eighty-mesh sandpaper 
(German Warrior brand) was purchased from a supermarket, cut, and affixed flat on a 
glass plate. BaTiO3 with a particle diameter of 500 nm and content of 99.5% was purchased 
from Beijing Shenghe Haoyuan Technology Co., Ltd. BaTiO3/PDMS-mixed solutions with 
a mass percentage of 0%, 10%, 20%, and 30% were prepared. The solutions were stirred 
for 2 h to remove air bubbles. Adhesive polyimide (PI) tape (50 µm thickness) was pur-
chased from 3M Company. 

2.2. Fabrication of Microstructured Electrode Layer 
Based on the previous work [29], the preparation method of the microstructured elec-

trode is shown in Figure 1a. First, the MWCNTs solution was sprayed onto the surface of 
the 80-mesh sandpaper flatly attached to the glass plate. After heating and drying, a layer 
of dry MWCNTs was deposited on the surface of the sandpaper. The PDMS solution was 
poured on the surface, and the glue was homogenized by spin coating for 40 s at a speed 
of 300 rpm. The PDMS solution penetrated into the MWCNTs layer due to gravity. After 
heating and curing, the PDMS layer solidified to lock the MWCNTs layer firmly. Thereaf-
ter, the PDMS film was peeled off. Thus, the MWCNTs/PDMS electrode layer was ob-
tained. Owing to the uneven microstructure on the surface of the sandpaper, the 
MWCNTs/PDMS electrode layer displayed a microstructure opposite to the unevenness 
of the sandpaper surface. Since the MWCNTs layer had a considerably lower thickness 
than the PDMS layer, this layer hardly affected the elastic properties of the PDMS layer, 
ensuring that the microstructured electrode had excellent stability, stretchability, and a 
low manufacturing cost. Figure 2a–c shows the surface morphology of the microstruc-
tured electrode layer. It can be seen that the MWCNTs layer is firmly embedded on the 
surface of the PDMS with microstructure. The close connection between MWCNTs and 
MWCNTs provides good conductivity for the sensor. In addition, we also characterized 
conductive MWCNTs layers at different positions of the electrode layer, as shown in Fig-
ure 2d–g. Figure 2d,e show that the thickness of the conductive MWCNTs layer at the 
bottom of the groove on the surface of the electrode layer is 1.094 um–1.216 um. Figure 
2f,g show that the thickness of the conductive MWCNTs layer on the top of the bulge on 
the surface of the electrode layer is 3.054 um–5 um. 

 
Figure 1. Fabrication process of the sensor. Fabrication process of the (a) microstructured electrode 
and (b) BaTiO3/PDMS dielectric layer. 
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Figure 2. SEM image of the electrode layer. (a) The surface of electrode layer. (b) The MWCNTs 
layer. (c) Further amplification of the MWCNTs layer. (d) The cross-section of the bottom of the 
microstructure groove. (e) The thickness of the MWCNTs layer at the bottom of the microstructure 
groove. (f) The cross-section on the top of the microstructure bulge. (g) The thickness of the 
MWCNTs layer on the top of the microstructure bulge. 

2.3. Fabrication and Analysis of Dielectric Layer 
The preparation process is shown in Figure 1b. Four BaTiO3/PDMS mixed solutions 

with different contents were spin coated on the smooth glass sheet in sequence for 40 s at 
a speed of 400 rpm. After the spin coating was completed, the sample was heated at 70 °C 
for 3 h to cure the composite film. Finally, the composite film was peeled off from the 
surface of the smooth glass sheet. The surface of four dielectric layers was characterized 
using a scanning electron microscope (SEM). As shown in Figure 3a–d, the cross-section 
of the pure PDMS film was the smoothest, and the cross-section of the composite film with 
10% BaTiO3 addition had sporadic BaTiO3 nanoparticles. Furthermore, there were more 
BaTiO3 nanoparticles in the cross-section of the composite film with 20% BaTiO3 addition, 
and BaTiO3 particles appeared as small agglomerates. The cross-section of the composite 
membrane with 30% BaTiO3 addition had more BaTiO3 particles distributed in the PDMS 
in the form of small agglomerates. Moreover, large BaTiO3 nanoparticle agglomerates 
were generated. We observed the presence of small aggregates in the cross-section of the 
composite film added with 30% barium titanate, as shown in Figure 3e. It can be observed 
that a large amount of barium titanate can accumulate and agglomerate together. If the 
BaTiO3 content was increased beyond 30%, a larger volume of BaTiO3 agglomerates ap-
peared in the dielectric layer of the composite material. This considerably affected the sta-
bility of the sensor. Therefore, the maximum content of the dielectric layer composite ma-
terial BaTiO3 in this study was set to 30%. We also characterized the surface of barium 
titanate film with the addition of 10%, 20%, and 30%, as shown in Figure 3f–h. It can be 
seen that there is no large-area barium titanate aggregation on the surface of the Ba-
TiO3/PDMS film. This distribution of barium titanate is helpful to improve the dielectric 
constant of the dielectric layer. 
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Figure 3. SEM images of the dielectric layer. (a) The cross-section of pure PDMS film; and (b–d) 
composite film with BaTiO3 content of 10%, 20%, and 30%, respectively. (e) Agglomeration of Ba-
TiO3 particles. (f–h) The surface of composite film with BaTiO3 content of 10%, 20%, and 30%. 

A three-electrode measurement system (Shanghai Anbiao Electronics Co., Ltd., 
Shanghai, China) was applied to measure the dielectric constant of the four dielectric layer 
samples. As shown in Figure 4a–b, the three-electrode measurement system mainly in-
cludes the protective electrode, the protected electrode, the common electrode and its ac-
cessories, the sample, and the shielding box. The equivalent diagram of a cross-section of 
the three-electrode measurement system is shown in Figure 4c. The three-electrode meas-
urement system was made of stainless steel. The size parameters of the electrode are as 
follows: the diameter of the protected electrode was 50 mm, the diameter of the protective 
electrode was 74 mm, and the gap between the protected electrode and the protective 
electrode was 2 mm. 

 
Figure 4. The three-electrode measurement system. (a) Exterior diagram of the test system. (b) Inte-
rior diagram of the test system. (c) Sectional diagram. 

The equivalent area of the electrode is calculated as follows: 

4
)( 2

1 gdS +
=
π , (4) 

where 1d  is the diameter of the protected electrode, and g  is the gap between the pro-
tected electrode and the protective electrode. The relative dielectric constant of the tested 
sample can be calculated as follows: 

0
r ε
ε

S
Cd

= , (5) 

Substituting Equation (4) into Equation (5), we can obtain: 

0
2
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4

επ
ε
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Cd

r +
= , (6) 

We connected the two test terminals of the LCR meter to the protected electrode and 
the common electrode, respectively, and measured the capacitance value (C
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ple. The relative dielectric constant ( rε ) of the tested sample could be calculated by For-
mula (6). The relative dielectric constants of the four samples with BaTiO3 content of 0%, 
10%, 20%, and 30% are shown in Figure 5. The test curve indicates that the dielectric con-
stants of the four samples decreased slightly with the increase in the capacitance meas-
urement frequency. This may be because, when the test frequency is further increased, the 
change of the dipole vector is slower than that of the applied electric field, resulting in the 
weakening of polarization and the reduction in dielectric constant of the composites [30]. 
With the increase in the BaTiO3 content, the relative dielectric constant of the dielectric 
layer also increased. This may be because with the increase in the BaTiO3 content, the 
crosslinking degree of the composite material increases and the polarization enhances. 
Thus, in this study, 30% (mass fraction) BaTiO3 was added to PDMS to prepare composite 
dielectric layers. 

 
Figure 5. Relative dielectric constant of PDMS composites with BaTiO3 content of 0%, 10%, 20%, and 
30%. 

2.4. Sensor Packaging 
The fabricated MWCNTs/PDMS electrode layer was cut into a strip with a width of 

1 cm and length of 4 cm, and the PDMS/BaTiO3 dielectric layer was cut into a square with 
a side length of 1.5 cm. The sensor thus adopted a “sandwich” structure, with the upper 
and lower layers being the electrode layers and the middle layer being a dielectric layer. 
The three-layer structure was sealed and bonded using a single-sided adhesive PI film. 
The schematic diagram of the sensor structure is shown in Figure 6a. A copper foil con-
ductive tape was used to fix the wire on the surface of the electrode layer, making further 
testing and usage convenient. The actual image of the sensor is shown in Figure 6b. The 
thickness of the sensor was 1.05 mm, and the effective pressure sensing area was 1 cm × 1 
cm. Images of the deformation states (such as bending and distortion) of the flexible sen-
sor are shown in Figure 6c,d. It can be seen that the deformation type of sensor meets the 
demand of joint movement. 

 



Micromachines 2021, 12, 1219 8 of 18 
 

 

Figure 6. Sensor packaging. (a) Structure diagram; (b) sensor image; (c) the bending state of the 
sensor; (d) the twisting state of the sensor. 

2.5. Characterization 
The surface morphology of the dielectric layer was characterized using the Apreo 

SEM (Thermo Scientific, USA). A digital push–pull force gauge (Adburg) and an electric 
push–pull force gauge (ZQ-990A) (Dongguan Zhiqu Precision Instrument Co., Ltd., 
Dongguan, China) were used to provide pressure loading for the sensor. A flexible elec-
tronic tester (Shanghai Mifang Electronic Technology Co., Ltd., Shanghai, China) was 
used to provide bending loading for the sensor. An LCR meter (TH2826) (Changzhou 
Tonghui Electronics Co., Ltd., Changzhou, China) was used to record the changes in elec-
trical signals output by the sensor. The performance test device of the sensor is shown in 
Figure 7. 

 
Figure 7. Performance test device of sensor. 

3. Results and Discussion 
3.1. Performance of the Pressure Sensor 

The sensor was fixed on the base of the digital push–pull force gauge. As pressure 
was applied, the LCR meter recorded the capacitance changes corresponding to different 
levels of pressure. Then, the pressure–capacitance change curve was obtained, as shown 
in Figure 8a. The piecewise linear fitting analysis shows that the sensitivity of the sensor 
was 2.39 kPa−1 in the pressure range 0–0.12 kPa, 0.23 kPa−1 in 0.27–2.68 kPa, 0.08 kPa−1 in 
3.25–9.45 kPa, and 0.02 kPa−1 in 10.73–28.73 kPa. Thus, the sensitivity of the sensor gradu-
ally decreased as the pressure increased. This may be because the microstructure of the 
electrode surface is constantly compressed under the action of external forces, approach-
ing the deformation limit. The air groove formed between the electrode layer and the di-
electric layer almost disappeared due to compression. When the sensor was under high 
pressure, the microstructure of the electrode layer was close to the deformation limit and 
contributed little to the sensitivity. At this time, the dielectric layer was still within its 
elastic range, and could produce elastic deformation under high pressure, further reduc-
ing the distance between the upper and lower electrodes, resulting in a small output re-
sponse of the sensor. To measure the response time and recovery time of the sensor more 
efficiently, a 200 mg weight piece was lightly thrown on the surface of the sensor to sim-
ulate transient pressure loading. Subsequently, tweezers were used to quickly move the 
weight piece away from the sensor to simulate pressure unloading. Figure 8b indicates 
that the response time (Tr) of the sensor was 16 ms when the weight piece was loaded, 
and the recovery time (Tf) of the sensor was 8 ms when the weight piece was unloaded. It 
was also found through experiments that, when a 50 mg weight piece was loaded on the 
sensor (with pressure approximately 6.8 Pa), the capacitance output of the sensor had a 
recognizable increase change, and the sensor could effectively maintain the change in the 
capacitance value. The response curve of the sensor pressure limit detection is shown in 
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0C  in 0/∆C C  increased, re-
sulting in a decreased slope of the pressure–capacitance curve and a decrease in sensitiv-
ity. In the sensor bending test, the pressure response curve when the sensor was bent at 
36° was the steepest, followed by the pressure response curve at 45°, and the pressure 
response curve at 76° was the flattest. This indicates that the larger the sensor bending 
angle, the higher is the initial capacitance value and the lower is the sensitivity of the sen-
sor. To explore the sensor’s ability to detect different pressure loading signals, sharp pulse 
pressure and square wave pressure of signal values 0.3, 0.8, and 1.5 kPa were repeatedly 
applied to the sensor twice. As shown in Figure 8f,g, under the same applied pressure, 
irrespective of whether square wave pressure or sharp pulse pressure was applied, the 
corresponding capacitance output response value was almost the same. This indicates that 
the sensor has a stable response to different types of pressure signals. To analyze whether 
the sensor could work normally for a long period while generating heat or in a high-tem-
perature environment, the sensor was placed in a vacuum drying oven and the tempera-
ture increased from 20 °C to 80 °C. Then, the capacitance change curve of the sensor dur-
ing the heating process was measured, and the results are as shown in Figure 8h. It can be 
seen that the capacitance change of the sensor from 20 °C to 80 °C was only 3.1% of the 
initial capacitance value. Thus, the impact on the electrical performance of the sensor is 
small and the sensor meets the working requirements under high temperature. 
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Figure 8. Performance test curve of the sensor. (a) Sensitivity. (b) Response time and recovery time. (c) Limit of pressure 
sensing. (d) Output response of the sensor in the bending state. (e) The sensitivity of the sensor in the bending state. (f) 
Detection capability under square wave loading. (g) Detection capability under sharp pulse loading. (h) Effect of temper-
ature on the sensor performance. 

To show the durability and service life of the sensor, a cyclic pressurization–unload-
ing test was performed on the sensor. The test pressure was 200 and 400 Pa, and the num-
ber of repetitions was approximately 2000 (Figure 9). As shown in Figure 9a,d, the capac-
itance response curves can maintain good stability at 200 and 400 Pa, indicating that the 
sensor has good repeatability under different pressure. As shown in Figure 9b,c and Fig-
ure 9e,f, at different time periods of 1000–1040 s and 4000–4040 s, the capacitance response 
curves are very close, and there is no consistent increase or decrease in the capacitance 
change. This proves that the sensor has good durability and creep resistance.  

 
Figure 9. Repeatability test of the sensor. (a) Capacitance cyclic strain curve of the sensor under a 
pressure of 200 Pa; (b,c) partial graphs of Figure 6a; (d) capacitance cyclic strain curve of the sensor 
under a pressure of 400 Pa; (e,f) partial graphs of Figure 6d. 

In the repeatability test with pressure 200 and 400 Pa, a loading–unloading process 
was carried out to explore the hysteresis of the sensor under dynamic pressure. As shown 
in Figure 10a,b, the hysteresis of the sensor under a dynamic pressure of 200 Pa was ap-
proximately 5.9% and that under a dynamic pressure of 400 Pa was approximately 9%. 
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The sensor has suitably low hysteresis. To explore the sensitivity change of the sensor after 
a long-term operation, the sensitivity of the sensors under repeated loading–unloading 
cycles for a total of more than 10,000 times was tested and compared with the initial sen-
sitivity (Figure 10c). The test results show that, after more than 10,000 pressure loading–
unloading cycles, the sensitivity curve of the sensor basically fit the initial sensitivity 
curve, and the maximum error was approximately 8%. However, the sensitivity of the 
sensor after 10,000 repetitions was slightly higher than the initial sensitivity. This may be 
due to the performance abnormality caused by fatigue damage to the flexible material of 
the sensor under long-term loading. 

 
Figure 10. Sensor hysteresis and the sensitivity curve after repeatability test. (a) The hysteresis of 
the sensor under a dynamic pressure of 200 Pa. (b) The hysteresis of the sensor under a dynamic 
pressure of 400 Pa. (c) The sensitivity change of the sensor after a long-term repeated loading–un-
loading process. 

The performance of the proposed sensor is compared with that of some reported sen-
sors (Table 1). The proposed sensor evidently has certain advantages in terms of sensitiv-
ity, minimum resolution, response time, and stability. 

Table 1. Performance comparison between the proposed sensor and other sensors reported in the literature. 

Sensor Structure Charac-
teristics 

Sensitivity 
(kPa−1) 

Optimal Sensitivity 
range (kPa) 

Minimum Res-
olution (Pa) 

Response Time 
(s) 

Stability (Cy-
cles) 

References 

PDMS film with pyrami-
dal microstructure 

0.55 0–0.2 3 <1 
thousands of 

times 
[26] 

PDMS film with wave-
shaped microstructure 

4.9 0–2.5 <1.7 <0.05 5000 [31] 

Dielectric layer with elec-
trospinning 

composite fiber film 
0.99 0–1.2 ~ 0.029 1000 [32] 

Electrode layer with icicle-
shaped liquid metal film 

0.39 0–1 12 0.19 6000 [33] 

Microstructured PDMS 
film coated with reduced 

graphene oxide 
25.1 0–2.6 16 0.12 3000 [34] 

PDMS film with sandpa-
per microstructure 

0.3954 0–2.67 ~ 0.49 6000 [35] 

Microstructured PDMS 
spraying Ag nanowells 

0.2837 0–1.3 300 0.05 ~ [36] 

Microstructured PDMS 
surface embedded with 

MWCNTs 
2.39 0–0.12 6.8 0.016 >10000 This work 
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3.2. Acquisition and Denoising of Sensor Signals 
Under the premise of not affecting normal human activities, a portable and wearable 

hardware circuit board was designed to flexibly collect three-channel capacitive sensing 
signals in real time. Using the built-in Bluetooth system of the microcontroller module, 
the collected signals were transmitted to the PC by wireless transmission to complete the 
storage and analysis of the sensor data. The actual image and installation position of the 
hardware circuit board are shown in Figure 11. The hardware circuit includes the capaci-
tance acquisition module (PCap02, German ACAM company, Stutensee, Germany), mi-
crocontroller module (CC2541, TI company, Texas, USA), switch module (ADG711, Ana-
log Devices Inc, Massachusetts, USA), and power module (TLV75733PDBVR, TI com-
pany). The power supply voltage of the circuit board was 3.3 V. 

 
Figure 11. The actual image and installation position of the hardware circuit board. 

The multi-channel sensor signal acquisition system was used to realize the data ac-
quisition of respiratory signals, elbow joint bending signals, and knee joint bending sig-
nals. The acquisition results are shown in Figure 12. Figure 12a shows that the sensor re-
sponds more accurately to the three breathing states, namely normal breathing, deep 
breathing, and rapid breathing. The intensity of deep breathing is greater than that of nor-
mal breathing, while the frequency of rapid breathing is higher. In addition, the intensity 
of inhalation during rapid breathing is similar to that of deep breathing, but the exhalation 
is not thorough enough. The real-time acquisition of the change in the sensor capacitance 
has a better mapping ability with the actual breathing situation. Figure 12b,c, respectively, 
show the capacitance response of the sensor to the bending state of the elbow joint and 
the knee joint. Between them, the elbow joint is a smaller joint, and the sensor has a larger 
bend when the elbow joint is bent, and thus can produce a larger change in capacitance. 
Because the knee joint is a larger joint, even if the knee joint is bent at a larger angle, owing 
to the small size of the sensor, its capacitance response is slightly lower than that when 
the elbow joint is bent. The test curve results also prove that the sensor can generate effec-
tive responses to different joint motion signals. 
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Figure 12. Human body signals acquired by the sensor. (a) Different breathing states. (b) Different 
degrees of elbow joint bending. (c) Different degrees of knee joint bending. 

Therefore, in this study, three sensors to collect breathing signals, elbow joint bend-
ing signals, and knee joint bending signals were installed to distinguish the four typical 
motion states of the human body, namely sitting, standing, walking, and running. The 
process is as follows. First, the three flexible sensors were attached to the volunteer’s chest, 
elbow, and knee joints and attached to a hardware circuit board. The volunteer main-
tained the four states for 1 min each and repeated them 15 times. Considering a breathing 
frequency range of 0.15–0.4 Hz and taking into account the movement frequency of the 
elbow and knee joints, a sensor signal acquisition frequency of 5 Hz was set in this study 
to avoid introducing excessive noise. The acquired sensor data are shown in Figure 13a–
d.  

 
Figure 13. Capacitance response of the sensor in different motion states. The sensor capacitance 
changes in the state of (a) sitting, (b) standing still, (c) walking, and (d) running. 
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As indicated by the black curve in Figure 14, the acquired signals inevitably comprise 
various noise signals because of the limitations of environment and experimental condi-
tions during the signal acquisition process. Herein, to denoise the collected sensor signals, 
the wavelet threshold denoising method was adopted. The parameter setting rules of the 
wavelet threshold denoising method are as follows: the wavelet basis function is coif4, the 
number of wavelet decomposition layers is 5, the rigrsure threshold rule is used as the 
threshold method, and the soft threshold function is used as the threshold function. The 
data of different motion states collected by the sensor were transmitted to PC through 
Bluetooth for storage and denoising. The red curve in Figure 14 shows the denoising effect 
of partial breathing signals collected in the state of standing still. Clearly, the noise in the 
signals was successfully removed, and the signals after denoising had better smoothness 
and better retained the original change trend and characteristics of the signals. 

 
Figure 14. Denoising effect of wavelet threshold denoising method on breathing signals collected in 
the state of standing still. 

3.3. Construction of BP Neural Model and Testing of Human Motion State Recognition System 
In this study, windowing processing was conducted on the collected signals; that is, 

the relatively long data were divided into fixed-length data fragments as samples. The 
window length was set to 10 s, and the signals were divided into a series of analysis sam-
ples with a sliding window in 5 s increments, thereby generating a 5 s overlap. The signal 
overlap method was used to maximize the use of continuous data flow. The signal sam-
pling frequency of the sensor was 5 Hz; that is, every 50 data points were regarded as a 
sample. A sample was collected every 25 data points, thus resulting in a total of 716 sets 
of samples in the four motion states. Each set of samples includes respiration signals, el-
bow joint bending signals, and knee joint bending signals with a 10 s length. The sample 
features were extracted using a time-domain feature extraction method. Five common 
time-domain features were selected, namely the maximum value, minimum value, aver-
age value, root mean square, and variance. A set of samples included three sets of data 
collected by the sensor—breathing signals, elbow joint bending signals, and knee joint 
bending signals, denoted as A , B , and C , respectively. Through calculation, the eigen-
values of the five time-domain features of the three sets of data were obtained. A sample 
with 15 characteristic parameters was formed as the input for the neural network training. 
Subsequently, a three-layer forward BP network was established, including an input 
layer, a hidden layer, and an output layer. The input layer of the BP network had 15 nodes. 
The 15-dimensional input vectors formed sequentially corresponded to the 15 eigenvalues 
in a set of samples. The output layer had a node which represented the motion states of 
sitting, standing still, walking, and running with outputs 1, 2, 3, and 4, respectively. The 
number of neurons in the hidden layer was seven. From the obtained 716 groups of sam-
ple sets for distinguishing the four motion states, 70% of the samples were randomly se-
lected as the training set, 15% of the samples as the validation set, and 15% of the samples 
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as the test set. The Levenberg–Marguardt algorithm was adopted as the training algo-
rithm. 

The mean square errors of the three sample sets after 26 training iterations are shown 
in Figure 15. The verification set reached the optimal mean square error of 0.13724 at the 
20th iteration. At this time, the mean square errors of the training set and the test set were 
0.10342 and 0.11179, respectively. The lower the mean square error, the better is the effect 
of the neural network. Finally, the human body motion state recognition system was es-
tablished (Figure 16). A new type of flexible capacitive sensor was applied for sensing 
human physiological signals. The data were transmitted to the PC through the signal ac-
quisition system. After denoising, sample partition, and feature extraction, the processed 
data were used for neural network training, and the trained neural network model was 
used to perform human motion state recognition. Through the application of the signal 
acquisition system, a total of 100 test samples were obtained, including 25 each of sitting, 
standing, walking, and running samples. These samples were used to test the reliability 
of the trained human motion state recognition network. The test results obtained are 
shown in Table 2. 

 
Figure 15. Mean square error training results of training set, validation set, and test set. 

 
Figure 16. Human motion state recognition system. 

Table 2. Test results of the neural network model. 

Test Samples 
Four Outputs of BP Neural Network 

Correct Recognition Rate (%) 
Sitting Standing Walking Running 

Sitting 24 1 0 0 96 
Standing still 1 24 0 0 96 

Walking 1 1 23 0 92 
Running 0 0 2 23 92 
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As shown in Table 2, the overall correct recognition rate of the test was 94%. In detail, 
the highest recognition rate was obtained for sitting and standing still, reaching 96%, fol-
lowed by walking and running, which were both 92%. The first two states have extremely 
low motion amplitudes with only slight unconscious motion of the joints. Hence, the data 
collected by the sensor were relatively stable. By contrast, because the motion amplitudes 
of walking and running are large, the signals collected by the sensor changed drastically. 
The training samples are not sufficiently comprehensive to cover all possible samples. 

4. Discussion and Conclusions 
In summary, this paper presented a method for human body motion state recognition 

based on a flexible, wearable capacitive pressure sensor. The sensor used sandpaper as a 
template, MWCNTs as a conductive material, and PDMS as a flexible substrate to obtain 
a MWCNTs/PDMS electrode layer with microstructure embedded on the surface. To re-
duce the interference of parasitic capacitance, the dielectric layer was made of a Ba-
TiO3/PDMS composite film with a mass ratio of 30%, which effectively improved the die-
lectric constant of the sensor. The designed flexible pressure sensor showed a sensitivity 
up to 2.39 kPa−1 in a pressure measurement range of 0–120 kPa, a minimum pressure res-
olution of 6.8 Pa, fast response time (16 ms), and fast recovery time (8 ms). In the dynamic 
response, the designed sensor had a low hysteresis and could remain stable after repeated 
loading over 10,000 times. The hardware circuit board was used to collect the breathing 
signals, the elbow joint bending signals, and the knee joint bending signals of the human 
body in different motion states. The collected sensor signals were denoised by the wavelet 
threshold denoising method. Subsequently, the denoised data were divided into samples. 
The time-domain feature values were extracted to form feature samples. The BP neural 
network was used to train and learn the samples to obtain a motion state analysis model. 
Finally, the human motion state recognition system was constructed, which realized the 
recognition of four motion states, namely sitting, standing, walking, and running. After 
testing, the comprehensive correct recognition rate of the system was approximately 94%. 
This method provides a new concept for the field of human motion recognition and has 
great application potential in human–computer interaction and health monitoring. 
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