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Abstract: As an emerging type of spatio-temporal big data based on positioning technology and 
navigation devices, vehicle-based crowdsourcing data has become a valuable trajectory data re-
source. However, crowdsourcing trajectory data has been collected by non-professionals and with 
multiple measurement terminals, resulting in certain errors in data collection. In these cases, to min-
imize the impact of outliers and obtain relatively accurate trajectory data, it is crucial to detect and 
clean outliers. This paper proposes an efficient crowdsourcing trajectory outlier detection (CTOD) 
method that detects outliers from the trajectory sequence data in both spatial view and temporal 
view. Specifically, we first use the adaptive spatial clustering algorithm based on the Delaunay tri-
angulation (ASCDT) algorithm to remove the location offset points in the trajectory sequence. After 
that, based on the most basic attributes of the trajectory points, a 6-dimensional movement feature 
vector is constructed for each point as an input. The feature-rich trajectory sequence data is recon-
structed using the proposed temporal convolutional network autoencoder (TCN-AE), and the 
Squeeze-and-Excitation (SE) channel attention mechanism is introduced. Finally, the effectiveness 
of the CTOD method is experimentally verified. 

Keywords: crowdsourcing trajectory data; outlier detection; time convolution network; autoen-
coder 
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1. Introduction 
As an emerging type of spatio-temporal big data based on positioning technology 

and navigation devices, vehicle-based crowdsourcing data has become a valuable trajec-
tory data resource. The analysis and mining of spatio-temporal trajectory data is funda-
mental content in the field of urban management and human activity, which consists of 
trajectory clustering [1], trajectory correlation analysis [2], trajectory prediction [3], target 
motion pattern recognition [4], and outlier detection [5], etc. However, crowdsourcing 
trajectory data is collected by non-professionals and multiple measurement terminals, re-
sulting in some errors in the data collection. In these cases, the points in the trajectory that 
have significant inconsistencies with most of their neighbors are called outliers. To mini-
mize the impact of outliers and obtain relatively accurate trajectory data, detecting and 
cleaning outliers is a crucial task. 

Since vehicles are constrained by the road network and traffic rules in the real world, 
most of the trajectory points are located on the road surface. Only a tiny proportion of the 
trajectory points offset beyond the road edge line because of vegetation, buildings, and 
other factors [6]. Under this premise, researchers have attempted to use the method of 
spatial clustering to eliminate the trajectory points in the low-density region [7,8]. For ex-
ample, Wang [9] adopted a kernel density function to remove outliers with low spatial 
density. While density clustering can only eliminate offset points, it cannot eliminate the 
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low precision trajectory points in the high-density region. To solve this problem, some 
studies have considered the movement characteristics of the trajectory points. For in-
stance, Yang [10] proposed a partition-and-filter model for filtering trajectories, which di-
vides trajectories based on distance and angle constraints, and then filters sub-trajectories 
according to the desired trajectory-filtering accuracy. All of the above methods require 
massive manual testing to adjust the parameters. Furthermore, the detection performance 
is highly dependent on the accuracy of the parameters and cannot automatically learn the 
differences between the abnormal and normal data. 

In recent research, machine learning and deep learning methods, which can automat-
ically learn features from big data, have shown more significant potential for the outlier 
detection task. Among machine learning models, support vector machines (SVM) [11,12], 
local outlier factors (LOF) [13,14], and isolation forests (IF) [15] are widely used for outlier 
detection. Choi [11] proposed a modified SVM that weights feature vectors to reflect the 
local density of the support vectors and quantify classification uncertainty in terms of the 
local classification capability of each training sample. Degirmenci [13] proposed RiLOF, 
based on LOF, which has a high detection rate even in high-dimensional data; Mansoor 
[15] developed an outlier detection technique named “iF_Ensemble” for a Wi-Fi indoor 
localization environment. These proposed machine learning methods offer good accuracy 
with small datasets, but those with shallow learning networks perform unsatisfactorily 
with large-scale datasets. 

In contrast, deep learning methods are more effective. Mahmoud [16] combined Con-
volutional Neural Networks (CNNs) and Long Short Term Memory Networks (LSTMs) 
to capture the spatio-temporal characteristics of network traffic and has higher detection 
accuracy than individual models. Canizo [17] proposed a novel Multi-head CNN-RNN 
architecture for multi-sensor time series outlier detection, which extracts the features of 
each sensor separately. Even though the above methods provide better results, they re-
quire a large amount of labeled data for training, and the accessible labeled data is usually 
limited. 

For this reason, unsupervised outlier detection methods based on deep learning have 
gained wide popularity recently. For example, Autoencoder (AE) [18] performs outlier 
detection by examining its reconstruction loss. Yao [19] applied Variational Autoencoder 
(VAE) to extract valuable features for the unsupervised outlier detection tasks. However, 
the above methods are effective only when applied to non-serial data and not when ap-
plied directly to time series data. Since it treats each data block as a separate input while 
a trajectory is a sequence of points related to spatial and temporal information, modeling 
data blocks as separate vector inputs results in a loss of correlation. Provotar [20] proposed 
a Short-Term Long Memory-based Autoencoders network (LSTM-AE) to detect internet 
routing outliers. The LSTM memory units are used instead of ordinary neurons to build 
the coder for historical-study time series modeling. The problem is that LSTM requires a 
large amount of memory for long-time sequences to store cell states. 

Nevertheless, all the aforementioned methods are only based on the spatial proxim-
ity among trajectory points or the temporal evolutionary nature of trajectory sequences 
for outlier detection, and none of them provides a complete solution to the problem of 
outlier detection. Therefore, this paper proposes a two-phase crowdsourcing trajectory 
outlier detection framework (CTOD) that combines both spatial perspective and temporal 
perspective, including spatial outlier detection phase and temporal outlier detection 
phase. During the spatial outlier detection phase, to remove the location offset point in 
trajectory sequences, we introduce the adaptive spatial clustering algorithm based on the 
Delaunay triangulation (ASCDT) algorithm of Deng, Liu, Cheng, and Shi [21]. During the 
temporal outlier detection phase, to enrich the input features, we first construct a 6-di-
mensional movement feature vector for each point as input to the model. Subsequently, 
we use the Temporal Convolutional Network Autoencoder (TCN-AE) model to identify 
temporal correlations between trajectory sequences, and remove movement property out-
liers by comparing the reconstruction loss of each trajectory point with a given outlier 
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threshold. Specifically, we add the Squeeze-and-Excitation (SE) channel attention mecha-
nism to enhance the feature extraction capability of the TCN. The contributions of this 
paper are summarized below. 
1. We discuss and categorize common problems in crowdsourcing trajectory points, in-

cluding trajectory point offsets that may be caused by navigation device errors or 
significant inconsistencies in trajectory point movement features due to acquisition 
process errors. 

2. We present two trajectory outlier definitions, including Location Offset Points (LO-
outlier) and Movement Property outliers (MP-outlier). 

3. We propose a two-phase trajectory outlier detection framework (denoted as CTOD) 
to identify both types of trajectory outliers. 

4. We conduct a comprehensive experiment on a real-world vehicle trajectory dataset 
to manifest the effectiveness and superiority of our approach compared with other 
congeneric approaches. 
This article is structured as follows: Section 1 introduces the research background 

and reviews the related work in the literature. In Section 2, we define the classification of 
trajectory outliers and discuss the challenging problems in trajectory outlier detection. 
Section 3 outlines the scheme and elaborates the details of the CTOD model. Section 4 
evaluates the proposed method. Section 5 concludes the whole article and point out future 
directions. 

2. Preliminaries 
2.1. Classification of Crowdsourcing Trajectory Outliers 

Crowdsourcing trajectory data is derived from many contributors, and the accuracy 
of the navigation devices used by each contributor also varies, resulting in inaccurate, 
incomplete, and illogical data in the trajectories. In this paper, trajectory outliers are clas-
sified into two categories. 

Location Offset Points (LO-outliers). The recorded trajectory data may produce a loca-
tion deviation when a mobile object is in a weak signal area, such as in tunnels, under tall 
buildings, or when the navigation device has low positioning accuracy. Trajectory points 
may offset outside the road due to the location deviation, causing serious inconsistencies 
with neighboring points (𝑃ଷ, 𝑃ସ in Figure 1). 

. 

Figure 1. Example of Location Offset Point. 

Movement Property outliers (MP-outliers). In the process of collecting, transmitting, 
storing, and processing trajectory data, errors are generated by humans and instruments. 
These errors can result in significant differences in the movement properties between tra-
jectory points, such as speed, direction, or other attributes. 
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2.2. Challenges in Trajectory Outlier Detection 
While the outlier detection method for trajectory big data has been thoroughly inves-

tigated, it remains challenging due to localization uncertainties, uneven distribution area, 
skewed distribution, and large scale. 

The challenges are as follows: 
1. In general, LO-outliers have a lower point density than those inside the roads. Addi-

tionally, since trajectory points are distributed unevenly, some points inside the 
roads with sparse points also have a low point density, causing these points to be 
removed as LO-outliers. 

2. Trajectory contributors use various navigation devices, which causes differences in 
the attribute categories. Some trajectory data collect attributes such as velocity and 
direction angle for each point, but some trajectory data only collect coordinates and 
time stamps. It is challenging to extract multidimensional movement features based 
on limited attributes. 

3. Trajectories are spatial sequences generated over time, so there is a spatial and tem-
poral correlation between trajectory points. To mine the temporal correlation im-
plied, it is necessary to explore the association between the independent movement 
features of the points within the trajectory. Moreover, since different movement fea-
tures contribute differently to the temporal correlation extraction, extracting repre-
sentative movement features for each trajectory point is challenging. 

3. Framework: Spatial and Temporal Outlier Detection in Trajectory Data 
In this section, we propose a two-phase framework including a spatial outlier detec-

tion phase and temporal outlier detection to identify LO-outliers and MP-outliers, respec-
tively (Figure 2. Framework of CTOD). 

 
Figure 2. Framework of CTOD. 

3.1. Spatial Outlier Detection Phase: LO-Outlier Detection 
During the spatial outlier detection phase, the ASCDT algorithm based on Delaunay 

triangulation is introduced to identify LO-outliers and tackle Challenge 1 presented in 
Section 2. First, we construct spatial topotaxy among the spatial points, which generates 
triangle meshes by connecting sampling points. Further, the inconsistent edges are re-
moved from the Delaunay triangulation by constraining the length of the edges and the 
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aggregation force of the spatial points. As a result, the points without edges connected to 
them are identified as outliers. Therefore, identifying and removing these inconsistent 
edges is the key to separating outliers. 

3.1.1. Delaunay Triangulation Generation 
Given a set of spatial points 𝑆 = ሼ𝑃ଵ, 𝑃ଶ, . . . , 𝑃௡ሽ in a 2-dimensional space, let DT(S) be 

the Delaunay triangulation of S where each point 𝑃௜ represents a vertex. The necessary 
and sufficient condition of the Delaunay triangulation is that no point of S is in the cir-
cumcircle of any triangle in the triangulation.  

3.1.2. Global Length Constraint in Delaunay Triangulation 
For each point 𝑃௜, the global length constraint can be represented as 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜)= 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇) + 𝛼 ∙ Global_Variation(𝐷𝑇) 

(1) 

𝛼 = 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇)/𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛(𝑃௜) (2) 

where 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛(𝐷𝑇) is the mean length of the edges in the Delaunay triangulation, 𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛(𝑃௜)  is the mean length of the edges in relation to 𝑃௜ , and Global_Variation(𝐷𝑇) is the standard deviation of the length of all edges in the Delaunay 
triangulation. 

The edge 𝑒௝ directly connected to a point 𝑃௜ in Delaunay triangulation, which has a 
length larger than or equal to 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜) , will be categorized to 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 and removed from the Delaunay triangulation at a global level. Oth-
erwise, if 𝑒௝ has a length shorter than 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be catego-
rized to 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠.  𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ൛𝑒௝||𝑒௝ ∣≥ 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ൟ (3) 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ൛𝑒௝||𝑒௝ ∣< 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ൟ (4) 

where |𝑒௝ ∣ is the length of edge 𝑒௝. 

3.1.3. Local Length Constraint in Delaunay Triangulation 
Despite removing the 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 from the Delaunay triangulation, some 

inaccurate near edges remain at the local level. For each point 𝑃௜, the local length con-
straint can be represented as 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜)= 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛(𝑃௜) + 𝛽 ∙ 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜) 

(5) 

where 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛(𝑃௜) is the mean length of the edges by the points less than the 
second-order neighbors of point 𝑃௜; 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜) is the mean value of the local 
variation of the points; and 𝛽 is the control parameter. In practice, 𝛽 is set from 1 to 2. 
Generally, the smaller the value of 𝛽, the easier it is to remove the long edges. In this 
paper, 𝛽 is set to 1 by default. 

For any point 𝑃௜ in the Delaunay triangulation, the edge 𝑒௞ consists of vertices in 
the second-order neighbors of 𝑃௜ and belongs to 𝐺𝑙𝑜𝑏𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠; then, if the length 
of 𝑒௞  is larger than or equal to 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be categorized to 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 and removed at a local level. Otherwise, if the length of 𝑒௞ is smaller 
than 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑃௜), it will be categorized to 𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠. Thus, 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) and 𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) can be defined as follows: 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ሼ𝑒௞||𝑒௞ ∣≥ 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ሽ (6) 
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𝐿𝑜𝑐𝑎𝑙_𝑂𝑡ℎ𝑒𝑟_𝐸𝑑𝑔𝑒𝑠(𝑃௜) = ሼ𝑒௞||𝑒௞ ∣< 𝐿𝑜𝑐𝑎𝑙_𝐿𝑒𝑛𝑔𝑡ℎ_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑃௜)ሽ (7) 

where |𝑒௞ ∣ is the length of edge 𝑒௞. 

3.1.4. Local Aggregation Constraint in Delaunay Triangulation 
After removing the 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠, the cohesion of a spatial point is considered 

for all points within its second-order neighbors. For each point 𝑃௝ and its second-order 
neighbors 𝑃௞, the local aggregation force can be represented as 𝐹⃗൫𝑃௝, 𝑃௞൯ = 𝑘 ⋅ 1ቀ𝑑൫𝑃௝, 𝑃௞൯ቁଶ 𝑒௉ೕ௉ೖ (8) 

where k is the constant, which is set to 1 here; 𝑑൫𝑃௝, 𝑃௞൯ is the Euclidean distance between 𝑃௝; and 𝑃௞; 𝑒௉ೕ௉ೖ is the unit vector from 𝑃௝ to 𝑃௞. 
For each point 𝑃௝, the cohesive local aggregation force is equal to the sum of all its 

local aggregation forces and can be represented as 𝐹⃗஼൫𝑃௝൯ = ∑𝐹⃗൫𝑃௝, 𝑃௞൯ (9) 

For each point 𝑃௝ , the local aggregation set of 𝑃௝  is composed by the points that 
strongly attract 𝑃௝ and directly connect to 𝑃௝, represented as 𝐿𝑜𝑐𝑎𝑙_𝐴𝑔𝑔_𝑆𝑒𝑡൫𝑃௝൯ = ቄ𝑃௞ ∣ 𝜃 ቀ𝐹்⃗൫𝑃௝൯, 𝐹⃗൫𝑃௝, 𝑃௞൯ቁ < 90∘ቅ (10) 

where 𝜃 ቀ𝐹்⃗൫𝑃௝൯, 𝐹⃗൫𝑃௝, 𝑃௞൯ቁ is the angle between 𝐹்⃗൫𝑃௝൯ and 𝐹⃗൫𝑃௝, 𝑃௞൯. 

3.1.5. Algorithm Description 
The ASCDT algorithm is mainly composed of four steps. Each step and its time com-

plexity are described as follows: 
Input: A spatial point dataset S, which contains N spatial points with coordinates. 
Output: Spatial points after removal outliers. 
Step 1 Remove first-order long edges at a global level: 
• Construct the Delaunay triangulation DT of S (Figure 3a); the time complexity is 

O(NlogN). 
• For each point, calculate the 𝐺𝑙𝑜𝑏𝑎𝑙_𝑀𝑒𝑎𝑛 (𝐷𝑇)  and Global_Variation (𝐷𝑇)  in the 

Delaunay triangulation and 𝐿𝑜𝑐𝑎𝑙_𝑀𝑒𝑎𝑛 (𝑃௜). The time complexity is linear to N. 
• Remove 𝐺𝑙𝑜𝑏𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 to separate global outliers (Figure 3b). The time com-

plexity is O(N). 
Step 2 Remove second-order long edges at a local level: 
• For each point, calculate 2 − 𝑂𝑟𝑑𝑒𝑟_𝑀𝑒𝑎𝑛 (𝑃௜) and 𝑀𝑒𝑎𝑛_𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(𝑃௜). The time 

complexity is linear to N. 
• Remove 𝐿𝑜𝑐𝑎𝑙_𝐿𝑜𝑛𝑔_𝐸𝑑𝑔𝑒𝑠 to separate local outliers (Figure 3c). The time complex-

ity is O(N). 
Step 3 Deal with necks and chains: 
• Remove 𝐿𝑜𝑐𝑎𝑙_𝐿𝑖𝑛𝑘_𝐸𝑑𝑔𝑒𝑠 and separate final outliers (Figure 3d). The time com-

plexity is O(N). 
Thus, the total complexity of the ASCDT algorithm is about O(NlogN). 
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(a) (b) 

  
(c) (d) 

Figure 3. Schematic of ASCDT algorithm. (a) Delaunay triangulation; (b) global length constraint; 
(c) local length constraint; (d) local aggregation constraint. 

3.2. Temporal Outlier Detection Phase: MP-Outlier Detection 
During the temporal outlier detection phase, to enrich the input features, we first 

extract a 6-dimensional feature vector for each point, consisting of velocity, acceleration, 
course, turning angle, turning rate, and sinuosity. The TCN-AE model is then used to 
identify time correlations between the trajectory sequences and to remove MP-outliers by 
comparing the reconstruction loss of each trajectory point with a given outlier threshold. 
Specifically, we add the SE channel attention mechanism to enhance the feature extraction 
capability of the TCN. 

3.2.1. Feature Extraction 
To tackle Challenge 2 presented in Section 2, we enrich the feature space by extracting 

physically meaningful features from the raw data to help TCN learn the dependencies of 
the input sequences. Following the latest research [22], this paper selects six movement 
features. 

Given a trajectory 𝑇𝑅 = ⟨𝑃ଵ, 𝑃ଶ, ⋯ , 𝑃௡⟩, we extract a 6-dimensional feature vector for 
each point, consisting of velocity, acceleration, course, turning angle, turning rate, and 
sinuosity. As can be seen in Figure 4, each feature can be calculated as follows: 
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Figure 4. A diagram of trajectory segment. 

1. Velocity 
The velocity is expressed as the ratio of the distance between two adjacent points to 

the time difference, indicating the target point movement rate. Outliers in a trajectory usu-
ally have greater velocity than their neighbors. For each point 𝑃௜, the velocity can be rep-
resented as 

𝑣௜ = 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ିଵ)𝑡௜ − 𝑡௜ିଵ  (11) 

where 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ିଵ) denotes the distance between point 𝑃௜ and its previous point 𝑃௜ିଵ. 
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2. Acceleration 
The acceleration is expressed as the ratio of the velocity between two adjacent points 

to the time difference, indicating the rate of velocity change. Similar to velocity, outliers 
in a trajectory usually have a greater acceleration than their neighbors. For each point 𝑃௜, 
the acceleration can be represented as 𝑎௜ = 𝑣௜ − 𝑣௜ିଵ𝑡௜ − 𝑡௜ିଵ  (12) 

3. Course 
The course is defined as the movement direction between consecutive points in a 

trajectory. It is expressed by taking the angle between the line connecting the current point 
with the latter point and the due north direction. Generally, if the course of a moving 
object changes suddenly, the point is more likely to be anomalous. For each point 𝑃௜, the 
course can be represented as 𝑐𝑜𝑢𝑟𝑠𝑒௜ = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥, 𝑦) (13) 𝑥 = 𝑐𝑜𝑠(𝑙𝑎𝑡௜) ⋅ 𝑠𝑖𝑛(𝑙𝑛𝑔௜ − 𝑙𝑛𝑔௜ିଵ) (14) 𝑦 = 𝑐𝑜𝑠(𝑙𝑎𝑡௜ିଵ) ⋅ 𝑠𝑖𝑛(𝑙𝑎𝑡௜) − 𝑠𝑖𝑛(𝑙𝑎𝑡௜ିଵ) ⋅ 𝑐𝑜𝑠(𝑙𝑎𝑡௜) ⋅ 𝑐𝑜𝑠(𝑙𝑛𝑔௜ − 𝑙𝑛𝑔௜ିଵ) (15) 

4. Turning Angle 
The turning angle represents the change between the heading of two adjacent points. 

Compared with the surrounding trajectory points, those points with significantly differ-
ent turning angle are more likely to be outliers. For each point 𝑃௜, the turning angle can 
be represented as 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ = 𝑐𝑜𝑢𝑟𝑠𝑒௜ିଵ − 𝑐𝑜𝑢𝑟𝑠𝑒௜ (16) 

5. Turning Rate 
The turning rate is expressed as the ratio of the turning angle between two adjacent 

points to the time difference, indicating the rate of turning angle change. For each point 𝑃௜, the turning rate can be represented as 𝜔௜ = 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ − 𝑡𝑢𝑟𝑛𝐴𝑛𝑔𝑙𝑒௜ିଵ𝑡௜ − 𝑡௜ିଵ  (17) 

6. Sinuosity 
The sinuosity is defined as the ratio of the moving distance between three adjacent 

points to the distance of a straight line between two endpoints. Outliers in a trajectory 
usually have greater sinuosity than their neighbors. For each point 𝑃௜, the sinuosity can 
be represented as 𝑠௜ = 𝑑𝑖𝑠𝑡 (𝑃௜ିଵ, 𝑃௜) + 𝑑𝑖𝑠𝑡 (𝑃௜, 𝑃௜ାଵ)𝑑𝑖𝑠𝑡 (𝑃௜ିଵ, 𝑃௜ାଵ)  (18) 

3.2.2. MP-Outlier Detection with TCN-AE 
To tackle Challenge 3 presented in Section 2, we are inspired by the TCN-AE model, 

since the outlier detection task of GPS trajectories is similar to time series, where trajecto-
ries can be treated as input sequences. 
1. Temporal Convolutional Network (TCN) 

The TCN was proposed in a recent study [23]. It consists of a 1D fully convolutional 
network (FCN), causal convolutions, dilated convolutions, and residual connections. FCN 
is mainly used to fulfil the principle that the output of all convolutional layers has the 
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same length t, with zero padding to ensure subsequent layers that are the same length as 
previous layers. 

Causal convolutions. Causal convolutions are used to ensure no information “leakage” 
from future to past. To ensure that, the output of each convolution layer at time step i 
corresponds only with the current layer and the previous layer, i.e., the output 𝑦௜ is pre-
dicted only utilizing current and past input 𝑋ଵ:௜ for preventing future input 𝑋௜ାଵ:௧ leak-
age. 

Dilated convolutions. With the time series containing long temporal dependencies, it 
is generally expected that the network will be able to retain long-term information. How-
ever, the sample causal convolutions are limited to the length of the receptive field unless 
the convolution layers are stacked in large numbers. It makes casual convolution chal-
lenging to apply to sequence tasks. To solve the problem of heavy calculation costs, di-
lated convolutions are employed to provide an exponentially large receptive field with 
limit layers. More specifically, for an input sequence 𝑋ଵ:௧ = ሼ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௧ሽ and a filter 𝑓 =(0,1, ⋯ , 𝑘 − 1), the output of the dilated convolution operation F is defined as 𝐹(𝑥௜) = (𝑋∗ ௗ𝑓)(𝑥௜) = ∑௝ୀ଴௞ିଵ 𝑓(𝑗) ൉ 𝑥௜ିௗ൉௝ (19) 

where * denotes the convolution operator, 𝐹(𝑥௜) is the output of the dilated convolution 
operation, and d is the dilation factor. When d = 1, the dilated convolutional layer reduces 
to a regular convolutional layer. 

Figure 5 shows a dilated convolution schematic with dilated factors d = 1, 2, 4 and a 
filter size of k = 3. The acceptance area covers all the values of all the input sequences. 

 
Figure 5. Schematic of TCN dilated causal convolution. 

Residual connections. When causal convolutions and dilated convolutions are applied 
to the TCN, the network depth increases, which may result in gradient disappearance or 
gradient explosion. To solve this problem, residual connections are introduced to the net-
work. Residual connections are used in ResNet, which are allowed to pass information in 
a cross-layer way. Many researchers have demonstrated that deep networks are in need 
of residual connections to prevent overfitting. A residual block contains two convolu-
tional layers and a nonlinear mapping. In each layer, a weight regularization and a drop-
out algorithm are also added to regularize the network to prevent deep network overfit-
ting. To reduce the dimensionality, an additional 1 × 1 convolution is also included, which 
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makes the two tensors the same shape (Figure 6). The input x is weighted and fused into 
the output f(x) to produce the final output y: 𝑦 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑥 + 𝑓(𝑥)) (20) 

where 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛() is the activation function. 

+

( )( ) ( ) ( )
1ˆ ˆ ˆ,...,i i i

Tz z z=

( )( 1) ( 1) ( 1)
1ˆ ˆ ˆ,...,i i i
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WeightNorm
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+ +
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1ˆTz −

(1)ˆTz

1Tx − Tx···
 

(a) (b) 

Figure 6. Schematic of TCN residual block. (a) a TCN residual block; (b) an example of a residual 
connection in TCN. 

2. SE Attentional Mechanism 
In the convolutional network, by default, each channel of the feature map is equally 

important, while in reality, the importance of different channels varies. To enhance the 
feature representation capability of the model, the channel attention mechanism in the SE 
block is introduced to improve the TCN. Essentially, the SE block assigns a weight to each 
channel of features so that the model focuses on those channels with key features and 
suppresses any channels with non-key features, improving the model’s ability to extract 
features. An SE block is composed of two operations: a squeeze function, which aggre-
gates the global features of each feature map and extracts the most important information 
for each channel, and an excitation function, which calculates the dependencies between 
feature channels to obtain the importance weight coefficients of each channel. 

As the attention mechanism for this residual block, the SE block is introduced after 
each layer of the TCN. The original SE block only uses global average pooling. To enhance 
the ability of the SE block to express global features, we add global maximum pooling to 
the original SE block. The SE-TCN residual block is shown in Figure 7. 
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(a) (b) (c) 

Figure 7. The comparison of TCN residual block and SE-TCN residual block. (a) TCN residual block; 
(b) SE-TCN residual block with average pooling; (c) SE-TCN residual block with average pooling 
and max pooling. 

The output after squeeze is obtained by 𝑓average = 𝐹௦௤ଵ൫𝑧̂(௜)൯ = 1𝐻 ∑௝ୀଵு  𝑧(𝑗) (21) 

𝑓௠௔௫ = 𝐹௦௤ଶ൫𝑧̂(௜)൯ = 𝑚𝑎𝑥൫𝑧̂(௜)൯ (22) 

where 𝑧̂(௜ିଵ) = ൫𝑧̂଴(௜ିଵ), ⋯ , 𝑧̂(்௜ିଵ)൯ and 𝑧̂(௜) = ൫𝑧̂଴(௜), ⋯ , 𝑧̂(்௜)൯ are the input and output of the 
TCN residual block for the i-th residual block; 𝑓average and 𝑓୫ୟ୶ are the results of global 
average pooling and global maximum pooling for a single feature channel, respectively. 

The output after excitation is obtained by 𝑠 = 𝐹௘௫(𝑓, 𝑊) = 𝜎(𝑔(𝑓, 𝑊))= 𝜎൫𝑊average
ଶ 𝛿൫𝑊average

ଵ 𝑓average൯ +𝑊௠௔௫ଶ 𝛿(𝑊௠௔௫ଵ 𝑓௠௔௫)൯ (23) 

where 𝑊average
ଵ , 𝑊average

ଶ , 𝑊୫ୟ୶ଵ , 𝑊୫ୟ୶ଶ  are the matrix parameters to be learned to calculate 
the correlation of features between channels; s is the weighting factor for the individual 
channel. 

Finally, the channel weights of the above output are multiplied by the original fea-
tures, thus realizing the redistribution of the original features in the channel dimension. 𝑧̂ௌா(௜) = 𝐹௦௖௔௟௘൫𝑧̂(௜), 𝑠൯ = 𝑠𝑧̂(௜) (24) 

where 𝑧̂ୗ୉(௜) = ቀ𝑧̂ௌா(଴)(௜) , ⋯ , 𝑧̂ௌா(்)(௜) ቁ is the output of the i-th TCN residual block after weighting 
the weight coefficients by the SE block, i.e., the output of the SE-TCN residual block. 
3. Outlier Detection Model with TCN-AE 

As illustrated in Figure 8, TCN-AE is designed to reconstruct the input sequence 𝑋 =(𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௠)் into an output sequence 𝑋̂ = (𝑥̂ଵ, 𝑥̂ଶ, ⋯ , 𝑥̂௠)், which is composed of an en-
coder network and a decoder network. Essentially, the TCN-AE proposed here is similar 
to other autoencoder architectures. However, it differs from conventional autoencoders 
in that it combines causal and sparse convolutional layers instead of fully connected lay-
ers. Consequently, the network is more flexible for variable input sizes and more sensitive 
to temporal correlation. The central idea is to encode the input sequence compressively 
for creating a compact representation, which forces the network to learn the most 
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representative patterns in the original input and to accurately reconstruct the original in-
put. Conceptually, the TCN-AE learns to ignore data noise and trains the network for the 
purpose of minimizing the reconstruction loss of the input sequence. As a result, the 
anomalous data will have a larger reconstruction loss than normal data. Based on this, the 
TCN-AE can detect the anomalous data of GPS trajectories through its reconstruction loss. 

 
Figure 8. Our proposed TCN-AE model. 

Encoder. The encoder learns how to compress the original input sequence into a more 
compact representation that captures the main characteristics and considers the depend-
encies in sequential order. In the encoding phase, the encoder passes an input sequence 
through a TCN, a 1 × 1 convolutional layer and an average-pooling layer. As we men-
tioned before, for the encoder to generate the most significant features of an input se-
quence, it is required to analyze both short-term and long-term patterns. To tackle this 
challenge, the TCN is introduced to the encoder part. Then, the convolutional layer is used 
to reduce the dimension of the feature map, and the average-pooling layer is used to 
down-sample the time series by a specified factor. 

Decoder. The decoder attempts to reconstruct the compact representation (the output 
of the encoder) into original input sequence. In the decoding phase, to restore the length 
of the original input sequence, we first use an upsample layer. Next, the upsampled se-
quence passes through a second TCN, which has the same structure as the encoder but 
with independent weights. Finally, the dimension of the original input sequence has to be 
restored. For this purpose, the decoder passes another 1 × 1 convolutional layer with filters 
that have the same number as the dimension. 

After decoding, the network outputs a reconstruction error score for each trajectory 
point. Low scores indicate normal behavior, whereas high scores indicate abnormal be-
havior. By setting a threshold, each point is classified as nominal or outlier. 

4. Experiment 
4.1. Dataset 

We validated the effectiveness of our model on a real-world vehicle trajectory dataset 
from the Beijing Taxi Administration Office. The dataset contains trajectories of 8422 driv-
ers and 874,094 GPS records in the Haidian district, Beijing over a period of 24 h on 9 
December 2018. All the trajectories are completed and sampled in 15~25 s. It covers a rec-
tangular area from (39.8885, 116.0357) to (40.1545, 116.3879) around 30 km long and 29 km 
wide. 
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For the LO-outlier cleaning experiment, we randomly selected an area containing 10 
roads and 19,887 GPS points as the evaluation data. After removing the offset points from 
the entire dataset, we split the remaining trajectory point dataset into training set, valida-
tion set, and test set with a splitting ratio of 6:2:2. The test set is labeled by multiple expe-
riencers based on the position, velocity, and acceleration for each point in the trajectory. 
The outlier points are labeled as 1 (positive category), and normal points are labeled as 0 
(negative category). All outlier detection algorithms are trained unsupervised. Actual out-
lier labels are only used at test time. 

4.2. Evaluation Criteria 
This paper uses Accuracy, Precision, Recall, and F1-score as the evaluation index [24]. 

The calculations are shown in Equations (25)–(28). With a higher Accuracy, Precision, Re-
call, and F1-score, the outlier detection method is more accurate.  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (25) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (26) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (27) 

𝐹ଵ − 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ Precision ⋅ RecallPrecision + Recall  (28) 

Outlier thresholds are set based on false negatives (Recall) and false positives (Accu-
racy). Thus, thresholds are determined based on equal accuracy (EAC), a performance 
metric which guarantees that accuracy and recall are approximately equal (the difference 
between accuracy and recall is less than 1%). Alternatively, the threshold can be applied 
to all the trajectory data by selecting the best threshold (F1-Score maximization) for a small 
portion of the trajectory data. For practical applications, this approach is more realistic 
because few labeled data are usually available. 

4.3. Experiment Settings 
The ASCDT algorithm is implemented using PySpark v3.3.1. As an LO-outlier, we 

set those points without any remaining edges. After removing offset points, the input to 
each algorithm is a 6-dimensional movement feature vector for each trajectory point. 

We compared our unsupervised CTOD algorithm to other unsupervised outlier de-
tection algorithms; each setting is as follows: 
IF [25]: IF (scikit-learn, v0.23.2) uses a number of 1000 base estimators in the ensemble and 

a sliding window size of w = 50. 
VAE [26]: LSTM-AE is implemented using the PyTorch framework. Both encoder and de-

coder use a single hidden layer with 400 dimensions, and the potential dimension is 
200 dimensions. 

LSTM-AE [27]: LSTM-AE is implemented using the PyTorch framework. The encoder 
uses a 2-layer LSTM network with 128 units in the first layer and 64 units in the sec-
ond layer. The decoder is the reverse. 

TCN-AE (baseline) [28]: Baseline TCN-AE is also implemented using the PyTorch frame-
work. Both encoder and decoder use six dilated convolutional layers, respectively, 
and sixteen filters with a kernel size of k = 6. 

CTOD: TCN-AE is implemented using the PyTorch framework. Both the encoder and de-
coder use six dilated convolutional layers, respectively, and sixteen filters with a ker-
nel size of k = 6. The global maximum pooling and the global average pooling are 
both added in the SE residual block. 
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4.4. Experiment Results 
4.4.1. Experiment 1: Location Offset Point Cleaning Effectiveness Evaluation 

As an example, Figure 9 shows the effectiveness of the LO-outlier detection. In the 
case of Figure 9a, sporadic trajectory points outside of the road are well detected as offset 
points. As seen in Figure 9b, many trajectory points are collected in a parking area. They 
are not anomalous points, despite being outside the road. 

  
(a) (b) 

Figure 9. Example of location offset point detection. (a) example of well detected offset points. (b) 
example of trajectory points in a parking area. 

The results of the cleaning effectiveness evaluation are shown in Table 1; 96.74% of 
the total trajectory points are correctly classified, and 87.47% of all the 3830 offset points 
are detected. This experiment verifies that the method can successfully remove the LO-
outlier from the raw trajectory data without using map information. 

Table 1. Cleaning effectiveness evaluation. 

Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
96.74 87.47 92.11 89.73 

4.4.2. Experiment 2: Extracted Outlier Points Evaluation 
1. Overall Performance 

The performance of different approaches for trajectory outlier detection is presented 
in Table 2. We observe that CTOD (F1-score = 0.8985) has the highest performance, fol-
lowed by LSTM-AE (F1-score = 0.8806), baseline TCN-AE (F1-score = 0.8557), and VAE 
(F1-score = 0.8491), while IF performs the worst (F1-score = 0.7289). Moreover, based on 
the nonparametric Wilcoxon signed-rank test [29], we calculated the p-values to assess the 
significance of the results. The null hypothesis of the Wilcoxon test is that the F1-score of 
CTOD is smaller than the comparison algorithm. The table shows the p-values used to 
compare the F1-score of each algorithm with CTOD. The performance of CTOD is signif-
icantly higher than that of the other algorithms (p < 0.05, rejecting the null hypothesis at 
the 5% confidence level). 

Table 2. Overall performance comparison. 

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) p 
IF 97.05 79.61 67.22 72.89 9.26 × 10-6 

VAE 98.26 87.24 82.70 84.91 9.26 × 10-6 
LSTM-AE 98.56 86.13 90.08 88.06 9.26 × 10-6 

TCN-AE (baseline) 98.31 86.12 85.03 85.57 9.26 × 10-6 
CTOD 98.79 89.40 90.31 89.85 - 
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2. Impact of Different Outlier Thresholds 
We investigated the relationship between the reconstruction loss threshold and the 

outlier detection results. The effectiveness of the CTOD algorithm varies for different 
thresholds. As seen in Table 3, the detection metric F1-score reached a peak of 89.85% at a 
threshold value of 0.003. 

Table 3. Performance with different outlier thresholds. 

No. Threshold Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
1 0.001 67.59 15.40 99.86 26.69 
2 0.002 94.23 50.60 99.86 67.17 
3 0.003 98.79 89.40 90.31 89.85 
4 0.0032 98.27 92.89 76.66 84.00 
5 0.0034 97.59 95.57 62.14 75.31 
6 0.0036 96.94 97.21 49.67 65.75 
7 0.0038 96.45 97.99 40.67 57.48 
8 0.004 96.07 98.17 34.05 50.56 
9 0.005 95.13 98.52 17.89 30.28 

10 0.006 94.71 97.81 10.70 19.28 
11 0.007 94.46 96.59 6.39 11.99 
12 0.008 94.33 95.25 4.25 8.13 
13 0.009 94.25 95.35 2.89 5.61 
14 0.01 94.19 95.31 1.72 3.38 

Moreover, we also investigated the impact of threshold selection on detection results 
when only a small proportion of the trajectory dataset is used. Our experiment selected 
10% of the dataset, and we determined the threshold for maximizing the F1-score on this 
subset. Taking into account the randomness of the results that resulted from the selection 
of different sub-data sets, we repeated the whole process ten times and averaged the re-
sults. We adjusted the threshold for 10% of the dataset, and then we evaluated the remain-
ing 90%. As seen in  

, in comparison to Table 4, the F1-score of the algorithm deteriorates, but results are 
similar. Therefore, we can conclude that the method of selecting the best threshold from 
the subset is valid and will work in real-world situations. 

Table 4. Performance with outlier thresholds determine from only 10% of the outlier labels. 

F1-Score Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
1 98.56 83.98 93.63 88.54 
2 98.68 88.51 88.76 88.63 
3 98.52 83.68 90.79 87.09 
4 98.43 82.35 92.79 87.26 
5 98.57 84.29 93.46 88.64 
6 98.78 89.49 90.11 89.79 
7 98.13 78.20 95.41 85.95 
8 98.42 82.54 93.46 87.66 
9 98.67 88.21 89.88 89.04 

10 98.73 88.91 90.02 89.46 
Average 98.55 85.02 91.83 88.21 

3. Impact of Reconstruction Loss Functions 
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The purpose of this experiment is to understand the sensitivity of different recon-
struction loss functions on detection accuracy. Three reconstruction loss functions were 
investigated. They are root mean square error (RMSE), mean absolute error (MAE), and 
mean squared error (MSE), respectively. The definitions of these functions are described 
in the following equations. 

𝑅𝑀𝑆𝐸 = ඨ∑௜ୀଵ௡  (𝑥௜ − 𝑥̂௜)ଶ𝑛  (29) 

𝑀𝐴𝐸 = ∑௜ୀଵ௡  |𝑥௜ − 𝑥̂௜|𝑛  (30) 

𝑀𝑆𝐸 = ∑௜ୀଵ௡  (𝑥௜ − 𝑥̂௜)ଶ𝑛  (31) 

where n represents the total number of samples, 𝑥௜ is the original input sample, and 𝑥̂௜ 
is the output. 

Figure 10 illustrates the relationship between reconstruction loss values and thresh-
old values. We can clearly see that most of the trajectory points have a reconstruction loss 
below the threshold, and these points are marked as normal. In contrast, those trajectory 
points marked as abnormal have a greater reconstruction loss than the threshold. The re-
construction loss values of the real classification and predicted classification are highly 
consistent with their reconstruction loss distribution ranges. 

 
(a) 

 
(b) 
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(c) 

Figure 10. Reconstruction loss distribution. (a) Reconstruction loss distribution based on MAE; (b) 
reconstruction loss distribution based on MSE; (c) reconstruction loss distribution based on RMSE. 

As seen in Table 5, based on the three loss functions used, we obtained different 
thresholds. In spite of this, there are few differences between the evaluation results of the 
three loss functions. Among them, MAE provides the best detection results, while RMSE 
and MSE have essentially the same detection results. 

Table 5. Performance of different loss mechanisms. 

Metric Threshold Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
RMSE 0.00450 98.52 88.38 86.20 87.28 
MAE 0.00300 98.79 89.40 90.31 89.95 
MSE 0.00002 98.54 88.36 86.67 87.51 

5. Conclusions 
Crowdsourcing trajectory data contains a large amount of information relevant to 

daily life, and it has great research potential. For example, the living habits of the residents 
of a city can be obtained by mining their trajectories, which in turn gives a deeper under-
standing of the culture and economy of the city. Meanwhile, information about popular 
locations and road conditions can be gathered from the trajectories in a city, and this in-
formation offers corresponding references to the control and administration of traffic and 
tourism events. Moreover, correlation analysis of trajectory data with other social, eco-
nomic, and demographic data can reveal the flow pattern of the urban population, social 
activity dynamics, energy consumption distribution, and environmental pollution status, 
which can enhance urban management decisions. Due to various reasons such as technical 
limitations, there is inevitably a large amount of noise in the existing trajectory data, so 
the quality assurance of the trajectory data does the necessary groundwork for reliable 
research results. 

In this paper, we proposed a crowdsourcing trajectory outlier detection framework 
called CTOD. The framework contains two phases. First, based on the ASCDT algorithm, 
LO-outliers are removed by calculating the local density adaptively and constraining the 
edge length of the triangulation. Second, based on the TCN-AE, MP-outliers are removed 
by mining the trajectories for internal temporal correlation features. The feature extraction 
and attention mechanism are implemented to improve performance. Our study result 
shows that it can effectively detect trajectory outliers. In general, our method has a F1-
score about 2% higher than the LSTM-AE, about 5% higher than the VAE, and about 15% 
higher than the IF. Overall, the enhanced TCN-AE architecture is more advantageous for 
trajectory sequences. There are several more advantageous properties of the improved 
TCN-AE architecture for time series that might contribute to this: 
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Acceptance field: With the dilated convolutional structure, the acceptance field can easily 
be scaled down to the required size, allowing it to capture long-term time depend-
ences more effectively. 

Skip connection: With skip connection, TCN-AE is less sensitive to the choice of dilated 
factors. For example, we can select the dilated factors q = (1,2, . . . ,32)  or q =(1,2, . . . ,64), with similar results. 

Hidden representations: By exploiting the output of the intermediate dilated convolu-
tional layers, the input features can be accurately reconstructed at different time-
scales. 

Number of weights: TCN-AE requires fewer trainable weights than other architectures, 
such as recurrent neural networks. 

SE attention mechanism: With the SE attention mechanism, different contribution levels 
can be assigned to the constructed 6-dimensional input features, resulting in a more 
effective feature compression. 
In this paper, the threshold for outlier detection is obtained through continuous ex-

perimental testing. Our threshold produces good outlier detection results. In future work, 
we intend to explore trajectory outlier detection algorithms by setting sensitive parame-
ters automatically. 
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