

Mathematics 2023, 11, 620. https://doi.org/10.3390/math11030620 www.mdpi.com/journal/mathematics

Article

Outlier Detection of Crowdsourcing Trajectory Data Based on
Spatial and Temporal Characterization
Xiaoyu Zheng 1, Dexin Yu 1,2,*, Chen Xie 1 and Zhuorui Wang 1

1 Department of Traffic Information and Control Engineering, Jilin University, Changchun 130022, China
2 College of Navigation, Jimei University, Xiamen 361021, China
* Correspondence: yudx@jlu.edu.cn

Abstract: As an emerging type of spatio-temporal big data based on positioning technology and
navigation devices, vehicle-based crowdsourcing data has become a valuable trajectory data re-
source. However, crowdsourcing trajectory data has been collected by non-professionals and with
multiple measurement terminals, resulting in certain errors in data collection. In these cases, to min-
imize the impact of outliers and obtain relatively accurate trajectory data, it is crucial to detect and
clean outliers. This paper proposes an efficient crowdsourcing trajectory outlier detection (CTOD)
method that detects outliers from the trajectory sequence data in both spatial view and temporal
view. Specifically, we first use the adaptive spatial clustering algorithm based on the Delaunay tri-
angulation (ASCDT) algorithm to remove the location offset points in the trajectory sequence. After
that, based on the most basic attributes of the trajectory points, a 6-dimensional movement feature
vector is constructed for each point as an input. The feature-rich trajectory sequence data is recon-
structed using the proposed temporal convolutional network autoencoder (TCN-AE), and the
Squeeze-and-Excitation (SE) channel attention mechanism is introduced. Finally, the effectiveness
of the CTOD method is experimentally verified.

Keywords: crowdsourcing trajectory data; outlier detection; time convolution network; autoen-
coder

MSC: 40B05, 54C56

1. Introduction
As an emerging type of spatio-temporal big data based on positioning technology

and navigation devices, vehicle-based crowdsourcing data has become a valuable trajec-
tory data resource. The analysis and mining of spatio-temporal trajectory data is funda-
mental content in the field of urban management and human activity, which consists of
trajectory clustering [1], trajectory correlation analysis [2], trajectory prediction [3], target
motion pattern recognition [4], and outlier detection [5], etc. However, crowdsourcing
trajectory data is collected by non-professionals and multiple measurement terminals, re-
sulting in some errors in the data collection. In these cases, the points in the trajectory that
have significant inconsistencies with most of their neighbors are called outliers. To mini-
mize the impact of outliers and obtain relatively accurate trajectory data, detecting and
cleaning outliers is a crucial task.

Since vehicles are constrained by the road network and traffic rules in the real world,
most of the trajectory points are located on the road surface. Only a tiny proportion of the
trajectory points offset beyond the road edge line because of vegetation, buildings, and
other factors [6]. Under this premise, researchers have attempted to use the method of
spatial clustering to eliminate the trajectory points in the low-density region [7,8]. For ex-
ample, Wang [9] adopted a kernel density function to remove outliers with low spatial
density. While density clustering can only eliminate offset points, it cannot eliminate the

Citation: Zheng, X.; Yu, D.; Xie, C.;

Wang, Z. Outlier Detection of

Crowdsourcing Trajectory Data

Based on Spatial and Temporal

Characterization. Mathematics 2023,

11, 620. https://doi.org/10.3390/

math11030620

Academic Editor: Guillaume

Bouleux

Received: 18 December 2022

Revised: 19 January 2023

Accepted: 24 January 2023

Published: 26 January 2023

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Mathematics 2023, 11, 620 2 of 20

low precision trajectory points in the high-density region. To solve this problem, some
studies have considered the movement characteristics of the trajectory points. For in-
stance, Yang [10] proposed a partition-and-filter model for filtering trajectories, which di-
vides trajectories based on distance and angle constraints, and then filters sub-trajectories
according to the desired trajectory-filtering accuracy. All of the above methods require
massive manual testing to adjust the parameters. Furthermore, the detection performance
is highly dependent on the accuracy of the parameters and cannot automatically learn the
differences between the abnormal and normal data.

In recent research, machine learning and deep learning methods, which can automat-
ically learn features from big data, have shown more significant potential for the outlier
detection task. Among machine learning models, support vector machines (SVM) [11,12],
local outlier factors (LOF) [13,14], and isolation forests (IF) [15] are widely used for outlier
detection. Choi [11] proposed a modified SVM that weights feature vectors to reflect the
local density of the support vectors and quantify classification uncertainty in terms of the
local classification capability of each training sample. Degirmenci [13] proposed RiLOF,
based on LOF, which has a high detection rate even in high-dimensional data; Mansoor
[15] developed an outlier detection technique named “iF_Ensemble” for a Wi-Fi indoor
localization environment. These proposed machine learning methods offer good accuracy
with small datasets, but those with shallow learning networks perform unsatisfactorily
with large-scale datasets.

In contrast, deep learning methods are more effective. Mahmoud [16] combined Con-
volutional Neural Networks (CNNs) and Long Short Term Memory Networks (LSTMs)
to capture the spatio-temporal characteristics of network traffic and has higher detection
accuracy than individual models. Canizo [17] proposed a novel Multi-head CNN-RNN
architecture for multi-sensor time series outlier detection, which extracts the features of
each sensor separately. Even though the above methods provide better results, they re-
quire a large amount of labeled data for training, and the accessible labeled data is usually
limited.

For this reason, unsupervised outlier detection methods based on deep learning have
gained wide popularity recently. For example, Autoencoder (AE) [18] performs outlier
detection by examining its reconstruction loss. Yao [19] applied Variational Autoencoder
(VAE) to extract valuable features for the unsupervised outlier detection tasks. However,
the above methods are effective only when applied to non-serial data and not when ap-
plied directly to time series data. Since it treats each data block as a separate input while
a trajectory is a sequence of points related to spatial and temporal information, modeling
data blocks as separate vector inputs results in a loss of correlation. Provotar [20] proposed
a Short-Term Long Memory-based Autoencoders network (LSTM-AE) to detect internet
routing outliers. The LSTM memory units are used instead of ordinary neurons to build
the coder for historical-study time series modeling. The problem is that LSTM requires a
large amount of memory for long-time sequences to store cell states.

Nevertheless, all the aforementioned methods are only based on the spatial proxim-
ity among trajectory points or the temporal evolutionary nature of trajectory sequences
for outlier detection, and none of them provides a complete solution to the problem of
outlier detection. Therefore, this paper proposes a two-phase crowdsourcing trajectory
outlier detection framework (CTOD) that combines both spatial perspective and temporal
perspective, including spatial outlier detection phase and temporal outlier detection
phase. During the spatial outlier detection phase, to remove the location offset point in
trajectory sequences, we introduce the adaptive spatial clustering algorithm based on the
Delaunay triangulation (ASCDT) algorithm of Deng, Liu, Cheng, and Shi [21]. During the
temporal outlier detection phase, to enrich the input features, we first construct a 6-di-
mensional movement feature vector for each point as input to the model. Subsequently,
we use the Temporal Convolutional Network Autoencoder (TCN-AE) model to identify
temporal correlations between trajectory sequences, and remove movement property out-
liers by comparing the reconstruction loss of each trajectory point with a given outlier

Mathematics 2023, 11, 620 3 of 20

threshold. Specifically, we add the Squeeze-and-Excitation (SE) channel attention mecha-
nism to enhance the feature extraction capability of the TCN. The contributions of this
paper are summarized below.
1. We discuss and categorize common problems in crowdsourcing trajectory points, in-

cluding trajectory point offsets that may be caused by navigation device errors or
significant inconsistencies in trajectory point movement features due to acquisition
process errors.

2. We present two trajectory outlier definitions, including Location Offset Points (LO-
outlier) and Movement Property outliers (MP-outlier).

3. We propose a two-phase trajectory outlier detection framework (denoted as CTOD)
to identify both types of trajectory outliers.

4. We conduct a comprehensive experiment on a real-world vehicle trajectory dataset
to manifest the effectiveness and superiority of our approach compared with other
congeneric approaches.
This article is structured as follows: Section 1 introduces the research background

and reviews the related work in the literature. In Section 2, we define the classification of
trajectory outliers and discuss the challenging problems in trajectory outlier detection.
Section 3 outlines the scheme and elaborates the details of the CTOD model. Section 4
evaluates the proposed method. Section 5 concludes the whole article and point out future
directions.

2. Preliminaries
2.1. Classification of Crowdsourcing Trajectory Outliers

Crowdsourcing trajectory data is derived from many contributors, and the accuracy
of the navigation devices used by each contributor also varies, resulting in inaccurate,
incomplete, and illogical data in the trajectories. In this paper, trajectory outliers are clas-
sified into two categories.

Location Offset Points (LO-outliers). The recorded trajectory data may produce a loca-
tion deviation when a mobile object is in a weak signal area, such as in tunnels, under tall
buildings, or when the navigation device has low positioning accuracy. Trajectory points
may offset outside the road due to the location deviation, causing serious inconsistencies
with neighboring points (𝑃ଷ, 𝑃ସ in Figure 1).

.

Figure 1. Example of Location Offset Point.

Movement Property outliers (MP-outliers). In the process of collecting, transmitting,
storing, and processing trajectory data, errors are generated by humans and instruments.
These errors can result in significant differences in the movement properties between tra-
jectory points, such as speed, direction, or other attributes.

Mathematics 2023, 11, 620 4 of 20

2.2. Challenges in Trajectory Outlier Detection
While the outlier detection method for trajectory big data has been thoroughly inves-

tigated, it remains challenging due to localization uncertainties, uneven distribution area,
skewed distribution, and large scale.

The challenges are as follows:
1. In general, LO-outliers have a lower point density than those inside the roads. Addi-

tionally, since trajectory points are distributed unevenly, some points inside the
roads with sparse points also have a low point density, causing these points to be
removed as LO-outliers.

2. Trajectory contributors use various navigation devices, which causes differences in
the attribute categories. Some trajectory data collect attributes such as velocity and
direction angle for each point, but some trajectory data only collect coordinates and
time stamps. It is challenging to extract multidimensional movement features based
on limited attributes.

3. Trajectories are spatial sequences generated over time, so there is a spatial and tem-
poral correlation between trajectory points. To mine the temporal correlation im-
plied, it is necessary to explore the association between the independent movement
features of the points within the trajectory. Moreover, since different movement fea-
tures contribute differently to the temporal correlation extraction, extracting repre-
sentative movement features for each trajectory point is challenging.

3. Framework: Spatial and Temporal Outlier Detection in Trajectory Data
In this section, we propose a two-phase framework including a spatial outlier detec-

tion phase and temporal outlier detection to identify LO-outliers and MP-outliers, respec-
tively (Figure 2. Framework of CTOD).

Figure 2. Framework of CTOD.

3.1. Spatial Outlier Detection Phase: LO-Outlier Detection
During the spatial outlier detection phase, the ASCDT algorithm based on Delaunay

triangulation is introduced to identify LO-outliers and tackle Challenge 1 presented in
Section 2. First, we construct spatial topotaxy among the spatial points, which generates
triangle meshes by connecting sampling points. Further, the inconsistent edges are re-
moved from the Delaunay triangulation by constraining the length of the edges and the

Mathematics 2023, 11, 620 5 of 20

aggregation force of the spatial points. As a result, the points without edges connected to
them are identified as outliers. Therefore, identifying and removing these inconsistent
edges is the key to separating outliers.

3.1.1. Delaunay Triangulation Generation
Given a set of spatial points 𝑆 = ሼ𝑃ଵ, 𝑃ଶ, . . . , 𝑃௡ሽ in a 2-dimensional space, let DT(S) be

the Delaunay triangulation of S where each point 𝑃௜ represents a vertex. The necessary
and sufficient condition of the Delaunay triangulation is that no point of S is in the cir-
cumcircle of any triangle in the triangulation.

3.1.2. Global Length Constraint in Delaunay Triangulation
For each point 𝑃௜, the global length constraint can be represented as 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜)= 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇) + 𝛼 ∙ Global_Variation(𝐷𝑇)

(1)

𝛼 = 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇)/𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛(𝑃௜) (2)

where 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇) is the mean length of the edges in the Delaunay triangulation, 𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛(𝑃௜) is the mean length of the edges in relation to 𝑃௜ , and Global_Variation(𝐷𝑇) is the standard deviation of the length of all edges in the Delaunay
triangulation.

The edge 𝑒௝ directly connected to a point 𝑃௜ in Delaunay triangulation, which has a
length larger than or equal to 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜) , will be categorized to 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 and removed from the Delaunay triangulation at a global level. Oth-
erwise, if 𝑒௝ has a length shorter than 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be catego-
rized to 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠. 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ൛𝑒௝||𝑒௝ ∣≥ 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ൟ (3) 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ൛𝑒௝||𝑒௝ ∣< 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ൟ (4)

where |𝑒௝ ∣ is the length of edge 𝑒௝.

3.1.3. Local Length Constraint in Delaunay Triangulation
Despite removing the 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 from the Delaunay triangulation, some

inaccurate near edges remain at the local level. For each point 𝑃௜, the local length con-
straint can be represented as 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜)= 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛(𝑃௜) + 𝛽 ∙ 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜)

(5)

where 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛(𝑃௜) is the mean length of the edges by the points less than the
second-order neighbors of point 𝑃௜; 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜) is the mean value of the local
variation of the points; and 𝛽 is the control parameter. In practice, 𝛽 is set from 1 to 2.
Generally, the smaller the value of 𝛽, the easier it is to remove the long edges. In this
paper, 𝛽 is set to 1 by default.

For any point 𝑃௜ in the Delaunay triangulation, the edge 𝑒௞ consists of vertices in
the second-order neighbors of 𝑃௜ and belongs to 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠; then, if the length
of 𝑒௞ is larger than or equal to 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be categorized to 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 and removed at a local level. Otherwise, if the length of 𝑒௞ is smaller
than 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be categorized to 𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠. Thus, 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) and 𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) can be defined as follows: 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ሼ𝑒௞||𝑒௞ ∣≥ 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ሽ (6)

Mathematics 2023, 11, 620 6 of 20

𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ሼ𝑒௞||𝑒௞ ∣< 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ሽ (7)

where |𝑒௞ ∣ is the length of edge 𝑒௞.

3.1.4. Local Aggregation Constraint in Delaunay Triangulation
After removing the 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠, the cohesion of a spatial point is considered

for all points within its second-order neighbors. For each point 𝑃௝ and its second-order
neighbors 𝑃௞, the local aggregation force can be represented as 𝐹⃗൫𝑃௝, 𝑃௞൯ = 𝑘 ⋅ 1ቀ𝑑൫𝑃௝, 𝑃௞൯ቁଶ 𝑒௉ೕ௉ೖ (8)

where k is the constant, which is set to 1 here; 𝑑൫𝑃௝, 𝑃௞൯ is the Euclidean distance between 𝑃௝; and 𝑃௞; 𝑒௉ೕ௉ೖ is the unit vector from 𝑃௝ to 𝑃௞.
For each point 𝑃௝, the cohesive local aggregation force is equal to the sum of all its

local aggregation forces and can be represented as 𝐹⃗஼൫𝑃௝൯ = ∑𝐹⃗൫𝑃௝, 𝑃௞൯ (9)

For each point 𝑃௝ , the local aggregation set of 𝑃௝ is composed by the points that
strongly attract 𝑃௝ and directly connect to 𝑃௝, represented as 𝐿𝑜𝑐𝑎𝑙_𝐴𝑔𝑔_𝑆𝑒𝑡൫𝑃௝൯ = ቄ𝑃௞ ∣ 𝜃 ቀ𝐹்⃗൫𝑃௝൯, 𝐹⃗൫𝑃௝, 𝑃௞൯ቁ < 90∘ቅ (10)

where 𝜃 ቀ𝐹்⃗൫𝑃௝൯, 𝐹⃗൫𝑃௝, 𝑃௞൯ቁ is the angle between 𝐹்⃗൫𝑃௝൯ and 𝐹⃗൫𝑃௝, 𝑃௞൯.

3.1.5. Algorithm Description
The ASCDT algorithm is mainly composed of four steps. Each step and its time com-

plexity are described as follows:
Input: A spatial point dataset S, which contains N spatial points with coordinates.
Output: Spatial points after removal outliers.
Step 1 Remove first-order long edges at a global level:
• Construct the Delaunay triangulation DT of S (Figure 3a); the time complexity is

O(NlogN).
• For each point, calculate the 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛 (𝐷𝑇) and Global_Variation (𝐷𝑇) in the

Delaunay triangulation and 𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛 (𝑃௜). The time complexity is linear to N.
• Remove 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 to separate global outliers (Figure 3b). The time com-

plexity is O(N).
Step 2 Remove second-order long edges at a local level:
• For each point, calculate 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛 (𝑃௜) and 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜). The time

complexity is linear to N.
• Remove 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 to separate local outliers (Figure 3c). The time complex-

ity is O(N).
Step 3 Deal with necks and chains:
• Remove 𝐿𝑜𝑐𝑎𝑙_𝐿𝑖𝑛𝑘_𝐸𝑑𝑔𝑒𝑠 and separate final outliers (Figure 3d). The time com-

plexity is O(N).
Thus, the total complexity of the ASCDT algorithm is about O(NlogN).

Mathematics 2023, 11, 620 7 of 20

(a) (b)

(c) (d)

Figure 3. Schematic of ASCDT algorithm. (a) Delaunay triangulation; (b) global length constraint;
(c) local length constraint; (d) local aggregation constraint.

3.2. Temporal Outlier Detection Phase: MP-Outlier Detection
During the temporal outlier detection phase, to enrich the input features, we first

extract a 6-dimensional feature vector for each point, consisting of velocity, acceleration,
course, turning angle, turning rate, and sinuosity. The TCN-AE model is then used to
identify time correlations between the trajectory sequences and to remove MP-outliers by
comparing the reconstruction loss of each trajectory point with a given outlier threshold.
Specifically, we add the SE channel attention mechanism to enhance the feature extraction
capability of the TCN.

3.2.1. Feature Extraction
To tackle Challenge 2 presented in Section 2, we enrich the feature space by extracting

physically meaningful features from the raw data to help TCN learn the dependencies of
the input sequences. Following the latest research [22], this paper selects six movement
features.

Given a trajectory 𝑇𝑅 = ⟨𝑃ଵ, 𝑃ଶ, ⋯ , 𝑃௡⟩, we extract a 6-dimensional feature vector for
each point, consisting of velocity, acceleration, course, turning angle, turning rate, and
sinuosity. As can be seen in Figure 4, each feature can be calculated as follows:

Mathematics 2023, 11, 620 8 of 20

Figure 4. A diagram of trajectory segment.

1. Velocity
The velocity is expressed as the ratio of the distance between two adjacent points to

the time difference, indicating the target point movement rate. Outliers in a trajectory usu-
ally have greater velocity than their neighbors. For each point 𝑃௜, the velocity can be rep-
resented as

𝑣௜ = 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ିଵ)𝑡௜ − 𝑡௜ିଵ (11)

where 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ିଵ) denotes the distance between point 𝑃௜ and its previous point 𝑃௜ିଵ.

Mathematics 2023, 11, 620 9 of 20

2. Acceleration
The acceleration is expressed as the ratio of the velocity between two adjacent points

to the time difference, indicating the rate of velocity change. Similar to velocity, outliers
in a trajectory usually have a greater acceleration than their neighbors. For each point 𝑃௜,
the acceleration can be represented as 𝑎௜ = 𝑣௜ − 𝑣௜ିଵ𝑡௜ − 𝑡௜ିଵ (12)

3. Course
The course is defined as the movement direction between consecutive points in a

trajectory. It is expressed by taking the angle between the line connecting the current point
with the latter point and the due north direction. Generally, if the course of a moving
object changes suddenly, the point is more likely to be anomalous. For each point 𝑃௜, the
course can be represented as 𝑐𝑜𝑢𝑟𝑠𝑒௜ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥, 𝑦) (13) 𝑥 = 𝑐𝑜𝑠(𝑙𝑎𝑡௜) ⋅ 𝑠𝑖𝑛(𝑙𝑛𝑔௜ − 𝑙𝑛𝑔௜ିଵ) (14) 𝑦 = 𝑐𝑜𝑠(𝑙𝑎𝑡௜ିଵ) ⋅ 𝑠𝑖𝑛(𝑙𝑎𝑡௜) − 𝑠𝑖𝑛(𝑙𝑎𝑡௜ିଵ) ⋅ 𝑐𝑜𝑠(𝑙𝑎𝑡௜) ⋅ 𝑐𝑜𝑠(𝑙𝑛𝑔௜ − 𝑙𝑛𝑔௜ିଵ) (15)

4. Turning Angle
The turning angle represents the change between the heading of two adjacent points.

Compared with the surrounding trajectory points, those points with significantly differ-
ent turning angle are more likely to be outliers. For each point 𝑃௜, the turning angle can
be represented as 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ = 𝑐𝑜𝑢𝑟𝑠𝑒௜ିଵ − 𝑐𝑜𝑢𝑟𝑠𝑒௜ (16)

5. Turning Rate
The turning rate is expressed as the ratio of the turning angle between two adjacent

points to the time difference, indicating the rate of turning angle change. For each point 𝑃௜, the turning rate can be represented as 𝜔௜ = 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ − 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ିଵ𝑡௜ − 𝑡௜ିଵ (17)

6. Sinuosity
The sinuosity is defined as the ratio of the moving distance between three adjacent

points to the distance of a straight line between two endpoints. Outliers in a trajectory
usually have greater sinuosity than their neighbors. For each point 𝑃௜, the sinuosity can
be represented as 𝑠௜ = 𝑑𝑖𝑠𝑡 (𝑃௜ିଵ, 𝑃௜) + 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ାଵ)𝑑𝑖𝑠𝑡 (𝑃௜ିଵ, 𝑃௜ାଵ) (18)

3.2.2. MP-Outlier Detection with TCN-AE
To tackle Challenge 3 presented in Section 2, we are inspired by the TCN-AE model,

since the outlier detection task of GPS trajectories is similar to time series, where trajecto-
ries can be treated as input sequences.
1. Temporal Convolutional Network (TCN)

The TCN was proposed in a recent study [23]. It consists of a 1D fully convolutional
network (FCN), causal convolutions, dilated convolutions, and residual connections. FCN
is mainly used to fulfil the principle that the output of all convolutional layers has the

Mathematics 2023, 11, 620 10 of 20

same length t, with zero padding to ensure subsequent layers that are the same length as
previous layers.

Causal convolutions. Causal convolutions are used to ensure no information “leakage”
from future to past. To ensure that, the output of each convolution layer at time step i
corresponds only with the current layer and the previous layer, i.e., the output 𝑦௜ is pre-
dicted only utilizing current and past input 𝑋ଵ:௜ for preventing future input 𝑋௜ାଵ:௧ leak-
age.

Dilated convolutions. With the time series containing long temporal dependencies, it
is generally expected that the network will be able to retain long-term information. How-
ever, the sample causal convolutions are limited to the length of the receptive field unless
the convolution layers are stacked in large numbers. It makes casual convolution chal-
lenging to apply to sequence tasks. To solve the problem of heavy calculation costs, di-
lated convolutions are employed to provide an exponentially large receptive field with
limit layers. More specifically, for an input sequence 𝑋ଵ:௧ = ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௧ሽ and a filter 𝑓 =(0,1, ⋯ , 𝑘 − 1), the output of the dilated convolution operation F is defined as 𝐹(𝑥௜) = (𝑋∗ ௗ𝑓)(𝑥௜) = ∑௝ୀ଴௞ିଵ 𝑓(𝑗) ൉ 𝑥௜ିௗ൉௝ (19)

where * denotes the convolution operator, 𝐹(𝑥௜) is the output of the dilated convolution
operation, and d is the dilation factor. When d = 1, the dilated convolutional layer reduces
to a regular convolutional layer.

Figure 5 shows a dilated convolution schematic with dilated factors d = 1, 2, 4 and a
filter size of k = 3. The acceptance area covers all the values of all the input sequences.

Figure 5. Schematic of TCN dilated causal convolution.

Residual connections. When causal convolutions and dilated convolutions are applied
to the TCN, the network depth increases, which may result in gradient disappearance or
gradient explosion. To solve this problem, residual connections are introduced to the net-
work. Residual connections are used in ResNet, which are allowed to pass information in
a cross-layer way. Many researchers have demonstrated that deep networks are in need
of residual connections to prevent overfitting. A residual block contains two convolu-
tional layers and a nonlinear mapping. In each layer, a weight regularization and a drop-
out algorithm are also added to regularize the network to prevent deep network overfit-
ting. To reduce the dimensionality, an additional 1 × 1 convolution is also included, which

Mathematics 2023, 11, 620 11 of 20

makes the two tensors the same shape (Figure 6). The input x is weighted and fused into
the output f(x) to produce the final output y: 𝑦 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑥 + 𝑓(𝑥)) (20)

where 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛() is the activation function.

+

()() () ()
1ˆ ˆ ˆ,...,i i i

Tz z z=

()(1) (1) (1)
1ˆ ˆ ˆ,...,i i i

Tz z z− − −=

Dilated Causal Conv

WeightNorm

ReLU

Dropout

Dilated Causal Conv

WeightNorm

ReLU

Dropout

1 × 1 Conv
(optional)

0x 1x

+ +

Residual block (k = 3, d = 1)

Convolutional Filter

Identity Map (or 1 × 1 Conv)

(1)
1ˆTz −

(1)ˆTz

1Tx − Tx···

(a) (b)

Figure 6. Schematic of TCN residual block. (a) a TCN residual block; (b) an example of a residual
connection in TCN.

2. SE Attentional Mechanism
In the convolutional network, by default, each channel of the feature map is equally

important, while in reality, the importance of different channels varies. To enhance the
feature representation capability of the model, the channel attention mechanism in the SE
block is introduced to improve the TCN. Essentially, the SE block assigns a weight to each
channel of features so that the model focuses on those channels with key features and
suppresses any channels with non-key features, improving the model’s ability to extract
features. An SE block is composed of two operations: a squeeze function, which aggre-
gates the global features of each feature map and extracts the most important information
for each channel, and an excitation function, which calculates the dependencies between
feature channels to obtain the importance weight coefficients of each channel.

As the attention mechanism for this residual block, the SE block is introduced after
each layer of the TCN. The original SE block only uses global average pooling. To enhance
the ability of the SE block to express global features, we add global maximum pooling to
the original SE block. The SE-TCN residual block is shown in Figure 7.

Mathematics 2023, 11, 620 12 of 20

(a) (b) (c)

Figure 7. The comparison of TCN residual block and SE-TCN residual block. (a) TCN residual block;
(b) SE-TCN residual block with average pooling; (c) SE-TCN residual block with average pooling
and max pooling.

The output after squeeze is obtained by 𝑓average = 𝐹௦௤ଵ൫𝑧̂(௜)൯ = 1𝐻 ∑௝ୀଵு  𝑧(𝑗) (21)

𝑓௠௔௫ = 𝐹௦௤ଶ൫𝑧̂(௜)൯ = 𝑚𝑎𝑥൫𝑧̂(௜)൯ (22)

where 𝑧̂(௜ିଵ) = ൫𝑧̂଴(௜ିଵ), ⋯ , 𝑧̂(்௜ିଵ)൯ and 𝑧̂(௜) = ൫𝑧̂଴(௜), ⋯ , 𝑧̂(்௜)൯ are the input and output of the
TCN residual block for the i-th residual block; 𝑓average and 𝑓୫ୟ୶ are the results of global
average pooling and global maximum pooling for a single feature channel, respectively.

The output after excitation is obtained by 𝑠 = 𝐹௘௫(𝑓, 𝑊) = 𝜎(𝑔(𝑓, 𝑊))= 𝜎൫𝑊average
ଶ 𝛿൫𝑊average

ଵ 𝑓average൯ +𝑊௠௔௫ଶ 𝛿(𝑊௠௔௫ଵ 𝑓௠௔௫)൯ (23)

where 𝑊average
ଵ , 𝑊average

ଶ , 𝑊୫ୟ୶ଵ , 𝑊୫ୟ୶ଶ are the matrix parameters to be learned to calculate
the correlation of features between channels; s is the weighting factor for the individual
channel.

Finally, the channel weights of the above output are multiplied by the original fea-
tures, thus realizing the redistribution of the original features in the channel dimension. 𝑧̂ௌா(௜) = 𝐹௦௖௔௟௘൫𝑧̂(௜), 𝑠൯ = 𝑠𝑧̂(௜) (24)

where 𝑧̂ୗ୉(௜) = ቀ𝑧̂ௌா(଴)(௜) , ⋯ , 𝑧̂ௌா(்)(௜) ቁ is the output of the i-th TCN residual block after weighting
the weight coefficients by the SE block, i.e., the output of the SE-TCN residual block.
3. Outlier Detection Model with TCN-AE

As illustrated in Figure 8, TCN-AE is designed to reconstruct the input sequence 𝑋 =(𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௠)் into an output sequence 𝑋̂ = (𝑥̂ଵ, 𝑥̂ଶ, ⋯ , 𝑥̂௠)், which is composed of an en-
coder network and a decoder network. Essentially, the TCN-AE proposed here is similar
to other autoencoder architectures. However, it differs from conventional autoencoders
in that it combines causal and sparse convolutional layers instead of fully connected lay-
ers. Consequently, the network is more flexible for variable input sizes and more sensitive
to temporal correlation. The central idea is to encode the input sequence compressively
for creating a compact representation, which forces the network to learn the most

Mathematics 2023, 11, 620 13 of 20

representative patterns in the original input and to accurately reconstruct the original in-
put. Conceptually, the TCN-AE learns to ignore data noise and trains the network for the
purpose of minimizing the reconstruction loss of the input sequence. As a result, the
anomalous data will have a larger reconstruction loss than normal data. Based on this, the
TCN-AE can detect the anomalous data of GPS trajectories through its reconstruction loss.

Figure 8. Our proposed TCN-AE model.

Encoder. The encoder learns how to compress the original input sequence into a more
compact representation that captures the main characteristics and considers the depend-
encies in sequential order. In the encoding phase, the encoder passes an input sequence
through a TCN, a 1 × 1 convolutional layer and an average-pooling layer. As we men-
tioned before, for the encoder to generate the most significant features of an input se-
quence, it is required to analyze both short-term and long-term patterns. To tackle this
challenge, the TCN is introduced to the encoder part. Then, the convolutional layer is used
to reduce the dimension of the feature map, and the average-pooling layer is used to
down-sample the time series by a specified factor.

Decoder. The decoder attempts to reconstruct the compact representation (the output
of the encoder) into original input sequence. In the decoding phase, to restore the length
of the original input sequence, we first use an upsample layer. Next, the upsampled se-
quence passes through a second TCN, which has the same structure as the encoder but
with independent weights. Finally, the dimension of the original input sequence has to be
restored. For this purpose, the decoder passes another 1 × 1 convolutional layer with filters
that have the same number as the dimension.

After decoding, the network outputs a reconstruction error score for each trajectory
point. Low scores indicate normal behavior, whereas high scores indicate abnormal be-
havior. By setting a threshold, each point is classified as nominal or outlier.

4. Experiment
4.1. Dataset

We validated the effectiveness of our model on a real-world vehicle trajectory dataset
from the Beijing Taxi Administration Office. The dataset contains trajectories of 8422 driv-
ers and 874,094 GPS records in the Haidian district, Beijing over a period of 24 h on 9
December 2018. All the trajectories are completed and sampled in 15~25 s. It covers a rec-
tangular area from (39.8885, 116.0357) to (40.1545, 116.3879) around 30 km long and 29 km
wide.

Mathematics 2023, 11, 620 14 of 20

For the LO-outlier cleaning experiment, we randomly selected an area containing 10
roads and 19,887 GPS points as the evaluation data. After removing the offset points from
the entire dataset, we split the remaining trajectory point dataset into training set, valida-
tion set, and test set with a splitting ratio of 6:2:2. The test set is labeled by multiple expe-
riencers based on the position, velocity, and acceleration for each point in the trajectory.
The outlier points are labeled as 1 (positive category), and normal points are labeled as 0
(negative category). All outlier detection algorithms are trained unsupervised. Actual out-
lier labels are only used at test time.

4.2. Evaluation Criteria
This paper uses Accuracy, Precision, Recall, and F1-score as the evaluation index [24].

The calculations are shown in Equations (25)–(28). With a higher Accuracy, Precision, Re-
call, and F1-score, the outlier detection method is more accurate. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (25)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (26)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (27)

𝐹ଵ − 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ Precision ⋅ RecallPrecision + Recall (28)

Outlier thresholds are set based on false negatives (Recall) and false positives (Accu-
racy). Thus, thresholds are determined based on equal accuracy (EAC), a performance
metric which guarantees that accuracy and recall are approximately equal (the difference
between accuracy and recall is less than 1%). Alternatively, the threshold can be applied
to all the trajectory data by selecting the best threshold (F1-Score maximization) for a small
portion of the trajectory data. For practical applications, this approach is more realistic
because few labeled data are usually available.

4.3. Experiment Settings
The ASCDT algorithm is implemented using PySpark v3.3.1. As an LO-outlier, we

set those points without any remaining edges. After removing offset points, the input to
each algorithm is a 6-dimensional movement feature vector for each trajectory point.

We compared our unsupervised CTOD algorithm to other unsupervised outlier de-
tection algorithms; each setting is as follows:
IF [25]: IF (scikit-learn, v0.23.2) uses a number of 1000 base estimators in the ensemble and

a sliding window size of w = 50.
VAE [26]: LSTM-AE is implemented using the PyTorch framework. Both encoder and de-

coder use a single hidden layer with 400 dimensions, and the potential dimension is
200 dimensions.

LSTM-AE [27]: LSTM-AE is implemented using the PyTorch framework. The encoder
uses a 2-layer LSTM network with 128 units in the first layer and 64 units in the sec-
ond layer. The decoder is the reverse.

TCN-AE (baseline) [28]: Baseline TCN-AE is also implemented using the PyTorch frame-
work. Both encoder and decoder use six dilated convolutional layers, respectively,
and sixteen filters with a kernel size of k = 6.

CTOD: TCN-AE is implemented using the PyTorch framework. Both the encoder and de-
coder use six dilated convolutional layers, respectively, and sixteen filters with a ker-
nel size of k = 6. The global maximum pooling and the global average pooling are
both added in the SE residual block.

Mathematics 2023, 11, 620 15 of 20

4.4. Experiment Results
4.4.1. Experiment 1: Location Offset Point Cleaning Effectiveness Evaluation

As an example, Figure 9 shows the effectiveness of the LO-outlier detection. In the
case of Figure 9a, sporadic trajectory points outside of the road are well detected as offset
points. As seen in Figure 9b, many trajectory points are collected in a parking area. They
are not anomalous points, despite being outside the road.

(a) (b)

Figure 9. Example of location offset point detection. (a) example of well detected offset points. (b)
example of trajectory points in a parking area.

The results of the cleaning effectiveness evaluation are shown in Table 1; 96.74% of
the total trajectory points are correctly classified, and 87.47% of all the 3830 offset points
are detected. This experiment verifies that the method can successfully remove the LO-
outlier from the raw trajectory data without using map information.

Table 1. Cleaning effectiveness evaluation.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
96.74 87.47 92.11 89.73

4.4.2. Experiment 2: Extracted Outlier Points Evaluation
1. Overall Performance

The performance of different approaches for trajectory outlier detection is presented
in Table 2. We observe that CTOD (F1-score = 0.8985) has the highest performance, fol-
lowed by LSTM-AE (F1-score = 0.8806), baseline TCN-AE (F1-score = 0.8557), and VAE
(F1-score = 0.8491), while IF performs the worst (F1-score = 0.7289). Moreover, based on
the nonparametric Wilcoxon signed-rank test [29], we calculated the p-values to assess the
significance of the results. The null hypothesis of the Wilcoxon test is that the F1-score of
CTOD is smaller than the comparison algorithm. The table shows the p-values used to
compare the F1-score of each algorithm with CTOD. The performance of CTOD is signif-
icantly higher than that of the other algorithms (p < 0.05, rejecting the null hypothesis at
the 5% confidence level).

Table 2. Overall performance comparison.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) p
IF 97.05 79.61 67.22 72.89 9.26 × 10-6

VAE 98.26 87.24 82.70 84.91 9.26 × 10-6
LSTM-AE 98.56 86.13 90.08 88.06 9.26 × 10-6

TCN-AE (baseline) 98.31 86.12 85.03 85.57 9.26 × 10-6
CTOD 98.79 89.40 90.31 89.85 -

Mathematics 2023, 11, 620 16 of 20

2. Impact of Different Outlier Thresholds
We investigated the relationship between the reconstruction loss threshold and the

outlier detection results. The effectiveness of the CTOD algorithm varies for different
thresholds. As seen in Table 3, the detection metric F1-score reached a peak of 89.85% at a
threshold value of 0.003.

Table 3. Performance with different outlier thresholds.

No. Threshold Accuracy (%) Precision (%) Recall (%) F1-Score (%)
1 0.001 67.59 15.40 99.86 26.69
2 0.002 94.23 50.60 99.86 67.17
3 0.003 98.79 89.40 90.31 89.85
4 0.0032 98.27 92.89 76.66 84.00
5 0.0034 97.59 95.57 62.14 75.31
6 0.0036 96.94 97.21 49.67 65.75
7 0.0038 96.45 97.99 40.67 57.48
8 0.004 96.07 98.17 34.05 50.56
9 0.005 95.13 98.52 17.89 30.28

10 0.006 94.71 97.81 10.70 19.28
11 0.007 94.46 96.59 6.39 11.99
12 0.008 94.33 95.25 4.25 8.13
13 0.009 94.25 95.35 2.89 5.61
14 0.01 94.19 95.31 1.72 3.38

Moreover, we also investigated the impact of threshold selection on detection results
when only a small proportion of the trajectory dataset is used. Our experiment selected
10% of the dataset, and we determined the threshold for maximizing the F1-score on this
subset. Taking into account the randomness of the results that resulted from the selection
of different sub-data sets, we repeated the whole process ten times and averaged the re-
sults. We adjusted the threshold for 10% of the dataset, and then we evaluated the remain-
ing 90%. As seen in

, in comparison to Table 4, the F1-score of the algorithm deteriorates, but results are
similar. Therefore, we can conclude that the method of selecting the best threshold from
the subset is valid and will work in real-world situations.

Table 4. Performance with outlier thresholds determine from only 10% of the outlier labels.

F1-Score Accuracy (%) Precision (%) Recall (%) F1-Score (%)
1 98.56 83.98 93.63 88.54
2 98.68 88.51 88.76 88.63
3 98.52 83.68 90.79 87.09
4 98.43 82.35 92.79 87.26
5 98.57 84.29 93.46 88.64
6 98.78 89.49 90.11 89.79
7 98.13 78.20 95.41 85.95
8 98.42 82.54 93.46 87.66
9 98.67 88.21 89.88 89.04

10 98.73 88.91 90.02 89.46
Average 98.55 85.02 91.83 88.21

3. Impact of Reconstruction Loss Functions

Mathematics 2023, 11, 620 17 of 20

The purpose of this experiment is to understand the sensitivity of different recon-
struction loss functions on detection accuracy. Three reconstruction loss functions were
investigated. They are root mean square error (RMSE), mean absolute error (MAE), and
mean squared error (MSE), respectively. The definitions of these functions are described
in the following equations.

𝑅𝑀𝑆𝐸 = ඨ∑௜ୀଵ௡  (𝑥௜ − 𝑥̂௜)ଶ𝑛 (29)

𝑀𝐴𝐸 = ∑௜ୀଵ௡  |𝑥௜ − 𝑥̂௜|𝑛 (30)

𝑀𝑆𝐸 = ∑௜ୀଵ௡  (𝑥௜ − 𝑥̂௜)ଶ𝑛 (31)

where n represents the total number of samples, 𝑥௜ is the original input sample, and 𝑥̂௜
is the output.

Figure 10 illustrates the relationship between reconstruction loss values and thresh-
old values. We can clearly see that most of the trajectory points have a reconstruction loss
below the threshold, and these points are marked as normal. In contrast, those trajectory
points marked as abnormal have a greater reconstruction loss than the threshold. The re-
construction loss values of the real classification and predicted classification are highly
consistent with their reconstruction loss distribution ranges.

(a)

(b)

Mathematics 2023, 11, 620 18 of 20

(c)

Figure 10. Reconstruction loss distribution. (a) Reconstruction loss distribution based on MAE; (b)
reconstruction loss distribution based on MSE; (c) reconstruction loss distribution based on RMSE.

As seen in Table 5, based on the three loss functions used, we obtained different
thresholds. In spite of this, there are few differences between the evaluation results of the
three loss functions. Among them, MAE provides the best detection results, while RMSE
and MSE have essentially the same detection results.

Table 5. Performance of different loss mechanisms.

Metric Threshold Accuracy (%) Precision (%) Recall (%) F1-Score (%)
RMSE 0.00450 98.52 88.38 86.20 87.28
MAE 0.00300 98.79 89.40 90.31 89.95
MSE 0.00002 98.54 88.36 86.67 87.51

5. Conclusions
Crowdsourcing trajectory data contains a large amount of information relevant to

daily life, and it has great research potential. For example, the living habits of the residents
of a city can be obtained by mining their trajectories, which in turn gives a deeper under-
standing of the culture and economy of the city. Meanwhile, information about popular
locations and road conditions can be gathered from the trajectories in a city, and this in-
formation offers corresponding references to the control and administration of traffic and
tourism events. Moreover, correlation analysis of trajectory data with other social, eco-
nomic, and demographic data can reveal the flow pattern of the urban population, social
activity dynamics, energy consumption distribution, and environmental pollution status,
which can enhance urban management decisions. Due to various reasons such as technical
limitations, there is inevitably a large amount of noise in the existing trajectory data, so
the quality assurance of the trajectory data does the necessary groundwork for reliable
research results.

In this paper, we proposed a crowdsourcing trajectory outlier detection framework
called CTOD. The framework contains two phases. First, based on the ASCDT algorithm,
LO-outliers are removed by calculating the local density adaptively and constraining the
edge length of the triangulation. Second, based on the TCN-AE, MP-outliers are removed
by mining the trajectories for internal temporal correlation features. The feature extraction
and attention mechanism are implemented to improve performance. Our study result
shows that it can effectively detect trajectory outliers. In general, our method has a F1-
score about 2% higher than the LSTM-AE, about 5% higher than the VAE, and about 15%
higher than the IF. Overall, the enhanced TCN-AE architecture is more advantageous for
trajectory sequences. There are several more advantageous properties of the improved
TCN-AE architecture for time series that might contribute to this:

Mathematics 2023, 11, 620 19 of 20

Acceptance field: With the dilated convolutional structure, the acceptance field can easily
be scaled down to the required size, allowing it to capture long-term time depend-
ences more effectively.

Skip connection: With skip connection, TCN-AE is less sensitive to the choice of dilated
factors. For example, we can select the dilated factors q = (1,2, . . . ,32) or q =(1,2, . . . ,64), with similar results.

Hidden representations: By exploiting the output of the intermediate dilated convolu-
tional layers, the input features can be accurately reconstructed at different time-
scales.

Number of weights: TCN-AE requires fewer trainable weights than other architectures,
such as recurrent neural networks.

SE attention mechanism: With the SE attention mechanism, different contribution levels
can be assigned to the constructed 6-dimensional input features, resulting in a more
effective feature compression.
In this paper, the threshold for outlier detection is obtained through continuous ex-

perimental testing. Our threshold produces good outlier detection results. In future work,
we intend to explore trajectory outlier detection algorithms by setting sensitive parame-
ters automatically.

Author Contributions: Conceptualization, X.Z. and C.X.; methodology, X.Z.; validation, X.Z. and
C.X.; data curation, D.Y.; writing—original draft preparation, X.Z.; writing—review and editing,
X.Z., C.X. and Z.W.; visualization, X.Z.; supervision, D.Y.; project administration, D.Y.; funding ac-
quisition, D.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Jilin Special Fund for Industrial Innovation, grant num-
ber 2019C024 and the Jilin Science and Technology Development Project was funded by
20190101023JH.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors also thank the associate editor and the reviewers for their useful
feedback that improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A Review of Moving Object Trajectory Clustering Algorithms. Artif. Intell. Rev. 2017,

47, 123–144. https://doi.org/10.1007/s10462-016-9477-7.
2. Xiao, P.; Ang, M.; Jiawei, Z.; Lei, W. Approximate Similarity Measurements on Multi-Attributes Trajectories Data. IEEE Access

2019, 7, 10905–10915. https://doi.org/10.1109/ACCESS.2018.2889475.
3. Wang, C.; Ma, L.; Li, R.; Durrani, T.S.; Zhang, H. Exploring Trajectory Prediction Through Machine Learning Methods. IEEE

Access 2019, 7, 101441–101452. https://doi.org/10.1109/ACCESS.2019.2929430.
4. Kim, J.; Mahmassani, H.S. Spatial and Temporal Characterization of Travel Patterns in a Traffic Network Using Vehicle Trajec-

tories. Transp. Res. Procedia 2015, 9, 164–184. https://doi.org/10.1016/j.trpro.2015.07.010.
5. Meng, F.; Yuan, G.; Lv, S.; Wang, Z.; Xia, S. An Overview on Trajectory Outlier Detection. Artif. Intell. Rev. 2019, 52, 2437–2456.

https://doi.org/10.1007/s10462-018-9619-1.
6. Guo, T.; Iwamura, K.; Koga, M. Towards High Accuracy Road Maps Generation from Massive GPS Traces Data. In Proceedings

of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 667–670.
7. Cao, K.; Shi, L.; Wang, G.; Han, D.; Bai, M. Density-Based Local Outlier Detection on Uncertain Data. In Web-Age Information

Management; Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z., Eds.; Lecture Notes in Computer Science; Springer International Pub-
lishing: Cham, Switzerland, 2014; Volume 8485, pp. 67–71. ISBN 978-3-319-08009-3.

8. Liu, Z.; Pi, D.; Jiang, J. Density-Based Trajectory Outlier Detection Algorithm. J. Syst. Eng. Electron. 2013, 24, 335–340.
https://doi.org/10.1109/JSEE.2013.00042.

9. Wang, J.; Rui, X.; Song, X.; Tan, X.; Wang, C.; Raghavan, V. A Novel Approach for Generating Routable Road Maps from Vehicle
GPS Traces. Int. J. Geogr. Inf. Sci. 2015, 29, 69–91. https://doi.org/10.1080/13658816.2014.944527.

Mathematics 2023, 11, 620 20 of 20

10. Yang, X.; Tang, L. CROWDSOURCING BIG TRACE DATA FILTERING: A PARTITION-AND-FILTER MODEL. Int. Arch. Pho-
togramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B2, 257–262. https://doi.org/10.5194/isprs-archives-XLI-B2-257-2016.

11. Choi, M.-K.; Lee, H.-G.; Lee, S.-C. Weighted SVM with Classification Uncertainty for Small Training Samples. In Proceedings
of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4438–4442.

12. Xu, S.; Zhu, J.; Shui, P.; Xia, X. Floating Small Target Detection in Sea Clutter by One-Class SVM Based on Three Detection
Features. In Proceedings of the 2019 International Applied Computational Electromagnetics Society Symposium-China (ACES),
Nanjing, China, 8–11 August 2019; pp. 1–2.

13. Degirmenci, A.; Karal, O. Robust Incremental Outlier Detection Approach Based on a New Metric in Data Streams. IEEE Access
2021, 9, 160347–160360. https://doi.org/10.1109/ACCESS.2021.3131402.

14. Bo, Liu; Yanshan, X.; Yu, P.S.; Zhifeng, H.; Longbing, C. An Efficient Approach for Outlier Detection with Imperfect Data Labels.
IEEE Trans. Knowl. Data Eng. 2014, 26, 1602–1616. https://doi.org/10.1109/TKDE.2013.108.

15. Bhatti, M.A.; Riaz, R.; Rizvi, S.S.; Shokat, S.; Riaz, F.; Kwon, S.J. Outlier Detection in Indoor Localization and Internet of Things
(IoT) Using Machine Learning. J. Commun. Netw. 2020, 22, 236–243. https://doi.org/10.1109/JCN.2020.000018.

16. Abdallah, M.; An Le Khac, N.; Jahromi, H.; Delia Jurcut, A. A Hybrid CNN-LSTM Based Approach for Anomaly Detection
Systems in SDNs. In Proceedings of the The 16th International Conference on Availability, Reliability and Security, Vienna,
Austria, 17 August 2021; pp. 1–7.

17. Canizo, M.; Triguero, I.; Conde, A.; Onieva, E. Multi-Head CNN–RNN for Multi-Time Series Anomaly Detection: An Industrial
Case Study. Neurocomputing 2019, 363, 246–260. https://doi.org/10.1016/j.neucom.2019.07.034.

18. Yang, D.; Hwang, M. Unsupervised and Ensemble-Based Anomaly Detection Method for Network Security. In Proceedings of
the 2022 14th International Conference on Knowledge and Smart Technology (KST), Chon buri, Thailand, 26 January 2022; pp.
75–79.

19. Yao, R.; Liu, C.; Zhang, L.; Peng, P. Unsupervised Anomaly Detection Using Variational Auto-Encoder Based Feature Extrac-
tion. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco,
CA, USA, 17–20 June 2019; pp. 1–7.

20. Provotar, O.I.; Linder, Y.M.; Veres, M.M. Unsupervised Anomaly Detection in Time Series Using LSTM-Based Autoencoders.
In Proceedings of the 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine,
18–20 December 2019; pp. 513–517.

21. Deng, M.; Liu, Q.; Cheng, T.; Shi, Y. An Adaptive Spatial Clustering Algorithm Based on Delaunay Triangulation. Comput.
Environ. Urban Syst. 2011, 35, 320–332. https://doi.org/10.1016/j.compenvurbsys.2011.02.003.

22. Zhaorong, -H.; Tinglei, -H.; Wenjuan, -R.; Guangluan, -X. Trajectory Outlier Detection Algorithm Based on Bi-LSTM Model. J.
Radars 2019, 8, 36.

23. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Mod-
eling. arXiv 2018, arXiv:1803.01271.

24. Naser, M.Z.; Alavi, A.H. Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in
Engineering and Sciences. Archit. Struct. Constr. 2021, 1–19. https://doi.org/10.1007/s44150-021-00015-8.

25. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422.

26. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022, arXiv:1312.6114.
27. Jia, Y.; Zhou, C.; Motani, M. Spatio-Temporal Autoencoder for Feature Learning in Patient Data with Missing Observations. In

Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–
16 November 2017; pp. 886–890.

28. Thill, M.; Konen, W.; Wang, H.; Bäck, T. Temporal Convolutional Autoencoder for Unsupervised Anomaly Detection in Time
Series. Appl. Soft Comput. 2021, 112, 107751. https://doi.org/10.1016/j.asoc.2021.107751.

29. Wilcoxon, F. Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics; Kotz, S., Johnson, N.L., Eds.; Springer
Series in Statistics: New York, NY, USA, 1992; pp. 196–202. ISBN 978-0-387-94039-7.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

