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Abstract: This review paper addresses the critical need for structural prognostics and health man-
agement (SPHM) in aircraft maintenance, highlighting its role in identifying potential structural
issues and proactively managing aircraft health. With a comprehensive assessment of various SPHM
techniques, the paper contributes by comparing traditional and modern approaches, evaluating
their limitations, and showcasing advancements in data-driven and model-based methodologies. It
explores the implementation of machine learning and deep learning algorithms, emphasizing their
effectiveness in improving prognostic capabilities. Furthermore, it explores model-based approaches,
including finite element analysis and damage mechanics, illuminating their potential in the diag-
nosis and prediction of structural health issues. The impact of digital twin technology in SPHM
is also examined, presenting real-life case studies that demonstrate its practical implications and
benefits. Overall, this review paper will inform and guide researchers, engineers, and maintenance
professionals in developing effective strategies to ensure aircraft safety and structural integrity.

Keywords: structural prognostics; health management; aircraft maintenance; data-driven approaches;
model-based approaches; digital twin technology

MSC: 68T01

1. Introduction

Structural prognostics and health management (SPHM), a vital discipline in aerospace
engineering, emphasizes the importance of continuous monitoring, diagnosis, and predic-
tion of the health of aircraft structural systems [1,2]. By capturing and analyzing data from
a wide array of sensors and monitoring systems, SPHM systems play an instrumental role
in facilitating the real-time evaluation of an aircraft’s structural integrity throughout its
operational lifespan [3]. These systems offer constant monitoring that delivers insights into
the integrity, fatigue, and accumulated damage of various structural elements, including
airframes, wings, fuselages, and other crucial structures [4]. The ability to detect and
evaluate potential issues empowers these systems to pave the way for prompt maintenance
and repair actions, thereby safeguarding the aircraft’s optimal performance and safety.

Despite their crucial role in aircraft maintenance via manual inspections, scheduled
maintenance activities, and predefined thresholds for component repair or replacement,
traditional SPHM approaches face certain limitations [5]. A significant challenge lies in their
reactive nature and inability to offer real-time insights into the health of aircraft structures.
Visual inspections, while commonly used, remain subjective and are prone to human error,
potentially overlooking minor or internal damage that could escalate into catastrophic
failure [6]. Reliance on preset maintenance schedules can occasionally lead to unneces-
sary maintenance actions or oversight of critical indicators, resulting in inefficient resource
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allocation and heightened maintenance costs [7,8]. To overcome these challenges, it is imper-
ative to augment SPHM practices by capitalizing on technological advancements, thereby
fostering proactive and efficient maintenance strategies [9]. In this context, improvements
in sensor technology have been pivotal. Modern SPHM systems employ high-precision
sensors that accurately measure critical parameters like strain, temperature, vibration, and
load conditions from various aircraft structures [10–12]. In the field of aircraft SPHM, the
significance of strain and corrosion sensors in maintaining the integrity of aircraft structures
is of paramount importance. Strain sensors, with their advanced technology, enable the
precise measurement of mechanical deformation and stress distribution across various
critical components. By doing so, they facilitate the continuous monitoring of structural
responses to diverse operational loads, offering a unique opportunity for the early detection
of anomalies that could compromise the structural robustness of the aircraft. These sensors
empower engineers and operators with timely information, enabling them to take proactive
measures and address potential issues before they escalate [13,14]. Additionally, corrosion
sensors leverage techniques like electrochemical or impedance-based measurements to
detect and measure corrosion in aircraft structures. Corrosion sensors employ cutting-edge
techniques to identify initial corrosion stages and progression, preventing degradation over
time. Alongside data acquisition systems and advanced algorithms, these sensors signifi-
cantly boost the efficiency, reliability, safety, and cost-effectiveness of SPHM, eventually
enhancing aircraft operations [15–17].

With the advent of data-driven methodologies and sophisticated technologies, mod-
ern SPHM approaches have catalyzed a paradigm shift in aircraft maintenance proce-
dures. These approaches broadly fall into two categories: data-driven approaches [18]
and model-based/hybrid approaches [19,20]. Data-driven methods utilize machine learn-
ing techniques such as support vector machine (SVM), random forest (RF), and decision
trees (DTs), as well as deep learning techniques such as convolutional neural network
(CNN), and convolutional autoencoder (CAE). These methods analyze extensive datasets
obtained mainly from non-destructive testing (NDT) techniques to detect anomalies and
make precise predictions regarding the health and remaining useful life (RUL) of aircraft
components [21,22]. However, these methods require extensive labeled datasets and face
interpretability challenges. On the contrary, model-based approaches, such as physics-
based modeling, finite element analysis (as demonstrated by Yang et al. [23]), and damage
mechanics, offer a comprehensive assessment of the structural health of aircraft compo-
nents [24]. Within the domain of finite element analysis, Tian et al. employed an iterative
method to address nonlinear challenges in partial differential equations [25]. This method
subsequently demonstrates its effectiveness in solving intricate equations involving frac-
tions and nonlinearity, leading to improved accuracy and reliability, as confirmed through
theoretical analysis and numerical experiments [26]. Furthermore, the integration of digital
twin technology into SPHM practices provides a significant boost [27–29]. This technology
creates virtual replicas of the aircraft systems, enabling real-time monitoring, performance
analysis, and condition-based maintenance.

A modern SPHM framework operates via a sequential process that includes technol-
ogy integration, data acquisition, preprocessing, fault diagnosis, and RUL prediction [30].
Figure 1 shows the SHPM process for aircraft structures. The process initiates with data
gathering, wherein high-performance sensors, including strain and corrosion sensors, are
employed on the aircraft’s critical structural components, such as the aircraft’s empennage,
wings, cockpit, and fuselage [31]. These sensors capture detailed, real-time data indicative
of the structural health of the aircraft. After data gathering, the acquired data undergoes
preprocessing, which involves steps such as formatting, normalization, and filtering. This
stage is pivotal, as it conditions the raw sensor data, transforming it into a structured
format that is suitable for further analysis. It helps in dealing with any discrepancies, noise,
or errors in the collected data, ensuring a clean and standardized dataset that is ready for
downstream applications [32,33]. The pre-processing step is generally integrated within
the feature extraction process, where the pre-processed data are used to extract sensitive
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features that are able to describe the system’s characteristics. The successful integration
of pre-processing and feature extraction ensures that the subsequent analysis is based on
high-quality and informative features, leading to more accurate and meaningful results.
Following feature extraction, the next stage is fault/damage diagnosis. At this stage, the
formatted data are subjected to in-depth analysis using advanced algorithms and data
analytics techniques. These algorithms sift through the data to identify anomalies, irregular
patterns, and potential issues that might be indicative of underlying structural faults. This
critical step in the process aids in the timely diagnosis of faults, facilitating prompt remedial
actions. The final stage of the SPHM process is the prediction of the RUL of the aircraft
components, which employs a combination of predictive models and machine learning
techniques [34]. Based on the current health status of the components, their operational
conditions, and a rich historical database, these techniques foresee the lifespan of various
components. This predictive insight provides invaluable foresight, enabling the formu-
lation of a maintenance plan well ahead of potential failures. By working systematically
through these stages, the modern SPHM framework encourages a shift from reactive to
proactive maintenance planning. It allows for optimized allocation of resources based on
accurate predictions, contributing to improved operational efficiency [35]. Furthermore, it
significantly enhances the overall safety of the aircraft by enabling the timely detection and
resolution of potential structural issues, thereby mitigating the risk of catastrophic failure.
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Figure 1. SPHM Framework: Sensor data collection from key aircraft components and its application
in fault diagnosis and RUL prediction.

This review paper offers a unique and comprehensive perspective on SPHM in aircraft
maintenance. It distinguishes itself by providing an in-depth comparative evaluation of
both traditional and contemporary SPHM techniques, shedding light on their individual
strengths and weaknesses. Particularly noteworthy is its emphasis on the transformative
potential of machine learning and deep learning algorithms, an aspect that has often been
overlooked in previous reviews. Moreover, the paper dives deeply into model-based
techniques, such as finite element analysis and damage mechanics, providing readers with
a fresh understanding of these methods and their implications for SPHM. The review
further sets itself apart by thoroughly exploring the role of digital twin technology in
SPHM, accompanied by real-world case studies that enhance its practical relevance. The
primary objective of this review paper is to enhance comprehension of the diverse SPHM
practices and contribute to the further progression of the aviation industry. By providing a
comprehensive analysis and comparison of different methodologies, the paper aims to fuel
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advancements in SPHM and support researchers, engineers, and practitioners in making
informed decisions for effective structural health management in the aviation sector.

The structure of this review paper follows a logical flow, beginning with an explo-
ration of traditional SPHM techniques. The limitations of these techniques are examined,
providing a foundation for introducing more modern methodologies. The subsequent
sections focus on modern approaches that include data-driven techniques, model-based
approaches, and hybrid approaches, and revolutionary digital twin technology. Each of
these approaches is outlined with a focus on their unique characteristics, implementation
strategies, practical applications, and associated advantages and drawbacks. Figure 2
represents the differences between traditional, model-based, hybrid, digital twin, and
data-driven approaches. It highlights that traditional, model-based, and hybrid approaches
often require significant domain knowledge, while digital twin and data-driven approaches
rely heavily on the availability and manipulation of large datasets.
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Figure 2. SPHM Approaches: Comparing the knowledge requirements and data dependencies of the
traditional, hybrid, data-driven, and digital twin methods.

2. Traditional Approaches to Aircraft SPHM

This comprehensive section thoroughly explores the realm of traditional SPHM ap-
proaches and offers an in-depth overview of their crucial role in aircraft health management.
Acknowledging their effectiveness, this section also critically examines the inherent limita-
tions and challenges posed by these traditional methodologies. Highlighting the dynamic
nature of the aviation industry, the discussion then delves into the significant shift from
these conventional tactics toward more sophisticated and predictive strategies. This trans-
formative journey outlines the evolution toward modern SPHM practices, painting a clear
and detailed picture of this pivotal transition within the industry.

2.1. Overview of Traditional SPHM Approaches

Aircraft SPHM is an integral aspect of aviation safety and performance. Traditional
methods, rooted in the early days of the aviation industry, have primarily revolved around
routine inspections, scheduled maintenance, and NDT techniques.

(1) Inspection and Maintenance Schedules: In these highly systematic and standard-
ized procedures, technicians conduct meticulous physical examinations of aircraft
structures at predetermined intervals [36,37]. The purpose of these checks is to identify
any observable signs of structural degradation, such as corrosion, distortion, cracks,
or even loose parts [38]. Given the fundamental nature of these inspections, they
constitute the primary line of defense against possible structural failure, ensuring the
aircraft’s physical condition is maintained at its optimal state.
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(2) Non-Destructive Testing (NDT): As the aviation industry evolved, the need for more
sophisticated methods to inspect structural components without causing damage
led to the widespread use of NDT techniques [39]. These encompass ultrasonic
testing [40], radiographic testing [41], eddy current testing [42], magnetic particle
inspection, and dye penetrant inspection. Through these methods, technicians can
detect, locate, and measure defects that may not be visible to the naked eye, enhancing
their ability to maintain structural integrity.

(3) Usage Monitoring Systems (UMS): Traditional SPHM also includes the utilization
of usage monitoring systems, which record various operational parameters such
as load factors, airspeed, and temperature. These parameters, which are critical to
understanding the performance and endurance of an aircraft’s structure, help in
evaluating the health of the aircraft and its components [43,44].

(4) Damage Assessment and Classification: Traditional SPHM methodologies involve
manual evaluation and classification to ascertain the severity and type of damage
or defects. Trained personnel visually inspect and categorize the damage according
to set criteria, thereby prioritizing repairs based on the criticality of the identified
issues [45–47].

(5) Structural Health Monitoring (SHM): SHM is a fundamental part of traditional
SPHM methodologies. Sensors placed at strategic locations monitor various parame-
ters to provide data on structural behavior, allowing operators to detect any deviations
from normal behavior, thereby ensuring continuous airworthiness [48–51].

(6) Experience-based Decision making: Traditional SPHM methodologies often rely on
the expertise of maintenance personnel to make informed decisions about inspections,
repairs, or component replacements. Years of operational and maintenance expe-
rience underpin the assessment of aircraft structures and appropriate maintenance
action [52–54].

2.2. Challenges and Limitations of Traditional SPHM Approaches

While traditional SPHM methodologies are invaluable, they are not devoid of chal-
lenges and limitations that can affect their effectiveness and accuracy. Acknowledging and
addressing these limitations can improve SPHM implementation overall. Key challenges
and limitations include:

� Reactive Maintenance Strategies and Scheduled Inspections: Traditional SPHM
methodologies often hinge on reactive maintenance, with maintenance actions trig-
gered by scheduled intervals or visible damage detection. This approach can lead to
unforeseen failure and the potential for undetected early-stage damage, resulting in
heightened costs and safety risks [55,56].

� Limited Predictive Capabilities: Traditional methodologies may not accurately
project the RUL of components or future degradation. Relying on historical data
and scheduled maintenance may lack the necessary insights to optimize maintenance
planning or identify critical structural issues [57].

� Reliance on Human Judgment: Traditional SPHM methodologies heavily depend
on maintenance personnel’s expertise and judgment. This dependence introduces
variability and subjectivity in the decision-making process, which can affect the
consistency and effectiveness of maintenance actions [58].

� Concealed or Subsurface Damage: Traditional inspection methods may have diffi-
culty detecting concealed or subsurface damage that is not apparent during routine
inspections. Undetected defects beneath coatings or within complex structures could
compromise the aircraft’s structural integrity [59].

� Incomplete Exploitation of Advanced Data Analysis Approaches: Traditional
SPHM methodologies may not fully harness the potential of state-of-the-art tech-
niques for data analysis. The analysis of collected data might be restricted to basic
trend analysis or manual assessment methods, which can impede the identification of
subtle degradation patterns or anomalies [60].
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2.3. Evolution from Traditional Methods to Modern Techniques

The inherent limitations of traditional SPHM approaches have sparked a drive toward
more advanced methods. With the development of the digital revolution, the aviation sector
has seen a paradigm shift in SPHM. Data-driven techniques, propelled by innovations in
artificial intelligence (AI), specifically machine learning and deep learning, have ushered in
a new era of SPHM. These modern methods provide comprehensive, real-time analysis of
aircraft structural health data, enabling the early detection and prediction of potential issues
before they turn into significant problems. Consequently, these techniques can drastically
reduce unscheduled maintenance and improve aircraft availability. Furthermore, the
application of model-based and hybrid methods has added another layer of sophistication
to modern SPHM. Model-based methods offer valuable insights into the underlying physics
of aircraft structures, while hybrid methods leverage the strengths of both data-driven
and model-based approaches to offer further robust predictions and diagnostics. Modern
SPHM approaches present a significant leap forward from traditional methods. Figure 3
distinguishes the vital capabilities of modern SPHM approaches, which the following
discussion elaborates upon:

� Use of Digital Twins: Digital twin technology enables the creation of a virtual replica
of an aircraft’s structural components. This allows for accurate simulations of various
operational scenarios and a better understanding of potential structural issues [61,62].

� Advanced Diagnostics and Prognostics: Modern SPHM systems leverage advanced
AI algorithms for the real-time analysis of sensor data. These tools provide superior
capabilities for predicting and diagnosing potential structural issues well in advance,
allowing for more timely maintenance and avoiding unexpected downtime [63].

� Reduced Costs: By identifying potential problems early, allowing for predictive
maintenance, and minimizing unplanned downtime, modern SPHM methods can
lead to significant cost savings in aircraft operations and maintenance [64].

� Real-time Insight: Modern SPHM techniques can handle and process large volumes
of data from diverse sources and formats, generating comprehensive real-time insights
into aircraft structural health [65].

� Automation: Modern SPHM approaches offer a high degree of automation. Routine
analysis, prognostics, and health reporting can be automated, reducing the possibility
of human error and enhancing overall efficiency [66].

� Adaptability: As opposed to traditional approaches, modern SPHM systems are
adaptable to changing operational conditions and can learn from new data, continu-
ously improving their predictive accuracy [67].

� Enhanced Safety: By providing a more accurate understanding of the structural
health of an aircraft, modern SPHM methods can significantly improve the safety of
aircraft operations [68].

Overall, the evolution from traditional to modern techniques in SPHM represents
a significant step towards more proactive and efficient aircraft health management. It
demonstrates the potential of emerging technologies and methodologies to enhance the
safety and performance of aircraft while minimizing maintenance costs and downtime.
This exciting progression sets the stage for future advancements in the field of SPHM,
promising a new era in aviation safety and reliability.
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3. Modern SPHM Approaches to Aircraft SPHM

The advent of sophisticated computational capabilities and the surge in data collection
technologies have paved the way for the emergence of modern SPHM approaches. These
revolutionary methodologies, characterized by their data-intensive, predictive, and adap-
tive nature, offer a robust response to the limitations inherent in traditional SPHM practices.
With a focus on data-driven techniques, model-based strategies, hybrid methodologies,
and remarkable digital twin technology, modern SPHM approaches have initiated a new
era in aircraft maintenance and management. This section delves into the essence of these
contemporary methodologies, elaborating on their principles, implementation strategies,
and practical applications, as well as their associated advantages and limitations. The
discussion will illustrate how these advanced techniques have enhanced the capabilities of
SPHM, promising safer, more cost-effective, and more efficient aviation operations.

3.1. Data-Driven Approaches in SPHM

This section provides an extensive exploration of data-driven approaches in SPHM.
By thoroughly examining the fundamental principles that form the basis of these methods,
the section underscores their reliance on machine learning and deep learning techniques.
Through a comprehensive understanding of data-driven approaches, novel prospects
emerge for proactive maintenance, knowledgeable decision making, and sophisticated
structural health management in the aviation industry.

3.1.1. Introduction to Data-Driven Approaches

Data-driven SPHM for aerospace structures involves collecting and analyzing data
from different sensing systems to assess structural health. It offers early fault detection
that improves safety and reduces costs by enabling proactive maintenance actions. By
continuously monitoring structural health, SPHM enhances operational efficiency, opti-
mizes maintenance schedules, and extends the operational life of the aircraft. Data-driven
approaches can be utilized in (a) feature engineering to extract, transform, and filter features
for better system representation; (b) decision making, which utilizes AI techniques to decide
on the health state of the system; and (c) post-processing to explain the decision-making
process [69].
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In the realm of data-driven machine learning-based fault diagnosis, the process of
feature extraction holds significant importance. This procedure involves capturing specific
attributes related to faults from the collected sensor data. Commonly used features span
various domains, including time, frequency, and time–frequency. Specifically, in the time
domain, pivotal statistical features take center stage, encompassing mean, standard devia-
tion, root amplitude, root mean square, peak value, and other relevant attributes. Similarly,
frequency-domain features are acquired by analyzing frequency spectra, incorporating
attributes like mean frequency, frequency center, root mean square frequency, and standard
deviation frequency. In the time–frequency domain, features such as energy entropy are
often derived through techniques like wavelet transform, wavelet package transform, or
empirical mode decomposition applied to sensor data [70].

Data-driven techniques rely on massive amounts of data and concentrate on ana-
lyzing output signals from the system. These techniques can manage high-dimensional
data, making them appropriate for large and complex systems as they do not require
physics-based knowledge of the system [71,72]. Even though data-driven techniques are
less complex than physics-based approaches, they require a pre-processing phase to extract
usable information from data at a significant computing cost [73]. Hence, the performance
of the system relies on the training data and may deteriorate when the system encounters
uncertainty (beyond the scope of the training data) or is influenced by unidentified flaws.
Advancements in AI have boosted data-driven techniques, which are thus being continu-
ously adopted in aircraft SPHM. For intelligent SPHM, both machine learning (ML) and
deep learning (DL) approaches have gained popularity [74]; therefore, this section focuses
on the latest data-driven technologies adopted for the SPHM of aircraft structures. In the
context of SPHM, a significant trend emerges—the abundance of healthy data compared to
damaged data. This surplus data arises from the aircraft’s robust design and operational
conditions, which generate extensive records of healthy flight data. In contrast, obtaining
data from actual instances of damage is rare due to stringent safety measures. This is where
transfer learning assumes particular relevance. It harnesses the array of healthy data to
enhance diagnostic accuracy for rare damage scenarios. This adaptation process utilizes
pretrained models, strengthening diagnostic capabilities despite the limited availability of
damaged data. In this unique context, the pivotal role of transfer learning in advancing
aircraft SPHM becomes evident.

The goal of data-driven techniques is to model relationships between inputs and out-
puts under specific operational conditions. The model that was developed is subsequently
utilized to make predictions and evaluate the health state of the aircraft structures. The
model outputs are generally known, as they are acquired from the sensing system, and any
deviation of the obtained signal from the normal state demonstrates the presence of a defect.
Therefore, numerous techniques exist to analyze the obtained signal and extract features
to train the data-driven model to generate a model that is capable of performing better
in unseen environments. There are two main types of data-driven techniques utilized for
this purpose: supervised learning and unsupervised learning techniques. The supervised
learning techniques employ labeled input data, indicating that before the model training,
the flaws or defects had been identified and distinguished under different labels. In aircraft
structures, physical damage, such as dents, lightning strikes, damaged paint, missing
markings, cracks, and holes, can be obtained from visual inspection and labeled according
to their respective classes before being used to train a data-driven model [75]. In contrast,
unsupervised learning techniques are not trained on labeled datasets; thus, they discover
the relevant features in the dataset using unlabeled data. Therefore, predefined defect types
that could influence the training process are not employed. More specifically, the extraction
of characteristics from input data are independent of the data’s physical significance. Both
ML and DL have respective models to handle supervised or unsupervised learning tasks.
The next sections focus on various ML and DL-based data-driven methods for the SPHM
of aircraft structures.
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3.1.2. Machine Learning Approaches in SPHM

Machine learning includes data-driven models that allow computers to learn and
predict without being explicitly programmed [76]. It entails training a model to recognize
patterns and correlations in massive datasets and then applying that knowledge to generate
predictions. The SVM, decision trees (DTs), random forest (RF), K-nearest neighbor (KNN),
and Naïve Bayes (NB) algorithms are some of the most extensively used ML approaches
for SPHM of aircraft structures. The brief description of these ML models is as follows:

SVMs are often used for classification and regression. In SVM classification, a decision
boundary known as a hyperplane is obtained by training the dataset. This hyperplane is
defined by Equation (1) [77]:

wTxi + b = 0 (1)

where xi represents the data points of the training dataset (wT ∈ Rd, d is some dimension),
and b is a real number. The generalization of the SVM model is determined by the hyper-
plane, and an optimal hyperplane can be obtained by selecting a suitable kernel function
such as linear, polynomial, or radial bases, etc. [77].

The DT models use a non-parametric supervised learning approach to perform classifi-
cation or regression tasks. The DT classifier develops a model that predicts a target variable
using basic data-inferred decision rules. It has an upside-down tree-like structure with the
roots at the top. The DT splits into branches based on the condition at each node, and a
decision is made at the end of the branch with no further splits [78]. The DT algorithm iden-
tifies the most valuable feature for classification through the use of appropriate evaluation
criteria. The criterion employed to establish the optimal feature encompasses principles
such as entropy reduction and maximizing information gain. Information gain (IG) for a
feature A with respect to a dataset D is calculated by the following Equation (2) [79].

IG(D, A) = H(D)− H((D|A)) (2)

where H(D) is the entropy of the original dataset D. It measures the impurity or random-
ness in the class distribution of the dataset before any split. H(D | A) is the conditional
entropy of the dataset D given the feature A. It represents the expected entropy of the
dataset D after splitting it based on feature A. The higher the value of IG(D, A), the more
information the feature A provides in reducing the uncertainty in class predictions after the
split. In other words, it quantifies the gain in predictive power achieved by using feature A
to split the data.

The RF algorithm, introduced by Breiman [80], is an ensemble learning technique
utilized to address classification and regression tasks. The RF classifier combines multiple
decision trees to improve the accuracy and stability of predictions. The mathematical
representation of an RF classifier includes the consolidation of predictions derived from
individual DTs. The final estimate of the RF classifier H(x) is obtained by averaging the
predictions of all the DTs, as shown in Equation (3) [81].

H(x) =
1
T ∑T

t=1 ht(x) (3)

where H(x) signifies the final prediction made by the RF for input data x. ht(x) stands
for the prediction of the t-th decision tree for input data x. T represents the total count of
decision trees within the random forest.

The KNN is a non-parametric-based ML classification and regression model. The input
to the KNN classifier is the k-closest data from the training population, which measures
the target’s distance from the closest feature space. This distance between the two points is
termed the Euclidean distance (dE), which is an important parameter for the KNN model
and can be defined as Equation (4) [82]:

dE =
√

∑n
i=1(xi − yi)

2 (4)
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where xi is a new point from the training data and yi is the nearest existing point in the
feature space.

The NB classifier is an ML classifier that operates on probabilistic principles, utilizing
Bayes’ theorem. The NB classifier is frequently employed in scenarios with extensive
datasets, where the likelihood of a particular feature (yh) belonging to a specific class (Li)
may be mathematically represented using the Bayes theorem as shown in Equation (5) [83]:

P
(

Li
yh

)
=

P
(

yh
/
Li

)
P(Li)

P(yh)

 (5)

where the probability of each class is represented by P(Li) and the probability or predictor
is represented as P(yh). The NB algorithm employs maximum likelihood estimation (MLE)
and Bayesian probability without the need for training or Bayesian methods. It is often
regarded as efficient in terms of storage space and learning time.

Table 1 summarizes case studies that demonstrate the application of machine learning-
centric data-driven techniques in the SPHM of aircraft structures. Cortes and Vapnik [84]
presented SVMs as a supervised, non-probabilistic binary ML approach for classification
and regression tasks. When compared to other ML techniques, SVM performs well with
limited data, is resilient to model mistakes, and requires limited computational resources.
The SVM method makes use of training data to locate the optimal decision boundary,
sometimes referred to as a hyperplane, which separates an n-dimensional space into classes.
Escobar et al. examined how to identify matrix cracking and delamination in carbon fiber
reinforced polymer (CFRP) composites for aircraft structures using electrical resistance
tomography (ERT), incorporating several data-driven models [85]. The results showed that
the proposed classification methods, when combined with SVM, can properly assess the
degree of delamination and characterize these distinct damage patterns with 94% accu-
racy. For applications with intrinsic noise in the ERT data, the SVM model outperformed
alternative ML methods like KNN and RF. They also determined that combining ERT
with ML can result in considerable cost savings in aircraft component inspections and
maintenance. The SVM model was also used by Il and Liu to forecast the extent of aircraft
damage and personal harm sustained during approach and landing accidents, with a focus
on 14 accident characteristics [86]. The SVM models utilizing the radial basis function
(RBF) kernel achieved 96% accuracy for aircraft damage prediction and 98% accuracy for
personal injury prediction. The research highlighted the effectiveness of the SVM model
using the RBF kernel for accident prediction using categorical datasets. The aircraft skin
damage recognition method utilizing an image-based method was proposed by Du and
Cao to simplify the traditional detection process using a data-driven approach [87]. The
wavelet packet decomposition and a gray-level co-occurrence matrix were utilized to as-
certain the eigenvalues of the data. Even with a small sample size, the developed SVM
training model with optimized RBF kernel function settings displayed good accuracy in
recognizing normal skins and unintentional hits, attaining an overall identification rate
of 81.5%. Alhammad et al. proposed pulsed thermography (PT) technology to diagnose
structural damage in aircraft fuselage CFRP composite structures [88]. Statistical analysis
was employed to detect damaged areas, while ML, specifically the SVM algorithm, was
used for more accurate detection. The classification models achieved prediction accuracies
ranging from 78.7% to 93.5%, demonstrating the potential for developing an automated
model for efficient damage evaluation in composite laminates based on NDT techniques.

Decision trees (DTs) are another data-driven method that is commonly employed for
the SPHM of aircraft structures. This is a supervised learning model based on a tree-like
structure, where a large dataset is decomposed into smaller subsets to develop a root node,
named a decision node, and each branch that emerges from the node indicates a deci-
sion [78]. For complicated data-driven challenges, DTs calculate the statistical likelihood of
a course of action and provide a visual depiction of the chosen decision-making process.
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However, with unbalanced or biased data, as is the case of aircraft SPHM, the model may
be susceptible to overfitting, making it unreliable on unseen data. Gerdes et al. explored
DT based data-driven condition monitoring and prognosis for reducing the unscheduled
maintenance of A320 aircraft from Etihad Airways [89]. A DT model was developed to
classify system characteristics based on sensor inputs, leading to accurate classification
and RUL prediction. The DT model was optimized using a genetic algorithm (GA), and
validation was performed on A320 aircraft data. The total useful life (TUL) data were
decomposed into 10% groups to obtain 10 class-labeled data points, thus developing a
wide range of categories for the supervised learning problem. The proposed method was
verified through successful classification of the 10 classes with noise reduction, enhance-
ment of accuracy, and enabling maintenance action detection. Bull et al. used bagged DTs
to illustrate the implications of cluster-adaptive active learning for SHM using the Gnat
aircraft wing dataset [90]. The results successfully illustrated the benefits of utilizing active
learning tools in SHM, highlighting the first use and implementation of active learning
methodologies in aircraft structure SPHM.

Random forest is another supervised data-driven model that is often used for the
SPHM of aircraft structures. The RF model is composed of multiple DTs, allowing it to make
better predictions as it develops correlated forests of the individual DTs and incorporates
randomness and ensemble learning to improve performance compared to the DTs [91].
The factors accompanying the aircraft damage probability in bird strike incidents were
identified by Misra et al., and classification models were developed to predict aircraft
damage [92]. The RF, logistic regression (LR), and XG-Boost classifiers exhibited the best
prediction abilities when using the FFA’s National Wildlife Strike Database, with accuracy
rates of (78.81, 78.51, and 78.35)%, respectively. The RF classifier identified the bird’s
size, the height of impact, the aircraft’s speed, and the aircraft’s mass as key factors in
predicting aircraft damage. Ai et al. introduced an innovative SHM solution that utilized
acoustic emission (AE) monitoring to autonomously detect and localize impacts on aircraft
elevators [93]. The aircraft elevator impact data were experimentally obtained using the
setup shown in Figure 4. Based on AE signals, regression methods, such as LR and RF,
were used to determine impact locations. The RF model outperformed the LR model in
predicting impact location with an RMSE of 0.6778, demonstrating its ability to localize
impacts on thermoplastic composite aircraft lifts.
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Figure 4. The experimental setup for impact damage characterization of aircraft elevator compo-
nent [93].

The KNN algorithm is an unsupervised, data-driven model that is commonly used
for classification tasks. The model estimates the probability of a new data point and
determines the particular group it belongs to, considering the other data points in close
proximity [94,95]. As a result, the new data point is assigned a label or group that is highly
similar to the given data point. Swischuk and Allaire presented a data-driven strategy
for sensor failure detection and the prediction of rectified sensor data in both the online
and offline paradigms using ML approaches [34]. Autocorrelation was identified as a
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global feature that was capable of accurately classifying sensor states and detecting failures.
By combining feature selection and KNN regression, the methodology enabled rapid
prediction of corrected sensor data during system operation. The method was successfully
tested using flight data from a commercial airplane, finding and fixing problems in the
pitot static system that resulted in erroneous air-speed estimations.

NB is another supervised data-driven model that is based on counting and conditional
probability and is commonly used for classification tasks. The model considers that the
characteristics of all data points in the dataset are independent of each other and uses
Bayes’ theorem to classify the data [94,95]. Dİkbayir and Bülbül used various ML models,
such as DT, SVM, and NB, to detect structural damage in aircraft due to bird strikes [96].
They revealed that the NB model with a Gaussian kernel shows superior performance on
the versatile dataset obtained from various aircraft structures. Le et al. exploited various
ML-based data-driven techniques that included NB, SVM, LR, RF, and KNN, integrating an
electromagnetic testing system to effectively characterize hidden corrosion in the riveted
joints of aircraft structures [97]. The model is validated on the experimental setup shown in
Figure 5. All models showed an accuracy of over 80% for detecting corrosion of numerous
sizes and locations, while also exploring training strategies for small datasets.
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Figure 5. Electromagnetic testing arrangement on a bi-layer aluminum sheet: (a) a sensor probe
coupled to an XY-stage scanner that contained signal processing circuits; (b) the sensor probe placed
on the specimen; and (c) the sensor probe containing a Hall sensor [97].

Table 1. Machine learning-based data-driven case studies and their key features.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 1
Damage detection in
CFRP-based aircraft

composites using ERT

Aircraft
composites

SVM, RF, KNN,
and NN

Pros: Multiple damage types
Cons: Did not perform
full-scale validation

[85]

Case 2

Aircraft damage and
personal injury assessment

during approach
and landing

Entire aircraft
structure SVM

Pros: Aircraft and passenger
health injury assessment
Cons: Categorical factors
introduce complexity

[86]

Case 3
Aircraft skin damage
identification using

limited data

Entire aircraft
structure SVM

Pros: Efficient for limited data
Cons: Tedious pre-processing
and feature extraction

[87]
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Table 1. Cont.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 4

Automated Impact Damage
Detection Technique using

Thermographic Image
Processing

Aircraft fuselage SVM Pros: Autonomous approach
Cons: Low accuracy [88]

Case 5
A decision tree-based

condition monitoring and
prognosis for civil aircraft

A320 aircraft DT

Pros: Includes both condition
monitoring and prognosis
Cons: Computational
complexities

[89]

Case 6
A semi-supervised active

learning approach for SHM
in aircraft

Gnat aircraft wing
dataset Bagged DT

Pros: Did not consider
supervised learning
Cons: Model performance
is low

[14]

Case 7

Aircraft structural damage
due to bird strikes and

evaluation of factors with
highest contributions
towards predicting

aircraft damage

Aircraft structural
damage using FAA
National Wildlife
Strike Database

RF, LR, and
XGBoost

Pros: Evaluating factors that
contribute to aircraft
impact damage
Cons: Model performance
is low

[92]

Case 8

Acoustic emission-based
impact damage detection of
a thermoplastic composite

aircraft elevator

Aircraft elevator
component RF

Pros: Use of thermoplastic resin
Cons: Validation required on
full-scale aircraft

[93]

Case 9

A proposed ML technique
to identify aircraft sensor

error and flight data
rectification that reliably
determines what, if any,
problems are happening

inside the pitot-static system

Flight data
rectification and
identification of
aircraft sensor

errors

KNN regression

Pros: Enhances aircraft system
reliability and performance
Cons: Feature selection process
introduces complexity and high
computational resources

[34]

Case 10 Damage detection of aircraft
structures due to bird strikes

Aircraft structure
extensive set of
real bird strike

data

NB, SVM, and DTs

Pros: An auto-pilot system for
improved safety and
decision making
Cons: Very low model
performance

[96]

Case 11
Aircraft corrosion detection

using electromagnetic
testing system

Corrosion at
riveted joints in

aircraft structures

NB, SVM, linear
regression, RF,

KNN

Pros: Considered corrosion
at joints
Cons: Requires validation on
the actual aircraft
joints corrosion

[97]

3.1.3. Deep Learning Approaches in SPHM

Deep learning, a subset of ML inspired by the design and operation of the human
brain, entails the construction and training of neural networks with numerous layers
of linked artificial neurons to extract complex representations and characteristics from
data [98]. These data-driven networks have demonstrated extraordinary effectiveness in
multiple domains, including audio and vision recognition, natural language processing
(NLP), and autonomous driving. The DL models are continuously replacing conventional
ML models for better performance as their deep architecture allows for autonomous feature
extraction, which eliminates the need for tedious manual feature extraction. The following
section focuses on an overview of the DL-based data-driven models used in the SPHM of
aircraft structures.

The artificial neural network (ANN) is the foundational model for deep learning; it
consists of artificial neurons, also known as units, which are organized into three distinct
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layers [99]. The first layer, known as the “input layer”, obtains data before forwarding it to
the second layer, known as the “hidden layer”, which performs mathematical computations.
The last layer, the output layer, outputs data. Activation functions serve as fundamental
components of neural networks, introducing the crucial non-linearity required to under-
stand complex data patterns. Among these functions, rectified linear activation (ReLU)
stands out due to its simplicity. It allows positive inputs to pass through unchanged while
converting negatives to zeros, thereby enhancing learning and feature extraction capabil-
ities. In contrast, the Sigmoid function compresses inputs into a range of 0 to 1, making
it well-suited for probability-based tasks despite certain gradient limitations. To address
these limitations, the hyperbolic tangent (Tanh) function maps inputs from −1 to 1, ac-
commodating a wide range of network architectures. These activation functions empower
neural networks to capture intricate patterns, enabling them to excel in various tasks.

Deep neural networks (DNNs) are neural networks with numerous hidden layers.
The ANN model follows a forward structure and is taught using the backpropagation
technique, which operates in a manner analogous to the human brain or nervous system,
characterized by the presence of neural connections that possess many interconnections
facilitated by other axons. The formation of each layer of ANN is facilitated by neurons
that function as non-linear processing units. However, it is important to note that each
neuron inside a given layer is intricately linked to every other neuron in the neighboring
layers, establishing complex networks. Furthermore, the interconnection between neurons
in consecutive layers is assigned certain weights based on the pattern of the input data. The
phenomenon of transmitting information from one neuron to another or from one layer
to another is referred to as a forward connection. The process of autonomous learning is
achieved by dynamically adjusting the interconnections between neurons within a network.
The back-propagation technique is widely used for training ANN and involves minimizing
the cost function, which is defined as shown in Equation (6) [99]:

m =
1
2∑n

i=1(ai − bi)
2 (6)

where n denotes the number of classes, ai represents the expected output, and bi represents
the output of the ANN model, namely from the ith neuron out of a total of n neurons in the
output layer.

CNN and CAE are commonly employed convolution-based models for aircraft SPHM.
These models share a comparable architecture and perform operations across various layers.
The essential elements of convolution-based models encompass the convolutional layer,
pooling layer, activation layer, batch normalization layer, dropout layer, and global pooling
layer [74,100].

The convolutional layer (CL) generates a feature map by convolving filters or kernels
of varying sizes with specific segments of the input data. This process involves calculating
the dot product between a designated portion of the input data and a matrix of adjustable
parameters, namely weights and biases, referred to as a filter or kernel. Typically, filters
have smaller dimensions than the input data and are repeatedly applied across the input to
capture localized details. The activation of a single filter is commonly used to characterize
the output, and multiple filters exhibit activations for various aspects of the input data. The
activations of each filter are pooled and organized into a three-dimensional array along the
depth dimension. The mathematical representation of the convolution process is depicted
in Equation (7).

Fi
k = Wi

k * Li(j) + bi
k (7)

where F represents the feature map generated by the kth filter in the i-th layer, W repre-
sents the weights, L denotes the j-th local region of the input data in the ith layer, and b
corresponds to the bias of the kth filter in the i-th layer. The terms k and i, respectively,
denote the kth filter in the i-th layer.

A pooling layer (PL) is incorporated to reduce the variability of the feature space and
network parameters by decreasing the dimensions of its input. The two common pooling
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functions are maximum pooling and average pooling. Maximum pooling reduces spatial
dimensions by selecting the highest value from a set of neighboring pixels or activations,
while average pooling achieves this by calculating the mean value of the neighboring pixels
or activations.

Activation layers (ALs) introduce non-linearity to input data, enhancing the network’s
capacity for representation. The ReLU activation function, commonly employed in neural
networks, facilitates faster network convergence. Mathematically, the ReLU activation
function is expressed as shown in Equation (8):

Ni = f (yi) = max(0, yi) (8)

where, Ni is the i-th activation of the input yi. It is noted that the ReLU function allows
positive values to pass through unchanged while setting negative values to zero.

The batch normalization layer (BNL) is utilized to address the challenge of internal
covariance shift through input normalization. This normalization process speeds up the
training procedure and enhances training accuracy. The BNL operates in two distinct stages.
In the initial stage, the incoming input is normalized, as depicted in Equation (9):

yi(norm) =
yi − µ

σ + ε
(9)

where yi and yi(norm) represent the input from the previous layer, respectively. The symbols
µ and σ are used to represent the mean and standard deviation of the input values, while
ε is a smoothing factor that ensures numerical stability and avoids division by zero. In
the subsequent stage, the normalized values undergo rescaling and offsetting using the
rescaling parameter γ and the offsetting parameter β, as shown below in Equation (10):

y′i = γyi(norm) + β (10)

The parameters γ and β are subject to learning, and their optimal values are found
during the training process.

The dropout layer (DL) is integrated into neural networks to combat overfitting.
It achieves this by randomly deactivating selected neurons with a dropout probability
between 0 and 1 [101]. Adding a DL to the neural network architecture helps mitigate the
reliance between neurons during training.

The global pooling layer (GPL) is responsible for feature space pooling, reducing
parameters for the fully connected layer. The SoftMax function introduces a probabilistic
link between the feature space and classification categories [102,103]. The class output for a
specific input is determined by choosing the category with the highest likelihood score in
the feature map.

Other commonly employed DL-based data-driven techniques for SPHM of aircraft
structures include recurrent neural networks (RNNs) and long short-term memory (LSTM).
RNNs are a type of artificial neural network that shares weights across multiple time
steps. They are well-suited for processing sequential input data like time-series data due to
their incorporation of feedback by feeding the current value back into the network. This
feedback mechanism enables RNNs to retain and update information in their memory,
leading to cumulative outputs [104]. For a given input sequence x = (x1, x2, . . . , xT), the
hidden state h = (h1, h2, . . . , hT) of an RNN is updated at each time step as represented in
Equation (11) [105]:

ht = H(Wxhxt + Whhht−1 + bh) (11)

where ht represents the hidden state or hidden vector at time step “t”, Wxh is the weight
matrix that connects the input vector “xt” to the hidden state “ht”, Whh is the weight matrix
that connects the previous hidden state ht−1” to the current hidden state “ht”, xt is the input
vector at time step “t” and bh is the bias term added to the weighted sum before applying
the activation function. H represents the hidden state or hidden vector at time step “t”
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and ht−1 represents the hidden state or internal memory of a recurrent neural network at
the previous time step “t − 1” in a sequence. The output vector y = (y1, y2, . . . , yT), is then
obtained by iterating the above equation from time t = 1 to T and is given by Equation (12):

yt = Whyht + by (12)

where yt represents the output vector at time step “t”, and Why is the weight matrix that
connects the hidden state “ht” to the output “yt”, by is the bias term added to the weighted
sum before obtaining the output “yt”.

The LSTM model stands as a unique iteration of the traditional RNN design, special-
ized for handling temporal sequences and capturing extended correlations [98]. Employing
memory blocks as an alternative to basic RNN units, the LSTM architecture is composed
of these blocks, each containing one or more memory cells along with a pair of adaptive
multiplicative gates functioning as input and output mechanisms. Within a computational
system, the memory block undertakes the task of storing and altering information over
varying time intervals, making use of input and output gates. These gates govern the
inflow and outflow of data to a memory cell.

Escalonilla et al. conducted tests on ANN to accurately predict strains from flight
parameters as part of developing the SPHM method for the A330 Multirole Tanker Transport
aircraft [31]. Real flight data from the A310 Boom Demonstrator, equipped with a prototype
SPHM system, was utilized for the tests. The results demonstrate the successful application
of ANNs in predicting strains for various structural components of the aircraft, including
the fuselage, wings, and tailplanes, and also discuss the technologies, strategies, and
solutions employed for building and training the ANNs. Lima et al. performed aircraft
damage detection using ARTMAP-Fuzzy-Wavelet ANN to assist the inspection process
for aircraft structures [106]. For damage assessment, the suggested technique integrates
signal modeling and simulation using a numerical model. In the aeronautical structure
analysis, the ARTMAP-Fuzzy-Wavelet ANN was proven to be trustworthy and efficient.
To classify SPHM data from guided wave sensor networks, Dworakowski et al. proposed
ANN-based ensemble models [107]. The method is validated through practical experiments
on a full-scale aircraft test, showcasing increased reliability in fatigue crack detection for the
load-carrying components of the aircraft structure. The ensemble approach compensates
for result variability and provides superior reliability compared to individual classifiers,
particularly in challenging monitoring cases; it showed an accuracy of over 95%. While
further improvements and ensemble extension were possible, limitations in training data
availability and computation time prevented additional experiments.

Long-short-term memory (LSTM), recurrent neural networks (RNNs), deep belief
networks (DBNs), and probabilistic neural networks (PNNs) are some of the other NN-
based models that have been employed for the SPHM of aircraft structures. Shen et al.
focused on the implementation of SPHM systems for aircraft wing structures [108]. They
built an FE model of an aircraft wing structure, using natural frequency variations as the
features for damage detection. The feature parameters were input into a PNN, which is
trained and validated with training and validation datasets of the damaged samples. The
results show that the PNN can detect deterioration in the top and lower skins of the wing
structure. Tamilselvan et al. suggested a DBN-based multi-sensor health detection approach
for quick inference and the capacity to encode higher-order structures [109]. Defining
health states, preparing sensory data, constructing DBN-based classification models, and
verifying them using testing datasets were all part of the suggested technique. The DBN’s
performance in health diagnosis is proven by utilizing aircraft wing and engine health
diagnostics, demonstrating its efficacy when compared to established ML approaches
such as SVM. Hu et al. proposed an NDE approach based on infrared thermography
and a LSTM-RNN model for autonomously diagnosing frequently occurring flaws in
honeycomb-structured composite materials used in airplanes [110]. The suggested LSTM-
RNN algorithm has a sensitivity of more than 90% in diagnosing external flaws and more
than 70% in classifying internal flaws, as shown in Figure 6. The technique addresses the
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need for accurate defect classification in honeycomb materials, providing valuable insights
for aircraft maintenance and safety.
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CNN is a powerful tool that is used for vision-based detection tasks by analyzing
patterns. It consists of multiple layers that extract and examine features from the data.
These layers encompass the convolutional layer, pooling layer, activation functions like
ReLU or LeakyReLU, and the fully connected network (FCN). The convolutional layer
employs filters to perform convolutional operations, while the pooling layer down-samples
the feature map to reduce its size. The resulting two-dimensional array from the pooled
feature map is then flattened into a linear vector. The FCN layer takes this flattened matrix
as input, categorizing and identifying images [111,112]. Cui et al. [113] showcased a data-
driven deep learning solution utilizing CNNs to detect and locate structural defects in
an aircraft’s stiffened composite panel [94]. Their CNN algorithm accurately recognizes
defects in critical areas of the aircraft panel, such as the skin, flange, and cap. Moreover, the
algorithm demonstrates the ability to generalize and detect damage in scenarios that differ
from the training data. It also performs reasonably well in probing hard-to-reach regions,
such as the stringer region. However, the choice of signal excitation affects the performance
of damage imaging, and additional research is necessary to account for environmental
factors and incorporate pulse-echo signals to improve the results. In another study by Lin
et al., a CNN model was developed for the SPHM of a composite wing using aerodynamic
load and strain data [114]. The CNN model was trained using strain data obtained from a
digital twin finite element (FE) model (Figure 7) representing a full-scale composite wing
with both healthy and damaged elements. The results exhibited strong damage detection
with 99% accuracy in noise-free conditions, 97% accuracy in the presence of 2% Gaussian
noise, and an overall accuracy of 83% in damage localization using a threshold value of
1.5. The proposed framework showcases the efficiency, accuracy, and robustness of the
suggested CNN-based SPHM method.
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Autoencoders are a specific type of unsupervised neural network utilized for learning
a compressed representation of input data, enabling the discovery of underlying patterns
and structures within the dataset [115]. During the training process, the autoencoder
acquires knowledge on how to effectively compress data by capturing its intrinsic character-
istics. Essentially, an autoencoder consists of an encoder, decoder, and intermediate feature
space. The encoder compresses the input data, while the decoder attempts to reconstruct
the original input from the encoded representation. Ai et al. focused on the detection and
localization of impact damage in aircraft structures through AE monitoring [116]. Random
forest and stacked autoencoder (SAE) models were developed using AE datasets obtained
from impact testing on a thermoplastic aircraft elevator. The findings indicated that both
the RF and SAE models outperformed a traditional ANN model in terms of impact source
localization. The RF model provided insights into feature importance, facilitated feature re-
duction, and enhanced computational efficiency while maintaining satisfactory localization
performance. Conversely, the SAE model achieved slightly superior performance without
requiring manual feature extraction. Sarkar et al. proposed a technique for characteriz-
ing crack damage in aircraft composite structures [117]. The DAE model demonstrated
remarkable accuracy and robustness in characterizing crack damage, even when subjected
to varying load conditions. This approach, based on unsupervised learning, was validated
using real image data. The results showcased precise damage characterization, even with a
limited number of labeled training images, highlighting the potential of deep learning in
enabling the autonomous SPHM of aircraft structures.

Transfer learning is another advanced data-driven technique that leverages the advan-
tage of transferring the knowledge gained from one system to another [100]. This enables
the challenges associated with the limited available data for training to be overcome. The
data-driven techniques are data thirsty, demanding a large amount of data for training. But
in practical systems, the availability of data are limited, especially in damaged states, as
running the system in a faulty condition may lead to severe consequences. Therefore, in
such applications, the transfer learning model is found beneficial. The transfer learning
model is trained on large publicly available datasets, and the model weights are then
optimized for a given problem by retraining on limited available data. This improves the
model’s generalization too, and the pre-trained model overcomes the tedious process of
developing a model from scratch. In the SPHM of aircraft, in general, healthy data are
available in excess; however, damaged data from different types of damage is limited.
Therefore, researchers in this domain have explored various transfer learning techniques.

To achieve multi-level damage classification in plate-type structures, Weihan et al.
introduced a deep transfer learning network based on Lamb waves. Their approach yielded
exceptional accuracy, surpassing 99% [118]. The proposed approach analyzes complicated
Lamb wave signals using a 1D-CNN, allowing for deep mining of damage features. A
multi-task cascaded architecture is used to detect, localize, and identify the severity of
damage while exchanging network structures and weight values to increase computing
performance. Experimental results demonstrate a 35% reduction in training time and
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validate the efficacy and reliability of the suggested method. Corrosion detection in aircraft
structures using autonomous images was created by Brandoli et al. using the D-Sight
Aircraft Inspection System (DAIS) (Figure 8) using deep transfer learning models such
as DenseNet, ResNet, SqueezeNet, and InceptionV3 [16]. The approach demonstrates a
precision of over 93% in detecting corrosion, comparable to trained operators, reducing
uncertainties associated with operator fatigue and training. The adoption of transfer
learning assisted in overcoming the scarcity of corrosion images, and the findings indicate
that the approach can support corrosion monitoring and contribute to the automation of
maintenance routines in the aerospace sector.
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revealing surface micro perturbations produced by corrosion [16].

Table 2 presents a compilation of diverse case studies that employ deep learning-based
data-driven technologies to advance the SPHM of aircraft structures.

Table 2. Contribution of various researchers to the SPHM of aircraft structures using deep learning.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 1

An ANN model has been
used to identify the strain at
different locations on aircraft
using 40 parameters.

Aircraft structure ANN

Pros: Improves the
maintenance process
for aircraft
Cons: Low performance due
to unoptimized model

[31]

Case 2

Integration of various
methods to monitor and
identify defects in
aircraft structures.

Aircraft structure

ARTMAP
-Fuzzy-
Wavelet

ANN

Pros: Hybrid method for
better performance
Cons: Model is validated only
on the simulation data

[106]

Case 3

ANN and its ensemble
network classifiers are
established for guided
wave-based damage detection
in aircraft with small-scale
and long-term full-scale
fatigue experiments

Military turboprop
aircraft PZL Orlik

TC II

ANN and
ensemble network

Pros: High model accuracy
Cons: The limitations in
training data availability and
computation time may pose
restrictions on using the
proposed method for
large aircraft

[107]

Case 4

Based on the wing structure’s
actual mechanical properties,
the fifteen damage patterns
were simulated using the
aircraft wing structure
FE model

Aircraft Wing PNN

Pros: Multiple damage cases
considered
Cons: The method requires
careful consideration of
dissymmetry, geometry, and
natural frequency changes,
and further research is needed
to address these complexities

[108]
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Table 2. Cont.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 5

Deep Belief Networks (DBNs)
were used to present a unique
multi-sensor health
detection technique

Aircraft Wing DBN
Pros: Multi-sensory data
Cons: Model performance
needs improvement

[109]

Case 6

Defect classification of
honeycomb-based aircraft
structures using infrared
thermography

Aircraft structure LSTM-RNN

Pros: Autonomous process
Cons: Performance is highly
dependent on the accuracy
and resolution of the infrared
thermography data in
practical applications

[110]

Case 7

Ultrasonic guided
wave-based damage imaging
using a 1D-CNN model
applied to a skin-stinging
composite aircraft panel

Aircraft panel CNN

Pros: Multiple damage
cases considered
Cons: Model did not consider
environmental factors

[113]

Case 8

The proposed CNN-based
data-driven SHM technique is
assessed using strain data
from a numerical model,
visualizing a network of
324 sensors at the skin-rib
joints of an aircraft composite
wing under different
flight loads

Composite wing
skin-rib joints CNN

Pros: The use of multiple data
sources (load and strain data)
and noise considerations
make the model well suited
for real aircraft structures
Cons: Model functionality is
not interpretable and unable
to predict damage location

[114]

Case 9
RF and deep learning-based
impact damage detection and
localization using AE

Aircraft elevator
component RF and SAE

Pros: Includes damage
localization
Cons: The validation is based
on laboratory environment,
and further validation on
actual aircraft structures
is needed

[116]

Case 10

A new framework based on
deep learning was developed
and deployed to characterize
crack damage in
aircraft composite

Thick multi-layer
composite

sub-elements used
in aircraft

applications

DAE
Pros: Unsupervised problem
Cons: Did not optimize model
for better performance

[117]

Case 11

Application of lamb waves
and deep transfer learning to
multi-level damage
classification for aircraft
plate structure

Aircraft plate
structure

Deep transfer
learning

Pros: Multi-level damage with
limited data
Cons: The applicability and
generalization of the
technique to different types of
aircraft plate structures
need investigation

[118]

Case 12

Aircraft fuselage corrosion
detection using deep transfer
learning models such as
InceptionV3 and DenseNet

DAIS photos from
various Boeing and

Airbus aircraft
lap joints

InceptionV3 and
DenseNet

Pros: Effective for limited data
Cons: The effectiveness of the
approach may depend on the
availability and diversity of
corrosion images for
transfer learning

[16]

3.1.4. Advantages and Limitations of Data-Driven Approaches

Data-driven approaches, underpinned by machine learning and deep learning algo-
rithms, have gained significant traction in the realm of SPHM due to their potential to offer
robust and adaptable solutions for system health management. This subsection aims to
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comprehensively evaluate the advantages and inherent limitations associated with these
data-driven methodologies.

The advantages of data-driven approaches in SPHM are as follows:

� Adaptability and Learning Capability: Data-driven approaches excel in their ability
to adapt and learn from large datasets. They leverage complex algorithms to uncover
underlying patterns and relationships in the data, allowing them to handle a wide
range of scenarios and adapt to dynamic operational conditions.

� Prediction Accuracy: Given their capacity to process extensive datasets, data-driven
techniques can significantly enhance prediction accuracy. By analyzing diverse opera-
tional data, these methods can offer valuable insights into system behavior, aiding in
the proactive identification of potential failures.

� Scalability: The power of data-driven approaches lies in their scalability. They
can effectively handle large volumes of data from diverse sources, making them
particularly suitable for complex systems like modern aircraft.

The limitations of data-driven approaches in SPHM are as follows:

� Data Quality and Availability: The effectiveness of data-driven approaches largely
depends on the quality and quantity of available data. They require substantial
amounts of high-quality data to train and validate their models, which can be a
challenge in certain environments.

� Model Transparency: Data-driven methods, particularly those utilizing deep learning
algorithms, often function as “black boxes”. It can be challenging to interpret their
inner workings, which may hinder understanding and trust in their predictions.

� Computational Requirements: These methods can be computationally intensive,
requiring substantial processing power and storage capacity. This might limit their
application in settings with constrained computational resources.

� Generalizability: While data-driven approaches can adapt and learn from the data
they are trained on, they may struggle to generalize their learnings to new, unseen
scenarios. This can pose challenges in a field as dynamic and unpredictable as SPHM.

3.2. Model-Based Approaches in SPHM

This section offers a detailed exploration of model-based approaches in SPHM. By
thoroughly examining the fundamental principles that form the basis of these approaches,
the section underscores their reliance on physics and mathematical modeling. By gaining a
profound understanding of model-based approaches, new opportunities arise for proactive
maintenance, informed decision making, and advanced structural health management in
the aviation industry.

3.2.1. Introduction to Model-Based Approaches

Model-based approaches are essential in advancing SPHM for aircraft structures,
relying on scientific theories and physics-based models to analyze, assess, and predict
structural component health. These methodologies involve developing mathematical
equations that capture the physical relationships between parameters such as stress, strain,
load, and material properties. By creating accurate models, we can effectively represent
the actual structures, encompassing various variables that influence system behavior and
performance. This process requires a deep understanding of structural behavior and
incorporates the underlying physics and mechanics.

These model-based approaches presuppose the presence of a system behavior model,
which, when combined with measured data, identifies system characteristics and predicts
the RUL. Three types of models are utilized: physical failure models [24,119], stochastic
filtering models [120], and statistical models [121]. Physical failure models are quantitative
analytical frameworks that explain the degradation processes of system health indicators
by comprehending failure mechanisms. Stochastic filtering models, comprising a process
model and an observation model, encompass non-stationary stochastic processes to ac-
count for unobserved health indicators and observed Condition Monitoring (CM) data.
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In contrast, statistical models are constructed using collected input/output data, with
historical data utilized to determine the RUL. The primary advantage of model-based ap-
proaches stems from their ability to integrate a fundamental physical comprehension of the
monitored system, leading to enhanced accuracy in comparison to data-driven approaches.

These methodologies offer detailed predictive analysis by considering initial condi-
tions, degradation processes, and operational constraints, enabling accurate predictions of
potential structural failures and estimations of RUL. As a result, maintenance schedules
can be optimized, enhancing the efficiency and cost-effectiveness of aircraft operations.
Monitoring and predicting aircraft structural health have become increasingly important
in modern aviation, and models for determining RUL have been developed to empower
maintenance teams to make informed decisions, improving safety and reliability within the
industry. However, model-based approaches face challenges. Creating accurate and reliable
models requires extensive domain knowledge, and maintaining and updating these models
to reflect real-world conditions demands significant computational resources. Additionally,
these approaches may struggle to handle the variability and uncertainty present in real-
world conditions [122]. This is where data-driven approaches complement model-based
methods by leveraging large datasets and machine learning techniques. Despite these
challenges, the ongoing development of model-based approaches demonstrates their signif-
icant potential in aircraft health management. Hybrid systems that integrate physics-based
modeling with data-driven techniques offer robust and reliable predictions, combining
the predictive accuracy of model-based approaches with the adaptability and flexibility
of data-driven methods. This fusion enhances the effectiveness of SPHM, ensuring the
integrity and safety of aircraft structures.

3.2.2. Implementation and Application of Model-Based Approaches in SPHM

The implementation and application of model-based approaches in SPHM have
demonstrated significant potential for enhancing the safety and efficiency of aircraft op-
erations. This section focuses on the practical aspects of implementing and applying
model-based methodologies in SPHM, highlighting their effectiveness in predicting the
health status and RUL of aircraft structures. One of the key steps in the implementation of
model-based approaches is the development of precise and reliable degradation models
for the specific components or systems being monitored. For example, in the fatigue crack
growth of fuselage panels, researchers have extensively studied fatigue damage models,
such as Paris‘ law [123]. These models describe the crack growth process based on material-
specific parameters and provide a foundation for predicting future crack behavior. Paris’
law is an equation that relates the crack growth rate (da/dN) to the stress intensity factor
range (∆K) and stress ratio (R), as shown in Equation (13). The crack length is denoted
as “a”, the number of flight cycles as “N”, and the Paris’ law parameters associated with
material properties as “m” and “C”. The material coefficients are obtained experimentally
and also depend on the environment, frequency, temperature, and stress ratio.

da/dN = C(∆K)m (13)

Figure 9 offers insights into the practicality of the fatigue crack growth principle within
a designated crack propagation zone. This zone is located between region I, which is near
the threshold of crack propagation, and region III, which is near the unstable zone of crack
propagation [124].

Kuncham et al. proposed an online model-based method that utilizes an extended
Kalman filter (EKF) to estimate the fatigue life of structures [124]. This technique accom-
modated real-world uncertainties by applying an updated version of the Paris model to
simulate fatigue crack growth and propagation. The process included the estimation of
model parameters using the history of crack growth and a subsequent crack prognosis
based on these estimated parameters. Both numerical analyses and experimental studies
validated the method’s accuracy in parameter estimation and RUL prediction for struc-
tures. Figure 10 shows a flowchart illustrating this methodology. The method was further
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tested through numerical analysis on a finite plate under a thermo-mechanical load. Crack
propagation modeling was carried out with MATLAB, while an ABAQUS-created high-
fidelity finite element (FE) model was used for stress intensity factor (SIF) simulation. This
technique effectively estimates system parameters and states by incorporating historical
data on crack propagation, resulting in the estimated values being much closer to the true
values. Finally, the technique’s prediction accuracy was assessed under varying levels of
measurement noise through a fatigue crack prognosis.
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Figure 10. Flowchart of the proposed methodology for online-model-based crack propagation
analysis and prognosis [124].

Wang et al. present a model-based prognostic approach to tackle the issues related
to fatigue crack propagation in fuselage panels, especially when model parameters are
ambiguous and uncertainties influence crack growth. They used Paris’ law as their crack
growth model and implemented the EKF for state-parameter estimation. The research
successfully charted the path of crack growth and computed the RUL by integrating mea-
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surement data into the prognostic framework [24]. In another study, Qi et al. proposed a
method to estimate the RUL of deteriorating systems under dynamic operational condi-
tions [125]. The method utilizes probabilistic and stochastic approaches and incorporates
the influence of specific operational conditions on the degradation rate. Sensor data from a
commercial turbofan engine was analyzed using the method, initially with a single sensor.
However, the results demonstrate the need for improvement, as there are advancing pre-
dictions in the RUL estimations. To address this issue, the paper introduces the integration
of multiple sensors through an optimization procedure, leading to enhanced prediction
accuracy. The proposed method is compared with existing approaches using the same
dataset and showcases superior performance in estimating RUL under dynamic operational
conditions. The inclusion of multiple sensors mitigates the issue of advancing estimations
observed in the single-sensor approach, providing more reliable and accurate predictions.

Chen et al.’s study focused on failure prognosis, a critical aspect of PHM, as well as
condition-based maintenance [126]. The study addressed the challenge posed by multiple
sources of uncertainty in real-world scenarios, which can lead to inaccurate predictions. To
overcome this challenge, an advanced failure prognosis method utilizing Kalman filtering
was proposed. The paper systematically analyzed and classified the various sources of
uncertainty, leading to the development of tailored theoretical methods for each specific
source. Subsequently, a failure prognosis algorithm was devised, incorporating the identi-
fied uncertainties. The effectiveness of the proposed method was demonstrated through a
simulation of an aircraft fuel feeding system health monitoring case, showcasing its ability
to address real-world uncertainties and its potential for practical applications. Similarly,
Chi et al. investigated the use of CM data to predict RUL in aircraft systems. The study
addressed the limitations of data-driven approaches by adopting the switching Kalman
filter (SKF), a state-space-based method that utilizes multiple models to infer the most
probable degradation model from CM data. The SKF approach was demonstrated through
a case study, highlighting its potential for practical maintenance decision making [120].

Wang et al. [127] proposed an approach that combines high-performance fatigue me-
chanics with filtering theories for the diagnosis and prognostication of damaged aircraft
structures, as shown in Figure 11a. The approach utilizes the finite element alternating
method (FEAM) and the moving least squares (MLS) law for deterministic fatigue crack
propagation analysis. Extended Kalman and particle filters are applied to obtain statistically
optimal estimates of crack lengths from noisy measurements, as shown in Figure 11b. The
approach enables estimation of the probabilistic distribution of the RUL of aerospace struc-
tures and demonstrates effectiveness through a simple example, indicating the potential for
applications like virtual risk-informed agile maneuver sustainment (VRAMS) and digital
twins of aerospace vehicles.
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Table 3 is specifically tailored to showcase studies on model-based approaches for the
SPHM of aircraft structures. It offers a comprehensive overview of various case studies,
summarizing their potential contributions, application domains, proposed methods, and
the corresponding pros and cons:

Table 3. Case studies utilizing model-based approaches and their key features.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 1
Studies the effect of model

parameters uncertainties on
fatigue crack growth

Aircraft
fuselage

Paris’ law
with EKF

Pros: Accurate predictions
Cons: Biased initial estimate [24]

Case 2
Proposes a dynamic

probability modeling-based
aircraft SHM framework

Aircraft structures Gaussian
Mixture Model

Pros: Reliable monitoring
of cracks
Cons: Potentially
adding complexity

[121]

Case 3
Investigates the use of

condition monitoring data
for predicting RUL

Aircraft
systems SKF

Pros: Suitability for practical
decision making
Cons: Increased
computational resource

[120]

Case 4

Proposes an approach that
combines high-performance

fatigue mechanics with
filtering theories

Aerospace structures FEAM and the
MLS law

Pros: Effective estimation
of RUL
Cons: Challenges in terms
of implementation
and scalability

[127]

Case 5

Introduces new methods for
uncertainty management in

failure prognosis using
particle filters

Aircraft structures EKF approach

Pros: Reduced
uncertainty, reduced
computational burden
Cons: Dependent on the
availability and quality of the
data used

[122]

Case 6

Proposes a framework for
assessing the safety and

efficiency of aircraft
maintenance strategies

Aircraft
components

Agent-based
modeling and
Monte Carlo
simulation

Pros: Reduction in
inspection frequency
Cons: accuracy dependent on
the quality and availability of
the data

[128]

Case 7
Creates a realistic dataset

with run-to-failure
trajectories

Aircraft
engine

Aero-Propulsion
System Simulation

Model

Pros: Availability of
representative
run-to-failure dataset
Cons: Dataset limitations in
terms of its generalizability

[129]

Case 8
Introduces the integration of
multiple sensors to enhance

prediction accuracy
Turbo fanengine Kalman Filter

Pros: Enhanced
prediction accuracy
Cons: Increased complexity,
Cost implications

[126]

Case 9 Develops a model-based
fault detection Aircraftcontrolsurfaces GA

Pros: Early detection,
Precision
Cons: Complexity, Limited
field data

[130]

Case 10

Develops a PHM functional
architecture for aircraft

avionics systems using a
model-based system
engineering design

approach.

Aircraftavionicssystems
Harmony SE
Model-based

System

Pros: Systematic development
guidance, Simulation-capable
Cons: Complexity

[131]
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The advantages of model-based approaches are as follows:

� Accurate Representation: Model-based approaches provide an accurate representa-
tion of the underlying system by incorporating domain knowledge, physical princi-
ples, and mathematical equations. They capture the fundamental relationships and
dynamics of the system, resulting in accurate predictions and interpretations.

� Interpretable Results: Model-based approaches offer interpretability, allowing users
to understand the underlying mechanisms and factors influencing the predictions. The
explicit mathematical equations and parameters provide insights into the relationships
between input variables and the predicted outcomes.

� Generalizability: Model-based approaches have the advantage of generalizability.
When a model is developed and validated, it can be applied to different scenarios and
conditions within the specified range of validity. This enables the transferability of
knowledge and predictions to similar systems or applications.

� Insightful Analysis: Model-based approaches facilitate in-depth analysis and under-
standing of the system’s behavior. Sensitivity analysis, parameter estimation, and
model validation techniques can be employed to assess the impact of different factors,
optimize system performance, and gain insights into system dynamics.

Meanwhile, the limitations of model-based approaches are as follows:

� Assumptions and Simplifications: Model-based approaches depend on assumptions
and simplifications to capture system dynamics. These assumptions may not fully
represent the complexity and variability of real-world scenarios, leading to limitations
in prediction accuracy and applicability.

� Limited Adaptability: Model-based approaches can be less adaptable to changing
conditions or situations that were not considered during the model’s development.
They are often built based on specific assumptions and may not account for unforeseen
events or variations outside the scope of the model.

� Computational Complexity: Developing and implementing model-based approaches
can be computationally intensive, especially for complex systems with numerous
variables and interactions. The need to solve mathematical equations and perform nu-
merical simulations can result in longer processing times and resource requirements.

� Model Uncertainty: Model-based approaches are subject to inherent uncertainties
stemming from model assumptions, parameter estimation, and model structure. These
uncertainties can propagate and affect the accuracy and reliability of predictions.
Quantifying and managing model uncertainty is a critical challenge in model-based
prognostics.

3.3. Hybrid Approaches in Aircraft SPHM

This section provides a comprehensive exploration of hybrid approaches in the SPHM
of aircraft structures. This section aims to uncover the development, application, and
implications of these hybrid approaches, highlighting their potential to enhance the safety,
efficiency, and reliability of aircraft operations.

3.3.1. Introduction to Hybrid Approaches

The emergence of hybrid methodologies, which blend the benefits of model-based and
data-driven methods, marks a promising development in the realm of SPHM [65]. These
approaches integrate the theoretical foundations and physical understanding provided
by model-based methods with the adaptability and learning capabilities of data-driven
techniques. By harnessing the synergy between these approaches, hybrid methodologies
aim to overcome the limitations of individual methods and achieve a more accurate and
comprehensive assessment of structural health. One of the key advantages of hybrid
approaches is their ability to leverage the strengths of both model-based and data-driven
methods. Model-based approaches incorporate fundamental physical laws, system behav-
ior models, and domain knowledge, enabling them to capture the underlying mechanisms
and degradation processes. This allows for a deeper understanding of the system and
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improves the accuracy of predictions. On the other hand, data-driven methods leverage
large datasets and machine learning techniques to extract patterns and correlations from
real-world operational data. This enhances the adaptability of the approach and enables it
to handle complex and dynamic operational conditions. By combining the advantages of
model-based and data-driven methods, hybrid approaches enable a holistic and synergistic
approach to SPHM. Such methods can effectively handle uncertainties, adapt to changing
conditions, and provide accurate predictions of RUL and potential failure scenarios. The
integration of these approaches into a hybrid model creates an advanced SPHM system
that is capable of real-time monitoring, in-depth analysis, and predictive forecasting.

While hybrid approaches offer numerous benefits, they also present challenges and
limitations. The development and implementation of hybrid models can be complex and
resource-intensive, requiring expertise in both model-based and data-driven techniques.
The integration of different models and algorithms may introduce additional computa-
tional complexities. Additionally, the interpretability of results can be challenging in hybrid
approaches, particularly when combining complex mathematical models and machine
learning algorithms. Despite these challenges, hybrid approaches hold great promise for en-
hancing the safety, efficiency, and reliability of aircraft operations. Their ability to combine
physical understanding with data-driven insights enables more accurate predictions, proac-
tive maintenance planning, and optimized decision making. By leveraging the strengths of
both model-based and data-driven methods, hybrid approaches pave the way for advanced
SPHM practices that address the complexities of real-world structural health conditions
and contribute to the continuous improvement of aircraft safety and performance.

In the following sections, we explore specific hybrid methodologies, algorithms, and
case studies that exemplify the application and effectiveness of these approaches in the
SPHM domain. Through these examples, we aim to showcase the benefits and potential
of hybrid approaches in enabling proactive and data-informed maintenance strategies for
aircraft structures.

3.3.2. Implementation and Application of Hybrid Approaches in SPHM

The development and implementation of hybrid approaches in SPHM require careful
consideration of several factors. First, the selection of appropriate models and algorithms
is crucial to ensuring the accuracy and reliability of predictions. This may involve the
integration of physics-based models, statistical models, machine learning algorithms, and
advanced data analytics techniques. Second, the availability and quality of data play a sig-
nificant role in the success of hybrid approaches. Adequate data collection, preprocessing,
and feature selection methods are essential to extract meaningful information and facilitate
accurate predictions. Moreover, the merging of data from various sources and sensors can
provide a more comprehensive understanding of structural health.

Liao et al. proposed a hybrid prognostics framework combining data-driven and
model-based approaches to predict the RUL, which improved the accuracy of the
model [132]. The proposed fusion prognostics framework combined data-driven and
model-based methods to estimate RUL. The model-based approach utilizes an analytical
degradation model, while data-driven methods incorporate historical data to improve
prediction accuracy and reduce uncertainty. An interface between the data-driven and
model-based approaches is included in the framework, as illustrated in Figure 12, providing
a comprehensive and detailed description of each method. This integration allows for more
accurate predictions by leveraging the strengths of both approaches.

Yu et al. addressed the limitations of the data-driven techniques by emphasizing
the advantages of the physics-based techniques to simulate aircraft dynamics [133]. The
proposed approach used deep residual-recurrent neural networks (DR-RNNs), which
incorporated aircraft dynamics through a residual function based on an implicit integration
scheme. The effectiveness of integrating physics-based modeling with machine learning
methods was demonstrated through a case study involving a Boeing 747-100 aircraft. The
performance of the hybrid approach was compared to that of a purely data-driven method
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in terms of prediction accuracy, training costs, and computational efficiency. The study
highlights the benefits of the hybrid method, including improved prediction performance,
reduced training costs, and the ability to capture the dynamic behaviors of the aircraft.
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Neerukatti et al. proposed another hybrid method to predict crack growth and RUL for
aluminum-based components of aircraft wings [134]. The proposed approach overcomes
the challenges of fatigue life prediction under different loading conditions by integrating
crack growth physics with data-driven techniques. Various regression techniques, such
as least absolute shrinkage and selection operator (LASSO) and relevance vector machine
(RVM), were used to determine the stress intensity factor for the specimen. The hybrid
model exhibited greater accuracy compared to using solely data-driven or physics-based
models. Experimental validation confirmed precise RUL predictions for the specimens
under different loading conditions, with errors within 5% for constant amplitude loading
and reduced errors for random loading conditions. The algorithm was also modified to
consider the crack closure phenomenon during overloads, resulting in RUL predictions
within 5% error. This research has substantial implications for improving the safety and
reliability of aerospace SPHM systems and is backed by support from the U.S. Department
of Defense.

Dourado and Viana developed a hybrid model composed of a physics-informed
neural network to predict the corrosion-fatigue of aircraft wing aluminum panels [135].
The proposed hybrid approach incorporated physics-informed layers using the Walker
model for fracture propagation and data-driven layers to account for the bias in damage
buildup caused by corrosion effects. The physics-informed neural network was trained with
comprehensive input data, including far-field loads, stress ratios, and a corrosivity index
established by an airport, while output data were restricted to crack length observations
during inspection for only a small percentage of the fleet. The results demonstrated that
the physics-informed neural network effectively compensated for the missing physics of
corrosion in the original fatigue model. The hybrid model’s predictions can be applied
in fleet management for tasks like prioritizing fleet-wide inspections or forecasting the
number of planes with damage exceeding a certain threshold.

Data-driven probabilistic methodologies have gained popularity in recent years for
predicting the RUL of composite structures using health-monitoring data, as the existing
approaches face challenges in dealing with the nonlinear and stochastic nature of composite
structure degradation as well as unexpected phenomena that can occur during their lifetime.
These phenomena, such as foreign object impacts, pose difficulties for both model-based
and data-driven approaches. To address these limitations, Nick et al. proposed an adaptive
data-driven prognostic approach that can learn and adapt in real-time based on available
data, providing accurate RUL predictions regardless of unexpected events [136]. Open-
hole carbon/epoxy specimens were used to demonstrate the effectiveness of the proposed
adaptive methodology. Training and testing data were collected using the AE technique,
with training specimens subjected to fatigue loading and testing specimens experiencing
both fatigue and in situ impact. The adaptive non-homogenous hidden semi Markov
model (ANHHSMM) outperformed the non-homogenous hidden semi Markov model
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(NHHSMM), indicating its ability to provide more accurate prognostics, as shown in
Figure 13.
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Figure 13. Validation of the adaptive methodology [136].

Giannakeas et al. developed a probabilistic model for the residual strength assessment
of aircraft composite panels [137]. The system integrated physics-based and data-driven
models, addressing limitations in their completeness and representativeness in training
datasets. Detailed FE models were used to create a digital representation of the struc-
ture, and an error quantification and propagation program was implemented based on
experimental data. A case study involving a 1.6 m composite panel with skin-stringer
delamination and 24 piezoelectric transducers demonstrated the framework’s prognostic
capabilities. Figure 14 shows the experimental setup and the simulation results for the
proposed hybrid model. The results indicated a mean absolute percent error (MAPE) of
10% for damage magnitude calculation and 5% for projecting the residual strength of a
destructively tested damaged panel.
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Figure 14. The observed failure of the aircraft composite panel, (A) experimental setup with sensor
network, and (B) the numerical model [137].

Table 4 provides a comprehensive summary of studies on hybrid physics-based and
data-driven approaches for the SPHM of aircraft structures. It presents an overview
of different case studies, including their potential contributions, application domains,
proposed methods, and the associated advantages and disadvantages. This table serves
as a valuable resource for understanding the advancements and challenges in the field of
SPHM and the potential of hybrid approaches to enhance aircraft SPHM.
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Table 4. Case studies utilizing hybrid approaches and their key features.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 1
Improved prediction
using physics-based

learning

Boeing 747-100
aircraft dynamics

Residual function-based
implicit integration

scheme

Pros: Improved prediction
Cons: Potential complexity. [133]

Case 2 Hybrid approach to
predict the crack growth Aircraft wings Paris law with

RVM model

Pros: Increased accuracy and
precision of prognosis model
Cons: Only one (Al) material
is considered.

[134]

Case 3

Corrosion-fatigue of
aircraft wings using

physics-informed
neural network

Aircraft wing

Integration of Walker
model for fracture
propagation with
neural network

Pros: Accurate modeling of
cumulative damage
Cons: Limited output
observations may reduce
model precision

[135]

Case 4
Development of an

adaptive data-driven
prognostic approach

Aircraft composite
structures ANHHSMM

Pros: Improved RUL
estimation, Robustness
Cons: Data noise,
computational complexity

[136]

Case 5

Probabilistic model for
residual strength

assessment for aircraft
composite panels via a
hybrid approach using

guided waves

Aircraft composite
panel

FE model and an error
quantification and

propagation program

Pros: Improved residual
strength estimation
Cons: Relatively
high MAPWE

[137]

3.3.3. Advantages and Limitations of Hybrid Approaches

The benefits of hybrid approaches are as follows, highlighting their ability to improve
and enhance various aspects:

3 Enhanced Accuracy: Hybrid approaches combine the strengths of physics-based
models and data-driven techniques, resulting in improved accuracy and predictive
capabilities. They leverage both physical principles and historical data to make more
reliable predictions.

3 Flexibility and Adaptability: Hybrid approaches can accommodate varying levels of
data availability and system complexity. They allow for the incorporation of additional
data sources and the adjustment of models as new information becomes available,
making them adaptable to changing conditions.

3 Robustness to Uncertainties: By integrating physics-based models and data-driven
techniques, hybrid approaches can handle uncertainties and variations more effec-
tively. They can account for unknown factors and provide more robust predictions in
scenarios where either approach alone may fall short.

The limitations of hybrid approaches are as follows, outlining the factors that can
restrict their effectiveness and scope:

3 Increased Complexity: Implementing hybrid approaches can be more complex than
using a single modeling technique. It requires expertise in both physics-based model-
ing and data analysis, as well as careful integration of the two approaches.

3 Data Quality and Availability: Hybrid approaches strongly depend on the accuracy
and accessibility of data. Insufficient or inaccurate data can impact the performance
and reliability of hybrid models.

3 Model Interpretability: Hybrid models might sacrifice some interpretability com-
pared to purely physics-based models. The incorporation of data-driven techniques
can introduce black-box elements, making it challenging to understand the reasoning
behind predictions.
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Table 5 provides a comprehensive overview of the advantages and limitations of
data-driven, model-based, and hybrid approaches in the SPHM of aircraft structures. The
advantages and challenges associated with each method are compared to aid in the selection
of the most suitable approach for different scenarios.

Table 5. Comparison of the Advantages and Limitations of Data-Driven, Model-Based, and Hybrid
Approaches for System Analysis.

Data-Driven Model-Based Hybrid Methods

Advantages

• Adaptability and learning
capability

• Prediction accuracy
• Scalability

• Accurate representation
• Interpretable results
• Generalizability
• Insightful analysis

• Enhanced accuracy
• Flexibility and adaptability
• Robustness to uncertainties

Limitations

• Data quality and availability
• Model transparency
• Computational requirements
• Generalizability

• Assumptions and simplifications
• Limited adaptability
• Computational complexity
• Model uncertainty

• Increased complexity
• Data quality and

availability
• Model interpretability

4. Digital Twin Technology in SPHM

The concept of a digital twin has emerged as a powerful tool in the field of aircraft
SPHM. A digital twin refers to a virtual representation of an aircraft’s physical structure, en-
riched with real-time data from sensors and operational inputs. By aligning the behavior of
this digital twin with the real aircraft, operators gain the ability to anticipate structural prob-
lems, detect anomalies, and forecast maintenance requirements. This proactive approach
enhances safety, reduces operational disruptions, and facilitates optimized maintenance
planning. The integration of physical and virtual elements through digital twins showcases
their potential to revolutionize aircraft structural PHM practices. Using historical load
data, condition monitoring, and fault diagnosis-based maintenance, the lifespan of modern
aircraft structures may be assessed. However, a set of sensor readings taken early in the
life cycle to assess the state of the aircraft structure is frequently insufficient to identify
the full structural condition. As a result, adding more sensors is an alternate option to
collect a comprehensive dataset; nevertheless, this procedure incurs extra costs. As a result,
much effort is being expended to develop a sophisticated methodology and framework to
evaluate the entire structure.

By regulating interactive interactions between real items and their virtual models,
digital twin technology is evolving. Condition monitoring of aircraft structures is rapidly
developing with digital twin technology, with the ultimate goal of a fully simulated model
with no physical existence. Total systematic inspection becomes possible with the digiti-
zation of an entire dataset. The development of ML and structural condition monitoring
frameworks has enabled the introduction of digital twin technology to current aircraft [28].
Giannaros et al. developed a computational model-based digital twin system that can accu-
rately predict the dynamic behavior and delamination area of aircraft composite sandwich
structures subjected to bird strikes, with the high-fidelity model matching experimental
strain histories and delamination observations [138]. The sensors were integrated into the
composites, and the measurements were taken with a sampling rate of 19.2 kHz, while the
sensor wavelength was calculated from the strain components using Equation (14):

ε =
1
Pe

∆λ

λB
(14)

where ∆λ represents the Bragg wavelength shift due to the induced load, λB represents
the Bragg wavelength reflected from the sensing system, while Pe and ε represent the
elasto-optic coefficient and applied strain, respectively. Figure 15 shows the experimental
setup of the bird strike test. The low-fidelity model gives quick numerical guidance to
determine impact loading situations while cutting computing time by almost a third (to
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68%). The numerical model was built using the modified Hashin criterion, as in the
original Hashin tensile fiber criteria. When incorporating the shear stress factor, it tends
to underestimate the maximum failure load of cross-ply and quasi-isotropic laminates
subjected to tension loading [139,140]. The failure equations based on the modified Hashin
criterion are as follows:

Tensile f iber mode =
(

σaa

XT

)2
= 1 (15)

Compressive f iber mode =
(

σaa

XC

)2
= 1 (16)

Tensile matrix mode =
(

σbb
YT

)2
+

(
σab
Sab

)2
= 1 (17)

Compressive matrix mode =
(

σbb
2× Sab

)2
+

[(
Yc

2× Sab

)2
− 1

]
σbb
Yc

+

(
σab
Sab

)2
= 1 (18)

where σaa represents normal stress in the fiber direction (longitudinal direction), σbb rep-
resents transverse stress, σab represents the in-plane shear stress, and Sab refers to the
shear strength between the axial and transverse directions. Whereas XT, XC, YT, and YC
denote longitudinal tensile strength, longitudinal compressive strength, transverse tensile
strength, and transverse compressive strength, respectively. These models have potential
applications in virtual fault detection and damage estimation, and future work will explore
the role of strain rate and impact situations.
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Figure 15. The impact loading experimental setup in the target chamber, which includes a panel
position and fixture [138].

Li et al. proposed a digital twin model for fatigue crack propagation in aircraft
airframes using the dynamic Bayesian network concept [62]. They integrated various
uncertainty sources into their model and handled both discrete and continuous data
variables, allowing the model to understand non-linear behavior. The numerical model for
fatigue crack growth demonstrated the capacity to track time-dependent factors, minimize
uncertainty from time-independent variables, and probabilistically predict future crack
growth. The proposed approach is validated on the airframe digital twin program to
cut maintenance costs for various aircraft, showing its potential for the SPHM of aircraft
structures. Milanoski et al. proposed another digital twin model for aeronautical structures
under compressive loading conditions [141]. They first developed an FE model for a single-
stinger composite panel under compressive loading to obtain strain and displacement data.
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The numerical data were used to develop the digital twin model, which demonstrated
good agreement with the experimental data. The validated digital twin model was then
used to train a surrogate model, which efficiently mapped the strain values with respect
to the compressive loads. The methodology was successfully tested on an artificially
debonded panel subjected to fatigue loading, enabling damage identification based on
strain measurements from the digital twin.

Lai et al. proposed a measurement–computation combined digital twin (MCC-DT)
model for an aircraft wing that integrated various technologies and methodologies, such
as sensors, communication technologies, the FE model, and AI [142]. Herein, the load
identification was performed through the AI model combining sensor and simulation data,
the digital twin performance was improved using the multi-fidelity surrogate (MFS) models,
and the online degradation in the digital twin was evaluated using the rainflow counting
algorithm. Conclusively, sensor technology and FEM integration have been deployed as
viable digital twin frameworks. The damage and defect categories may then be used to
evaluate structural condition monitoring and lifespan estimates. Figure 16 is an example
of such a notion, in which the aircraft wing model is conceptualized utilizing digital
twin technology by merging sensor data with the FEM. Additionally, the contribution of
various research efforts in the SPHM of aircraft structures using digital twin technology are
summarized in Table 6.
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Table 6. Contribution of various research efforts in the SPHM of aircraft structures using digital
twin technology.

Case Study Contribution Application Proposed Method Pros and Cons Ref.

Case 1

A digital-twin-assisted
damage diagnosis of aircraft
sandwich structures using

low- and
high-fidelity modeling

Aircraft
sandwich
structures

High-fidelity and
low-fidelity
FE model

Pros: Comprehensive
numerical modeling
Cons: The study did not address the
influence of strain rate and impact
conditions, limiting a comprehensive
understanding of the model’s
performance under
different scenarios

[138]

Case 2

A versatile airframe fatigue
crack propagation-based

digital twin model for
aircraft wing health

monitoring using a dynamic
Bayesian network

Aircraft wing Dynamic Bayesian
network

Pros: Integrating various uncertainty
sources and handling both discrete
and continuous variables improved
the model’s application to
actual aircraft
Cons: All results are based on
simulation, with no validation

[62]

Case 3

A digital twin model for
composite single-stringer
panels for an aeronautical

structure under
compressive loading

Aircraft
panel

Surrogate
mathematical

model

Pros: Data-driven model that did not
require comprehensive
physical understanding
Cons: Uncertainty in input data,
modeling techniques, and
environmental conditions can lead to
uncertainty in the
model’s predictions

[141]

Case 4
Integration of sensor

measurements and FEM to
build a digital twin model

Aircraft wing DNN, CNN,
and ResNet

Pros: Integration of multiple
technologies and methods helps
improve the model’s reliability
Cons: Structural analysis is
considered only in the elastic range,
without incorporating
any uncertainties

[142]

5. Future Trends in SPHM

The field of SPHM is constantly evolving, driven by technological advancements and
the quest for improved aircraft maintenance practices. This section explores the future
trends in SPHM, highlighting three key areas that hold tremendous potential: further
integration of AI, wider adoption of digital twin technology, and advancements in sensor
technologies.

(1) Further Integration of AI

3 The integration of AI is revolutionizing SPHM by enabling more advanced
data analysis, pattern recognition, and decision-making capabilities. These
technologies have the potential to significantly enhance the accuracy, efficiency,
and reliability of structural health monitoring, diagnosis, and prognostics.

3 AI excels at processing vast amounts of sensor data in real-time, allowing for
the identification of subtle patterns and anomalies that may indicate potential
structural issues. By continuously learning from historical and real-time data,
these algorithms can improve their predictive capabilities, enable proactive
maintenance, and reduce the risk of unexpected failure.

3 Moreover, the integration of AI with SPHM systems paves the way for auto-
mated decision-making processes, including automated decision making using
reinforcement learning. This approach allows maintenance schedules to be
optimized, component lifetimes to be predicted, and resources to be effectively
allocated. By automating these tasks through reinforcement learning, aircraft



Mathematics 2023, 11, 3837 35 of 42

operators can improve operational efficiency, reduce costs, and enhance over-
all safety.

(2) Wider Adoption of Digital Twin Technology

3 Digital twin technology, which involves creating a virtual replica of an aircraft’s
physical components and systems, offers immense potential for SPHM. By com-
bining real-time sensor data with the virtual twin, engineers and maintenance
personnel can gain a comprehensive understanding of the aircraft’s current and
future health.

3 Digital twins provide a platform for simulating and predicting the behavior of
an aircraft under various operating conditions and stress scenarios. This enables
proactive maintenance planning and the identification of potential structural
issues before they manifest in the physical aircraft. Additionally, digital twins
facilitate virtual testing and optimization of maintenance procedures, leading to
more efficient and effective maintenance operations.

3 Wider adoption of digital twin technology is expected to significantly improve
aircraft safety, reduce maintenance costs, and increase operational availability.
By leveraging the insights gained from the virtual twin, operators can make
informed decisions, optimize maintenance schedules, and perform condition-
based maintenance, ultimately extending the lifespan of critical components
and enhancing overall operational reliability.

(3) Advancements in Sensor Technologies

3 The continuous advances in sensor technologies play a pivotal role in enhancing
SPHM capabilities. Sensors are the backbone of SPHM systems, providing the
necessary data for real-time monitoring, analysis, and decision making.

3 Future trends in sensor technologies include the development of miniaturized
sensors, wireless sensor networks, and smart sensor technologies. Miniaturized
sensors can be embedded within the aircraft’s structural components, enabling
continuous monitoring of critical parameters such as strain, temperature, and
vibration. This provides a more comprehensive and accurate picture of the
structural health of the aircraft.

3 Wireless sensor networks allow for seamless data collection and transmission,
providing real-time updates on the structural health of an aircraft. These enable
timely decision making and facilitate a proactive approach to maintenance.
Smart sensors, equipped with advanced data processing capabilities, can per-
form on-site analysis and decision making, reducing the need for extensive data
transmission, and allowing for rapid response to critical events.

3 These advances in sensor technologies enable more precise and comprehensive
monitoring of aircraft structures, facilitating the early detection of potential
issues and enabling timely maintenance interventions. By leveraging these
advanced sensors, operators can enhance the overall reliability, safety, and
performance of their aircraft.

In summary, the future of SPHM holds great promise for the aviation industry. The
further integration of AI, the wider adoption of digital twin technology, and advance-
ments in sensor technologies are set to revolutionize aircraft maintenance practices. These
trends offer the potential for enhanced safety, improved maintenance efficiency, optimized
resource allocation, and ultimately a more reliable and cost-effective aviation industry.
Embracing these future trends will undoubtedly pave the way for a new era of proactive,
data-driven, and intelligent aircraft maintenance.

6. Conclusions

Structural prognostics and health management continue to revolutionize aircraft
maintenance strategies, shifting from traditional reactive practices to proactive, data-driven
approaches. The continuous monitoring and real-time evaluation of an aircraft’s structural
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integrity, facilitated by advancements in sensor technology and data analytics, form the core
of modern SPHM systems. These technologies permit an in-depth assessment of structural
health, aiding in the early detection of potential issues and ensuring timely maintenance
actions. The ensuing enhancements in the safety and reliability of aircraft operations are
indeed undeniable.

The gradual shift to data-driven methodologies, characterized by the application of
machine learning and deep learning techniques, and the creation of digital twin technology,
signifies a promising leap in the evolution of SPHM practices. Despite their current limita-
tions, including the need for extensive labeled datasets and the challenges of interpretability,
these approaches offer considerable potential. The ability to predict the RUL of aircraft
components by analyzing extensive datasets is an advantage that cannot be overstated.
Furthermore, the integration of digital twin technology provides a dynamic, real-time
representation of the aircraft system, enabling condition-based maintenance. However,
it is worth noting that model-based and hybrid approaches maintain their relevance in
the SPHM framework. These methods, which incorporate physics-based modeling, fi-
nite element analysis, and damage mechanics, provide a comprehensive perspective that
complements the insights generated by data-driven approaches.

The landscape of SPHM practices is ripe for further exploration and improvement.
Future research endeavors can focus on overcoming the existing limitations of modern
SPHM approaches, perhaps by developing methods for generating and labeling large
datasets more efficiently or by enhancing interpretability through the creation of explainable
AI models. Additionally, further improvements in sensor technology and the integration
of more advanced predictive models may enhance the accuracy and efficiency of SPHM
systems. Overall, this review underscores the significant progress in the field of aircraft
SPHM and its pivotal role in enhancing the safety, reliability, and cost-effectiveness of
aircraft operations. By illuminating the current trends and future potential of SPHM
practices, it hopes to spark further research and technological innovations in this vital area
of aerospace engineering.
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SPHM Structural Prognostics and Health Management
SVM Support Vector Machine
RF Random Forest
CNN Convolutional Neural Network
CAE Convolutional Autoencoder
RUL Remaining Useful Life
NDT Non-destructive testing
UMS Usage Monitoring Systems
SHM Structural Health Monitoring
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AI Artificial intelligence
ML Machine learning
DL Deep learning
DTs Decision trees
KNN K-nearest neighbor
NB Naïve Bayes
CFRP Carbon fiber reinforced polymer
ERT Electrical resistance tomography
RBF Radial basis function
PT Pulsed thermography
TUL Total useful life
GA Genetic algorithm
LR Logistic regression
AE Acoustic emission
ANN Artificial neural network
DNN Deep neural networks
LSTM Long short-term memory
RNN Recurrent neural network
DBN Deep belief networks
PNN Probabilistic neural networks
FCN Fully connected network
SAE Stacked autoencoder
DAE Deep autoencoder
DAIS D-Sight Aircraft Inspection System
CM Condition Monitoring
EKF Extended Kalman filter
SIFs Stress intensity factors
SKF Switching Kalman Filter
FEAM Finite Element Alternating Method
VRAMS Virtual Risk-Informed Agile Maneuver Sustainment
MLS Moving Least Squares
DIC Digital Image Correlation
BGOA Binary grasshopper optimization algorithm
EANNs Ensemble artificial neural networks
DR-RNN Deep residual recurrent neural networks
ANHHSMM Adaptive Non-Homogenous Hidden Semi Markov Model
NHHSMM Non-Homogenous Hidden Semi Markov Model
MCC-DT Measurement-computation combined digital twin
MFS Multi-fidelity surrogate
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