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Abstract: The ontology knowledge base (KB) can be divided into two parts: TBox and ABox, where
the former models schema-level knowledge within the domain, and the latter is a set of statements of
assertions or facts about instances. ABox reasoning is a process of discovering implicit knowledge
in ABox based on the existing KB, which is of great value in KB applications. ABox reasoning is
influenced by both the complexity of TBox and scale of ABox. The traditional logic-based ontology
reasoning methods are usually designed to be provably sound and complete but suffer from long
algorithm runtimes and do not scale well for ontology KB represented by OWL DL (Description
Logic). In some application scenarios, the soundness and completeness of reasoning results are not the
key constraints, and it is acceptable to sacrifice them in exchange for the improvement of reasoning
efficiency to some extent. Based on this view, an approximate reasoning method for large-scale ABox
in OWL DL KBs was proposed, which is named the ChunfyReasoner (CFR). The CFR introduces
neural-symbolic learning into ABox reasoning and integrates the advantages of symbolic systems
and neural networks (NNs). By training the NN model, the CFR approximately compiles the logic
deduction process of ontology reasoning, which can greatly improve the reasoning speed while
ensuring higher reasoning quality. In this paper, we state the basic idea, framework, and construction
process of the CFR in detail, and we conduct experiments on two open-source ontologies built on
OWL DL. The experimental results verify the effectiveness of our method and show that the CFR can
support the applications of large-scale ABox reasoning of OWL DL KBs.

Keywords: neural-symbolic learning; approximate reasoning; large-scale ABox reasoning; neural
network; ontology reasoning; OWL DL
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1. Introduction

Ontology is an important form of modeling existing human knowledge through
symbols, and it is the core of the Semantic Web technology framework [1]. OWL DL
(Description Logic) is an ontology language recommended by W3C, which is widely
used in practical applications [2,3] (unless otherwise specified, ontology in the following
paragraphs refers to ontology built on OWL DL). An ontology knowledge base (KB) can be
divided into two parts: TBox and ABox, where the former is the schema-level knowledge
of the KB, which is used to describe the recognized concepts and roles, while the latter is a
collection of assertions or factual statements of instances in the domain. Reasoning is the
core technology in KB-based systems, and the process of reasoning new implicit knowledge
in ABox based on the existing KB is called ABox reasoning [4] (also known as ABox
materialization), which has important value in KB applications. Recently, with the explosive
growth of data and the improvement of knowledge extraction technology, the ontology
KBs containing large-scale ABox are becoming more common than before, and reasoning
tasks for them have attracted increasing attention [5–8].
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The ontology reasoning method based on logical deduction can ensure the soundness
and completeness of the reasoning results, but it is a computationally intensive operation
and cannot meet the need of scalability of the large-scale ABox reasoning in OWL DL [9].
On the one hand, ontology reasoning is constrained by the complexity of TBox. In the OWL
DL, its reasoning complexity is at least EXPTIME-complete, and it is NEXPTIME-complete
under the worst situations (http://www.cs.man.ac.uk/~ezolin/dl/, accessed on 1 October
2022). On the other hand, the scale of ABox influences the efficiency of ontology reasoning.
The mainstream algorithms for ontology reasoning, such as Tableau algorithms [10] and
their extensions, are all in-memory algorithms, whose reasoning is to detect the consistency
of ontology by building models as well as define other reasoning tasks as a consistency
check. For the ontology KBs containing large-scale ABox, the Tableau process needs to
build a large number of abstract models, which either causes the reasoning failure due to
memory overflow or decreases the reasoning efficiency due to a large number of frequent
internal and external storage data exchanges. Therefore, the traditional ontology reasoning
methods are not suitable for the large-scale ABox reasoning in OWL DL KBs.

KBs containing large-scale ABox can be seen as knowledge graphs (KGs) [11]. Al-
though the KG completion method (KGC) [12,13] has good scalability toward large-scale
KG reasoning, it can neither efficiently learn the axiom in ontology nor learn the material-
ization process of logical deduction. The basic idea of KGC is to train a semantic model
by the existing knowledge in the KG and represent the entities and relations in the graph
into low-dimensional vectors of real values while preserving the structure and semantic
information of the KG as much as possible, and it also infers implicit assertions by vector
operation. Due to the support of computer devices and various deep learning frameworks
for vector computation, the KGC method has high computational efficiency and reasoning
speed, and it scales well for large-scale ABox. However, the KGC method can only learn
and induce frequent patterns that already exist in ABox, and it rarely considers the con-
straints of ontology axioms on the underlying assertions and deductive process of logical
reasoning, so the reasoning quality is often poor [14]. Although some methods [15–17] tried
to design new vector space to encode the axioms in ontology, most of them are suitable for
simple ontology with poor expressive ability, and there is still a lack of a suitable approach
to ontology represented in OWL DL.

In recent years, the emergence of neural-symbolic learning methods provides a new
way to solve the large-scale ABox reasoning in KBs [18–21]. The symbolic system and
neural network (NN) system (also known as the subsymbolic system) are complementary—
the strength of NN is the weakness of symbolic system, and vice versa—the organic
integration of the two can obtain a stronger problem-solving ability [22]. Using neural-
symbolic learning to realize large-scale ABox reasoning and training a neural network
model to approximate the deductive process of compiled logical reasoning, on the one hand,
high-quality approximate deductive reasoning can be achieved, and on the other hand, high
reasoning speed response can be obtained. Presumably, this form of reasoning would not be
sound and complete, but it would trade correctness and soundness guarantees with higher
runtime efficiency, in the spirit of approximate reasoning, which is reasonable in practical
applications [23]. First, in the different application fields of semantic web technology,
the need for a reasoning service can be totally different; in some scenarios, soundness and
completeness are key constraints. For example, in the disease diagnosis, misdiagnosis or
missed diagnosis will pay a very high cost. While in some scenarios, if a less precise answer
leads to a faster reasoning response, it can be acceptable and will bring great convenience,
such as in network security, information retrieval and other services. Second, in practical
KBs, especially those with large-scale ABox, even the KBs sophisticatedly built by experts
cannot ensure that all knowledge is correct. Therefore, it is permissible to sacrifice the
theoretical soundness and completeness of reasoning results in exchange for the flexibility
of applications and the improvement of practical efficiency. Thus, neural-symbolic learning
has vital potential value in the reasoning applicaitons of KBs containing large-scale ABox.

http://www.cs.man.ac.uk/~ezolin/dl/
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Most of the existing ABox reasoning methods based on neural-symbolic learning
consider ontologies with weak expressive ability, but the ontology with strong expressive
ability built on OWL DL is less considered, which still needs further research. In this paper,
we propose an approximate reasoning method for large-scale ABox for OWL DL based on
neural-symbolic learning, which is named the ChunfyReasoner (CFR). The basic idea of
the CFR is to regard deductive reasoning as a mapping function. The input is the original
KB, and the output is the extended KB (the KB inferred by logic reasoning). Through
the training of the NN model, the mapping relationship between the original KB and the
extended KB is learned, allowing the NN model to approximately compile the process of
deductive reasoning so as to achieve approximate ABox reasoning. In this paper, we state
the basic idea, framework and construction process of the CFR in detail and verify the
effectiveness of our method through experiments. The main contributions are as follows:

(1) We state the basic idea of the CFR in detail. As far as we know, this is the first
time we explicitly propose a regression model that uses NN to model ABox reasoning into
mapping relation learning. The CFR integrates ontology reasoning, graph data processing,
knowledge representation, NNs, parallel computing and other technologies, which is a
cross-innovation method. The basic idea of the CFR can also be used for reference in other
reasoning tasks.

(2) We exhaustively demonstrate the overall framework and construction method of
the CFR, which provides a novel and feasible technical approach for the large-scale ABox
reasoning of OWL DL KBs.

(3) Experiments are conducted on two open-source ontologies built on OWL DL to
verify the effectiveness of the CFR. The experimental results show that CFR can achieve high
reasoning quality and efficiency, and it can effectively support large-scale ABox reasoning
applications in OWL DL KBs.

This paper is organized as follows: in Section 2, related works are introduced. In
Section 3, we state the basic idea, overall framework and construction method of CFR in
detail. In Section 4, relevant experimental analysis is carried out. In Section 5, we discuss
the limitations of the CFR, and Section 6 is the conclusion of this paper.

2. Related Work

In this paper, we mainly investigate and analyze three ABox reasoning methods for
KBs: ABox reasoning based on logical deduction, ABox reasoning by KGC, and approxi-
mate ABox reasoning based on neural-symbolic learning.

2.1. ABox Reasoning Based on Logical Deduction

Description logic is the basis of OWL DL [9]. Common description logic is mainly
obtained by adding or deleting different constructors on the basis of ALC, and these
constructors become the main basis for distinguishing different specific description logics:
for example, adding the number restrictions in ALC to obtain ALCN , and adding the
functionality to obtain ALCF . In practical applications, it is not only necessary to describe
concepts but also to enhance the expressive ability of roles. For example, ALC with role
transitivity is called S ; if the axiom of role hierarchy is added, the SH language will be
obtained. OWL DL corresponding to SHOIN is the most expressive ontology language
that can be decidable at present. The reasoning of OWL DL is high in complexity, even for
the smallest propositionally closed DLALC (which only provides the class constructors qC,
C ∩ D, C ∪ D, ∃R.C and ∀R.C), the complexity of logical entailment is EXPTIME, and as
for SHION with high expressive ability, its reasoning complexity is NEXPTIME [24].
This means that increasingly large ontologies may, in the worst case, require exponentially
increasing computing resources to reason. Therefore, traditional reasoning tools supporting
OWL DL KBs such as Pellet [25] and Hermit [26] are not suitable for the reasoning tasks of
large-scale ABox.

In order to balance the contradiction between expressive ability and reasoning ef-
ficiency and gain support for efficient reasoning, researchers try to seek a compromise
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between expressive ability and reasoning complexity and put forward some lightweight
ontology languages, but it is difficult to be widely used in practice. W3C recommends
some tractable description logic languages, such as OWL EL, Horn DL, and DL-lite, which
respectively correspond to three sub-languages of OWL, which are OWL2 EL, OWL2 RL,
and OWL2 QL [27]. Among these sub-languages, the standard time complexity of the rea-
soning problem is PTIME complete. Meanwhile, targeted reasoners for these sub-languages
were also developed. For example, ELK [28] and RDFox [29] can perform efficient rea-
soning toward ontology expressed by OWL EL and OWL RL. However, the problem is
that knowledge in the real world is not limited to these languages, and forcing ontology
engineers to use these language will result in them having to give up knowledge that
would otherwise require complex expressive ability. As a result, many ontologies in the
real world exceed the expressive ability of any sub-language and still require reasoners for
OWL DL to reasoning [23].

2.2. ABox Reasoning by KGC

The ontology KBs containing large-scale ABox can be regarded as KGs, and the KGC
method can obtain efficient ABox reasoning, but KGC take less account of axioms in
ontology, and it often has low reasoning quality. Distance-models are classical methods
of KGC, such as TransE [30] and TransH [31]. They use existing knowledge in the KG to
express the entities and relationships as continuous real value vectors in low-dimensional
space and then define a score function to evaluate the probability of potential triples
by calculating the spatial distance between different entities. However, for the KB with
ontology constraints, the reasoning quality of these representation learning methods is
not high. Some methods try to express axioms in ontology by constructing new vector
spaces. For example, the EL encoding method [15] models EL++ description logic axioms
as geometric construction models, using vectors to represent entities and relationships,
using high-dimensional spheres to represent concepts, and using high-dimensional spheres
to represent implication, mutual exclusion and overlapping relationships among concepts.
Based on the spatial geometry constraints, the EL++ axiom is transformed into the loss
function constraint to represent the learning model, and the ontology can be transformed
into the learning model by training. However, this method cannot express the rules of
role constructors and role axioms, and it has limited ability to express complex axioms in
OWL DL. In addition, there are some similar methods, such as RotatE [16] and DensE [17],
trying to learn the axioms in ontology by changing the form of different spatial coordinates.
However, the axioms that these methods can deal with are still weak and cannot fully
express the axioms contained in OWL DL.

Using NN to build a semantic model is a common method of KGC. Researchers have
proposed a variety of NN models, such as traditional NN models such as ParamE [32]
and NTN [33], CNN-based models such as ConvE [34] and ConvKB [35], and GCN-based
models such as R-GCN [36], etc. We will not discuss these at length here; for details, please
refer to [12,37]. Although these NNs have strong learning ability to capture the semantic
features in ABox, their training process does not introduce logical reasoning as supervision
(label), which brings two defects in ABox reasoning. First, the NN model can only learn
the existing frequent patterns in ABox, and these existing frequent patterns are natural
attributes contained in the KG, which usually cannot fully reflect the axioms in the ontology
and do not contain the deductive mapping relationship from the top-level patterns to the
bottom-level implicit assertions. Therefore, even if the NN model is fully trained, it is
difficult to adequately learn the axioms in the ontology, and it cannot approximate the
process of logical reasoning. Second, under the open world assumption (OWA) (the OWA
is the assumption that what is not stated is unknown. Both the ontologies represented by
OWL and the KBs represented by RDF are based on the OWA. The closed-world assumption
(CWA) is the opposite of the OWA; it assumes that what is not currently known is false),
the assertions not stated in the KG are unknown, and the judgment of the accuracy of the
reasoning assertions output by the neural network model is vague due to the lack of logical
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reasoning results as a benchmark, while in the ABox reasoning of the ontology KB, it is
more expected to obtain deterministic reasoning results. Therefore, ABox reasoning based
on an NN model alone cannot achieve the desired results.

2.3. ABox Reasoning Based on Neural-Symbolic Learning

In recent years, with the development of Artificial Intelligence (AI) and cognitive
science, researchers began to explore a new way to achieve symbolic reasoning based on
NNs and proposed the neural-symbolic learning method [21,38]. Approaches in AI based
on artificial NNs differ fundamentally from approaches that leverage knowledge bases
to perform logical deduction and reasoning, but they are rather complementary to each
other. Neural-symbol learning organically integrates the advantages of symbolic systems
and NNs, has stronger problem-solving ability, and addresses fundamental problems
related to building a technical bridge between the symbolic and subsymbolic sides of the
divide, which is a more robust intelligent system [18,22]. In the ABox reasoning of the KBs,
the advantages of the symbolic system include ensuring the soundness and completeness
of the reasoning results, but the reasoning efficiency is low and cannot scale well for
large-scale ABox. The advantages of the NN are that it has high computational efficiency
and can realize fast reasoning. It is generally robust against noise in training or input
data. However, its disadvantage is that it cannot effectively learn the complex axioms in
TBox and a logical deduction process, and the quality of reasoning results is poor. ABox
reasoning is based on neural-symbolic learning; it discards the shortcomings of both and
integrates their advantages, which not only has higher reasoning efficiency but also can
obtain high-quality results similar to symbolic reasoning. It has important reference value
for solving large-scale ABox reasoning applications in KBs.

Some studies have used neural-symbolic learning for ABox reasoning. Ref. [18]
combined symbolic methods (in particular, knowledge representation using symbolic
logic and automated reasoning) with NNs to generate embeddings for nodes that encode
related information within biological KGs, and then, they applied these embeddings to
the prediction of edges in the KG. Although their method achieved outstanding results,
to improve its scalability, they chose the ontologies represented by OWL EL as the research
objects and used ELK to realize logical reasoning. For ontologies based on OWL DL, it
is difficult to construct a training corpus, so these methods cannot be applied to ABox
reasoning in OWL DL KBs. NMT4RDFS [39] performs ABox reasoning using an RDF-
scheme (RDF(s)) based on KG embeddings. However, RDF(s) is an ontology model with
weak expression ability; for the complex ontologies in this paper, NMT4RDFS cannot be
applied. ReasonKGE [40] proposed an iterative method that dynamically identifies the
inconsistent predictions produced by a given embedding model via symbolic reasoning
and feeds them as negative samples for retraining the model. To address the scalability
problem that arises when integrating ontological reasoning into the training processes
of embedding models, the authors considered ontologies in OWL DL-Lite. However,
under the OWA, most assertions are unknown rather than false, and logical inference is
performed every time negative examples are obtained. Therefore, for complex ontologies,
the cost of obtaining negative examples increases greatly, and ReasonKGE converges very
slowly or even fails to converge. The recursive reasoning network [41] synthesizes a KB
and extends it through Datalog reasoning and then employs the KB and its extended set as
input data and target data to train a NN model. However, the recursive reasoning network
was designed based on the CWA and cannot be used for ABox reasoning under the OWA.
Many related studies are still being conducted on neural-symbolic learning, and we cannot
enumerate them; it is strongly recommended to refer to the reviews in [38,42].

Recent studies have shown that for ABox in KBs, fast approximate reasoning can
be achieved with the help of neural-symbolic learning. However, existing methods are
oriented to performing knowledge reasoning under the CWA or operating on simple
ontologies under the OWA. Further research is still needed for conducting ABox reasoning
over OWL DL KBs, including complex ontologies under the OWA.
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3. Construction Method of the CFR

In this part, firstly, the basic idea of the CFR is introduced, and then, its specific process
and implementation method is elaborated in detail. Finally, the evaluation metrics of
reasoning performance is put forward.

3.1. Basic Idea of the CFR

The reasoning task of large-scale ABox reasoning is mainly considered, so we presume
the TBox of a given ontology KB is correct and complete. In order to formally describe the
basic idea of the CFR, the definitions of related concepts are given at first.

Definition 1. For a given OWL DL ontology KB, it is called origin KB, denoted as KBo =
(TBox, ABoxo), and the knowledge base obtained based on logic reasoning is called extensional KB,
denoted as KBext = (TBox, ABoxext). Ignoring the specific details, the reasoning process based on
description logic is called ontology reasoning, which is denoted as Ontoreason.

According to Definition 1, the process of ABox reasoning can be expressed as:

ABoxo
Ontoreason−−−−−→ ABoxext (1)

If ontology reasoning is regarded as a function in a broad sense, the above formula
can be converted into:

ABoxext = Ontoreason(ABoxo) (2)

where the input is ABoxo and the output is ABoxext; Ontoreason can be thought of as a
mapping function from input to output.

The theory has proved that the deep neural network can effectively approximate to
functions [43]. For an NN model NNmodel , if ABoxo is used as the input and ABoxext is
used as the supervision (output), where:

ABoxext ≈ NNmodel(ABoxo) (3)

Under the condition that the expression ability and learning ability of NNmodel are
strong enough, after sufficient training, the mapping relationships from ABoxo to ABoxext
can be effectively learned. It can be considered that the parameter learning of the NNmodel
is an approximate compilation of the deduction process of ontology reasoning, which is
expressed as:

NNmodel ≈ Ontoreason (4)

With the support of computer software and hardware for tensor computing and
parallel computing of deep learning, the NNmodel has higher computing efficiency and
better scalability for large-scale ABox reasoning than Ontoreason.

The above idea is theoretically feasible, but it still faces two major challenges. Firstly,
the input of the NNmodel model is real-valued vectors, and ABox is usually represented by
symbols, so how to input ABox into the NNmodel is a problem. Secondly, the input layer
parameters of the NNmodel are fixed and usually should not be overmuch, so how to input
a large-scale ABox into the NNmodel is another problem.

Definition 2. A class assertion C(e) indicates that instance e is the instance of class C; a role
assertion r(s, o) represents that there is a relation r between instances s and o. A collection of class
assertions and relation assertions is called an assertional box (ABox).

Let us start with the first challenge. In Definition 2, there are two kinds of assertions
in ABox, class assertion C(e) and role (or relation) assertion r(s, o), where class C and role
r are defined in TBox. Class assertion is a unary predicate, and role assertion is a binary
predicate. Both can be uniformly expressed as RDF [44] triple representation, which is a
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very common expression in semantic web and a lossless transformation. Then, these two
assertions can be expressed as:

C(e) = (e, is− A, C), r(s, o) = (s, r, o) (5)

Based on the triple representation, ABox can be converted into numeric values.
The common method is KG representation learning, but this is a lossy transformation.
We expect to achieve a greater degree of approximation of the reasoning process, so the
form of adjacency matrix is adopted. The adjacency matrix can only represent a single role
among entities; however, there are many kinds of roles in ABox, so we adopt the method
of a multi-layer adjacency matrix [39]; that is, the assertion involved in each type of role
in ABox is expressed as an adjacency matrix, and finally, all the adjacency matrices are
assembled to form a multi-layer adjacency matrix, the number of layers is equal to the role
number NR in ABox, including the class assertion is-A. At the same time, in order to realize
end-to-end learning, it is necessary to record the corresponding role and entity dictionary
of each layer of the adjacency matrix in the process of encoding a multi-layer adjacency
matrix so as to ensure the reversible process from the multi-layer adjacency matrix to ABox.
The concept definition is given below.

Definition 3. The process of encoding ABox in ontology KB into a multi-layer adjacency matrix is
called multi-layer adjacency matrix encoding, which is recorded as Encoder. The inverse process is
called multi-layer adjacency matrix decoding, which is denoted as Decoder.

Then comes the second challenge. For large-scale ABox, if we input it to the NNmodel
at one time, this will result in two defects. First, the scale of ontology KB used for model
training and the real KB that need to be inferred may be inconsistent, and the scale of ABox
of KB in the real world may change constantly, which makes it difficult to fix the parameters
of input layers of the NNmodel . Second, large-scale ABox is usually difficult to input at one
time due to the limitation of computer characteristics, and even if it can be input, it will
lead to too many parameters in the input layer of the NNmodel , which is difficult to train.
We alleviate these defects by segmenting subgraphs of instances. The subgraph of instances
is defined as follows.

Definition 4. Let e be an instance in a given ontology KB; then, the subgraph formed by its
adjacency entities and roles (or relations) centered on e in ABox is called the subgraph of instance e,
which is named ge.

According to Definition 4, if all instances in the KB are traversed, ABox in the KB can
be expressed as:

ABox = ge1 ∪ ge2 ∪ ge3 ∪ . . . ∪ geN (6)

where ei represents the ID of instances in the KB, i = 1, 2, . . . , N, and N represents the
number of instances in ABox.

The input of large-scale ABox can be solved by subgraph segmentation. The reason is
that even though the scale of ABox of training data and real KB are quite different, the sizes
of those subgraph are usually not much different for a single instance. In addition, through
subgraph segmentation, the number of training data can be increased, so training effect of
the NNmodel can be improved, since it is data-driven.

Definition 5. For a given ontology KB, which is denoted as KB = (TBox, ABox), let e be an
instance in ABox and its corresponding subgraph be ge. If (TBox, gext_e) = Ontoreason(TBox, ge)
holds, then gext_e is called the extended subgraph corresponding to instance e.

The training of the NNmodel depends on the supervision. We take the extended sub-
graph as the supervision data to train the NNmodel , as shown in Definition 5. The extended
subgraph of an instance is obtained by ontology reasoning under the complete TBox, which
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can ensure that it is correct and complete. Thanks to subgraph segmentation, the size of the
subgraph of each instance is relatively small, so the cost of obtaining an extended subgraph
will be greatly reduced.

According to Equations (2) and (6) and Definition 5, ABoxext can be expressed as:

ABoxext ≈ gext_e1 ∪ gext_e2 ∪ . . . ∪ gext_eN (7)

Obviously, the establishment of the above formula requires a precondition: that
is, whether the ABox reasoning result on the whole ABox can be approximated by the
collection of extended subgraphs. Ref. [7] gives relevant verification and proves that this
approximation is established.

We regard (gei, gext_ei) corresponding to the instance ei as a piece of training data,
where the subgraph gei is the input data and the extended subgraph gext_ei is the supervision
data, so a total of N pieces of training data can be constructed on the whole ABox. According
to Definition 5, every training data contains a complete logical deduction process. If the
NNmodel is constructed to learn the mapping relationships from the subgraph of an instance
to its extended subgraph, that is:

Encoder(gext_ei) = NNmodel(Encoder(gei)) (8)

Then, the NNmodel can learn the general logical deduction calculus: that is, the process
of deductive reasoning. Although the subgraph of each instance contains only fragmentary
information in ABox, the complete deductive reasoning process can be learned by the
NNmodel trained on the subgraph of all instances for many cycles.

In the testing (or reasoning) phase of the NNmodel , if a subgraph gej of an instance ej is
input, then its corresponding extended subgraph is output, which is:

nn_gext_ej = Decoder(NNmodel(Encoder(gej))) (9)

Then, after traversing the subgraphs corresponding to all instances in the test data,
the extended ABox (Equation (7)) can be expressed as:

ABoxext ≈ NN_ABoxext = nn_gext_e1 ∪ nn_gext_e2 ∪ . . . ∪ nn_gext_eN (10)

In the above formula, NN_ABoxext is the extended ABox reasoning result obtained
through the NN method. We think it is an effective approximation of the reasoning result
to the ontology reasoning, the structure and parameters of the NNmodel approximately
compile the deductive process of logical reasoning.

3.2. Framework of the CFR

In this section, we introduce the overall framework of the CFR. The framework is
shown in Figure 1. It is mainly divided into two parts: model training and reasoning (or
testing). In the figure, sNe indicates the number of instances in the synthetic ABox, rNe
indicates the number of instances in the ABox of the real KB, and the meanings of other
notations are the same as those in Section 3.1.

In model training, the large-scale ABox is synthesized based on the TBox to form
the synthetic ontology KB. On this basis, the subgraphs of ABoxs in the synthetic ontol-
ogy KB are divided to obtain the subgraph gsi for each instance, and all the subgraphs
constitute the input subgraph dataset. Then, the subgraph in the input subgraph dataset
are merged with the complete TBox, and the corresponding extended subgraph gext_si is
obtained by the ontology reasoner Pellet, thus forming the extended subgraph dataset.
The subgraph and its correspondingly extended subgraph (gsi, gext_si) constitute a piece of
training data. With the help of Encoder and Decoder, a reversible mapping from the symbol
to the multi-layer adjacency matrix is constructed, and a fully convolutional neural network
(FCNN) [45] is trained to learn the mapping relationships from the input subgraph to the
extended subgraph.
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Figure 1. Overall framework of the CFR.

In model reasoning (or testing), ABox in the real OWL DL KB is divided into subgraphs
by the same method, and the subgraph grj of each instance is obtained, forming the input
subgraph dataset. Each subgraph is encoded in turn by the Encoder and is input to the
FCNN; then, the output result is decoded by the Decoder. By restoring the result into RDF
triple representation and then obtaining the extended subgraph nn_gext_rj corresponding
to each subgraph, we form the approximately extended subgraph dataset. Finally, all the
extended subgraphs are merged to obtain a large-scale extended ABoxext. With the above
framework, the CFR implements the approximate reasoning task for large-scale ABox.

3.3. Process of the CFR

In this part, the ABox synthesis method, subgraph segmentation and dataset construc-
tion method, encoding and decoding method, and the structure of FCNN involved in the
framework are described in detail in turn.

3.3.1. ABox Synthesis Method

The CFR synthesizes ABox based on TBox in ontology KB to train the FCNN. There
are two main reasons. First, the NN model is data-driven, and the training process needs a
lot of data to support it. In practical applications, it is costly to acquire a large-scale real
ABox, and synthetic ABox can effectively alleviate the shortage of training data. Second,
the assertions in ABox are strictly constrained by TBox, and the logically consistent synthetic
ABox can ensure a high similarity with the real ABox. At the same time, various patterns
defined in the TBox can be effectively simulated by synthesizing an ABox, which makes the
generalization ability of the NN model stronger and effectively alliviates the unbalanced
distribution of assertions and the pattern missing in the real ABox.

How to synthesize logically consistent ABox based on TBox under the OWA is a
difficult problem. In this paper, the method of graph data synthesis in [46] is used to
synthesize a logically consistent ABox. The specific process is shown in Algorithm 1, which
can be roughly divided into the following three stages.

• The first stage is to obtain a set of class assertions by generating instances of each class
and then reason over the set of class assertions. First, a given number of instances
are generated according to the class in TBox to obtain a set of class assertions. Then,
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the ontology reasoner named Pellet is employed to perform a logical reasoning on the
set of class assertions based on the TBox. The is-A relation between the instance and
the class is generalized to obtain the is-A relation between the instance and the parent
or parent-of-parent class and thus obtain the set of reasoned class assertions;

• The second stage is to generate the set of role assertions. According to the relation def-
inition and class constraints, as well as the set of reasoned class assertions, the relation
between instances is randomly established. The union of the set of class assertions
and the set of relation assertions is the synthesized ABox with noise;

• The third stage is to remove conflict sets from the synthesized ABox with noise to
obtain a logically consistent ABox. A set of relation assertions that randomly built
may conflict with the set of axioms of the TBox. Based on the minimal conflict set
discovery method, all the minimal conflict sets can be obtained from the synthesized
ABox with noise and eliminated, and finally, a synthesized ABox with consistent
logical expression is obtained.

Algorithm 1: The ABox synthesis method based on TBox
Require:

TBox represented by OWL DL;
array x contains the number of instances to be generated for each class;

Ensure:
The synthetic data ABoxs;

1: Initialize an empty set ABoxs;
2: // Create instances (create class assertions);
3: Extract all classes in TBox to construct a clsSet;
4: for Cls ∈ clsSet do
5: for i in range(x(Cls)) do
6: Create Cls(eClsi ) // Create class assertions;
7: add Cls(eClsi ) to ABoxs;
8: end for
9: end for

10: ABoxs ⇐ HermiT (TBox ∪ ABoxs) // HermiT is an ontology reasoner;
11: // Create relation assertions;
12: Extract all relations from TBox to form a relSet;
13: for r ∈ relSet do
14: instsr

Domain=getDomainInst(r, Synth) // Obtain domain instances of r;
15: instsRange=getRangeInst(r, Synth) // Obtain range instances of r;
16: for s ∈ instsDomain do
17: o = randomlyChoiceFrom(instsRange) // Randomly choose o;
18: Create r(s, o) // Create role assertions;
19: add r(s, o) to ABoxs ;
20: end for
21: end for
22: // Ensure that the synthetic dataset is logically consistent;
23: Perform consistency detection on TBox ∪ ABoxs using HermiT reasoner;
24: while TBox ∪ ABoxs is not consistent do
25: Use the minimal conflict set discovery method to obtain all the minimal

conflict sets of TBox ∪ ABoxs, and randomly select an assertion from each
minimal conflict set and remove it from ABoxs;

26: end while
27: ABoxs= ABoxs \ TBox;
28: return ABoxs.
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3.3.2. Subgraph Segmentation and Dataset Construction

Each piece of training data of the FCNN consists of the subgraph corresponding to
the instance and its extended subgraph, which is, i.e., (gsi, gext_si). Subgraph segmentation
and ontology reasoning are needed to construct a train dataset based on synthesized ABox.
The subgraph segmentation is conducted with the aid of the SPARQL (Simple Protocol and
RDF Query Language) [47], and ontology reasoning is performed with the help of Pellet.
The specific process is shown in Algorithm 2.

Algorithm 2: Subgraph segmentation and dataset construction
Require:

TBox, represented by OWL DL;
ABox, the assertion set;

Ensure:
TrainSet, rhe training dataset;

1: Initialize an empty set TrainSet;
2: Extract all instances in ABox to construct an instSet;
3: for ei ∈ instSet do
4: gei = DESCRIBE(ei) // Use the DESCRIBE query in SPARQL to obtain the

subgraph of ei, which can be expressed as
gei = {r(ei, a)|r(ei, a) ∈ ABox} ∪ {r(a, ei)|r(a, ei) ∈ ABox} ∪ {C(ei)|C(ei) ∈ ABox};

5: gext_ei = Pellet (TBox ∪ gei) \TBox;
6: Add (gei, gext_ei) to TrainSet;
7: end for
8: return TrainSet.

It should be noted that although the ontology reasoner is used in both Algorithms 1 and 2,
the roles of the ontology reasoner in the two algorithms are different. In Algorithm 1,
the role of ontology reasoner is to check and ensure the consistency of the assertions and the
axioms of ontology in the synthesized ABox. In Algorithm 2, the function of the ontology
reasoner is to carry out logical reasoning, to integrate the process of deductive reasoning
into the data, and to produce supervision data for the training of the FCNN.

3.3.3. Encoding and Decoding Methods

ABox can be viewed as a heterogeneous graph with multiple relations, and its structure
and information cannot be directly expressed by an adjacency matrix. The CFR draws
lessons from the concept of a “channel” in CV (Computer Vision), regarding each role in
ABox as a channel, and slicing ABox according to the channel; only one role is contained in
each slice. Each slice is transformed into an adjacency matrix, and all slices are spliced to
form an adjacency matrix layered according to roles, which is called a multi-layer adjacency
matrix. It should be noted that each subgraph only contains the neighbor nodes and
relations of the instance, and different instances have different neighbor nodes. Therefore,
the entity dictionary of each graph should be recorded when encoding the subgraph so
as to realize the inverse process from the multi-layer adjacency matrix to the extended
subgraph in the decoding stage. The detailed process of subgraph encoding is shown in
Algorithm 3.

The output of the FCNN is the multi-layer adjacency matrix, which is restored to the
form of the extended subgraph by the decoder. The specific process is shown in Algorithm 4.
It should be noted that the CFR is applicable to regression fitting when learning the object
relational mapping, so the threshold (t) is a very important parameter, and the reconciliation
of the quality and efficiency of the reasoning result can be realized by adjusting t. This
parameter will be analyzed in detail in the experiment, and it will not be described here.
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Algorithm 3: The encoder of a multi-layer adjacency matrix
Require:

gei, the input subgraph;
relSet = {r1, r2, . . . , rNr}, the role set in the ontology KB, Nr is the number of roles;
d, the dimension of the multi-layer adjacency matrix;

Ensure:
Jei, the multi-layer adjacency matrix of gei;
Dictei, the entity dictionary;

1: Extract all instances in gei to construct a entity dictionary Dictei;
2: Initialize the multi-layer adjacency matrix Jei = zeros(d, d, Nr);
3: for (s, p, o) ∈ gei do
4: pid = relSet[p];
5: sid = Dictei[s];
6: oid = Dictei[o];
7: Jei[sid, oid, pid] = 1;
8: end for
9: return Jei, Dictei.

Algorithm 4: The decoder of a multi-layer adjacency matrix
Require:

Jei, the multi-layer adjacency matrix of the FCNN output;
Dictei, the entity dictionary;
relSet = {r1, r2, . . . , rNr}, the role set in the ontology KB, Nr is the number of roles;
t, the threshold for reconstruction of extended subgraphs;

Ensure:
gext_ei, the extended subgraph;

1: Initialize empty graph gei;
2: Jei[j ≥ t] = 1, Jei[j < t] = 0;
3: Extract all non-zero elements in Jei to construct an eleSet;
4: for ele ∈ eleSet do
5: sid, oid, pid = getIndex(ele, Jei) // Get the index of element ele in Jei;
6: s = Dictei[sid];
7: o = Dictei[oid];
8: p = relSet[pid];
9: Add (s, p, o) to gext_ei;

10: end for
11: return gext_ei.

3.3.4. Structure of the FCNN

The CFR uses a FCNN, which is inspired by the successful application of FCNNs in
computer vision. The model framework of the FCNN is shown in Figure 2. The input is
the multi-layer adjacency matrix of the input subgraph, and the output is the multi-layer
adjacency matrix of the extended subgraph. In the figure, Nr represents the number of roles
in the ontology KB, and d is the dimension of the adjacency matrix.

As can be seen from Figure 2, the CFR uses 8-layer FCNN model, where a ∗ (b@k× k)
indicates that there are a convolutional layers connected, each layer contains b convolutional
kernels, and the size of the convolutional kernel is k× k. In the FCNN, the padding type
of each convolutional layer is the “same”, meaning that the input and output feature
maps are guaranteed to have the same dimensions. The activation function is not used
for convolutional layer ID 8, and ReLU [48] is used for the other convolutional layers.
In addition, the CFR uses one-dimensional convolution instead of the fully connected layer,
as shown in convolutional layer ID 7 in the figure. The advantage of the FCNN is that
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the model parameters can be reduced effectively, the efficiency of training and reasoning
can be improved, and the consistency of structure between the input and output can be
improved while ensuring that the neural network model captures the global information.

2D convolution layer

Layer ID: 1, 2

2*(128@5×5)

Padding: same

Activation: ReLU

Multi-layer 

adjacency matrix

128 features 

mapping

d × d × Nr d × d × 128
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Figure 2. Structure of the FCNN.

It can also be seen from the figure that the input and output of the FCNN have the same
dimension. In fact, the FCNN learns the object relational mapping from the input subgraph
to the extended subgraph, and this object relational mapping is the embodiment of the
logical deduction process of ontology reasoning under a specific TBox. The FCNN realizes
the end-to-end representation and learning of the symbolic logical reasoning process by
means of the hierarchical adjacency matrix encoder and decoder.

The equation for the convolutional computation in the network can be expressed as:

Hm,n,c′ =
b k

2 c

∑
i=−b k

2 c

b k
2 c

∑
j=−b k

2 c
Xm+i,n+j,; · Gc′

i,j,; (11)

where the input is X ∈ RH×W×C, the convolutional kernel is Gc′ ∈ RH×W×C, and the
output is H;,;c′ ∈ RH′×W ′ . H ×W denotes the input size of the convolutional layer, C
denotes the number of input channels, k× k denotes the size of the convolutional kernel, c′

denotes the number of the convolutional kernels, H′ ×W ′ denotes the size of the output
feature maps, and the FCNN in the CFR adopts the same size filling, so H ×W = H′ ×W ′,
(m, n) denotes the index of the central node of the convolution block, and b∗c denotes
rounding down.

The CFR uses the mean square error (MSE) as the loss function, and its specific formula
is as follows:

Loss =
1

Nrd2

Nr

∑
k=1

d

∑
i=1

d

∑
j=1

(ŷi,j,k − yi,j,k)
2 (12)

where Nr represents the number of roles in the ontology KB, d is the dimension of the
adjacency matrix, yi,j,k represents the real value in the adjacency matrix, and ŷi,j,k represents
the prediction value of the FCNN on the corresponding position. The CFR uses the Adam
algorithm [49] for optimization training.

3.4. Evaluation Criterions of the CFR

In view of the soundness and completeness of logic-based ontology reasoning, the rea-
soning result of the ontology reasoning method is selected as the benchmark to define the
evaluation criterions of the CFR. The evaluation criterions of approximate ABox reason-



Mathematics 2023, 11, 495 14 of 25

ing of the CFR include precision, recall and F1, which are used to evaluate the accuracy,
completeness and comprehensive performance of the CFR, respectively.

The input subgraph dataset is Ginput = {g1, g2, . . . , gi, . . . , gNe}, the extended sub-
graph dataset obtained by ontology reasoning is Gonto = {gext_1, gext_2, . . . , gext_i, . . . , gext_Ne},
and GCFR = {nn_gext_1, nn_gext_2, . . . , nn_gext_i, . . . , nn_gext_Ne} is the subgraph dataset
obtained by the CFR, where Ne represents the number of instances in the KB. In reasoning
results, the number of the triples that are correctly reasoned can be expressed as:

CT = len{tr|tr ∈ gext_i ∩ nn_gext_i, i = 1, 2, . . . , Ne} (13)

where gext_i ∈ Gonto, nn_gext_i ∈ GCFR, tr denotes RDF triples, and len(∗) denotes the
length of the set.

The precision refers to the proportion of the correct triple in the output of the CFR,
which can be expressed as:

precision =
CT

len({tr|tr ∈ GCFR})
(14)

The recall refers to the proportion of the correct triple in all correct triples in the
reasoning result, which can be expressed as:

recall =
CT

len({tr|tr ∈ Gonto})
(15)

F1 is used as the comprehensive evaluation criterion of precision and recall, which is
also the comprehensive evaluation of approximate reasoning quality, and it is defined as:

F1 = 2× precision× recall
precision + recall

(16)

4. Experiments

In this section, the experimental verification and result analysis of the CFR are carried
out. Firstly, the experimental data and parameter settings of the CFR are introduced in
detail. Then, we evaluate the reasoning quality of the CFR through experiments. Since
the results of ontology reasoning are sound and complete, we selected results of Pellet as
the benchmark and selected NMT4RDFS [39] as the comparison to analyze the reasoning
precision, recall and F1 of the CFR.

4.1. Experimental Data and Parameter Settings

The experimental environment mainly includes a deep learning workstation with
32 GB of memory, a CPU frequency of 2.90 GHz×12, and a GeForce GTX 1080 GPU.
The interaction interface between the CFR and ontology KBs is built based on rdflib and
owlready2; the computational framework of the CFR is based on Keras and Tensorflow.

There are two open-source ontologies used in the experiment: one is family.swrl
(http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl, accessed
on 1 March 2019) released by the Ontology Base of Stanford University, which is a family
relation ontology, hereinafter referred to as “Family”, and the other is time-qualitative-
only (https://github.com/sbatsakis/TemporalRepresentations, accessed on 20 May 2020 )
released by Batsakis et al., which is a time ontology hereinafter referred to as “Time”. We
remove the SWRL rules in the two ontologies so that it only retains the relevant axioms of
OWL DL. The statistical information and the complexity of the above ontologies are given
in Table 1. In the table, “#” indicates the number of corresponding elements. Family and
Time have different representation abilities, and their numbers of concepts, relations and
axioms are also quite different, representing two different OWL DL ontologies.

http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl
https://github.com/sbatsakis/TemporalRepresentations
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Table 1. Statistics of the Ontologies Used in the Experiments.

Ontology # Axioms # Class # Role Complexity

Famiy 153 18 16 ALCHOIQ
Time 82 2 17 SRIF

It is difficult to obtain a large amount of high-quality data for training in reality, so we
train and evaluate our model on synthetic data. We synthesize the train and test dataset
based on the two ontologies, respectively, with the scale shown in Table 2. In the table,
“# CA”, “# RA”, and ”# A” indicate the number of class assertions, role assertions, and all
assertions in ABox of the synthetic OWL DL KBs, respectively. “Ratio” shows the split ratio
of the training set, verification set and test set, and “# Subgraphs” indicates the number of
subgraphs in the corresponding dataset.

Table 2. Statistical information of ABox and dataset split in synthetic OWL DL KBs.

Ontology
Scale of ABox in Synthetic KBs

Dataset Ratio # Subgraphs
# CA # RA # A

Family 94,176 511,514 605,690
train 0.6 56,506
valid 0.2 18,835
test 0.2 18,835

Time 55,719 245,679 301,398
train 0.6 33,432
valid 0.2 11,143
test 0.2 11,144

In addition, in order to further analyze the generalization of the CFR to new data and
the scalability to a large-scale ABox, we independently synthesized eight test sets of differ-
ent scales on the two ontologies, as shown in Table 3, # F1∼# F8 and # T1∼ # T8, with their
scales gradually increasing. It should be noted that the independently synthesized test data
means that these data and train data and different test data are completely different from
each other and do not interact with each other except that they share the same TBox, so this
independent test set contains brand new data.

Table 3. Statistics of the Independent Test Dataset Used in the Experiments.

Ontology Test Dataset ID # Subgraphs # A

Family

# F1 70 455
# F2 196 1187
# F3 331 2127
# F4 1722 11,020
# F5 3618 22,913
# F6 7196 45,746
# F7 17,911 113,552
# F8 35,545 226,462

Time

# T1 152 933
# T2 525 3054
# T3 914 4933
# T4 5003 27,755
# T5 10,363 55,398
# T6 20,583 111,393
# T7 51,947 279,038
# T8 103,365 556,192

In the evaluation of reasoning qulity of the CFR, we choose NMT4RDFS as the compari-
son method. This method is chosen for two reasons. First, the original design of this method
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is similar to that of the proposed CFR; both try to use an NN to achieve approximate logical
reasoning, so the two methods are comparable. Second, unlike the CFR, NMT4RDFS is ori-
ented toward ontology KBs (domain-specific KGs) constructed based on RDF(s). Compared
with the ontologies constructed by OWL DL, the expressive ability of RDFs is weaker. There-
fore, through a comparison with NMT4RDFS, the reasoning ability of the CFR for OWL DL
ontologies can be demonstrated. The open-source implementation of NMT4RDFS can be
downloaded from GitHub (https://github.com/Bassem-Makni/NMT4RDFS, accessed on
15 April 2021).

On all datasets, the CFR and NMT4RDFS use the same data for training and testing
and then compare their reasoning precision, recall and F1. Their parameter settings are
shown in Table 4. In the table, “d” indicates the dimension of the adjacency matrix, the
“HOPE dimension” is the dimension compressed by NMT4RDFS using the HOPE method,
and ”t” is the threshold for reconstructing the extended subgraph by the CFR.

Table 4. Parameter Settings of the CFR and NMT4RDFS in the Experiments.

Method Ontology d HOPE Di-
mension t Batch Size Epoch

CFR Family 60 - 0.5 32 50
Time 50 - 0.5 32 50

NMT4RDFS Family 60 4 - 32 50
Time 50 4 - 32 50

4.2. Reasoning Quality of the CFR

In this section, we verify the reasoning quality of the CFR by comparing and analyzing
the precision, recall and F1 of the CFR and NMT4RDFS on different test sets. The exper-
imental results are shown in Table 5. In the table, “-” indicates that there is no inference
assertion, because there are only two mutually exclusive classes in Time, so no inference
assertion can be obtained.

Table 5. The precision, recall and F1 of class assertions (CA), role assertions (RA) and all assertions
(A) of the CFR and NMT4RDFS.

Assertion Type Criterions
CFR NMT4RDFS

Family Time Family Time

CA
precision 0.9428 - 0.5102 -

recall 0.9282 - 0.4592 -
F1 0.9354 - 0.4834 -

RA
precision 0.9652 0.9848 0.5119 0.8166

recall 0.9946 0.9164 0.5917 0.7835
F1 0.9797 0.9493 0.5489 0.7997

A
precision 0.9555 0.9848 0.5113 0.8166

recall 0.9651 0.9164 0.5329 0.7835
F1 0.9603 0.9493 0.5218 0.7997

As can be seen from Table 5, the reasoning quality of the CFR is much higher than
that of NMT4RDFS. On the test set named Family, the precision of the CFR in term of class
assertions, role assertions, and all assertions is 0.9428, 0.9652, and 0.9555, respectively, while
that of NMT4RDFS is only 0.5102, 0.5119, and 0.5113. The CFR achieves superior reasoning
accuracies. In addition, the reasoning results of the CFR are also highly complete, the recall
of class assertions, role assertions and all assertions is 0.9282, 0.9946, and 0.9651, respectively,
while that of NMT4RDFS is only 0.4592, 0.5917, and 0.5329. The F1 of the CFR in assertion
reasoning is 0.9603, while that of NMT4RDFS is only 0.5218. Obviously, the comprehensive
performance of the CFR is much better than NMT4RDFS. Similar results have also been

https://github.com/Bassem-Makni/NMT4RDFS
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obtained on the test set named Time. The F1 of the CFR is 0.9493, while that of NMT4RDFS
is 0.7997. On the test sets of the two ontologies, the CFR achieves much better approximate
reasoning results than NMT4RDFS. It is worth noting that the comprehensive reasoning
performance of the CFR on the two ontologies is roughly the same (F1 is 0.9603 for Family
and 0.9493 for Time), while the reasoning performance of NMT4RDFS is quite different
(F1 is 0.5218 for Family and 0.7997 for Time), which also shows that the CFR has better
applicability to OWL DL ontology KBs with different expression capabilities.

In order to further verify the reasoning quality of the CFR, we evaluate the reasoning
quality of the CFR and NMT4RDFS on independently synthesized test sets of different
scales (Table 3). The reasoning precision, recall and F1 of the CFR and NMT4RDFS on all
assertions are shown in Table 6. It can be found that the CFR achieves higher precision,
recall and F1 on all test datasets of Family and Time. For # F1∼# F8 on Family, the precision
of the CFR is not less than 0.94, the recall is not less than 0.99, and the F1 exceeds 0.97. For
# T1∼# T8 on Time, the precision of the CFR is not less than 0.97, the recall is not less than
0.94, and the F1 exceeds 0.96. The reasoning quality of the CFR is much higher than that
of NMT4RDFS, which is close to the soundness and completeness of ontology reasoning.
This shows that the CFR proposed has better reasoning ability for OWL DL ontology KBs,
the CFR reasoning mechanism can learn the deep domain knowledge modeled in OWL DL
ontologies more accurately, so it can more accurately approximate and compile the logical
reasoning processes of complex ontologies, while NMT4RDFS targets RDF(s) ontologies, so
it has limitations when addressing complex ontologies.

Table 6. The precision, recall and F1 of all assertions (A) of the CFR and NMT4RDFS on independent
synthetic test datasets.

Ontology Test Dataset
ID

CFR NMT4RDFS

Precision Recall F1 Precision Recall F1

Family

# F1 0.9486 0.9986 0.9730 0.4184 0.7437 0.5355
# F2 0.9529 0.9979 0.9749 0.4265 0.7026 0.5308
# F3 0.9498 0.9989 0.9737 0.4668 0.7662 0.5801
# F4 0.9493 0.9983 0.9732 0.4513 0.7448 0.5620
# F5 0.9486 0.9986 0.9730 0.4509 0.7466 0.5623
# F6 0.9496 0.9983 0.9734 0.4555 0.7491 0.5665
# F7 0.9496 0.9984 0.9734 0.4527 0.7459 0.5634
# F8 0.9495 0.9984 0.9733 0.4523 0.7453 0.5630

Time

# T1 0.9824 0.9482 0.9650 0.7850 0.8972 0.8374
# T2 0.9800 0.9461 0.9628 0.7865 0.8981 0.8386
# T3 0.9759 0.9511 0.9633 0.7763 0.8838 0.8266
# T4 0.9765 0.9493 0.9627 0.7611 0.8783 0.8155
# T5 0.9783 0.9477 0.9627 0.7737 0.8852 0.8257
# T6 0.9778 0.9483 0.9628 0.7695 0.8818 0.8219
# T7 0.9780 0.9481 0.9628 0.7706 0.8826 0.8228
# T8 0.9778 0.9481 0.9627 0.7699 0.8819 0.8221

It can be seen from the horizontal comparison between Tables 5 and 6 that the CFR
has a strong generalization ability for new data. On the one hand, the reasoning quality of
the CFR between independent test sets is similar, and the evaluation results are roughly the
same as those on training sets. For # F1∼# F8, the precision is about 0.95, the recall is about
0.99, and the F1 is about 0.97; For # T1∼# T8, the precision is about 0.98, the recall is about
0.95, and the F1 is about 0.96. On the other hand, the CFR has excellent generalization
ability for datasets of different sizes. Although the size of independent test sets varies
greatly, the CFR still achieves similar reasoning results on all independent test sets, and the
reasoning quality does not decrease with the growth of data size. For example, the scale
of #T8 in Table 6 has far exceeded the scale of train data and other test datasets, but it
still has the same reasoning quality as small-scale test sets such as #T1∼#T7. The CFR
has good generalization ability because it is essentially an approximation of ontology
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reasoning process. Ontology reasoning is a top–down deductive reasoning. Its reasoning
process is a logical deduction from pattern knowledge to underlying assertions, which
depends on TBox rather than a specific ABox, and it is independent of the scale of ABox.
The generalization of the CFR shows that it has learned the approximate process of ontology
reasoning, and it has the approximate deduction ability that does not depend on the specific
assertion data and its scale, but it only depends on the pattern knowledge.

In practical applications, different occasions may put forward different requirements
for the soundness and completeness of reasoning results. The reasoning precision and recall
of the CFR can be adjusted according to the application requirements of different occasions.
It can be seen from Tables 5 and 6 that the CFR shows slightly different performance on the
Family and Time test datasets. The precision of the CFR on the Family test sets is slightly
lower than that of Time, but the recall is relatively higher, which indicates that the CFR has
achieved relatively high completeness on the Family, yet it shows high soundness on the
Time ontology. We can achieve a compromise between the soundness and completeness of
the CFR reasoning results via threshold(t) in the Decoder. With #F5 and #T5 being selected
as the test sets, the curve of precision, recall and F1 of the CFR reasoning result as the
threshold(t) changes will be shown in Figure 3.

Figure 3. Curve of precision, recall and F1 of the CFR changing with threshold (t).

As it can be seen from the figure, for different ontologies, the precision, recall and
F1 of the CFR are slightly different under a certain threshold (t), but they show the same
trend. The precision of the CFR will rise with the increase of threshold (t), the recall will
decrease with the increase of threshold (t), and the F1 will increase first and then decrease
with the increase of threshold (t). The contradiction between soundness and completeness
can be balanced by adjusting threshold (t). In applications, a larger threshold (t) can be
set when the application has higher requirements on the soundness of reasoning results.
For example, when the threshold (t) = 0.9, the precision of the CFR on the #F5 and #T5 are
0.9934 and 0.9999, respectively. If the threshold (t) continues to increase, the precision can
even reach 100%, but the corresponding recall will be much lower. When the completeness
of reasoning results is required, a smaller threshold (t) can be set. For example, when the
threshold (t) = 0.1, the recall of the CFR on the two test sets are 0.9994 and 0.9681, respec-
tively. If there is no special requirement for soundness and completeness, the threshold (t)
maximizing F1 can be selected, and the CFR has the best comprehensive performance
at present. For example, for the test sets #F5 and #T5, the threshold (t) is set to 0.9 and
0.6, the F1 values of the CFR are 0.9931 and 0.9651, respectively, and the corresponding
precision values are 0.9934 and 0.9912, while the recall values are 0.9927 and 0.9404, respec-
tively. From the above analysis, it can be found that the CFR can trade off the different
emphasis between soundness and completeness by adjusting the threshold (t) in the process
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of reconstructing the extended subgraph, which can further improve the applicability of
the CFR to meet different reasoning application scenarios.

In this section, we verify the reasoning quality of the CFR on test datasets of Family
and Time through experimental analysis, analyze the generalization of the CFR on the
new ABox and the ABox of different scales, and further explain that the CFR achieves a
compromise between precision and recall through parameter adjustment. The experimental
results show that the CFR can achieve high precision, recall and F1 on test datasets of OWL
DL ontology KBs, has superb generalization ability, and has better applicability to ABox
reasoning in different occasions.

4.3. Reasoning Efficiency of the CFR

In this section, we illustrate the reasoning efficiency by comparing the reasoning time
consumption of the CFR and ontology reasoning. In the experiment, two logical-based
ontology reasoners are chosen as the benchmarks, namely, Pellet and Hermit. Both are
widely used ontology reasoners and are relatively representative.

The reasoning time consumption of the CFR and ontology reasoning methods on the
test datasets #F1∼ #F8 and #T1∼ #T8 is shown in Table 7. The reasoning time consumption
in the table is the average of the three reasoning times on the corresponding test sets. “-”
means that the reasoning cannot be performed due to memory overflow or the reasoning
results can not obtained for more than 12 h. We do not discuss the differences between
ontology reasoners (refer to [50]) but only illustrate the efficiency of the CFR by comparing
the reasoning time. It needs to be explained that the Pellet and Hermit are relatively mature
products, which have been optimized by a large number of researchers to improve the
reasoning efficiency, while the CFR is only a prototype algorithm. If the CFR is optimized,
the inference speed can be further improved.

Table 7. Time consumption of the CFR and ontology reasoners on independent synthetic test datasets.

Ontology Test Dataset
ID

Time Consumption
of Pellet

Time Consumption
of HermiT

Time Consumption
of the CFR

Family

# F1 3 1 2
# F2 24 3 2
# F3 65 13 3
# F4 1020 742 9
# F5 5465 5339 18
# F6 22,274 39,391 34
# F7 - - 83
# F8 - - 163

Time

# T1 0.2 0.2 2
# T2 0.5 0.6 3
# T3 0.9 0.8 4
# T4 18 5 18
# T5 92 12 36
# T6 - 53 71
# T7 - 2571 176
# T8 - 5067 355

It can be found from the table that the CFR has a greater reasoning speed advantage
than ontology reasoners. For all independent synthetic test datasets, the reasoning time
consumption of Pellet, HermiT and the CFR will increase with the growth of the scale of
the ABox, but the difference is that the reasoning time consumption of Pellet and HermiT
increases significantly faster than that of the CFR. It is worth noting that with the growth
of the scale of ABox, the reasoning time consumption of Pellet and Hermit is far greater
than that of the CFR. The larger the scale of ABox is, the more obvious the advantage of
reasoning speed of the CFR. For example, for #F6, the reasoning time consumption of Pellet
and HermiT is about 655 times and 1158 times longer than that of the CFR, respectively.
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For the test datasets on Time, Pellet shows worse applicability, which can only obtain
reasoning results on the #T1∼ #T5. Although HermiT can obtain the results on all the test
datasets, its reasoning time consumption is much longer than that of the CFR. For example,
in the largest test set #T8, HermiT took 5067 s to finish reason, while the CFR only took 355 s,
showing the former is about 14 times slower than the latter. In order to analyze the trend of
the reasoning time consumption of the CFR more directly, the curves of the reasoning time
trends of different reasoning methods on the test is drawn, as shown in Figure 4. Since the
number of class assertions in different datasets varies greatly, the abscissa in the figure is
the logarithmic coordinate.

,   ,   , , , , , , ,,   ,  

Figure 4. Curve of time consumption of Pellet, HermiT and the CFR changing with the scale of ABox.

It can be seen from Figure 4a,b that the reasoning time consumption of Pellet and
HermiT on #F6 has increased dramatically, which is about 4.1 times and 7.4 times that of
#F5, respectively, and the scale of #F6 is only about two times that of #F5. Thus, it can
be seen that the reasoning time consumption of ontology reasoning methods does not
increase linearly with the growth of the scale of ABox, but it tends to increase exponentially.
The reasoning time consumption of the CFR is almost a straight line with the growth of the
scale of ABox, indicating that the reasoning time of the CFR rises linearly with the scale
of ABox in OWL DL KBs. Figure 4c,d compare the curve of reasoning time consumption
of different reasoning methods on the Time, showing a similar change trend to those on
Family, which indicates that the proposed CFR has universality to some extent and shows
similar reasoning efficiency on different ontologies.

The traditional OWL DL-oriented ontology reasoners, such as Pellet and HermiT,
are usually based on classic Tableau algorithms and their extensions, both of which are
in-memory algorithms. Theoretical research has proven that for an ontology represented by
OWL DL, the complexity of its reasoning process is at least ExpTime-complete. Therefore,
for Pellet and HermiT, when the scale of ABox grows, both the memory resources occupied
and the time consumed increase exponentially. The CFR takes subgraphs of instances as
input, and once the NN model is determined, for each subgraph, only one operation is
triggered and each operation can be calculated in a constant amount of time. Therefore,
the time consumption of the CFR is linear in the number of instances, that is, O(|A|),
where |A| indicates the scale of the instance in an OWL DL KB. Compared with traditional
ontology reasoners, the CFR has higher reasoning efficiency and faster response speed,
and it has better scalability for a large-scale ABox in OWL DL KBs.

In this part, the reasoning time consumptions of ontology reasoning methods and
the CFR are analyzed and compared by experiments. Experimental results show that the
CFR has higher reasoning efficiency and faster reasoning speed than ontology reasoning.
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With the growth of the scale of ABox, the reasoning time consumption increases linearly:
the larger the scale of ABox, the more obvious the advantage of its reasoning speed.

5. Discussion

Although the reasoning quality and efficiency of the CFR proposed are verified by
experiments, there are still some challenges to discuss that may affect the applicability and
limitations of our method.

Firstly, the CFR has some limitations on long chain reasoning. In the ontology KB built
on OWL DL, chained reasoning is inevitably involved, such as roles with transitivity. Let
us take the role named “ancestorO f ” (ancestorO f (s, o) means that s is the ancestor of o) as
an example; if the following assertions exist in the KB, ancestorO f (a, b), ancestorO f (b, c)
and ancestorO f (c, d), we can infer the implicit assertion ancestorO f (a, d). If we expect the
CFR to obtain such reasoning results, we should ensure that instances a and d appear in a
subgraph at the same time, which is often not guaranteed when using the method in this
paper to perform subgraph segmentation. Therefore, if there is a lot of chained reasoning
in the KB, the completeness of reasoning results of the CFR may be negatively affected.
If we adopt a higher-order subgraph segmentation (refer to [7]), it can ensure that the
instances involved in chain reasoning are in a subgraph, but it will lead to the rapid growth
of the scale of the subgraph, increase the difficulty of NN training, and affect the quality
of approximate reasoning. We choose #F5 to illustrate this limitation by comparing the
reasoning performance of the CFR on one-hop and two-hop subgraphs. The results are
shown in Figure 5. It can be seen from the figure that the reasoning performance of the
CFR on two-hop subgraphs is slightly reduced, and no matter the accuracy, recall or F1 is
slightly lower than the reasoning result of one-hop subgraphs. This is because for two-hop
subgraphs, the adjacency matrix will be larger and more sparse, reducing the efficiency
of information encoding and making the training of NNs more difficult. Although some
methods such as HOPE [39] can reduce the dimension of the adjacency matrix, there will
be information loss, and we cannot completely reconstruct the adjacency matrix. Therefore,
the reasoning performance of the CFR may be limited for the KBs containing a large number
of long-chain reasoning, and we will explore more appropriate subgraph encoding methods
to alleviate this problem in subsequent research.

Secondly, we should pay attention to the case where ABox contains super nodes.
The super nodes are instances that are associated with many other instances, such as
an instance of a school in LUBM (http://krr-nas.cs.ox.ac.uk/ontologies/lib/LUBM/,
accessed on 20 April 2021) ontology, which may be associated with thousands of student
instances. In the reasoning process of the CFR, if there are many super-nodes, the scale of the
subgraph centered on the super-node will be much larger than that of other nodes, and the
multi-layer adjacency matrix corresponding to the super-node will be very large and sparse,
which will lead to a lot of parameters in the input layer of the NN, making the NN model
difficult to train. However, in practice, the influence of super-nodes is limited, because the
information of all subgraphs is redundant, such as assertions (s, studyIn, o) (indicating that
student s study in school o), then this assertion will appear in the subgraph corresponding
to instances s and o, respectively. If we discard the subgraph of super-node o, it will not
cause information loss from a global perspective. Therefore, in reasoning applications of
the CFR, the subgraphs corresponding to super nodes can be appropriately discarded.

http://krr-nas.cs.ox.ac.uk/ontologies/lib/LUBM/
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Figure 5. Curve of precision, recall and F1 of the CFR changing with threshold(t) on 1-hop and
2-hop subgraphs.

6. Conclusions

The OWL DL KB containing large-scale ABox is becoming more and more common;
ABox reasoning has gradually become a bottleneck restricting its further application. The ex-
isting reasoning methods are difficult to adapt to the reasoning needs of large-scale ABox.
Aiming at these shortcomings, we introduce neural-symbolic learning into ABox reason-
ing and propose an approximate reasoning method, called the CFR, which implements
approximate deductive reasoning on OWL DL KB by approximately compiling the logical
deduction process of ontology reasoning through neural network. We formalize the basic
idea of the CFR, introduce the overall framework and specific process in detail, and carry
out experiments on two open-source ontologies built on OWL DL. The experimental results
show that the CFR can not only achieve higher approximate reasoning quality but also has
higher reasoning efficiency and a faster reasoning response, which effectively illustrates
the effectiveness of the CFR. The CFR is expected to effectively support large-scale ABox
reasoning applications in OWL DL KBs.

In the future, we will continue to conduct further research on the characteristics of
the CFR, mainly including the following aspects. The first is to use the generalization of
NN to further explore the ability of the CFR to perform transfer reasoning and incremental
reasoning. The second is to further explore the reasoning ability of the CFR in large-scale
ABox containing noise by using the robustness of an NN. The third is to try to realize the
interpretability of reasoning results of the CFR by using arguments of ontology reasoning
as the supervision. We hope that the CFR can provide useful reference for exploring more
large-scale ABox reasoning methods.



Mathematics 2023, 11, 495 23 of 25

Author Contributions: Conceptualization, X.Z., B.L., Z.D. and L.Y.; methodology, X.Z.; formal
analysis, X.Z.; investigation, X.Z.; data curation, B.L. and Z.D.; writing—original draft preparation,
X.Z.; writing—review and editing, B.L. and C.Z.; funding acquisition, C.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Foundation (NSF) of China OF FUNDER
grant number 71571186, 61273322.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in Gitee at
https://gitee.com/x-x-zhu/the-data-of-cfr.git, accessed on 16 November 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guarino, N.; Oberle, D.; Staab, S. What Is an Ontology? Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009;

pp. 1–17. https://doi.org/10.1007/978-3-540-92673-3_0.
2. Jorge, C.; Sheth, A. The Semantic Web and its applications. In Semantic Web Services, Processes and Applications; Springer: Boston,

MA, USA, 2006; pp. 3–33. https://doi.org/10.1007/978-0-387-34685-4_1.
3. Horrocks, I. Owl: A description logic based ontology language. In Proceedings of the 11th International Conference on Principles

and Practice of Constraint Programming, Sitges, Spain, 1–5 October 2005; pp. 5–8. https://doi.org/10.1007/11564751_2.
4. De Giacomo, G.; Lenzerini, M. TBox and ABox reasoning in expressive description logics. KR 1996, 96, 316–327.

https://doi/abs/10.5555/3087368.3087406.
5. Ren, Y.; Pan, J.Z.; Lee, K. Parallel ABox Reasoning of ELOntologies. In Proceedings of the Joint International Semantic Technology

Conference, Hangzhou, China, 4–7 December 2011; pp. 17–32. https://doi.org/10.1007/978-3-642-29923-0_2.
6. Klarman, S.; Endriss, U.; Schlobach, S. ABox Abduction in the Description Logic ALC. J. Autom. Reason. 2011, 46, 43–80.

https://doi.org/10.1007/s10817-010-9168-z.
7. Zhu, X.; Lin, B.; Ding, Z.; Yao, L.; Zhu, C. Implementing Large-Scale ABox Materialization Using Subgraph Reasoning. In

Proceedings of the International Conference on Knowledge Science, Engineering and Management, Singapore, 6–8 August 2022;
pp. 627–643. https://doi.org/10.1007/978-3-031-10983-6_48.

8. Cui, Z.; Chen, H.; Cui, L.; Liu, S.; Liu, X.; Xu, G.; Yin, H. Reinforced KGs reasoning for explainable sequential recommendation.
World Wide Web 2022, 25, 631–654. https://doi.org/10.1007/s11280-021-00902-6.

9. Baader, F.; Horrocks, I.; Sattler, U. Description logics. Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 3–28. https://doi.org/10.1007/978-3-540-24750-0_1.

10. Zese, R.; Bellodi, E.; Riguzzi, F.; Cota, G.; Lamma, E. Tableau reasoning for description logics and its extension to probabilities.
Ann. Math. Artif. Intell. 2018, 82, 101–130. https://doi.org/10.1007/s10472-016-9529-3.

11. Abu-Salih, B. Domain-specific knowledge graphs: A survey. J. Netw. Comput. Appl. 2021, 185, 103076. https://doi.org/10.1016/
j.jnca.2021.103076.

12. Shen T, Zhang F, Cheng J. A comprehensive overview of knowledge graph completion. Knowl.-Based Syst. 2022, 255, 109597.
https://doi.org/10.1016/j.knosys.2022.109597.

13. Chen, Z.; Wang, Y.; Zhao, B.; Cheng, J.; Zhao, X.; Duan, Z. Knowledge graph completion: A review. IEEE Access 2020, 8,
192435–192456. https://doi.org/10.1109/ACCESS.2020.3030076.

14. Wiharja, K.; Pan, J.Z.; Kollingbaum, M.J.; Deng, Y. Schema aware iterative Knowledge Graph completion. J. Web Semant. 2020, 65,
100616. https://doi.org/10.1016/j.websem.2020.100616.

15. Kulmanov, M.; Liu-Wei, W.; Yan, Y.; Hoehndorf, R. El embeddings: Geometric construction of models for the description logic
EL++. In Proceedings of the 28th International Joint Conferences on Artificial Intelligence, Macao, China, 10–16 August 2019; pp.
6103–6109. https://doi.org/10.24963/ijcai.2019/845.

16. Sun, Z.; Deng, Z.H.; Nie, J.Y.; Tang, J. Rotate: Knowledge graph embedding by relational rotation in complex space. In
Proceedings of the 7th International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
https://doi.org/10.48550/arXiv.1902.10197.

17. Lu, H.; Hu, H.; Lin, X. DensE: An enhanced non-commutative representation for knowledge graph embedding with adaptive
semantic hierarchy. Neurocomputing 2022, 476, 115–125. https://doi.org/10.1016/j.neucom.2021.12.079.

18. Alshahrani, M.; Khan, M.A.; Maddouri, O.; Kinjo, A.R.; Queralt-Rosinach, N.; Hoehndorf, R. Neuro-symbolic representation
learning on biological knowledge graphs. Bioinformatics 2017, 33, 2723–2730. https://doi.org/10.1093/bioinformatics/btx275.

19. Franklin, N.T.; Norman, K.A.; Ranganath, C.; Zacks, J.M.; Gershman, S.J. Structured Event Memory: A neuro-symbolic model of
event cognition. Psychol. Rev. 2020, 127, 327–361. https://doi.org/10.1037/rev0000177.

https://gitee.com/x-x-zhu/the-data-of-cfr.git


Mathematics 2023, 11, 495 24 of 25

20. Belle, V. Symbolic logic meets machine learning: A brief survey in infinite domains. In Proceedings of the International Conference
on Scalable Uncertainty Management, Bozen-Bolzano, Italy, 23–25 September 2020; pp. 3–16. https://doi.org/10.1007/978-3-030-
58449-8_1.

21. Ebrahimi, M.; Eberhart, A.; Bianchi, F.; Hitzler, P. Towards bridging the neuro-symbolic gap: Deep deductive reasoners. Appl.
Intell. 2021, 51, 6326–6348. https://doi.org/10.1007/s10489-020-02165-6.

22. Hitzler, P.; Bianchi, F.; Ebrahimi, M.; Sarker, M.K. Neural-symbolic integration and the semantic web. Semant. Web 2020, 11, 3–11.
https://doi.org/10.3233/SW-190368.

23. Rudolph, S.; Tserendorj, T.; Hitzler, P. What is approximate reasoning?. In Proceedings of the International Conference on Web
Reasoning and Rule Systems, Karlsruhe, Germany, 31 October–November 1 2008; pp. 150–164. https://doi.org/10.1007/978-3-
540-88737-9_12.

24. Pan, J.Z.; Thomas, E. Approximating owl-dl ontologies. In Proceedings of the 22nd National Conference on Artificial Intelligence,
Vancouver, BC, Canada, 22–26 July 2007; pp. 1434–1439. https://www.aaai.org/Library/AAAI/2007/aaai07-227.php.

25. Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A practical owl-dl reasoner. J. Web Semant. 2007, 5, 51–53.
https://doi.org/10.1016/j.websem.2007.03.004.

26. Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; Wang, Z. HermiT: An OWL 2 reasoner. J. Autom. Reason. 2014, 53, 245–269.
https://doi.org/10.1007/s10817-014-9305-1.

27. Krötzsch, M. OWL 2 profiles: An introduction to lightweight ontology languages. In Proceedings of the Reasoning Web-Semantic
Technologies for Advanced Query Answering, Vienna, Austria, 3–8 September 2012; pp. 112–183. https://doi.org/10.1007/978-3-
642-33158-9_4.
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